WO2019054286A1 - 内燃機関用部品および内燃機関用部品の製造方法 - Google Patents

内燃機関用部品および内燃機関用部品の製造方法 Download PDF

Info

Publication number
WO2019054286A1
WO2019054286A1 PCT/JP2018/033177 JP2018033177W WO2019054286A1 WO 2019054286 A1 WO2019054286 A1 WO 2019054286A1 JP 2018033177 W JP2018033177 W JP 2018033177W WO 2019054286 A1 WO2019054286 A1 WO 2019054286A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
internal combustion
combustion engine
heat
heat resistant
Prior art date
Application number
PCT/JP2018/033177
Other languages
English (en)
French (fr)
Inventor
宏 稲葉
松井 淳
圭太郎 宍戸
高橋 智一
正登 佐々木
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019054286A1 publication Critical patent/WO2019054286A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/02Selecting particular materials for valve-members or valve-seats; Valve-members or valve-seats composed of two or more materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings

Definitions

  • the invention relates to a component for an internal combustion engine.
  • Patent Document 1 it is difficult to realize the function of the film continuously in a high temperature environment in the engine.
  • the component for an internal combustion engine preferably has a heat resistant film covering the surface of a substrate, and an oil repellent film which is on the heat resistant film and which is covalently bonded to the heat resistant film.
  • the function of the coating can be maintained even in a high temperature environment in the engine.
  • FIG. 1 schematically shows one cylinder in an engine of a first embodiment. It is the perspective view which looked at the piston main body of 1st Embodiment from upper direction. It is the perspective view which looked at the piston main body of 1st Embodiment from the downward direction. The cross section of the piston head and film
  • the analysis result of the component of the oil-repellent film of Example 1 is shown. It is a photograph of the piston crown surface in the piston (before engine operation) of Example 1. 5 is a photograph of a piston crown surface of the piston of Example 1 (after engine operation). It is a photograph of the piston crown surface in an uncoated piston (before engine operation).
  • the cross section of the piston head of Comparative example 3 (after heating) and a film is shown typically.
  • the cross section of the piston head of Comparative example 4 (after heating) and a film is shown typically.
  • the result of having changed the time of nitriding treatment and changing the amount of nitrogen in the heat resistant coat of Example 2 is shown.
  • membrane is shown typically. It is a photograph of the cross section of the piston head of Example 6, and a film. It is a photograph of the cross section of the piston head of 7th Embodiment, and a film
  • the result of having measured the heat conductivity of the heat resistant film of Example 7 by changing the content rate of a hollow substance is shown.
  • the internal combustion engine (engine) of this embodiment is a V-type six-cylinder gasoline engine provided with two intake valves and two exhaust valves per cylinder. Parts for the engine include pistons, injectors, valves, cylinders and the like.
  • a piston will be described as an example.
  • the piston 1 is slidably installed in a cylinder block 101 having a cylindrical wall surface.
  • the piston 1 is connected to the crankshaft by a piston pin 104 and a connecting rod 105.
  • the piston 1 has a piston body 2 and a composite membrane 3.
  • the piston body 2 is integrally cast from an Al-Si based aluminum alloy.
  • the piston body 2 has a piston crown (piston head) 20, a pair of skirts 21, and a pair of aprons 22.
  • the apron portion 22 has a piston pin boss portion 220.
  • the piston head 20 has a top surface 200 and a piston ring groove 201.
  • a piston pin 104 is installed in the piston pin boss 220, and a piston ring is installed in the piston ring groove 201.
  • the composite film 3 is a composite of a plurality of films and covers at least the top surface 200.
  • the top surface 200 covered by the composite membrane 3 functions as a piston crown surface.
  • the piston crown surface forms a combustion chamber 100 with the cylinder wall surface 103 and the cylinder head 102.
  • the composite film 3 may locally be subjected to a heat load of 300 ° C. or more at the operating environment temperature.
  • the composite membrane 3 uses the piston head 20 as a base (base) and covers the surface (top surface 200) of the piston head 20.
  • the composite film 3 has an adhesive film 30, a heat resistant film 31, and an oil repellent film 32. The layers are stacked in this order from the side of the top surface 200 to the side of the combustion chamber 100.
  • the adhesive film 30 is a bonding layer (bonding film) between the top surface 200 and the heat resistant film 31.
  • the adhesive film 30 is bonded to the top surface 200 and has a function of improving the adhesion between the top surface 200 and the composite film 3.
  • the adhesive coating 30 and the top surface 200 are mainly bonded by metal bonding and ionic bonding.
  • the material of the adhesive film 30 contains at least one of carbon, nitrogen, silicon, titanium, tungsten, and chromium. The above elements are selected as the material in consideration that the bonding between the top surface 200 and the adhesive coating 30 is mainly due to metal bonding and ion bonding.
  • the bonding portion 300 between the adhesive coating 30 and the top surface 200 contains substantially no oxygen. That is, basically, oxygen is not used to bond the top surface 200 and the adhesive film 30.
  • the heat resistant film 31 contains diamond like carbon (DLC).
  • DLC is hydrogen-containing amorphous carbon (aC: H) substantially free of fluorine.
  • the content of fluorine in the heat resistant film 31 is less than 5 at% (atomic composition percentage), and the content of hydrogen is 5 at% or more.
  • the heat resistant film 31 and the adhesive film 30 are mainly joined by ionic bonding and covalent bonding.
  • the film thickness of the heat resistant film 31 may be 1 nm (0.001 ⁇ m) or more and 100 ⁇ m or less. By setting the lower limit of the film thickness to 1 nm, the strength of the film 31 (in a single body) can be maintained. Moreover, suppression of peeling of the film 31 can be aimed at by making the upper limit of a film thickness into 100 micrometers or less.
  • the oil-repellent coating 32 covers the surface of the heat-resistant coating 31 and is an oil-repellent coating that is more oil-repellent than the heat-resistant coating 31.
  • the heat resistant film 31 and the oil repellent film 32 are bonded by covalent bonding.
  • the oil repellent film 32 is covalently bonded to the heat resistant film 31 via silicon and oxygen.
  • the oil-repellent coating 32 is bonded to the heat-resistant coating 31 via the covalent bond 320.
  • the covalently bonded portion 32 is a portion where the unpaired electron of the heat resistant film 31 and the silane coupling group of the material of the oil repellent film 32 are covalently bonded, and contains silicon and oxygen.
  • the film thickness of the oil repellent film 32 may be 1 nm or more. By setting the lower limit of the film thickness to 1 nm, the strength of the film 32 (in a single body) can be maintained.
  • the strength of bonding increases in the order of metal bonding, ionic bonding and covalent bonding.
  • the bonding force between the films 30 to 32 in the composite film 3 increases in the stacking order from the surface (top surface 200) of the substrate.
  • the oil repellent film 32 is strongly bonded to the heat resistant film 31 by being covalently bonded to the heat resistant film 31.
  • the heat resistant film 31 contains carbon and has higher heat resistance than the oil repellent film 32. Therefore, the composite film 3 is prevented from peeling off the top surface 200 even under a severe temperature environment (high temperature) in the engine, so that the oil repellency is maintained and the oil repellency effect is continued continuously.
  • the piston 1 to which the composite film 3 is applied can maintain oil repellency and reduce the probability of occurrence of deposits even under use conditions accompanied by a severe temperature rise (within the combustion chamber). Further, even if deposits are generated, the adhesion rate is low, so that the deposition rate can be suppressed, and the generated deposits can be easily removed. And it becomes possible to reduce the incomplete combustion of the fuel in an engine, and to reduce deterioration of the fuel consumption, performance, and environmental characteristics as an engine.
  • DLC is highly heat resistant.
  • the composite film 3 can more effectively maintain its function continuously even under the high temperature of the engine (for example, a combustion chamber). Since the content of fluorine in DLC is less than 5 at%, which is small, it is possible to suppress the collapse of the sp3 structure in DLC and obtain high heat resistance. From this point of view it is ideal that the DLC is totally free of fluorine.
  • the adhesive film 30 may not be present between the heat resistant film 31 and the top surface 200.
  • the composite film 3 of the present embodiment has an adhesive film 30.
  • the force with which the adhesive film 30 bonds with the top surface 200 and the force with which the adhesive film 30 bonds with the heat resistant film 31 is larger than the force with which the heat resistant film 31 bonds with the top surface 200. Therefore, peeling of the composite film 3 from the top surface 200 can be suppressed more effectively.
  • the adhesion film 30 formed of a flexible material such as chromium is bonded to the top surface 200 instead of the heat-resistant film 31 having a relatively high internal compressive stress, so that the composite film 3 from the top surface 200 is Peeling can be suppressed. Since the bonding portion 300 between the adhesion film 30 and the top surface 200 does not substantially contain oxygen, the bonding strength between the adhesion film 30 and the top surface 200 can be improved even in a high temperature environment.
  • Example 1 Hereinafter, a specific example 1 for realizing the present embodiment will be described.
  • the composite film 3 was formed by the following steps. As pretreatment, before the film formation, the dirt made of organic matter, inorganic matter and the like on the surface of the substrate (the top surface 200) was removed by etching or the like with a vacuum device.
  • the adhesion film 30 made of amorphous silicon carbide (a-SiC) is formed by chemical vapor deposition (CVD) using an organic silicon material in a vacuum apparatus. It was formed on the surface 200 (film formation).
  • the film thickness of the adhesive film 30 was 1.0 ⁇ m.
  • the heat resistant film 31 composed of aC: H was formed on the adhesive film 30 by the CVD method using a hydrocarbon-based material.
  • a vacuum apparatus was used in the CVD method.
  • the sp3 structure ratio in aC: H was about 40% at the maximum.
  • the film thickness of the heat resistant film 31 was 1.0 ⁇ m.
  • the oil repellent coating 32 was formed on the heat resistant coating 31 using a material containing a silane coupling group.
  • the oil-repellent coating 32 is a fluorocarbon-based compound (CFx-Si) containing a silane coupling group.
  • CFx-Si fluorocarbon-based compound
  • Chemical formula 1 CFx-Si used has a Damnum structure having a flexible and flexible molecular structure as a main chain skeleton, and has a number average molecular weight of 3,000 to 5,000.
  • the terminal functional group is a silane coupling group, and in a state in which the main chain is extended, it is adsorbed by the hydrolysis reaction and the heat resistant film 31 to be the surface of the substrate to be treated by covalent bond.
  • a solution was prepared by diluting CFx-Si in a fluorinated solvent to 0.1 to 1.0 wt%.
  • the piston crown 20 on which the heat resistant film 31 was formed was dipped (immersed) in the above solution for 3 minutes at normal temperature.
  • the oil repellent film 32 was applied. That is, CFx-Si was adsorbed on the surface of the heat resistant film 31 (the covalent bond 320 was formed).
  • the final film thickness of the oil-repellent coating 32 was 0.1 ⁇ m.
  • the film thickness of the oil repellent film 32 depends on the dilution concentration of CFx-Si in the solvent and the like.
  • the film thickness can be controlled in the range of 0.001 to 1.0 ⁇ m by changing the dilution concentration in the range of 0.01 to 30 wt%.
  • FIG. 5 shows the result of wide scanning of the oil repellent coating 32 (having a film thickness of 0.1 ⁇ m) after X-ray photoelectron spectroscopy (XPS) after a heat load test (at 300 ° C. in the atmosphere for 24 hours). It can be confirmed that carbon C, fluorine F and oxygen O were observed.
  • XPS X-ray photoelectron spectroscopy
  • a sample is irradiated with soft X-rays in high vacuum, and kinetic energy distribution of photoelectrons emitted from the surface by the photoelectric effect is measured, whereby electrons existing in several nm in the solid surface layer are present. It is an analysis method that calculates energy bound by atoms (bound energy) and identifies atoms and analyzes the chemical state.
  • an X-ray incident angle was measured using an AlKa monochrome light source (20 kV-15 mA, narrow pass energy 20 eV, wide pass energy 80 eV, X-ray energy 1486.6 eV) in AXIS-Ultra manufactured by Shimadzu-Kratos. Measurements were made at 30 degrees to the surface and at a detector angle of 90 degrees to the sample surface. Since the observation depth is several nm from the outermost surface, it means information from only the oil-repellent coating 32.
  • each atom was subjected to narrow scan, and the atomic concentration was calculated from the area ratio.
  • the results are shown in Table 1. According to this result, when the surface of the member for an internal combustion engine to which the present embodiment is applied is observed by XPS, the result according to Table 1 can be obtained. That is, the atomic concentration is about 50 at% of carbon and about 40 at% of fluorine.
  • the amount of deposit deposited on the piston crown surface was evaluated.
  • the operation of the engine for evaluation was performed in two stages. In the first stage, the engine is operated for 50 hours under engine operating conditions (rotation speed: 3000 rpm, load: 20 kgfm) where the heat load is predicted to be 200 ° C. or higher, and in the second stage, engine operating conditions (rotation speed: 2000 rpm) , With a load of 10 kgfm) for 50 hours.
  • the evaluation of the amount of deposit was the difference of the piston weight before and after the total test time of 100 hours.
  • the deposit removal operation was performed by degreasing the piston removed from the engine, immersing in hot water (95 ° C., 1 hour), and cleaning with a brush using a neutral detergent.
  • evaluation was carried out by incorporating three pistons each having the composite membrane 3 of the present embodiment on the piston crown surface and the piston not coated on the piston crown surface at the same time. The results are shown in Table 2. According to the present results, the deposit amount of the uncoated pistons is about 767 mg on average, whereas the deposit amount of the coated piston 1 of this example is about 397 mg on average. That is, by having the composite film 3, the deposit amount of the piston was reduced to about 52%.
  • FIG. 6 to 9 show photographs of the side of the piston crown surface and the photographs of the side of the piston crown surface of the uncoated piston in the piston 1 of this example before and after the operation of the engine for the above evaluation.
  • 6 shows the piston 1 of this embodiment before operation
  • FIG. 7 shows the piston 1 of this embodiment after operation
  • FIG. 8 shows the uncoated piston before operation
  • FIG. 9 shows the uncoated piston after operation.
  • the difference in the amount of deposit 9 produced and deposited between the piston 1 of this embodiment and the uncoated piston is visible.
  • the deposit 9 of the piston 1 of the present embodiment is overwhelmingly easily removed as compared with the deposit 9 of the uncoated piston, and the difference in adhesion of the deposit 9 can be confirmed.
  • the composite film 3 of the present example is very effective in suppressing the formation of a deposit and reducing the adhesion of the deposit.
  • the natural oxide film 201 is formed on the surface 200 of the base 20 of aluminum alloy.
  • the dirt 40 is made of an organic substance, an inorganic substance or the like.
  • a film made of hydrogen-containing amorphous carbon containing fluorine aC: H: F on a film 50 having a thickness of about 1.0 ⁇ m and made of a-SiC in a vacuum process 51 is formed with a film thickness of about 1.0 ⁇ m.
  • FIG. 12 in Comparative Example 3, after the surface 200 of the aluminum alloy substrate 20 was once heated at about 150 ° C.
  • a film 6 made of a modified silicon oxide containing fluorine is formed on the surface 200 to a film thickness of about 0.2 ⁇ m.
  • Comparative Example 4 from the hydrogen-containing amorphous carbon aC: H substantially free of fluorine on the film 70 having a film thickness of about 1.0 ⁇ m and made of a-SiC in a vacuum process
  • the film 71 is formed to have a thickness of about 1.0 ⁇ m.
  • FIG. 14 shows the evaluation results of oil repellency of all samples before and after heat treatment.
  • the vertical axis is a coefficient indicating oil repellency obtained from the surface energy of each sample.
  • the left side is the graph before heat treatment and the right side is the graph after heat treatment. According to this result, it was confirmed that the piston 1 of the present example maintained a stable high oil repellency even after the heat treatment.
  • Comparative Examples 1 to 4 after the heat treatment, the oil repellency of the samples was significantly reduced as compared to that before the heat treatment.
  • the film 51 made of aC: H: F had a film thickness of about 1.0 ⁇ m before heating, but it was confirmed that the film thickness was significantly reduced by heating did it. Specifically, the film 51 disappears after heating (disappearance is shown by a dotted line), and finally, only the partially oxidized film 50 remains in the outermost layer.
  • the composite film 3 of the present embodiment has a hydrogen content of 5 at% or more in the heat resistant film 31 made of aC: H.
  • the heat resistant film (aC: H) 31 contains nitrogen. Nitrogen added to aC: H has many unpaired electrons. Therefore, even when using aC: H which is a DLC having a large hydrogen content as the heat resistant film 31, the silane coupling group (the covalent bond 320 between the aC: H and the silane coupling group contained in the oil repellent film 32) This promotes the covalent bond between the heat resistant film 31 and the oil repellent film 32.
  • the heat resistant film 31 made of aC: H to which nitrogen is added is a normal temperature. It has the property of being difficult to oxidize in the atmosphere, and the other points are the same as in the first embodiment.
  • a heat resistant film 31 (aC: H film) made of aC: H was formed by a CVD method using a vacuum apparatus.
  • nitriding treatment was performed by a CVD method in which nitrogen was introduced.
  • a high frequency power supply was connected using the piston 1 on which the aC: H film was formed as an electrode to generate nitrogen plasma.
  • nitrogen plasma was accelerated and implanted onto the surface of the aC: H film.
  • the penetration depth of nitrogen into the aC: H film depends on the above voltage value for acceleration, but the depth required to promote the target covalent bond may be several nm from the surface.
  • a voltage value for acceleration was set to about ⁇ 2 kV.
  • nitrogen having a concentration of about 10 at% was added to about 5 nm of the outermost surface layer of the heat resistant film 31.
  • the amount of nitrogen in the outermost surface layer was measured by XPS. It measured by changing the time of nitriding treatment. However, the measurement conditions of XPS are the same as the measurement conditions used in Example 1. The result is shown in FIG. It can be confirmed that the content of nitrogen monotonously increases up to about 20% as the time of nitriding treatment increases.
  • the aC: H film to which nitrogen is added by the above method provides a strong bond with the oil repellent film 32, and as in Example 1, it is also before and after the heating test at 300 ° C. for 24 hours at atmospheric pressure. It was possible to maintain oil repellency that is comparable to anything.
  • the bonding strength with the oil-repellent coating 32 is substantially saturated when the nitrogen content is about 7% or more.
  • the mechanical strength as an aC: H film decreases. Taking these into consideration, approximately 10% was selected in this example.
  • the hydrogen content in the heat resistant film 31 is less than 5 at%, and there are many unpaired electrons.
  • covalent bond between DLC and silane coupling group is likely to occur, so that the covalent bond 320 is likely to occur between the heat resistant film 31 and the oil repellent film 32. Therefore, the bonding strength of both films 31 and 32 is further improved. From this point of view, it is ideal that the DLC is completely free of hydrogen.
  • a tetrahedral amorphous carbon (ta-C) film substantially free of hydrogen and having an sp3 structure ratio of about 70% at the maximum is applied as the heat resistant film 31.
  • the ta-C film is higher in hardness and higher in heat resistance than the aC: H film. Specifically, it was confirmed that the transformation of the film structure did not occur even at a thermal load of at least the environmental temperature of 450 ° C., and the deterioration of the film quality did not occur. Therefore, it becomes possible to use it with a margin also on the surface of the sliding component which becomes high temperature.
  • the covalent bonding portion 320 with the oil-repellent film 32 can be obtained without performing the surface nitriding process as employed in the aC: H film of the second embodiment. It becomes possible to form enough. Specifically, according to the measurement results by electron spin resonance (ESR), the surface density of unpaired electrons of the ta-C film is 10 times or more that of the aC: H film to which about 10 at% of nitrogen is added. Thus, it is convenient to obtain a covalent bond with the oil repellent coating 32.
  • ESR electron spin resonance
  • ESR electron spin resonance
  • Example 3 Hereinafter, a specific example 3 for realizing the present embodiment will be described.
  • a low voltage arc discharge (Cathodic Vacuum Arc) technique was used.
  • the carbon thin film obtained by the present method is basically formed only of carbon ions and electrons, hardly contains hydrogen atoms in the film, and the sp3 structural ratio is at most 70%. Thus, a very dense and high hardness tetrahedral amorphous carbon film is formed.
  • this low voltage arc discharge when plasma is generated, a large amount of carbon fine particles is generated in addition to carbon ions and electrons, but the carbon fine particles are removed using a bent magnetic field duct or the like.
  • the hardness of the anodized film is about 400 HV at normal temperature.
  • the ta-C film was 3300 HV at normal temperature, and could maintain the same hardness even when a heat load of 300 ° C. for 24 hours was applied in the air.
  • the aC: H film was about 1500 HV at normal temperature, but deteriorated to about 500 HV when the above heat load was applied.
  • the measurement of the said hardness was performed with the thin film micro hardness tester. The thin film microhardness tester detects a minute displacement with respect to a load from the change in capacitance of the thin film capacitor in the support of the Berkovich-type diamond indenter. This makes it possible to detect minute displacements at very low loads.
  • the measurement indentation depth was 1/10 of the total film thickness.
  • a fine uneven shape is formed by a plurality of particles on the surface of the oil repellent film 32, and the complex film 3 (oil repellent film 32) further has an oil repellent effect by the Lotus effect by this shape.
  • the particles for forming the concavo-convex shape are not limited to carbon, and may be a metal material such as silicon, titanium, tungsten, or chromium, or an inorganic material such as alumina.
  • the particles may be embedded in the surface of the film 31 by, for example, implanting the ionized particles into the surface.
  • the surface of each particle needs to be coated with a heat resistant film 31.
  • Example 4 Hereinafter, a concrete example 4 for realizing the present embodiment will be described.
  • a low-pressure arc discharge for forming a ta-C film, and a method for producing an uneven shape using carbon particles was used.
  • low pressure arc discharge when plasma is generated, a large amount of carbon fine particles are generated in addition to carbon ions and electrons.
  • the carbon fine particles are removed using a bent magnetic field duct or the like, but in this example, the carbon fine particles were used to exhibit the Lotus effect.
  • an adhesive film 30 made of chromium nitride (CrN) was formed with a film thickness of 1.0 ⁇ m on a base material 20 made of an aluminum alloy.
  • a heat resistant film 31 having a two-layer structure was formed. That is, the lower layer ta-C film 310 is formed 1.0 ⁇ m by removing magnetic particles (hereinafter referred to as particles 33) by a magnetic field duct, and the upper layer ta-C film 311 from which the particles 33 are removed. Of approximately 1.0 ⁇ m. The average particle size of the particles 33 was 1 to 20 ⁇ m.
  • An oil repellent film 32 was formed thereon to a film thickness of 0.1 ⁇ m.
  • the lower layer ta-C film 310 and the upper layer ta-C film 311 are strongly bonded because they are the same carbon.
  • the average particle diameter of the particles 33 is larger than the arithmetic surface roughness of the heat resistant film 31 (upper layer ta-C film 311).
  • the individual particles 33 in the lower layer ta-C film 310 form a fine uneven surface shape on the upper layer ta-C film 311.
  • the composite film 3 oil repellent film 32
  • the oil repellent effect of the piston crown surface of the composite film 3 of the present example is equal to or higher than that of the first example.
  • the heat resistant film 31 of the present embodiment has a structure in which a low hardness film and a high hardness film are laminated.
  • the film thickness of the heat resistant film 31 the thicker one is superior in terms of robustness against an external force, but the thinner one is superior in terms of only the adhesion. That is, when covering a member having no physical contact with another member, such as a piston crown surface, if the surface roughness of the substrate is ideally zero, the heat resistant film 31 is the minimum required.
  • the film thickness is about 1 nm which can exist as a thin film. However, as a practical matter, if there is no film thickness at least greater than the roughness of the substrate surface, the coverage on the substrate surface may not be 100%.
  • the greater the film thickness the more the robustness against external force is improved.
  • the hardness of the heat-resistant film 31 is high, the compressive stress in the inside is high, and the adhesion is lowered as the film thickness is larger.
  • the above-mentioned aC: H film and ta-C film generally have hardness as high as 10 to 60 GPa, and the internal compressive stress also becomes 1 to 6 GPa, which may cause a problem of adhesion. Therefore, in the present embodiment, a structure in which a low hardness stress relaxation film and a high hardness film are laminated in the heat resistant film 31 is adopted as a means for reducing the compressive stress.
  • the other points are the same as in the first embodiment.
  • the aC: H film and the ta-C film having a thickness of 10 ⁇ m at maximum were successfully formed as the heat resistant film 31.
  • the heat-resistant film 31 can be formed with a minimum film thickness of 1 nm, assuming an ideal substrate to be treated with zero surface roughness.
  • the heat resistant film 31 of the present embodiment also has a function as the adhesive film 30.
  • the heat resistant film 31 of the present embodiment corresponds to the heat resistant film 31 and the adhesive film 30 of the first embodiment configured as one film. That is, the material constituting the heat resistant film 31 is carbon mainly constituting the heat resistant film 31 of the first embodiment, and silicon or chromium mainly constituting the adhesive film 30 of the first embodiment. The other points are the same as in the first embodiment.
  • the heat resistant film 31 was formed by a spray method. That is, the material of the heat resistant film 31 was sprayed onto the surface 200 of the base 20 made of an aluminum alloy by spraying. By using this method, the film thickness of the heat resistant film 31 is increased to several tens of ⁇ m. Therefore, in order to improve the robustness of the heat resistant film 31, the surface 200 of the base material 20 is previously subjected to blasting or the like to form an uneven shape for obtaining an anchor effect. A heat resistant film 31 was formed on the surface 200, and an oil repellent film 32 was formed thereon.
  • FIG. 21 shows a cross-sectional scanning electron microscope (SEM) image of the composite film 3.
  • SEM scanning electron microscope
  • the average film thickness of the heat resistant film 31 was about 20.0 ⁇ m.
  • the oil repellent film 32 can be confirmed on the outermost layer of the film 3.
  • the heat resistant film 31 has a two-layer structure, and is composed of a lower layer 312 and an upper layer 313.
  • the lower layer 312 is composed of silica particles 314, alumina particles 315, a binder 316 and the like.
  • the film thickness of the upper layer 313 is about 2 ⁇ m.
  • Table 3 shows the analysis results of the heat resistant film 31 by SEM-energy dispersive X-ray (EDS). According to this result, the upper layer 313 and the lower layer 312 contain a large amount of carbon C and silicon Si. Carbon and silicon are elements for achieving covalent bonding with the oil repellent coating 32 and ionic bonding with the substrate 200, respectively.
  • Example 1 (aC: H is a heat resistant film 31 and a-SiC is adhesive An effect equal to or higher than that of the film 30) was confirmed.
  • the heat resistance evaluation when evaluation was separately conducted by heating to about 650 ° C., which is near the melting point of aluminum, it is possible to maintain the function as the composite film 3 with almost no loss of the heat resistant film 31. The results shown were obtained.
  • the heat-resistant film 31 of the present embodiment is basically the same as the heat-resistant film 31 of the sixth embodiment, but also functions as a low heat conductive film.
  • the heat conductivity of the heat resistant film 31 is low, and is 0.1 W / mk or less. This is because the heat resistant film 31 contains a plurality of hollow substances.
  • a large number of coarse spherical silica (hollow silica particles) 314 having a cavity inside is present as a hollow substance.
  • These hollow silica particles 314 can be formed by introducing hollow spherical silica (diameter: 0.003 ⁇ m to several tens of ⁇ m) in advance when forming the heat resistant film 31 or by applying a thermal stress to the silica. .
  • the heat-resistant film 31 partially includes large hollow silica particles 314 having a diameter of about 3 to 15 ⁇ m.
  • the thermal conductivity of the heat resistant film 31 is significantly reduced by the air layer inside the hollow silica particles 314.
  • the other points are the same as in the first embodiment.
  • the thermal conductivity of the heat-resistant film 31 of this example was 0.02 to 0.08 W / mK as a result of measurement by the pulsed light heating thermoreflectance method.
  • the volume specific heat was 900 to 2500 KJ / m3K.
  • the thermal conductivity of the aluminum alloy constituting the piston is about 100 W / mK and the volume specific heat is about 3000 KJ / m3 K
  • the thermal conductivity of the heat resistant film 31 is extremely low, and the volume specific heat is also low. . Because the thermal conductivity is low, the heat loss can be reduced.
  • volume specific heat is low, it turns out that it is effective as a thermal insulation film with high thermal responsiveness.
  • the thermal conductivity of the heat resistant film 31 can be controlled by changing the size and the total amount of the hollow silica particles 314 contained in the heat resistant film 31. It was measured how the thermal conductivity of the heat resistant film 31 changes in accordance with the content of the hollow silica particles 314 in the heat resistant film 31. The results are shown by a graph plotted with black circles in FIG. The thermal conductivity was about 5 W / mK in the state where the content rate was substantially zero, but the content rate was rapidly decreased to about 0.1 W / mK by increasing the content rate, and the content rate was further increased Finally, it decreased to 0.02 to 0.08 W / mK.
  • the heat conductivity of the heat-resistant film 31 containing carbon nanotubes (CNTs) instead of the hollow silica particles 314 as a hollow material was also measured in the same manner. The result is shown by a graph plotted by white circles in FIG. As in the case of the hollow silica particles 314, the thermal conductivity rapidly decreases from about 5 W / mK to about 0.1 W / mK as the content of CNTs increases from about zero, and then decreases to about 0.05 W / mK. did.
  • CNTs carbon nanotubes
  • the application target of the composite film 3 is not limited to the top surface 200 or the piston ring groove portion 201 examined in the embodiment.
  • the piston it goes without saying that the outer surface of the piston skirt portion 21 shown in FIGS. 1 to 3, the outer surface of the apron portion 22 and the inner surface 23 of the piston including the back side of the top surface 200 may also be applied. Yes.
  • all components used in the engine such as the surface of the jet portion of the injector 107, the surface of the cylinder inner wall 103, and the surfaces of the engine valves 108 and 109 shown in FIG.
  • the above-mentioned engine not only a gasoline engine but also a diesel engine etc. are assumed to be included.
  • the fuel for the engine include gasoline, light oil, heavy oil, liquefied petroleum gas, liquefied natural gas, biofuel, hydrogen and the like.
  • vehicles but also engines mounted on ships etc. are included as the above-mentioned engine.
  • a component for an internal combustion engine according to the present technical concept in one aspect thereof, A substrate, A heat resistant film covering the surface of the substrate; It is an oil-repellent film which is above the heat-resistant film and is more oil-repellent than the heat-resistant film, and has the oil-repellent film covalently bonded to the heat-resistant film via silicon and oxygen.
  • the heat resistant film contains diamond like carbon.
  • the fluorine content in the diamond like carbon is less than 5 at%.
  • the hydrogen content in the diamond-like carbon is less than 5 at%.
  • the hydrogen content in the diamond-like carbon is 5 at% or more, The diamond-like carbon contains nitrogen.
  • There is a bonding film between the substrate and the heat resistant film The force with which the bonding film bonds to the substrate is greater than the force with which the heat resistant film bonds to the substrate, Further, the force with which the bonding film bonds with the heat resistant film is larger than the force with which the heat resistant film bonds with the base material.
  • the bonding portion between the film bonded to the surface of the base and the base does not contain oxygen.
  • the internal combustion engine component has a plurality of particles, At least a part of the plurality of particles is in the heat resistant film, and the particle diameter is larger than the arithmetic surface roughness of the heat resistant film.
  • the film thickness of the heat resistant film is 1 nanometer or more and 100 micrometers or less.
  • the thickness of the oil-repellent coating is 1 nm or more.
  • the heat resistant film contains a plurality of hollow substances and has a thermal conductivity of 0.1 W / mk or less.
  • the method of manufacturing an internal combustion engine component according to the present technical concept is, in one aspect thereof, Forming a heat resistant film on the surface of the substrate; Forming an oil-repellent coating having higher oil repellency than the heat-resistant coating on the surface of the heat-resistant coating, The material of the oil-repellent coating contains a silane coupling group, Forming the oil repellent coating by reacting the silane coupling group with the surface of the heat resistant coating.
  • the step of forming the oil repellent coating on the surface of the heat resistant coating Attaching the silane coupling group to the surface of the heat resistant film; Heating the surface of the heat resistant film to which the oil repellent film has been attached.
  • the step of forming the heat-resistant film on the surface of the substrate comprises Forming a hydrogen-containing amorphous carbon film on the surface of the substrate; Adding nitrogen to the surface of the hydrogen-containing amorphous carbon film.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-described embodiment is described in detail to explain the present invention in an easy-to-understand manner, and is not necessarily limited to one having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • piston part for internal combustion engine
  • piston main body piston head (base material)
  • composite film heat resistant film

Abstract

基材の表面を覆う耐熱性皮膜と、耐熱性皮膜の上にあり、耐熱性皮膜よりも撥油性が高い撥油性皮膜とを有する。撥油性皮膜は、ケイ素および酸素を介して耐熱性皮膜と共有結合する。

Description

内燃機関用部品および内燃機関用部品の製造方法
 本発明は、内燃機関用の部品に関する。
 例えば自動車の内燃機関(エンジン)において、短時間で発進や停止を頻繁に行うと、エンジンの燃焼室には多くの煤を含有した不完全燃焼ガスが発生する。この煤は、エンジンオイルに混入し高粘度化しゼリー状になる。このゼリー状のオイルはエンジンの部品(ピストン等)に付着し、エンジンの冷却とピストンの運動工程を妨げる等、エンジンの性能劣化と短寿命化を引き起こす。この付着物は、「デポジット」、「スラッジ」あるいは「堆積物」と称される炭化生成物である。例えばピストン冠面に発生したデポジットは、さらに燃料が付着する確率が増加し、燃料の燃焼効率低下を招くことになり、さらに煤を発生させ悪循環に至る。また、デポジットがピストンリング溝部に生成した場合は、ピストンリングの上記溝部内での動きが鈍くなり、燃焼室の気密性を保持できず、オイル上がりや出力低下の原因となってしまう。こうしたデポジットを抑制するため、内燃機関用の部品の表面を皮膜で覆う技術がある。例えば、特許文献1には、ピストンの頂面の上に中間層が形成され、中間層の上にフルオロカーボンからなる被複層が形成され、中間層における酸化ケイ素層がピストンと共有結合するものが開示されている。
特開平8-27580号公報
 しかし、特許文献1に示す技術においては、エンジン内の高温環境下で継続して皮膜の機能を実現することが困難であった。
 本発明の一実施形態に係る内燃機関用部品は、好ましくは、基材の表面を覆う耐熱性皮膜と、耐熱性皮膜の上にあり、耐熱性皮膜と共有結合する撥油性皮膜とを有する。
 よって、本発明の一実施形態においては、エンジン内の高温環境下でも皮膜の機能を維持することができる。
第1実施形態のエンジンにおける1つの気筒を模式的に示す。 第1実施形態のピストン本体を上方から見た斜視図である。 第1実施形態のピストン本体を下方から見た斜視図である。 第1実施形態のピストンヘッドおよび皮膜の断面を模式的に示す。 実施例1の撥油性皮膜の成分の分析結果を示す。 実施例1のピストン(エンジン運転前)におけるピストン冠面の写真である。 実施例1のピストン(エンジン運転後)におけるピストン冠面の写真である。 未コーティングピストン(エンジン運転前)におけるピストン冠面の写真である。 未コーティングピストン(エンジン運転後)におけるピストン冠面の写真である。 比較例1(加熱前)のピストンヘッドおよび皮膜の断面を模式的に示す。 比較例2(加熱前)のピストンヘッドおよび皮膜の断面を模式的に示す。 比較例3(加熱前)のピストンヘッドおよび皮膜の断面を模式的に示す。 比較例4(加熱前)のピストンヘッドおよび皮膜の断面を模式的に示す。 実施例1および比較例1~4の加熱前後における撥油性の評価結果を示す。 比較例1(加熱後)のピストンヘッドおよび皮膜の断面を模式的に示す。 比較例2(加熱後)のピストンヘッドおよび皮膜の断面を模式的に示す。 比較例3(加熱後)のピストンヘッドおよび皮膜の断面を模式的に示す。 比較例4(加熱後)のピストンヘッドおよび皮膜の断面を模式的に示す。 実施例2の耐熱性皮膜における窒素量を窒化処理の時間を変更して測定した結果を示す。 実施例4のピストンヘッドおよび皮膜の断面を模式的に示す。 実施例6のピストンヘッドおよび皮膜の断面の写真である。 第7実施形態のピストンヘッドおよび皮膜の断面の写真である。 第7実施形態のピストンヘッドおよび皮膜の断面の写真である。 実施例7の耐熱性皮膜の熱伝導率を中空物質の含有率を変更して測定した結果を示す。
 以下、本発明を実施するための形態を、図面に基づき説明する。
 [第1実施形態]
  本実施形態の内燃機関(エンジン)は、一気筒当たりそれぞれ二つの吸気バルブと排気バルブを備えたV型6気筒ガソリンエンジンである。エンジン用の部品は、ピストン、インジェクタ、バルブ、シリンダ等を含む。以下、ピストンを例にとって説明する。
 図1に示すように、ピストン1は、円柱状壁面をもつシリンダブロック101に摺動自在に設置される。ピストン1はピストンピン104とコンロッド105によってクランクシャフトに連結される。ピストン1は、ピストン本体2と複合膜3を有する。ピストン本体2は、Al-Si系アルミニウム合金によって一体鋳造される。図1~図3に示すように、ピストン本体2は、ピストン冠部(ピストンヘッド)20、一対のスカート部21、および一対のエプロン部22を有する。エプロン部22はピストンピンボス部220を有する。ピストンヘッド20は、頂面200およびピストンリング溝部201を有する。ピストンピンボス部220にはピストンピン104が設置され、ピストンリング溝部201にはピストンリングが設置される。複合膜3は、複数の皮膜が複合したものであり、少なくとも頂面200を覆う。複合膜3により覆われた頂面200は、ピストン冠面として機能する。ピストン冠面は、シリンダ壁面103およびシリンダヘッド102と共に燃焼室100を形成する。複合膜3には、局部的には使用環境温度300℃以上の熱負荷がかかりうる。
 図4に示すように、複合膜3は、ピストンヘッド20を基材(基体)とし、ピストンヘッド20の表面(頂面200)を覆う。複合膜3は、密着性皮膜30、耐熱性皮膜31、および撥油性皮膜32を有する。頂面200の側から燃焼室100の側に向かって、この順に積層する。
 密着性皮膜30は、頂面200と耐熱性皮膜31との間にある接合層(接合皮膜)である。密着性皮膜30は、頂面200に接合し、頂面200と複合膜3との密着性を向上する機能を有する。密着性皮膜30と頂面200は、主に金属結合とイオン結合によって接合している。密着性皮膜30の材料は、少なくとも炭素、窒素、シリコン、チタン、タングステン、およびクロムのいずれかを1つ以上を含む。頂面200と密着性皮膜30との接合が主に金属結合とイオン結合によることを考慮し、上記元素を材料として選択する。密着性皮膜30と頂面200との接合部300に、酸素が実質的に含まれていない。すなわち、基本的に、頂面200と密着性皮膜30との結合に酸素が用いられない。
 耐熱性皮膜31は、ダイヤモンドライクカーボン(DLC)を含む。DLCは、実質的にフッ素を含まない水素含有アモルファスカーボン(a-C:H)である。具体的には、耐熱性皮膜31におけるフッ素の含有量は5at%(原子組成百分率)未満であり、水素の含有量は5at%以上である。耐熱性皮膜31と密着性皮膜30は、主にイオン結合と共有結合によって接合している。耐熱性皮膜31の膜厚は、1nm(0.001μm)以上、100μm以下であればよい。膜厚の下限を1nmとすることで、皮膜31の(単体での)強度の維持を図ることができる。また、膜厚の上限を100μm以下とすることで、皮膜31の剥がれの抑制を図ることができる。
 撥油性皮膜32は、耐熱性皮膜31の表面を覆い、耐熱性皮膜31よりも撥油性が高い撥油膜である。耐熱性皮膜31と撥油性皮膜32は、共有結合によって接合している。撥油性皮膜32は、ケイ素および酸素を介して、耐熱性皮膜31と共有結合する。具体的には、撥油性皮膜32は、共有結合部320を介して耐熱性皮膜31と接合する。共有結合部32は、耐熱性皮膜31の不対電子と撥油性皮膜32の材料のシランカップリング基とが共有結合した部分であり、ケイ素および酸素を含む。撥油性皮膜32の膜厚は、1nm以上であればよい。膜厚の下限を1nmとすることで、皮膜32の(単体での)強度の維持を図ることができる。
 一般に、結合の強度は、金属結合、イオン結合、共有結合の順に大きくなる。よって、結果的に、複合膜3における皮膜30~32の間の結合力は、基材の表面(頂面200)から積層順に増加する。
 撥油性皮膜32は、耐熱性皮膜31と共有結合することで、耐熱性皮膜31と強固に接合する。耐熱性皮膜31は炭素を含んでおり、撥油性皮膜32よりも耐熱性が高い。よって、複合膜3は、エンジン内の過酷な温度環境(高温)下においても、頂面200からの剥がれが抑制されるため、その撥油性を維持し、継続して撥油効果を持続させることができる。複合膜3が適用されたピストン1は、(燃焼室内の)過酷な温度上昇を伴う使用条件においても撥油性を維持してデポジットの発生確率を低減可能である。また、デポジットが発生しても、付着力が低いので、その堆積速度を抑制可能となり、発生したデポジット除去も容易となる。そして、エンジンにおける燃料の不完全燃焼を低下させ、エンジンとしての燃費・性能・環境特性の劣化を低減させことが可能となる。
 DLCは耐熱性が高い。耐熱性皮膜31がDLCを含むことで、複合膜3は、より効果的に、エンジン(例えば燃焼室)の高温下においても継続してその機能を持続させることができる。DLCにおけるフッ素の含有量は5at%未満であり少ないため、DLCにおけるsp3構造の崩れを抑制し、高い耐熱性を得ることができる。この観点からは、DLCにフッ素が全くないことが理想的である。
 なお、耐熱性皮膜31と頂面200との間に密着性皮膜30がなくてもよい。本実施形態の複合膜3は密着性皮膜30を有する。密着性皮膜30が頂面200と接合する力、および密着性皮膜30が耐熱性皮膜31と接合する力は、耐熱性皮膜31が頂面200と接合する力よりも大きい。よって、頂面200からの複合膜3の剥がれを、より効果的に抑制することができる。内部の圧縮応力が比較的高い耐熱性皮膜31ではなく、クロム等の柔軟性のある材料により形成された密着性皮膜30が頂面200に接合することで、頂面200からの複合膜3の剥がれを抑制することができる。密着性皮膜30と頂面200との接合部300が酸素を実質的に含まないため、高温環境下においても、密着性皮膜30と頂面200との接合強度を向上できる。
 [実施例1]
  以下、本実施形態を実現する具体的な実施例1を説明する。複合膜3を、以下の工程により形成した。前処理として、成膜前に、基材表面(頂面200)における有機物や無機物等からなる汚れを真空装置にて、エッチング等により除去した。
 密着性皮膜30の形成工程として、真空装置にて有機シリコン系材料を用いた化学気相成長法(CVD法)にて、アモルファスシリコンカーバイト(a-SiC)からなる密着性皮膜30を、頂面200の上に形成(成膜)した。密着性皮膜30の膜厚は1.0μmだった。
 耐熱性皮膜31の形成工程として、炭化水素系原料を用いたCVD法にて、a-C:Hからなる耐熱性皮膜31を、密着性皮膜30の上に形成した。CVD法では真空装置を用いた。a-C:Hにおけるsp3構造比率は最大で40%程度であった。耐熱性皮膜31の膜厚は1.0μmだった。
 撥油性皮膜32の形成工程として、シランカップリング基を含む材料を用いて、撥油性皮膜32を耐熱性皮膜31の上に形成した。撥油性皮膜32は、シランカップリング基を含むフッ化炭素系化合物(CFx-Si)である。使用したCFx-Siは、化学式1に示す通り、柔軟でフレキシブルな分子構造を持つデムナム構造を主鎖骨格としており、数平均分子量は3000~5000である。末端官能基はシランカップリング基であり、主鎖が伸びた状態で加水分解反応にて被処理基材面となる耐熱性皮膜31と共有結合にて吸着する。
Figure JPOXMLDOC01-appb-C000001
 CFx-Siをフッ素系溶媒に0.1~1.0wt%になるように希釈した溶液を用意した。耐熱性皮膜31が形成されたピストン冠部20を常温で3分、上記溶液にディップ(浸漬)した。これにより撥油性皮膜32を塗布した。すなわち、耐熱性皮膜31の表面にCFx-Siを吸着させた(共有結合部320を形成した)。
 浸漬後、140℃で15分の加熱処理を行った。これにより溶媒等を除去し、より強固な共有結合部320を得た。なお、100~150℃の加熱温度で60分程度の加熱を行えば、より安定した共有結合部320が得られることを実験によって確認した。その後、耐熱性皮膜31の表面に結合されなかった撥油性皮膜32の余剰分については、ワイピング等の物理的手段によって拭き落とした。
 最終的な撥油性皮膜32の膜厚は0.1μmだった。なお、撥油性皮膜32の膜厚は、CFx-Siの溶媒への希釈濃度等に依存する。例えば、上記希釈濃度を0.01~30wt%の範囲で変更することにより、0.001~1.0μmの範囲で上記膜厚を制御可能であった。
 図5は、上記(膜厚が0.1μmの)撥油性皮膜32を、熱負荷試験(大気中300℃、24時間)後にX線光電子分光法(XPS)にてワイドスキャンした結果である。炭素C、フッ素F、および酸素Oが観測されたことを確認できる。なお、XPSとは、高真空中で試料に軟X線を照射し、表面から光電効果によって放出される光電子の運動エネルギー分布を測定することにより、固体表面層における数nm程度に存在する電子が原子から束縛されているエネルギー(束縛エネルギー)を算出し、原子の同定及び化学状態の分析を行う分析方法である。本実施例では、Shimadzu-Kratos社製のAXIS-Ultraにおいて、AlKaモノクロ光源(20kV-15mA、narrow pass energy 20eV、wide pass energy 80eV、X-ray energy 1486.6eV)を用い、X線入射角を試料面に対し30度とし、検出器角度を試料面に対し90度として、測定を行った。観測の深さは最表面より数nmであるため、撥油性皮膜32のみからの情報ということになる。
 次に、それぞれの原子をナロースキャンし、その面積比率より原子濃度を算出した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
  本結果によれば、本実施例を適用した内燃機関用部材の表面をXPSで表面観察したならば、表1に準じる結果が得られることになる。すなわち、原子濃度として炭素が約50at%、フッ素が約40at%となる。
 さらに、V型6気筒ガソリンエンジンにて、ピストン冠面へ付着するデポジット量の評価を行った。評価のためのエンジンの運転は、二段階で行った。第一段階では、熱負荷が200℃以上と予測されるエンジン運転条件(回転数3000rpm、負荷20kgfm)で50時間稼働させ、引き続く第二段階では、デポジットが発生しやすいエンジン運転条件(回転数2000rpm、負荷10kgfm)で50時間稼働させた。デポジット量の評価は、総試験時間100時間の前後におけるピストン重量の差分とした。ただし、デポジットの除去作業は、エンジンから取り出したピストンを脱脂し、熱湯に浸漬し(95℃、1時間)、中性洗剤を用いてブラシで洗浄することにより、行った。評価の対象として、ピストン冠面にコーティングをしていないピストンと、ピストン冠面に本実施例の複合膜3を有するピストン1とを、各3個ずつ同時にエンジンに組み込み、評価を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
   本結果によれば、コーティングしていないピストンのデポジット量は平均約767mgであるのに対し、本実施例のコーティングしたピストン1のデポジット量は平均約397mgであった。すなわち、複合膜3を有することで、ピストンのデポジット量が約52%程度まで減少した。
 図6~図9は、本実施例のピストン1におけるピストン冠面の側の写真と未コーティングピストンのピストン冠面の側の写真を、上記評価のためのエンジンの運転の前後で示す。図6は運転前の本実施例のピストン1、図7は運転後の本実施例のピストン1、図8は運転前の未コーティングピストン、図9は運転後の未コーティングピストンをそれぞれ示す。本実施例のピストン1と未コーティングピストンとの間の、生成・付着したデポジット9の量の違いが目視できる。また、デポジット9の上記除去作業において、本実施例のピストン1のデポジット9は、未コーティングピストンのデポジット9に比べて圧倒的に除去しやすく、デポジット9の付着力の違いを確認することができた。以上のように、本実施例の複合膜3は、デポジットの生成の抑制、及びデポジットの付着力の低減に、非常に有効であることを確認した。
 本手法を用いて形成した(複合膜3を有する)ピストン冠面の撥油特性を評価するため、熱負荷の前後における撥油性の評価を行った。比較のために、比較例1(コーティングを行っていないピストン)、比較例2(特開2006-112422号公報に記載されるコーティングを行ったピストン)、比較例3(特表2008-38632号公報に記載されるコーティングを行ったピストン)、比較例4(特表2014-533805号公報に記載されるコーティングの一例を行ったピストン)を準備した。評価対象のピストン冠面側の構造に関して、以下、概略を説明する。まず、本実施例に関しては、図4に示す構造を有する。図10に示すように、比較例1では、アルミニウム合金の基材20の表面200に自然酸化膜201が形成されている。自然酸化膜201の上に汚れ40がある。汚れ40は有機物や無機物等からなる。図11に示すように、比較例2では、真空プロセスにおいて、膜厚が約1.0μmでありa-SiCからなる膜50の上に、フッ素を含む水素含有アモルファスカーボンa-C:H:Fからなる膜51が、約1.0μmの膜厚で形成されている。図12に示すように、比較例3では、アルミニウム合金の基材20の表面200を150℃程度でいったん加熱し汚れを除去した(基材20の表面に酸化膜201が形成された)後に、フッ素を含む変形酸化シリコンからなる膜6が、表面200の上に、約0.2μmの膜厚で形成されている。図13に示すように、比較例4では、真空プロセスにおいて、膜厚が約1.0μmでありa-SiCからなる膜70の上に、実質的にフッ素を含まない水素含有アモルファスカーボンa-C:Hからなる膜71が、約1.0μmの膜厚で形成されている。
 本実施例および比較例1~4のサンプルのそれぞれについて、大気中において300℃で24時間の加熱を行い、この加熱処理の前後において撥油性の評価を行った。図14は、加熱処理の前後における全サンプルの撥油性の評価結果を示す。縦軸は、各サンプルの表面エネルギーから得た、撥油性を示す係数である。各例のサンプルについて、左側が加熱処理の前のグラフであり、右側が加熱処理の後のグラフである。本結果によれば、本実施例のピストン1については、加熱処理後においても安定した高撥油性を維持していることを確認できた。比較例1~4については、いずれのサンプルも、加熱処理後は、加熱処理前に比べ、撥油性を大きく低下させる結果となった。
 図15~図18を用いて、上記結果が得られた理由について考察する。図15に示すように、比較例1では、ピストン冠面が加熱されることで、表面200に付着していた汚れ40が焼失し、清浄化され、アルミニウム合金の酸化層201が露出した。これにより表面エネルギーが増加し、撥油性が大きく低下したと考えられる。図16に示すように、比較例2では、a-C:H:Fからなる膜51は、加熱前に膜厚が約1.0μmあったが、加熱によって膜厚が大幅に減少していることが確認できた。具体的には、加熱後は膜51が消失し(消失を点線で示す)、最終的には、一部が酸化した膜50のみが最表層に残存した。これは、a-C:Hが本来有する三次元的なテトラヘドラル(sp3)構造が、フッ素を含有することで崩れ(劣化し)、これにより膜51の耐熱性が悪化したためであると考えられる。よって、加熱により膜51の構造が容易に破壊された。図17に示すように、比較例3では、加熱によって膜6の一部61が基材20から脱離し、消失することで、撥油性が大きく低下した。これは、基材20であるアルミニウム合金の酸化層201と膜6との結合力が弱いため、加熱によって両者の結合が断裂したためと考えられる。図18に示すように、比較例4では、加熱によって膜71の表面エネルギーが増加することで、撥油性が低下した。これは、膜71の最表面の層710が、直接、大気中で加熱されることでグラファイト化したためと考えられる。(そもそも、加熱前の段階で、膜71の大きな撥油効果は得られていない。) 
 [第2実施形態]
  本実施形態の複合膜3は、a-C:Hからなる耐熱性皮膜31における水素含有量が5at%以上である。耐熱性皮膜(a-C:H)31は窒素を含む。a-C:Hに添加された窒素は不対電子を多く持つ。このため、耐熱性皮膜31として、水素含有量が多いDLCであるa-C:Hを使用する場合でも、撥油性皮膜32が含有するシランカップリング基(とa-C:Hとの間における共有結合部320の数を増加させることが可能となる。これにより、耐熱性皮膜31と撥油性皮膜32との共有結合が促進される。なお、窒素を添加したa-C:Hからなる耐熱性皮膜31は、常温大気中においては酸化しにくい特性を持っている。他の点は第1実施形態と同様である。
 [実施例2]
  以下、本実施形態を実現する具体的な実施例2を説明する。a-C:Hからなる耐熱性皮膜31(a-C:H膜)を、真空装置を用いてCVD法で形成した。a-C:H膜の最表面層に窒素を添加するために、窒素を導入したCVD法によって窒化処理を行った。具体的には、上記真空装置に窒素を導入後、a-C:H膜を形成したピストン1を電極として高周波電源を接続し、窒素のプラズマを発生させた。そして、a-C:H膜の表面に、窒素のプラズマを加速して打ち込んだ。a-C:H膜への窒素の侵入深さは、上記加速用の電圧値に依存するが、目的とする共有結合を促進するために必要な深さは表面から数nmあれば十分である。本実施例においては、約5nm(0.005μm)の打ち込み深さを得るために、加速用の電圧値は約-2kVとした。これにより、耐熱性皮膜31の最表面層約5nmに、約10at%濃度となる窒素が添加された。
 なお、XPSによって最表面層の窒素の量を測定した。窒化処理の時間を変更して測定を行った。但し、XPSの測定条件は、実施例1で用いた測定条件と同様である。図19に、その結果を示す。窒化処理の時間の増大に伴い、窒素の含有量が約20%までは単調増加することが確認できる。
 以上の方法によって窒素を添加したa-C:H膜は、撥油性皮膜32との間で強固な結合が得られ、実施例1にあるとおり大気圧にて300度、24時間の加熱試験前後においても何ら遜色ない撥油性を保持できた。
 なお、本実施例にて適用した通り、最適な窒素含有量としては約10%を見出している。なぜなら、撥油性皮膜32との結合力は窒素含有量約7%以上でほぼ飽和する。一方、窒素含有量が13%以上になると、a-C:H膜としての機械的強度が低下する。これらを考慮し、本実施例では約10%を選択した。
 [第3実施形態]
  本実施形態の複合膜3は、耐熱性皮膜31(DLC)における水素含有量が5at%未満であり不対電子が多い。よって、DLCとシランカップリング基との共有結合が発生しやすいため、耐熱性皮膜31と撥油性皮膜32との間で共有結合部320が発生しやすい。したがって、両膜31,32の接合強度がより向上する。この観点からは、DLCに水素が全くないことが理想的である。
 本実施形態では、耐熱性皮膜31として、実質的に水素を含まず、かつ、sp3構造比率が最大で70%程度であるテトラヘドラル・アモルファスカーボン(ta-C)膜を適用する。ta-C膜は、a-C:H膜に比べて高硬度でかつ高耐熱性である。具体的には、少なくとも環境温度450℃の熱負荷においても膜構造の変態が発生せず、膜質の劣化が発生しないことを確認した。よって、高温となる摺動部品の表面にも、マージンをもって利用することが可能となる。また、ta-C膜は、不対電子を多く含むため、第2実施形態のa-C:H膜で採用したような表面窒化処理を行わなくても、撥油性皮膜32との共有結合部320を十分に形成することが可能となる。具体的には、ta-C膜の不対電子の面密度は、電子スピン共鳴(ESR)による測定結果によれば、窒素を10at%程度添加したa-C:H膜に比べて10倍以上ある。よって、撥油性皮膜32との共有結合を得るには都合がよい。以上の特徴を持ったta-C膜を耐熱性皮膜31として使用した結果、実施例1のa-C:H膜を利用した場合と同等以上の撥油性を確認した。他の点は第1実施形態と同様である。
 なお、電子スピン共鳴(ESR)測定法とは、不対電子(ダングリングボンド、ラジカル、欠陥起源)を測定するための分光学的手法であり、マイクロ波照射下で磁場を掃引することで、欠陥となる不対電子の状態を変化させた際の応答を見る手法である。不対電子はマイクロ波エネルギーを吸収して励起状態に遷移する。従ってマイクロ波の吸収強度は不対電子数に比例し、かつ、磁場強度に対しピークを持つ。そのピーク磁場や吸収強度から欠陥の起源や密度を評価できる。
 [実施例3]
  以下、本実施形態を実現する具体的な実施例3を説明する。ta-C膜を形成する手段として、低圧アーク放電(Cathodic Vacuum Arc)技術を用いた。本手法によって得られる炭素薄膜は、基本的に炭素イオンと電子のみより形成され、膜中に水素原子をほとんど含まず、sp3構造比率は最大で70%である。よって、極めて緻密で高硬度のテトラヘドラル・アモルファスカーボン膜が形成される。この低圧アーク放電では、プラズマを発生させる際、炭素イオンや電子以外にも多量の炭素微粒子が発生するが、この炭素微粒子は、屈曲した磁場ダクト等を用いて除去する。
 上記ta-C膜を用いた複合膜3のピストンリング溝部201への適用を試みた。ピストンリング溝部201においては、ピストンリングとの摺動が常に発生しており、機械的な強度が必要となる。アルマイト処理等によってピストンリング溝部201の機械的強度を補強することは行われていたが、デポジットを抑制するための対策は施されていなかった。そこで、機械的な強度を保持しつつデポジットを抑制可能な表面処理を目指して試作を実施し、上記ta-C膜を用いたコーティング処理を行った。
 一般的にアルマイト皮膜の硬度は常温で約400HVである。これに対し、ta-C膜は、常温で3300HVであり、大気中において300℃、24時間の熱負荷を加えた場合でも同じ硬度を保持できた。ちなみに、a-C:H膜は、常温で約1500HVであるが、上記熱負荷を加えると500HV程度まで劣化した。なお、上記硬度の測定は、薄膜微小硬度計で行った。薄膜微小硬度計は、バーコビッチ型ダイヤモンド圧子の支持部にある薄膜コンデンサーのキャパシタンス変化から、荷重に対する微小変位を検出する。これにより、超低荷重での微小変位の検出が可能である。測定押し込み深さは、総膜厚の1/10とした。
 また、上記ta-C膜(膜厚5μm)をピストンリング溝部201に適用したピストンについて、アルマイト皮膜(膜厚30μm)をピストンリング溝部に適用したピストンを比較例として、ピストンリング溝部201の耐久試験と、実施例1と同様のデポジット量の評価とを行った。その結果、ピストンリング溝部201の機械強度として、比較例と同等以上の耐久性を確保できることを確認した。また、ピストンリング溝部201を含むピストン冠面へのデポジット量は比較例の半分以下となり、非常に有効であることを確認した。
 [第4実施形態] 
 本実施形態の複合膜3は、撥油性皮膜32の表面に、複数の粒子による微細な凹凸形状が形成され、この形状によるロータス効果によって、複合膜3(撥油性皮膜32)が更に撥油効果を向上させることができる。
 本実施形態では,凹凸形状作製のための粒子は、炭素に限らず、シリコン、チタン、タングステン、クロムといった金属材料またはアルミナといった無機材料であってもよい。また、粒子を皮膜31の表面に埋め込む方法は、イオン化させた粒子を表面に打ち込む等でもよい。但し、各粒子の表面には耐熱性皮膜31で被覆されている必要がある。
 [実施例4] 
 以下、本実施形態を実現する具体的な実施例4を説明する。本実施例では、ta-C膜を形成する低圧アーク放電で、炭素粒子を用いた凹凸形状作製方法を用いた。低圧アーク放電では、プラズマを発生させる際、炭素イオンや電子以外にも多量の炭素微粒子が発生する。通常、この炭素微粒子は、屈曲した磁場ダクト等を用いて除去するが、本実施例においては、この炭素微粒子を利用してロータス効果を発現させた。
 すなわち、図20に示すように、アルミニウム合金からなる基材20の上に、窒化クロム(CrN)からなる密着性皮膜30を膜厚1.0μmで形成した。次に、二層構造からなる耐熱性皮膜31を形成した。すなわち、炭素からなる微粒子(以下、粒子33という。)を磁場ダクトにより除去していないで下層ta-C膜310を1.0μm形成し、その上に、粒子33を除去した上層ta-C膜311を約1.0μm形成した。粒子33の平均粒径は1~20μmであった。その上に、撥油性皮膜32を膜厚0.1μmで形成した。
 下層ta-C膜310及び上層ta-C膜311は、同じ炭素同士であるため、強固に結合する。ここで、粒子33の平均粒径は、耐熱性皮膜31(上層ta-C膜311)の算術表面粗さよりも大きい。よって、下層ta-C膜310中にある個々の粒子33によって上層ta-C膜311には微細な凹凸表面形状が形成される。この形状により複合膜3(撥油性皮膜32)は、凹凸形状がない場合に比較し、さらに濡れにくくなるため(ロータス効果)、撥油効果を更に向上させることができる。実際、本実施例の複合膜3のピストン冠面における撥油効果は、実施例1と同等以上であることを確認した。
 [第5実施形態]
  本実施形態の耐熱性皮膜31は、低硬度な皮膜と高硬度な皮膜とが積層した構造である。耐熱性皮膜31の膜厚に関して、外力に対するロバスト性という観点では、厚いほうが優位となるが、密着性という観点だけから考えれば、薄いほうが優位である。すなわち、ピストン冠面のように、他の部材との物理的な接触がない部材を覆う場合、基材の表面粗さが理想的にゼロであれば、耐熱性皮膜31の最低限必要となる膜厚は、薄膜として存在することが可能な約1nmということになる。しかし、現実の問題としては、少なくとも基材表面の粗さ以上の膜厚がなければ、基材表面への被覆性が100%とならない可能性がある。一方、ピストンリング溝部201のように、他部材(ピストンリング)との物理的な接触が発生する場合、膜厚が厚いほど、外力に対するロバスト性は向上する。しかし、耐熱性皮膜31の硬度が高い場合、その内部の圧縮応力が高いため、膜厚が厚いほど密着性が低下してしまう。上記のa-C:H膜およびta-C膜は、硬度が10~60GPaと総じて高く、内部の圧縮応力も1~6GPaとなり、密着性の問題が懸念される。そこで、本実施形態においては、圧縮応力緩和の一手段として、耐熱性皮膜31の中に低硬度な応力緩和皮膜と高硬度な皮膜とが積層する構造を採用した。他の点は第1実施形態と同様である。
 [実施例5]
  本手法によって、耐熱性皮膜31として、膜厚が最大で10μmとなるa-C:H膜およびta-C膜を形成することに成功した。以上のように、耐熱性皮膜31は、表面粗さゼロという理想的な被処理基材を想定すると、その膜厚は、最小で1nmから形成が可能である。また、応力緩和皮膜を含む積層構造の採用により、最大で10μmまで形成が可能である。
 [第6実施形態]
  本実施形態の耐熱性皮膜31は、第1実施形態の耐熱性皮膜31としての機能に加え、密着性皮膜30としての機能を併せ持つ。本実施形態の耐熱性皮膜31は、第1実施形態の耐熱性皮膜31および密着性皮膜30が1つの膜として構成されたものに相当する。すなわち、耐熱性皮膜31を構成する材料は、第1実施形態の耐熱性皮膜31を主として構成する炭素、および、第1実施形態の密着性皮膜30を主として構成するシリコンやクロム等である。他の点は第1実施形態と同様である。
 [実施例6]
  以下、本実施形態を実現する具体的な実施例6を説明する。耐熱性皮膜31を、スプレー方式で形成した。すなわち、耐熱性皮膜31の材料を、スプレーにより、アルミニウム合金からなる基材20の表面200に噴射した。この方式を用いることで、耐熱性皮膜31の膜厚は数十μmと厚くなった。そこで、耐熱性皮膜31のロバスト性を向上させるために、基材20の表面200にあらかじめブラスト処理等を施し、アンカー効果を得るための凹凸形状とした。この表面200に耐熱性皮膜31を形成し、その上に撥油性皮膜32を形成した。
 図21に、複合膜3の断面-走査型電子顕微鏡(SEM)像を示す。基材20の表面に、ブラスト処理による凹部202と凸部203を確認できる。耐熱性皮膜31の平均膜厚は約20.0μmであった。膜3の最表層に撥油性皮膜32を確認できる。耐熱性皮膜31は2層構造となっており、下層312と上層313から構成されている。下層312は、シリカ粒子314、アルミナ粒子315、およびバインダー316等からなる。上層313の膜厚は約2μmである。
 表3に、SEM-エネルギー分散型X線(EDS)による耐熱性皮膜31の分析結果を示す。本結果によれば、上層313と下層312は多くの炭素CとシリコンSiを含有している。炭素およびシリコンは、それぞれ、撥油性皮膜32との共有結合、および基材200とのイオン結合を実現するための元素である。
Figure JPOXMLDOC01-appb-T000004
 上記耐熱性皮膜31を含む複合膜3について、実施例1と同様に耐熱性および撥油性の評価を行ったところ、実施例1(a-C:Hを耐熱性皮膜31とし、a-SiCを密着性皮膜30として利用した場合)と同等以上の効果を確認できた。特に、耐熱性評価においては、アルミニウムの融点近くである約650度まで加熱する評価を別途行ったところ、耐熱性皮膜31がほとんど消失することなく複合膜3としての機能を保持可能であることを示す結果を得ることができた。
 [第7実施形態]
  本実施形態の耐熱性皮膜31は、第6実施形態の耐熱性皮膜31と基本的に同じであるが、低熱伝導性皮膜としても機能する。耐熱性皮膜31の熱伝導率は低く、0.1W/mk以下である。これは、耐熱性皮膜31が複数の中空物質を含むことによる。耐熱性皮膜31が低熱伝導性皮膜として機能することで、エンジンの熱損失の低減ないし燃焼効率の向上を図ることができる。
 耐熱性皮膜31の中には、図22において確認できるように、中空物質として、内部に空洞をもつ粗球状のシリカ(中空シリカ粒子)314が多数存在する。これらの中空シリカ粒子314は、耐熱性皮膜31の形成時にあらかじめ中空球体状のシリカ(直径0.003μm~数十μm)を導入する方法や、熱的ストレスをシリカに加えることにより、形成可能である。図23に示すように、耐熱性皮膜31の中には、部分的に、直径が3~15μm程度になるような大型の中空シリカ粒子314も含まれている。これらの中空シリカ粒子314の内部の空気層によって、耐熱性皮膜31の熱伝導率は大幅に低下する。他の点は第1実施形態と同様である。
 [実施例7]
  以下、本実施形態を実現する具体的な実施例7を説明する。本実施例の耐熱性皮膜31の熱伝導率は、パルス光加熱サーモリフレクタンス法による測定結果から、0.02~0.08W/mKであった。容積比熱は900~2500KJ/m3Kであった。通常、ピストンを構成するアルミニウム合金の熱伝導率が100W/mK程度であり、容積比熱が3000KJ/m3K程度であることを考えれば、耐熱性皮膜31の熱伝導率は著しく低く、容積比熱も低い。熱伝導率が低いため、熱損失の低減を図ることができる。また、容積比熱が低いため、熱応答性が高い遮熱膜として有効であることがわかる。
 耐熱性皮膜31の熱伝導率は、耐熱性皮膜31に含まれる中空シリカ粒子314の大きさや総量を変更することで、制御可能である。耐熱性皮膜31の熱伝導率が、耐熱性皮膜31における中空シリカ粒子314の含有率に応じてどのように変化するかを測定した。その結果を、図24において黒丸でプロットしたグラフにより示す。上記熱伝導率は、上記含有率を略ゼロとした状態では約5W/mKであったが、上記含有率を増加させることで急激に0.1W/mK程度まで低下し、上記含有率をさらに増加させることで最終的には0.02~0.08W/mKまで低下した。
 また、中空物質として、中空シリカ粒子314の代わりにカーボンナノチューブ(CNT)を含有させた耐熱性皮膜31についても、同様に熱伝導率を測定した。その結果を、図24において白丸でプロットしたグラフにより示す。熱伝導率は、中空シリカ粒子314の場合と同様、CNTの含有率を略ゼロから増加させるに従い、約5W/mKから0.1W/mK程度まで急激に低下し、その後0.05W/mK程度まで低下した。
 [他の実施形態]
  以上、本発明を実施するための形態を、図面に基づき説明したが、本発明の具体的な構成は、実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。例えば、複合膜3(コーティング)の適用対象は、実施形態において検討を行った頂面200やピストンリング溝部201に限定されない。ピストンに関して言えば、図1~図3に示されるピストンスカート部21の外表面、エプロン部22の外表面、および頂面200の裏側を含むピストンの内表面23等も適用対象となりうることは言うまでもない。ピストン以外に関して言えば、図1に示されるインジェクタ107の噴出部表面、シリンダ内壁面103、エンジンバルブ108,109の表面等、エンジンに使用されている部品すべてが適用対象となりうる。さらに、上記エンジンとして、ガソリンエンジンに限らず、ディーゼルエンジン等も含まれることを前提としている。エンジンの燃料としては、ガソリン、軽油、重油、液化石油ガス、液化天然ガス、バイオ燃料、水素等が挙げられる。さらに、上記エンジンとして、車両に限らず船舶等に搭載されるエンジンも含まれる。
 [実施形態から把握しうる技術的思想]
  以上説明した実施形態から把握しうる技術的思想(または技術的解決策。以下同じ。)について、以下に記載する。
(1) 本技術的思想の内燃機関用部品は、その1つの態様において、
  基材と、
  前記基材の表面を覆う耐熱性皮膜と、
  前記耐熱性皮膜の上にあり、前記耐熱性皮膜よりも撥油性が高い撥油性皮膜であって、ケイ素および酸素を介して前記耐熱性皮膜と共有結合する前記撥油性皮膜とを有する。
(2) より好ましい態様では、前記態様において、
  前記耐熱性皮膜はダイヤモンドライクカーボンを含む。
(3) 別の好ましい態様では、前記態様のいずれかにおいて、
  前記ダイヤモンドライクカーボンにおけるフッ素含有量は5at%未満である。
(4) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記ダイヤモンドライクカーボンにおける水素含有量が5at%未満である。
(5) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記ダイヤモンドライクカーボンにおける水素含有量が5at%以上であり、
  前記ダイヤモンドライクカーボンは窒素を含む。
(6) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記基材と前記耐熱性皮膜の間に接合皮膜があり、
  前記接合皮膜が前記基材と接合する力は、前記耐熱性皮膜が前記基材と接合する力よりも大きく、
 また、前記接合皮膜が前記耐熱性皮膜と接合する力は、前記耐熱性皮膜が前記基材と接合する力よりも大きい。
(7) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記基材の表面に接合する皮膜と前記基材との接合部が酸素を含まない。
(8) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記内燃機関用部品は、複数の粒子を有しており、
 前記複数の粒子のうち少なくとも一部が、前記耐熱性皮膜の中にあり、前記耐熱性皮膜の算術表面粗さよりも粒径が大きい。
(9) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記耐熱性皮膜の膜厚が、1ナノメートル以上、100マイクロメートル以下である。
(10) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記撥油性皮膜の膜厚が1ナノメートル以上である。
(11) さらに別の好ましい態様では、前記態様のいずれかにおいて、
  前記耐熱性皮膜は、複数の中空物質を含み、熱伝導率が0.1W/mk以下である。
(12) また、他の観点から、本技術的思想の内燃機関用部品の製造方法は、その1つの態様において、
  基材の表面に耐熱性皮膜を形成する工程と、
  前記耐熱性皮膜の表面に、前記耐熱性皮膜よりも撥油性が高い撥油性皮膜を形成する工程であって、
  前記撥油性皮膜の材料はシランカップリング基を含み、
  前記シランカップリング基を前記耐熱性皮膜の表面と反応させることで前記撥油性皮膜を形成する工程とを有する。
(13) より好ましい態様では、前記態様において、
  前記耐熱性皮膜の表面に前記撥油性皮膜を形成する工程は、
  前記耐熱性皮膜の表面に前記シランカップリング基を付着させる工程と、
  前記撥油性皮膜が付着した前記耐熱性皮膜の表面を加熱する工程とを含む。
(14) 別の好ましい態様では、前記態様のいずれかにおいて、
  前記基材の表面に前記耐熱性皮膜を形成する工程は、
  前記基材の表面に水素含有アモルファスカーボン膜を形成する工程と、
  前記水素含有アモルファスカーボン膜の表面に窒素を添加する工程とを含む。
 尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本願は、2017年9月15日付出願の日本国特許出願第2017-177640号に基づく優先権を主張する。2017年9月15日付出願の日本国特許出願第2017-177640号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1  ピストン(内燃機関用部品)2  ピストン本体20 ピストンヘッド(基材)3  複合膜31 耐熱性皮膜32 撥油性皮膜

Claims (14)

  1.  内燃機関用部品であって、
     基材と、
     前記基材の表面を覆う耐熱性皮膜と、
     前記耐熱性皮膜の上にあり、前記耐熱性皮膜よりも撥油性が高い撥油性皮膜であって、ケイ素および酸素を介して前記耐熱性皮膜と共有結合する前記撥油性皮膜とを有する、
     内燃機関用部品。
  2.  請求項1に記載の内燃機関用部品において、
     前記耐熱性皮膜はダイヤモンドライクカーボンを含む、内燃機関用部品。
  3.  請求項2に記載の内燃機関用部品において、
     前記ダイヤモンドライクカーボンにおけるフッ素含有量は5at%未満である、内燃機関用部品。
  4.  請求項2に記載の内燃機関用部品において、
     前記ダイヤモンドライクカーボンにおける水素含有量が5at%未満である、内燃機関用部品。
  5.  請求項2に記載の内燃機関用部品において、
     前記ダイヤモンドライクカーボンにおける水素含有量が5at%以上であり、
     前記ダイヤモンドライクカーボンは窒素を含む、
     内燃機関用部品。
  6.  請求項2に記載の内燃機関用部品において、
     前記基材と前記耐熱性皮膜の間に接合皮膜があり、
     前記接合皮膜が前記基材と接合する力は、前記耐熱性皮膜が前記基材と接合する力よりも大きく、
     また、前記接合皮膜が前記耐熱性皮膜と接合する力は、前記耐熱性皮膜が前記基材と接合する力よりも大きい、
     内燃機関用部品。
  7.  請求項2に記載の内燃機関用部品において、
     前記基材の表面に接合する皮膜と前記基材との接合部が酸素を含まない、内燃機関用部品。
  8.  請求項2に記載の内燃機関用部品において、
     前記内燃機関用部品は、複数の粒子を有しており、
     前記複数の粒子のうち少なくとも一部が、前記耐熱性皮膜の中にあり、前記耐熱性皮膜の算術表面粗さよりも粒径が大きい、内燃機関用部品。
  9.  請求項2に記載の内燃機関用部品において、
     前記耐熱性皮膜の膜厚が、1ナノメートル以上、100マイクロメートル以下である、内燃機関用部品。
  10.  請求項2に記載の内燃機関用部品において、
     前記撥油性皮膜の膜厚が1ナノメートル以上である、内燃機関用部品。
  11.  請求項1に記載の内燃機関用部品において、
     前記耐熱性皮膜は、複数の中空物質を含み、熱伝導率が0.1W/mk以下である、内燃機関用部品。
  12.  内燃機関用部品の製造方法であって、
     基材の表面に耐熱性皮膜を形成する工程と、
     前記耐熱性皮膜の表面に、前記耐熱性皮膜よりも撥油性が高い撥油性皮膜を形成する工程であって、
     前記撥油性皮膜の材料はシランカップリング基を含み、
     前記シランカップリング基を前記耐熱性皮膜の表面と反応させることで前記撥油性皮膜を形成する工程とを有する、
     内燃機関用部品の製造方法。
  13.  請求項12に記載の内燃機関用部品の製造方法において、
     前記耐熱性皮膜の表面に前記撥油性皮膜を形成する工程は、
     前記耐熱性皮膜の表面に前記シランカップリング基を付着させる工程と、
     前記撥油性皮膜が付着した前記耐熱性皮膜の表面を加熱する工程とを含む、
     内燃機関用部品の製造方法。
  14.  請求項12に記載の内燃機関用部品の製造方法において、
     前記基材の表面に前記耐熱性皮膜を形成する工程は、
     前記基材の表面に水素含有アモルファスカーボン膜を形成する工程と、
     前記水素含有アモルファスカーボン膜の表面に窒素を添加する工程とを含む、
     内燃機関用部品の製造方法。
PCT/JP2018/033177 2017-09-15 2018-09-07 内燃機関用部品および内燃機関用部品の製造方法 WO2019054286A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017177640A JP6838709B2 (ja) 2017-09-15 2017-09-15 内燃機関用部品および内燃機関用部品の製造方法
JP2017-177640 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019054286A1 true WO2019054286A1 (ja) 2019-03-21

Family

ID=65723601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033177 WO2019054286A1 (ja) 2017-09-15 2018-09-07 内燃機関用部品および内燃機関用部品の製造方法

Country Status (2)

Country Link
JP (1) JP6838709B2 (ja)
WO (1) WO2019054286A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4279731A1 (en) * 2022-05-20 2023-11-22 Caterpillar Energy Solutions GmbH Gas engine piston, gas engine, gas engine operation method
DE102019121240B4 (de) 2018-10-01 2024-02-01 Toyota Jidosha Kabushiki Kaisha Verbrennungsmotor mit Wärmedissipationsfilm

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301752A (ja) * 1999-02-15 2000-10-31 Riso Kagaku Corp サーマルヘッド及びその表面改質方法
JP2002180836A (ja) * 2000-12-08 2002-06-26 Kubota Corp ディーゼルエンジンの直噴式燃焼室
JP2006035806A (ja) * 2004-07-30 2006-02-09 Matsushita Electric Ind Co Ltd 耐熱防汚基板およびこれを用いた加熱調理機器
JP2009030521A (ja) * 2007-07-26 2009-02-12 Toyota Motor Corp ピストン
WO2014030297A1 (ja) * 2012-08-23 2014-02-27 マツダ株式会社 エンジン燃焼室に臨む部材の断熱構造体及びその製造方法
WO2015147163A1 (ja) * 2014-03-27 2015-10-01 スズキ株式会社 陽極酸化皮膜及びその処理方法並びに内燃機関用ピストン

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000301752A (ja) * 1999-02-15 2000-10-31 Riso Kagaku Corp サーマルヘッド及びその表面改質方法
JP2002180836A (ja) * 2000-12-08 2002-06-26 Kubota Corp ディーゼルエンジンの直噴式燃焼室
JP2006035806A (ja) * 2004-07-30 2006-02-09 Matsushita Electric Ind Co Ltd 耐熱防汚基板およびこれを用いた加熱調理機器
JP2009030521A (ja) * 2007-07-26 2009-02-12 Toyota Motor Corp ピストン
WO2014030297A1 (ja) * 2012-08-23 2014-02-27 マツダ株式会社 エンジン燃焼室に臨む部材の断熱構造体及びその製造方法
WO2015147163A1 (ja) * 2014-03-27 2015-10-01 スズキ株式会社 陽極酸化皮膜及びその処理方法並びに内燃機関用ピストン

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019121240B4 (de) 2018-10-01 2024-02-01 Toyota Jidosha Kabushiki Kaisha Verbrennungsmotor mit Wärmedissipationsfilm
EP4279731A1 (en) * 2022-05-20 2023-11-22 Caterpillar Energy Solutions GmbH Gas engine piston, gas engine, gas engine operation method

Also Published As

Publication number Publication date
JP2019052597A (ja) 2019-04-04
JP6838709B2 (ja) 2021-03-03

Similar Documents

Publication Publication Date Title
KR101898004B1 (ko) 코팅을 포함하는 슬라이딩 소자 및 피스톤 링
EP0874066A1 (en) Carbonaceous deposit-resistant coating for engine components
JPWO2014024494A1 (ja) エンジンおよびピストン
WO2019054286A1 (ja) 内燃機関用部品および内燃機関用部品の製造方法
JP7426386B2 (ja) 厚みのある低応力四面体アモルファスカーボンコーティング
US20130075977A1 (en) Piston ring for engine and manufacturing method thereof
JP2015519219A (ja) コーティングされた物品及び化学蒸着方法
CN110446883B (zh) 滑动构件和活塞环
Zhang et al. Corrosion and wear behaviors of Si-DLC films coated on inner surface of SS304 pipes by hollow cathode PECVD
JP2006112422A (ja) 内燃機関用部材及びその製造方法
JP6890703B2 (ja) 内燃機関用のライナー
Yang et al. Increased elasticity and damping capacity of diamond-like carbon coatings by immobilized C 60 fullerene clusters
Fayed et al. Effect of bias voltage on characteristics of multilayer Si-DLC film coated on AA6061 aluminum alloy
Kolawole et al. The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: An updated review study
Choudhury et al. Polydopamine+ SiO2 nanoparticle underlayer for improving DLC coating adhesion and durability
Cao et al. Simultaneously improving the corrosion resistance and wear resistance of internal surface of aluminum pipe by using multilayer diamond-like carbon-Si coatings
JP2018076873A5 (ja) 内燃機関用のライナー
KR101335705B1 (ko) 초발수 특성을 가진 금속 표면 구조 및 이의 형성 방법
Panţuru et al. Wear aspects of internal combustion engine valves
CN109137042A (zh) 一种钛合金表面高耐磨复合陶瓷涂层及其制备方法
CA2508821C (fr) Procede de fabrication ou de reparation d'un revetement sur un substrat metallique
Srinivas et al. The investigations on aluminium substrates coated with micro-sized WC-CO/Cr3C2-nicr multi-layered hard coating
JP2707409B2 (ja) 減圧プラズマ溶射によるAl系合金への高性能摺動被膜の形成方法
Jeon et al. Tribological properties of ultrathin DLC films with and without metal interlayers
WO2018207803A1 (ja) 硬質炭素膜とその製造方法および摺動部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856063

Country of ref document: EP

Kind code of ref document: A1