WO2019053978A1 - 自動クラッチ変速機のギア位置学習装置 - Google Patents

自動クラッチ変速機のギア位置学習装置 Download PDF

Info

Publication number
WO2019053978A1
WO2019053978A1 PCT/JP2018/022738 JP2018022738W WO2019053978A1 WO 2019053978 A1 WO2019053978 A1 WO 2019053978A1 JP 2018022738 W JP2018022738 W JP 2018022738W WO 2019053978 A1 WO2019053978 A1 WO 2019053978A1
Authority
WO
WIPO (PCT)
Prior art keywords
shift
shift drum
learning
clutch
gear position
Prior art date
Application number
PCT/JP2018/022738
Other languages
English (en)
French (fr)
Inventor
達也 竜▲崎▼
惇也 小野
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to EP18856974.3A priority Critical patent/EP3683475B1/en
Priority to US16/646,162 priority patent/US11073185B2/en
Priority to JP2019541657A priority patent/JP6722827B2/ja
Publication of WO2019053978A1 publication Critical patent/WO2019053978A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/06Fluid-actuated clutches in which the fluid actuates a piston incorporated in, i.e. rotating with the clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/068Control by electric or electronic means, e.g. of fluid pressure using signals from a manually actuated gearshift linkage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/682Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings with interruption of drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/16Multiple final output mechanisms being moved by a single common final actuating mechanism the final output mechanisms being successively actuated by progressive movement of the final actuating mechanism
    • F16H63/18Multiple final output mechanisms being moved by a single common final actuating mechanism the final output mechanisms being successively actuated by progressive movement of the final actuating mechanism the final actuating mechanism comprising cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/46Signals to a clutch outside the gearbox
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1026Hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/108Gear
    • F16D2500/1081Actuation type
    • F16D2500/1083Automated manual transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3024Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/30806Engaged transmission ratio
    • F16D2500/30808Detection of transmission in neutral
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/3146Signal inputs from the user input from levers
    • F16D2500/31466Gear lever
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5012Accurate determination of the clutch positions, e.g. treating the signal from the position sensor, or by using two position sensors for determination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50239Soft clutch engagement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/512Relating to the driver
    • F16D2500/5128Driver workload reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70406Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H2059/0234Selectors for gearings using foot control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0053Initializing the parameters of the controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2342/00Calibrating
    • F16H2342/02Calibrating shift or range movements

Definitions

  • the present invention relates to a gear position learning device for an automatic clutch transmission.
  • Priority is claimed on Japanese Patent Application No. 2017-177699, filed Sep. 15, 2017, the content of which is incorporated herein by reference.
  • An aspect according to the present invention is made in consideration of such circumstances, and it is an object of the present invention to provide a gear position learning device for an automatic clutch transmission that can perform in-gear position learning with high accuracy. Do.
  • a gear position learning device for an automatic clutch transmission includes a transmission (21) that is shifted by an operation of a driver of a vehicle (1), the transmission (21), and an engine
  • the clutch device (26) disposed in the transmission path between (13) and connected / disconnected by the operation of the clutch actuator (50), and the disconnection / connection of the clutch device (26) by the clutch actuator (50)
  • a rotational position defining mechanism (39 K) for defining the rotational position of the shift drum (36), and the control unit (60) has a learning mode for learning the rotational angle of the shift drum (36).
  • the clutch device (26) is a hydraulic clutch which is supplied with hydraulic pressure to be in a connected state, and the rotational position defining mechanism (39K) is connected to the shift drum (36).
  • a shift drum plate (38) coaxially and integrally rotatably provided and having a plurality of valley bottoms (38b) which define the rotational position of the shift drum (36) on the outer peripheral portion, and a shift for supporting the shift drum (36)
  • a stopper (39b) supported by the machine case (17) and engaged in a biased state with the valley bottom (38b) of the shift drum plate (38) to define the rotational position of the shift drum (36);
  • the controller (60) is disposed adjacent to the stopper (39b) in the valley bottom (38b) of the shift drum plate (38) in the learning mode.
  • the hydraulic pressure of the clutch device (26) is reduced when the stopper (39b) passes over the top (38d) between the valley bottoms (38b) and the shift drum (36) is moved to the rotational position defining mechanism (39K).
  • the rotational angle of the shift drum (36) may be learned in a state where the rotational position is determined in accordance with.
  • the control unit (60) moves the stopper (39b) from the top (38d) of the shift drum plate (38) to the valley bottom (38b).
  • the hydraulic pressure of the clutch device (26) may be set to less than or equal to a predetermined first hydraulic pressure value (PS1) when the movement of.
  • the control unit (60) sets the hydraulic pressure of the clutch device (26) to less than or less than the first hydraulic pressure value (PS1) in the learning mode
  • the learning of the rotation angle of the shift drum (36) may be permitted.
  • the control unit (60) is configured to move from the valley bottom (38b) of the shift drum plate (38) to the top (38d) in the learning mode.
  • the hydraulic pressure of the clutch device (26) may be set to a value greater than or equal to a predetermined second hydraulic pressure value (PS2) when the stopper (39b) moves toward.
  • the control unit (60) controls the clutch device until the stopper (39b) passes over the top (38d) of the shift drum plate (38) in the learning mode.
  • the hydraulic pressure of (26) may be maintained at a value equal to or higher than the second hydraulic pressure (PS2).
  • PS2 second hydraulic pressure
  • the shift operator (32) is connected, and the shift operation to the shift operator (32) operates from the neutral position (D1) Master arm (31a) for rotating the shift drum (36), and the control unit (60) detects that the master arm (31a) is in the neutral position (D1) in the learning mode. Sometimes, learning of the rotation angle of the shift drum (36) may be permitted.
  • the control unit (60) operates in the learning mode when the rotation angle of the shift drum (36) is within a predetermined range. In addition, learning of the rotation angle of the shift drum (36) may be permitted.
  • the control unit (60) includes a gear position sensor (41) for detecting a gear position from the rotational position of the shift drum (36). In the learning mode, even when learning of the rotation angle of the shift drum (36) is permitted when the gear position detected by the gear position sensor (41) matches the predetermined target gear position. Good.
  • the control section (60) may be provided with a switch (59) for switching the control mode from the normal mode to the learning mode.
  • the rotational position of the shift drum is mechanically determined by the rotational position defining mechanism by controlling connection and disconnection of the clutch device, for example, avoiding contact with the dog occurring in the transmission and then disconnecting the clutch device. Is possible. Therefore, it is possible to learn in-gear position with high accuracy.
  • the rotational position of the shift drum is mechanically determined by the rotational position defining mechanism by disconnecting the clutch device when the stopper passes the top between adjacent valleys of the shift drum plate.
  • the stopper is automatically guided to the bottom of the shift drum plate, and it is possible to learn the in-gear position with high accuracy.
  • the shift drum plate is rotated only by the urging force of the stopper to guide the stopper to the valley bottom position to learn the in-gear position with high accuracy. it can.
  • the in-gear position can be learned with high accuracy in a state where the shift drum plate is rotated only by the urging force of the stopper to guide the stopper to the valley bottom position.
  • the learning of the rotation angle of the shift drum is premised on the work at a factory and a shop, etc., so that switching to the learning mode is possible by operating the changeover switch only when learning. Erroneous operation at the time of control can be prevented.
  • FIG. 1 is a left side view of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a transmission and a change mechanism of the motorcycle. It is a schematic explanatory drawing of a clutch operating system containing a clutch actuator.
  • 1 is a block diagram of a transmission system. It is a graph which shows change of supply oil pressure of a clutch actuator.
  • FIG. 6 is a front view of the shift arm and the shift operation detection switch as viewed in the axial direction of the shift spindle. It is VII-VII sectional drawing of FIG.
  • FIG. 7 is a front view corresponding to FIG. 6 in a state where a shift operation detection switch has detected a shift operation.
  • the present embodiment is applied to a motorcycle 1 which is a saddle-ride type vehicle.
  • the front wheels 2 of the motorcycle 1 are supported by lower end portions of the left and right front forks 3.
  • the upper portions of the left and right front forks 3 are supported by the head pipe 6 at the front end of the vehicle body frame 5 via the steering stem 4.
  • a bar-type steering handle 4 a is mounted on the top bridge of the steering stem 4.
  • the body frame 5 includes a head pipe 6, a main tube 7 extending downward and rearward from the head pipe 6 in the vehicle width direction (left and right direction), a left and right pivot frame 8 connected below the rear end of the main tube 7, and And a seat frame 9 connected to the rear of the tube 7 and the left and right pivot frame 8.
  • the front end of the swing arm 11 is pivotally supported by the left and right pivot frame 8.
  • the rear wheel 12 of the motorcycle 1 is supported at the rear end of the swing arm 11.
  • a fuel tank 18 is supported above the left and right main tubes 7.
  • a front seat 19 and a rear seat cover 19 a are supported side by side in the front and rear direction above the seat frame 9 behind the fuel tank 18.
  • the periphery of the seat frame 9 is covered by a rear cowl 9a.
  • a power unit PU which is a motor of the motorcycle 1 is suspended below the left and right main tubes 7, a power unit PU which is a motor of the motorcycle 1 is suspended.
  • the power unit PU is linked with the rear wheel 12 via, for example, a chain type transmission mechanism.
  • the power unit PU integrally includes an engine 13 located on the front side and a transmission 21 located on the rear side.
  • the engine 13 is, for example, a multi-cylinder engine in which the rotational axis of the crankshaft 14 is in the left-right direction (the vehicle width direction).
  • the engine 13 has a cylinder 16 raised above the front of the crankcase 15.
  • the rear portion of the crankcase 15 is a transmission case 17 that accommodates the transmission 21.
  • the transmission 21 is a stepped transmission having a main shaft 22, a countershaft 23, and a transmission gear group 24 straddling both shafts 22 and 23.
  • the countershaft 23 constitutes the transmission 21 and thus the output shaft of the power unit PU.
  • the end of the countershaft 23 projects to the rear left of the crankcase 15 and is connected to the rear wheel 12 via the chain type transmission mechanism.
  • the transmission gear group 24 has gears for the number of transmission stages supported by both shafts 22 and 23 respectively.
  • the transmission 21 is a constant meshing type in which corresponding gear pairs of the transmission gear group 24 are always meshed between the shafts 22 and 23.
  • the plurality of gears supported by the shafts 22 and 23 are classified into free gears rotatable with respect to the corresponding shafts and slide gears (shifters) spline-fitted to the corresponding shafts.
  • An axially convex dog is provided on one of the free gear and the slide gear, and an axially concave slot is provided on the other for engaging the dog. That is, the transmission 21 is a so-called dog mission.
  • a clutch device 26 operated by a clutch actuator 50 is coaxially disposed at the right end of the main shaft 22.
  • the clutch device 26 is, for example, a wet multi-plate clutch, and is a so-called normally open clutch. That is, the clutch device 26 is in a connected state in which power can be transmitted by the hydraulic pressure supply from the clutch actuator 50, and returns to a disconnected state in which the power can not be transmitted when the hydraulic pressure supply from the clutch actuator 50 is lost.
  • crankshaft 14 rotational power of the crankshaft 14 is transmitted to the main shaft 22 through the clutch device 26 and transmitted to the countershaft 23 through the main shaft 22 through any gear pair of the transmission gear group 24.
  • a drive sprocket 27 of the chain type transmission mechanism is attached to the left end of the countershaft 23 which protrudes to the left side of the rear part of the crankcase 15.
  • a change mechanism 25 for switching the gear pair of the transmission gear group 24 is accommodated at the rear upper side of the transmission 21.
  • the change mechanism 25 operates the plurality of shift forks 36a according to the pattern of the lead grooves formed on the outer periphery by rotation of the hollow cylindrical shift drum 36 parallel to both the shafts 22 and 23, and the transmission gear group 24 Switch the gear pair used for the power transmission between both shafts 22 and 23 in.
  • the change mechanism 25 has a shift spindle 31 parallel to the shift drum 36.
  • the shift arm 31a fixed to the shift spindle 31 rotates the shift drum 36, axially moves the shift fork 36a according to the pattern of the lead grooves, and power of the transmission gear group 24 Switch the transmittable gear pair (ie, switch gear). Details of the change mechanism 25 will be described later.
  • the shift spindle 31 has an axially outer portion 31b projecting outward (leftward) in the vehicle width direction of the crankcase 15 in order to make the change mechanism 25 operable.
  • a shift load sensor 42 (shift operation detection means) is coaxially attached to the axially outer portion 31 b of the shift spindle 31 (see FIG. 1).
  • a swing lever 33 is attached to the axially outer portion 31 b of the shift spindle 31 (or the rotation shaft of the shift load sensor 42).
  • the rocking lever 33 extends rearward from a proximal end 33a clamped to the shift spindle 31 (or the rotation shaft), and the upper end of the link rod 34 swings through the upper ball joint 34a at its distal end 33b. It is connected freely.
  • the lower end portion of the link rod 34 is swingably connected to a shift pedal 32 operated by a driver via a lower ball joint (not shown).
  • the shift pedal 32 is supported so that the front end portion thereof can be rocked up and down via a shaft along the left and right direction at the lower part of the crankcase 15.
  • the rear end portion of the shift pedal 32 is provided with a pedal portion for hooking the foot of the driver placed in the step 32a, and the lower end portion of the link rod 34 is connected to the front and rear intermediate portion of the shift pedal 32.
  • the shift change device 35 configured to switch the transmission gear of the transmission 21 is configured including the shift pedal 32, the link rod 34 and the change mechanism 25.
  • the shift operation to the shift operating unit 35a and the shift pedal 32 is input to an assembly (shift drum 36, shift fork 36a, etc.) for switching the shift speed of the transmission 21 in the transmission case 17
  • An assembly (shift spindle 31, shift arm 31a, etc.) that rotates around the axis of the spindle 31 and transmits this rotation to the shift operating unit 35a is referred to as a shift operation receiving unit 35b.
  • the driver performs only the shift operation of the transmission 21 (the foot operation of the shift pedal 32), and the connection / disconnection operation of the clutch device 26 is automatically performed by electric control according to the operation of the shift pedal 32.
  • a so-called semi-automatic transmission system (automatic clutch transmission system) is adopted.
  • the transmission system includes a clutch actuator 50, an ECU 60 (Electronic Control Unit), and various sensors 40-45.
  • the ECU 60 detects a gear position sensor 41 that detects a shift speed from the rotation angle of the shift drum 36, detection information from a shift load sensor (for example, torque sensor) 42 that detects an operation torque input to the shift spindle 31, and throttle opening.
  • the clutch actuator 50 is operated and controlled based on various vehicle state detection information from the degree sensor 43, the vehicle speed sensor 44, the engine speed sensor 45 and the like, and the ignition device 46 and the fuel injection device 47 are controlled.
  • the ECU 60 also receives detection information from oil pressure sensors 57 and 58 described later and a shift operation detection switch (shift neutral switch) 48. Further, the ECU 60 includes a hydraulic pressure control unit 61, a normal mode control unit 62, and a learning mode control unit 63, and these functions will be described later.
  • the clutch actuator 50 is controlled by the ECU 60 to control the hydraulic pressure that connects and disconnects the clutch device 26.
  • the clutch actuator 50 includes an electric motor 52 (hereinafter simply referred to as a motor 52) as a drive source, and a master cylinder 51 driven by the motor 52.
  • the clutch actuator 50 constitutes an integral clutch control unit 50A together with a hydraulic circuit device 53 provided between the master cylinder 51 and the hydraulic pressure supply and discharge port 50p.
  • the ECU 60 calculates a target value (target hydraulic pressure) of the hydraulic pressure supplied to the slave cylinder 28 to connect and disconnect the clutch device 26 based on a preset calculation program, and the slave cylinder detected by the downstream hydraulic pressure sensor 58
  • the clutch control unit 50A is controlled so that the hydraulic pressure on the 28th side (current hydraulic pressure) approaches the target hydraulic pressure.
  • the master cylinder 51 causes the piston 51b in the cylinder body 51a to make a stroke by the drive of the motor 52 so that hydraulic oil in the cylinder body 51a can be supplied to and discharged from the slave cylinder 28.
  • reference numeral 55 denotes a conversion mechanism as a ball screw mechanism
  • reference numeral 54 denotes a transmission mechanism straddling the motor 52 and the conversion mechanism 55
  • reference numeral 51 e denotes a reservoir connected to the master cylinder 51.
  • the hydraulic circuit device 53 has a valve mechanism (solenoid valve 56) for opening or closing an intermediate portion of the main oil passage (hydraulic oil supply and discharge oil passage) 53m extending from the master cylinder 51 to the clutch device 26 side (slave cylinder 28 side). doing.
  • the main oil passage 53m of the hydraulic circuit device 53 is divided into an upstream oil passage 53a closer to the master cylinder 51 than the solenoid valve 56 and a downstream oil passage 53b closer to the slave cylinder 28 than the solenoid valve 56.
  • the hydraulic circuit device 53 further includes a bypass oil passage 53c that bypasses the solenoid valve 56 and communicates the upstream oil passage 53a with the downstream oil passage 53b.
  • the solenoid valve 56 is a so-called normally open valve.
  • the bypass oil passage 53c is provided with a one-way valve 53c1 that allows hydraulic fluid to flow only in the direction from the upstream side to the downstream side.
  • an upstream oil pressure sensor 57 that detects the oil pressure of the upstream oil passage 53a is provided on the upstream side of the solenoid valve 56.
  • a downstream oil pressure sensor 58 for detecting the oil pressure of the downstream oil passage 53 b is provided downstream of the solenoid valve 56.
  • the clutch control unit 50A is housed, for example, in a rear cowl 9a.
  • the slave cylinder 28 is attached to the rear left side of the crankcase 15.
  • the clutch control unit 50A and the slave cylinder 28 are connected via a hydraulic pipe 53e (see FIG. 3).
  • the slave cylinder 28 is coaxially disposed on the left side of the main shaft 22.
  • the slave cylinder 28 pushes the push rod 28a passing through the inside of the main shaft 22 to the right.
  • the slave cylinder 28 operates the clutch device 26 to the connected state through the push rod 28 a by pressing the push rod 28 a rightward.
  • the slave cylinder 28 releases the push on the push rod 28 a and returns the clutch device 26 to the disconnected state.
  • a solenoid valve 56 is provided in the hydraulic circuit device 53 of the clutch control unit 50A, and the solenoid valve 56 is closed after the hydraulic pressure is supplied to the clutch device 26 side.
  • the supply oil pressure to the clutch device 26 side is maintained, and the oil pressure is compensated by the pressure drop (recharge by the leak amount), thereby suppressing energy consumption.
  • the shift is performed immediately after the clutch device 26 is filled with the hydraulic pressure.
  • the solenoid valve 56 operates to close the upstream side to a low pressure state
  • the motor 52 is reversely driven while the solenoid valve 56 remains open, and the master cylinder 51 is depressurized and the reservoir 51e is communicated.
  • the hydraulic pressure on the clutch device 26 side is relieved to the master cylinder 51 side.
  • the drive of the clutch actuator 50 is feedback-controlled based on the detected oil pressure of the upstream oil pressure sensor 57.
  • the hydraulic pressure on the downstream side may rise due to a temperature rise or the like as in region E of FIG. 5.
  • a fine hydraulic pressure fluctuation on the downstream side can be absorbed by an accumulator (not shown), and does not operate the motor 52 and the solenoid valve 56 every time the hydraulic pressure fluctuation and increase the power consumption.
  • the solenoid valve 56 is opened in stages by decreasing the power supply to the solenoid valve 56, etc. Relief of the oil pressure on the upstream side.
  • the standby hydraulic pressure WP is applied to the slave cylinder 28 side to enter the standby state.
  • the standby hydraulic pressure WP is a hydraulic pressure slightly lower than the touch point hydraulic pressure TP that starts connection of the clutch device 26, and is a hydraulic pressure that does not connect the clutch device 26 (hydraulic pressure applied in areas A and H in FIG. 5).
  • the application of the standby hydraulic pressure WP makes it possible to nullify the clutch device 26 (cancellation of each part, cancellation of the operation reaction force, application of a preload to the hydraulic path, etc.), and operation responsiveness at the time of connection of the clutch device 26 is enhanced.
  • the change mechanism 25 is disposed at one end of the shift drum 36 and rotates integrally with the shift drum 36.
  • the change mechanism 25 is disposed at the other end of the shift drum 36 and similarly shifts.
  • a shift drum plate 38 that rotates integrally with the drum 36.
  • a shift arm 31 a is disposed opposite to the shift drum center 37 in the axial direction.
  • a plurality of feed pins 37a protruding toward the shift arm 31a are fixedly arranged side by side in the circumferential direction.
  • On the outer peripheral portion of the shift drum plate 38 a plurality of valley portions 38a and peak portions 38c are alternately formed in the circumferential direction.
  • a stopper arm 39 extending toward the outer peripheral portion of the shift drum plate 38 is pivotably supported by the transmission case 17.
  • the stopper arm 39 supports a stopper roller 39 b engageable with any valley 38 a of the shift drum plate 38 at the tip of the arm body 39 a.
  • the stopper arm 39 is biased to press the stopper roller 39 b against the valley 38 a of the shift drum plate 38.
  • the valley portion 38 a forms a valley bottom 38 b having an arc shape in an axial direction, in which the outer peripheral surface of the stopper roller 39 b is aligned.
  • the stopper arm 39 restricts the rotation of the shift drum plate 38 and hence the shift drum 36 by pressing the stopper roller 39 b against the valley bottom 38 b of the shift drum plate 38.
  • the stopper arm 39 swings against the biasing force of the shift drum 36 to allow the shift drum 36 to rotate when a shift operation force of a predetermined level or more is applied to the shift drum 36.
  • the stopper roller 39b rolls on a slope on one side in the circumferential direction of the currently engaged valley portion 38a and rides on the adjacent peak portion 38c.
  • the stopper roller 39b passes over the top 38d of the piled portion 38c, it rolls on the slope of the top of the top 38d to urge the shift drum plate 38 and thus the shift drum 36 to the other side in the circumferential direction and rotate it.
  • the shift drum plate 38 and the stopper roller 39 b constitute a rotational position defining mechanism 39 K that defines the rotational position of the shift drum 36.
  • the shift arm 31a includes an arm body 31a1 and a shifter plate 31a2.
  • the arm body 31 a 1 has a plate shape orthogonal to the shift spindle 31, and the base end side is fixed to the shift spindle 31.
  • the arm body 31a1 extends along the extension reference line L1 so as to overlap with the shift drum 36 in the axial direction.
  • the arm body 31a1 extends until the tip end side passes the shift drum 36 in the axial direction.
  • a shifter plate 31a2 is attached to the tip end side of the arm body 31a1 from the shift drum 36 side.
  • a regulation bolt 31a3 fixed to the transmission case 17 is engaged with the base end side of the arm body 31a1 at a position having a predetermined angle with respect to the extension reference line L1 in the axial direction.
  • a return spring 31a4 which is a torsion coil spring, is externally fitted.
  • a restriction bolt 31a3 is sandwiched between a pair of radially extending coil end portions of the return spring 31a4, and a spring receiving portion 31a5 formed on the base end side of the arm body 31a1 is sandwiched.
  • the shifter plate 31a2 is in the form of a plate parallel to the arm body 31a1.
  • the shifter plate 31a2 is attached to the arm body 31a1 via a slide mechanism 31a6 provided with a combination of a guide pin and a long hole.
  • the shifter plate 31a2 is slidable relative to the arm body 31a1 by a predetermined amount along the extension reference line L1.
  • the shifter plate 31a2 is biased toward the shift spindle 31 by biasing means (not shown) with respect to the arm body 31a1.
  • the shift drum plate 38 has valleys 38 a corresponding to a plurality of shift speeds (for example, six speeds) of the transmission 21.
  • Each valley 38a engages the stopper roller 39b with the valley bottom 38b when the shift drum 36 is in the rotational position corresponding to any gear position of the transmission 21.
  • the stopper roller 39 b is engaged with the valley bottom 38 b of the shift drum plate 38 in a biased state, thereby restricting the rotation of the shift drum 36 and defining the rotational position corresponding to each shift speed of the shift drum 36.
  • a recess (not shown) corresponding to neutral is formed at the top 38 d of the peak 38 c between the valleys 38 a corresponding to the first and second gears.
  • a ratchet mechanism 37R configured to intermittently feed the shift drum center 37 by a predetermined rotation angle according to the swing of the shift arm 31a is configured.
  • the ratchet mechanism 37R rotates the shift drum center 37 from the rotational position defined by the shift drum plate 38 and the stopper roller 39b to the upshift or downshift side as the shift arm 31a swings from the neutral position D1.
  • Let The ratchet mechanism 37R enables only the shift arm 31a to be returned to the neutral position D1 before swinging after rotation of the shift drum center 37.
  • the shift drum 36 is intermittently fed by a predetermined angle by repeating the forward and reverse rotation of the shift spindle 31 so that the shift gear can be switched.
  • the shifter plate 31 a 2 is formed with a pair of feed claws 31 a 7 engaged with the feed pins 37 a of the shift drum center 37.
  • the shift arm 31 a When the shift arm 31 a is at the neutral position D 1, the pair of feed claws 31 a 7 of the shifter plate 31 a 2 engage with any of the plurality of feed pins 37 a of the shift drum center 37.
  • the shift arm 31a when the change spindle is rotated in either forward or reverse direction by the shift operation by the occupant, the shift arm 31a is integrally rotated along with this, and is engaged with one of the pair of feed claws 31a7 of the shifter plate 31a2.
  • the shift drum plate 38 and thus the shift drum 36 rotate via the mating feed pin 37a.
  • the shift arm 31a rotates, for example, by an angle defined by engagement with the restriction bolt 31a3.
  • the stopper roller 39b rides on the peak portion 38c adjacent to one side in the circumferential direction of the currently engaged valley portion 38a, and passes over the top portion 38d of the peak portion 38c to reach the next valley portion 38a.
  • the rotation of the shift arm 31a is restricted before the stopper roller 39b reaches the valley bottom 38b of the next valley 38a, but if the stopper roller 39b exceeds the top 38d of the peak 38c, the biasing force of the stopper roller 39b
  • the shift drum plate 38 and hence the shift drum 36 are urged to the other side in the circumferential direction and rotate.
  • the shift drum 36 is stopped at the rotational position corresponding to the next gear stage defined by the shift drum plate 38 and the stopper roller 39 b.
  • the shift arm 31a After the shift operation, the shift arm 31a is returned to the neutral position D1 by the elastic force of the return spring 31a4.
  • a cam surface 31a8 which is in sliding contact with the feed pin 37a when the shift arm 31a returns to the neutral position D1 is formed at the tip of the pair of feed claws 31a7 of the shifter plate 31a2.
  • the cam surface 31a8 is in sliding contact with the feed pin 37a when the shift arm 31a returns to the neutral position D1, and causes the shifter plate 31a2 to stroke toward the tip end of the arm body 31a1.
  • the feed claw 31a7 rides over the feed pin 37a.
  • a ratchet mechanism 37R is mainly configured with the shifter plate 31a2 and the shift drum center 37.
  • the shift drum center 37 and the shift drum 36 have a predetermined angle in one direction (60 degrees in the case of sixth speed) through the ratchet mechanism 37R. ) Rotate only.
  • the rotation angle corresponds to an angle at which the shift position of the transmission 21 is shifted up or down by one step.
  • the rotation of the shift drum 36 causes the transmission 21 to change the current gear position to the next gear position on the upshift side or the downshift side.
  • the shift spindle 31 and the shift arm 31a repeat reciprocating motion of forward and reverse rotation of a predetermined angle to shift up or down the transmission 21 in stages.
  • the shift drum 36 has a cam surface for shift position detection.
  • the cam surface has projections corresponding to all gear stages including neutral.
  • the present gear position of the transmission 21 is detected by detecting the projection of the cam surface with the gear position sensor 41 (see FIG. 4) and sending it to the ECU 60.
  • the shift drum center 37 and the shift drum plate 38 may be disposed on the same side of the shift drum 36, or the shift drum center 37 and the shift drum plate 38 may be integrated with each other.
  • the ECU 60 has a gear position learning mode for accurately detecting the gear position of the transmission 21 when the transmission 21 is attached or replaced.
  • the ECU 60 usually detects the gear position of the transmission 21 by detecting the rotational position of the shift drum 36 with the gear position sensor 41.
  • the rotational position of the shift drum 36 can not be accurately detected.
  • the output value of the gear position sensor 41 corresponds to which gear position of the transmission 21 immediately after assembly or replacement of the transmission 21, maintenance, etc., or immediately after assembly or replacement of the drum angle sensor 40, maintenance, etc. It can not be accurately determined whether it corresponds or not, and the gear position of the transmission 21 can not be accurately detected.
  • various electrical controls in accordance with the gear position of the transmission 21 have been proposed, so it is desired to accurately and accurately detect the gear position of the transmission 21 and hence the rotational position of the shift drum 36 .
  • the engine output reduction control is performed at the time of the gear shift, and after confirming the regular in-gear to the next gear, the control to restore the engine output is performed.
  • the regular in-gear to the next stage is determined by the rotational position of the shift drum 36 being at the regular in-gear position (next-stage regular in-gear position) corresponding to the next-stage gear.
  • the engine output reduction time is extended more than necessary, and the variation in the drive loss time becomes large.
  • the next-stage regular in-gear position of the shift drum 36 corresponds to the rotational position of the shift drum 36 determined by the rotational position defining mechanism 39K.
  • a shift may occur between the rotational position of shift drum 36 and the rotational position defined by rotational position defining mechanism 39K.
  • the next-stage regular in-gear position becomes unclear, the engine output reduction time is extended more than necessary, and the variation of the drive loss time becomes large.
  • connection and disconnection of the clutch device 26 is controlled so that the shift drum 36 is at the rotational position determined by the rotational position defining mechanism 39K. That is, the rotation angle of the shift drum 36 and the hydraulic control of the clutch device 26 interlock with each other. As a result, the next-stage regular in-gear position is clarified, and the variation in the drive loss time is suppressed in all the shift speeds, and the shift feeling is stabilized. Details of learning control will be described later.
  • the ECU 60 includes a memory such as a ROM (Read Only Memory) and a RAM (Random Access Memory) in addition to a CPU (Central Processing Unit).
  • the data stored in the ROM may include, in addition to control programs for the fuel injection device 47 and the ignition device 46, a design map indicating the correlation between the detection value of the gear position sensor 41 and the rotation angle of the shift drum 36.
  • the data stored in the RAM includes the rotation angle (normal in-gear position) of the shift drum 36 with respect to each shift speed obtained in the learning mode.
  • the ECU 60 includes, in addition to the normal mode control unit 62 that performs normal clutch control, a learning mode control unit 63 that performs control of learning the rotation angle of the shift drum 36.
  • a learning mode control unit 63 that performs control of learning the rotation angle of the shift drum 36.
  • the ECU 60 brings the clutch device 26 into the disconnected state after avoiding, for example, the occurrence of dog contact occurring in the transmission 21.
  • the ECU 60 in the learning mode waits for the clutch oil pressure until the stopper roller 39b reaches any of the plurality of top portions 38d of the shift drum plate 38, as shown in FIG.
  • the hydraulic pressure value PS2 (or a value exceeding the shift hydraulic pressure value PS2)).
  • the torque of the engine 13 is slightly transmitted to the transmission 21, and the dog contact occurring in the transmission 21 can be eliminated.
  • the ECU 60 reduces the hydraulic pressure of the clutch device 26 and substantially disconnects the clutch device 26.
  • the ECU 60 waits for the clutch oil pressure to the standby oil pressure WP- ⁇ (the learning oil pressure shown in FIG. The value is less than (or less than) PS1.
  • WP- ⁇ the learning oil pressure shown in FIG. The value is less than (or less than) PS1.
  • the rotation angle of the shift drum 36 at the time of in-gear can be learned with high accuracy while the shift drum 36 defines the rotational position only by the urging force of the rotational position defining mechanism 39K.
  • the ECU 60 stands by with the clutch hydraulic pressure as the standby hydraulic pressure WP- ⁇ and prepares for learning of the in-gear position of the next stage.
  • a shift operation detection switch (shift neutral switch) 48 that detects the neutral position D1 of the shift arm 31a interlocked with the shift pedal 32 is used. As a result, it is possible to detect a state in which the pedal load is completely removed and to accurately learn the regular in-gear position.
  • the ECU 60 permits learning of the rotation angle of the shift drum 36 when the hydraulic pressure supplied to the clutch device 26 is set to less than or less than the learning hydraulic pressure value PS1 in the learning mode.
  • in-gear position learning can be performed with high accuracy while the rotational position of the shift drum 36 is mechanically determined by the rotational position defining mechanism 39K.
  • the ECU 60 “when the stopper roller 39 b passes the top 38 d of the shift drum plate 38” or “when the stopper roller 39 b moves from the valley bottom 38 b to the top 38 d of the shift drum plate 38” Detect from the rotation angle.
  • the ECU 60 sends the clutch device 26
  • the supplied oil pressure is set to a value greater than or equal to a predetermined shift oil pressure value PS2.
  • the ECU 60 maintains the clutch hydraulic pressure set to a value greater than or equal to the shift hydraulic pressure PS2 until the stopper roller 39b passes over the top 38d of the shift drum plate 38.
  • the ECU 60 permits learning of the rotation angle of the shift drum 36 when detecting that the shift arm 31a is at the neutral position D1 in the learning mode. That is, when the shift arm 31a is moved from the neutral position D1 by an external force applied to the shift pedal 32, there is a possibility that the shift arm 31a may cause displacement of the shift drum 36, but the shift arm 31a is at the neutral position D1. By permitting learning of the rotation angle of the shift drum 36, it is possible to ensure that the shift arm 31a does not cause the displacement of the shift drum 36 to occur.
  • the ECU 60 permits learning of the rotation angle of the shift drum 36 when the rotation angle of the shift drum 36 is within a predetermined range in the learning mode.
  • the above “when within a predetermined range” means that the rotation angle of the shift drum 36 with respect to a reference position such as the neutral position of the shift drum 36 is within a predetermined range with respect to the design rotation angle. It is If the rotation angle of the shift drum 36 deviates beyond a predetermined range, there is a possibility that a dog or the like of the transmission 21 may occur, so learning of the rotation angle of the shift drum 36 in this case is performed. It can be canceled.
  • the rotation angle of the shift drum 36 may be within a predetermined range with respect to the designed rotation angle at the gear position detected by the gear position sensor 41.
  • the ECU 60 permits learning of the rotation angle of the shift drum 36 when the gear position detected by the gear position sensor 41 matches the predetermined target gear position in the learning mode. As a result, when the current gear position detected by the gear position sensor 41 does not coincide with the target gear position predetermined in the ECU 60, learning of the rotation angle of the shift drum 36 is not permitted, and erroneous learning can be prevented. .
  • a switch 59 for switching the mode of the ECU 60 is provided. Since learning of the rotation angle of the shift drum 36 is premised on work at a factory or a shop etc., the changeover switch 59 is provided, for example, on the inside of the body cover, under the seat, etc. so that the occupant does not operate erroneously during normal operation. It is arranged. Thereby, an erroneous operation at the time of normal control can be prevented.
  • the slave cylinder 28 When the motorcycle 1 is in the stop state and the gear position of the transmission 21 is in any gear position other than neutral, that is, when the transmission 21 is in the in-gear stop state, the slave cylinder 28 The standby hydraulic pressure WP set in advance is supplied.
  • the standby hydraulic pressure WP is set to a first set value P1 (see FIG. 5), which is a standard standby hydraulic pressure, in a normal state (in the non-detection state where the shift operation of the shift pedal 32 is not detected).
  • P1 a standard standby hydraulic pressure
  • the clutch device 26 is in the standby state in which the ineffective charging is performed, and the responsiveness when the clutch is engaged is enhanced. That is, when the driver increases the throttle opening to increase the rotational speed of the engine 13, the clutch device 26 is immediately engaged by the hydraulic pressure supply to the slave cylinder 28, and the quick start acceleration of the motorcycle 1 is achieved. It becomes possible.
  • the motorcycle 1 is provided with a shift operation detection switch 48 separately from the shift load sensor 42 in order to detect the driver's shift operation on the shift pedal 32. Then, when the shift operation detection switch 48 detects the shift operation from the first speed to the neutral position in the in-gear stop state, the hydraulic control unit 61 uses the standby hydraulic pressure WP from the first set value P1 before performing the shift operation. Control is performed to set the second set value P2 (the low-pressure standby oil pressure, see FIG. 5) which is also low.
  • the second set value P2 the low-pressure standby oil pressure, see FIG. 5
  • the shift operation detection switch 48 is radially opposed to the outer peripheral end of the shift arm 31a extending radially outward from the rotation center (axial center) C1 of the shift spindle 31. It is provided.
  • the arrow SUP indicates the upshift side in the rotational direction of the shift spindle 31
  • the arrow SDN indicates the downshift side in the rotational direction of the shift spindle 31.
  • the shift arm 31a extends along an extension reference line L1 passing through the axial center C1.
  • the shift operation detection switch 48 is supported on the transmission case 17 side, and the shift arm 31 a rotates relative to the shift operation detection switch 48.
  • the shift operation detection switch 48 has a cylindrical shape, and is disposed along the radial direction of the shift spindle 31 with the center line L2.
  • the shift operation detection switch 48 has a detector 48s that strokes along the center line L2. The detector 48s protrudes toward the detection target member 49 provided at the outer peripheral end of the shift arm 31a.
  • the shift arm 31a has a neutral position D1 at which the center line L2 of the shift operation detection switch 48 matches the extension line of the extension reference line L1.
  • the shift arm 31a is biased toward the neutral position D1 by a return spring (not shown).
  • a detected member 49 is provided at the outer peripheral end of the shift arm 31 a so as to face the shift operation detection switch 48.
  • the to-be-detected member 49 has a V-shape convex outward in the radial direction, and is provided symmetrically with respect to the extension reference line L1.
  • the detection target member 49 has a projection top 49t directed radially outward and a pair of inclined surface sections 49s formed on both sides of the projection top 49t in the rotational direction of the shift spindle 31.
  • the pair of inclined surface portions 49s are disposed substantially at right angles to each other.
  • the protruding top portion 49t is rounded at the same radius as the tip spherical surface of the detector 48s of the shift operation detection switch 48.
  • the shift arm 31a is disposed at the neutral position D1 when no operation load from the shift pedal 32 is applied.
  • the detection element 48s of the shift operation detection switch 48 With respect to the detection element 48s of the shift operation detection switch 48, the protruding top portion 49t of the detection target member 49 faces the radial direction.
  • the detector 48s of the shift operation detection switch 48 is in the retracted state, and the shift operation detection switch 48 is in the ON state or the OFF state (ON state in the drawing).
  • the shift arm 31a when an operation load is applied to the shift pedal 32 and the shift spindle 31 rotates, the shift arm 31a also integrally rotates.
  • the shift spindle 31 and the shift arm 31 a rotate to the shift up side.
  • the protruding top 49 t of the detection target member 49 is displaced in the circumferential direction with respect to the detector 48 s of the shift operation detection switch 48.
  • the detection element 48s changes to a projecting state while sliding on one of the pair of inclined surface portions 49s, and switches the shift operation detection switch 48 between the ON state and the OFF state.
  • the ECU 60 detects the rotation of the shift spindle 31 from the neutral position D1, that is, the shift operation to the shift pedal 32.
  • the rotational position (shift operation detection position) D2 of the shift arm 31a at this time is a position rotated from the neutral position D1 by a small angle ⁇ 1 of 2 to 3 degrees.
  • ON / OFF is detected by immersion of the detection element 48s like ON and projection OFF, it is ON when the detection element 48s contacts the inclined surface 49s. It is also possible to detect ON / OFF like OFF by not contacting.
  • the shift operation detection switch 48 by providing the detected member 49 having the projecting top portion 49 t at the outer peripheral end of the shift arm 31 a extending to the outer peripheral side than the shift spindle 31, in the shift operation detection switch 48, the shift of the shift pedal 32 is performed.
  • the slight rotation of the shift spindle 31 due to the operation is detected with high sensitivity.
  • detecting the shift operation from the rotational position of the shift arm 31a fixed to the shift spindle 31 also enables highly sensitive detection.
  • the shift operation can be detected more directly than in the case of detecting the displacement of the actuating member (such as the shift drum 36) which is separate from the shift spindle 31.
  • the ECU 60 determines whether to permit learning of the neutral position (step S1). For example, the ECU 60 permits the learning of the neutral position by switching to the learning mode by the changeover switch 59 when the engine is started and when the vehicle is stopped (idling) (YES in step S1). When the engine is stopped or not stopped, or when the changeover switch 59 is in the normal mode, the process does not shift to learning control (NO in step S1), and the process ends.
  • step S1 the ECU 60 learns and stores the neutral position from the rotational position of the shift drum 36 (step S2).
  • the ECU 60 calculates and determines the learning permission range of the valley bottom position of each shift speed based on the learned neutral position (step S3).
  • the learning permission range is used to determine whether the rotation angle of the shift drum 36 with respect to the neutral position is within a predetermined range with respect to the design rotation angle of each gear. It is used as the "predetermined range”.
  • the transmission 21 of the present embodiment is a return type six-speed transmission. With reference to FIGS. 6 and 7, the transmission 21 shifts to the first speed by one reciprocation to the shift down side indicated by the arrow SDN of the shift spindle 31 based on the time when the shift drum 36 is in the neutral position. The shift is sequentially changed to the 2nd to 6th speeds for each reciprocation by repeated reciprocating motion to the upshift side indicated by the arrow SUP. If YES in step S4 (a shift operation has been performed), the process proceeds to step S5, and if N0 (a shift operation has not been performed) in step S4, the process ends.
  • step S5 the ECU 60 determines whether or not there is a dog hit. In this determination, as in the area J shown in FIG. 11, it is determined that a dog hit occurs when the change of the shift drum angle at the time of the shift operation stops before reaching a predetermined angle for the shift change. .
  • step S5 If a dog hit has occurred (YES in step S5), the process proceeds to step S6, and the target hydraulic pressure is increased for canceling the dog. For example, as in the region K shown in FIG. 11, the ECU 60 raises the clutch hydraulic pressure to the standby hydraulic pressure WP + ⁇ , increases the clutch capacity, and eliminates the dog contact. If a dog hit has not occurred (NO in step S5) and if a dog hit is canceled in step S6, the process proceeds to step S7.
  • step S7 it is determined whether or not the next gear stage after the shift change has been engaged. In this determination, as in the area L shown in FIG. 11, when the change of the shift drum angle at the time of the shift operation reaches within the “predetermined range” with respect to the predetermined angle for the shift change, It is determined that in-gear has been in gear. In the case of YES in step S7 (in gear in the next gear), the process proceeds to step S8, and in the case of N0 in step S7 (in gear not in the next gear), the process is temporarily ended.
  • step S8 the hydraulic pressure supplied to the clutch device 26 is set to less than or equal to the first hydraulic pressure value (the learning hydraulic pressure value PS1).
  • the clutch device 26 is in the disconnected state, and the rotational position of the shift drum 36 is determined only by the biasing force of the stopper roller 39b of the rotational position defining mechanism 39K.
  • the position is called a regular in-gear position or a valley position.
  • step S9 determines whether to permit learning of the valley bottom position of the shift drum 36. This determination will be described later with reference to FIG.
  • the ECU 60 learns and stores the rotation angle of the shift drum 36 as the valley bottom position of the first speed and temporarily ends the process (step S10). Also in the case of NO in step S9 (the learning of the valley bottom position is not permitted), the process is once ended.
  • step S11 determines whether the target gear position and the current gear position match (step S11). If they match (YES in step S11), the process proceeds to step S12. If they do not match (NO in step S11), the determination in step S9 is NO.
  • the target gear position is preset as a learning order of the valley bottom position of each shift speed.
  • the first gear to the sixth gear are set in order. That is, after learning of the neutral position, the target gear position is updated to first gear, and after learning of the first gear position, the target gear position is updated to second gear.
  • the current gear position is the current gear position detected by the gear position sensor 41.
  • step S12 determines whether the rotation angle of the shift drum 36 is within the learning permission range including the variation. If it is in the range (YES in step S12), the process proceeds to step S13. If it is not in the range (NO in step S12), the determination in step S9 is NO. The determination based on the actual rotation angle of the shift drum 36 reliably detects that a dog or the like of the transmission 21 has not occurred.
  • step S13 the ECU 60 determines whether the slave hydraulic pressure is less than or equal to the set value (the learning hydraulic pressure value PS1) (step S13). If it is less than the set value (YES in step S13), the process proceeds to step S14. If it exceeds the set value (NO in step S13), the determination of step S9 is NO.
  • the valley bottom learning permission flag is set when both the slave hydraulic pressure and the master hydraulic pressure become lower than the set value, and valley bottom learning is permitted on the condition that the clutch control hydraulic pressure is sufficiently reduced. There is.
  • the ECU 60 determines whether the shift neutral switch is in the neutral state (whether the shift arm 31a is in the neutral position D1) (step S14). If it is in the neutral state (YES in step S14), the determination in step S9 is YES, and if it is not in the neutral state (NO in step S14), the determination in step S9 is NO.
  • a low shift load such as a light foot on the shift pedal 32
  • the rotational position of the shift drum 36 may move from the valley bottom position.
  • Such low shift load may not be detected by the shift load sensor 42 in some cases, but erroneous shift learning of the valley bottom position is prevented by using the shift neutral switch that detects the movement of the shift arm 31a linked to the shift pedal 32. Do.
  • the ECU 60 After learning the valley bottom position of the first gear position, the ECU 60 sets the target gear position to the second gear, and repeats steps S4 to S10. After learning the valley bottom position to the 6th gear position, the ECU 60 returns, for example, the clutch oil pressure to the standby oil pressure WP- ⁇ or so, and ends the learning control. At this time, the end of the learning control may be notified to the outside by means such as a lamp or a buzzer.
  • transmission between the transmission 21 and the engine 13 is performed by the transmission 21 whose speed is changed by the operation of the driver of the motorcycle 1.
  • the clutch device 26 disposed in the path and connected or disconnected by the operation of the clutch actuator 50, the ECU 60 for controlling connection or disconnection of the clutch device 26 by the clutch actuator 50, and rotation according to the shift operation of the shift pedal 32 by the driver.
  • the rotational position defining mechanism 39K for defining the rotational position of the shift drum 36
  • the ECU 60 has a learning mode for learning the rotational angle of the shift drum 36. When in this learning mode, the shift drum 36 is at the rotational position determined by the rotational position defining mechanism 39K. And so that, to control the disengagement of the clutch device 26.
  • the present invention is not limited to the above embodiment.
  • the shift operator is not limited to a shift pedal operated by a foot, but may be a lever operated by hand or the like. Further, there may be an actuator electrically driven to perform a shift operation.
  • the invention is not limited to application to a saddle-ride type vehicle in which the clutch operation is automated as in the above embodiment, and the shift is performed by adjusting the driving force without performing the manual clutch operation under predetermined conditions, based on the manual clutch operation.
  • the present invention is also applicable to a saddle-ride type vehicle provided with a so-called clutch operation-less transmission.
  • a meter device or the like in the vicinity of the steering handle 4a may be provided with an indicator (information output unit) for notifying the surrounding that it is in the learning mode.
  • the indicator is, for example, a lamp, which lights up or blinks in the learning mode.
  • the indicator outputs information indicating that it is in the learning mode to a worker or the like around the vehicle.
  • the saddle-ride type vehicle includes all vehicles on which the driver straddles the vehicle body, and not only motorcycles (including motor bikes and scooter type vehicles), but also three-wheeled vehicles (one front wheel and two rear wheels). In addition, vehicles including front two wheels and one rear wheel vehicle) or four wheel vehicles are also included, and vehicles including an electric motor as a prime mover are also included.
  • the composition in the above-mentioned embodiment is an example of the present invention, and various change is possible in the range which does not deviate from the gist of the said invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Gear-Shifting Mechanisms (AREA)
  • Control Of Transmission Device (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

自動クラッチ変速機のギア位置学習装置は、車両の運転者の操作によって変速がなされる変速機と、前記変速機とエンジンとの間の伝動経路に配置され、クラッチアクチュエータの作動によって断接がなされるクラッチ装置と、前記クラッチアクチュエータによる前記クラッチ装置の断接を制御する制御部と、シフト操作子に対する運転者のシフト操作に応じて回転して前記変速機の変速段を切り替えるシフトドラムと、前記シフトドラムの回転位置を規定する回転位置規定機構と、を備え、前記制御部は、前記シフトドラムの回転角度を学習する学習モードを有し、この学習モード時に、前記シフトドラムが前記回転位置規定機構で定められた回転位置となるように、前記クラッチ装置の断接を制御する。

Description

自動クラッチ変速機のギア位置学習装置
 本発明は、自動クラッチ変速機のギア位置学習装置に関する。
 本願は、2017年09月15日に出願された日本国特願2017-177699号に基づき優先権を主張し、その内容をここに援用する。
 従来、ニュートラル位置を学習することを許可する学習許可指令(所定ボタンの二度押しなどで発信)を受信して変速機のニュートラル位置を学習するギア位置検出装置が知られている(例えば、特許文献1参照)。
日本国特開2012-177392号
 上記従来の技術においては、マニュアルクラッチ式の変速機のギア位置学習について記載されており、ギア位置学習時の自動クラッチの制御については記載がない。
 また、変速機のギア位置に応じて種々の電気制御がされる旨の示唆はあるが、ギアインしたときのシフトドラムの回転角度を精度よく学習することについては記載がない。
 本発明に係る態様は、このような事情を考慮してなされたものであり、精度の高いインギア位置の学習を行うことができる、自動クラッチ変速機のギア位置学習装置を提供することを目的とする。
 上記課題を解決するために、本発明は以下の態様を採用した。
(1)本発明の一態様に係る自動クラッチ変速機のギア位置学習装置は、車両(1)の運転者の操作によって変速がなされる変速機(21)と、前記変速機(21)とエンジン(13)との間の伝動経路に配置され、クラッチアクチュエータ(50)の作動によって断接がなされるクラッチ装置(26)と、前記クラッチアクチュエータ(50)による前記クラッチ装置(26)の断接を制御する制御部(60)と、シフト操作子(32)に対する運転者のシフト操作に応じて回転して前記変速機(21)の変速段を切り替えるシフトドラム(36)と、前記シフトドラム(36)の回転位置を規定する回転位置規定機構(39K)と、を備え、前記制御部(60)は、前記シフトドラム(36)の回転角度を学習する学習モードを有し、この学習モード時に、前記シフトドラム(36)が前記回転位置規定機構(39K)で定められた回転位置となるように、前記クラッチ装置(26)の断接を制御する。
(2)上記(1)の態様において、前記クラッチ装置(26)は、油圧が供給されて接続状態となる油圧クラッチであり、前記回転位置規定機構(39K)は、前記シフトドラム(36)に同軸かつ一体回転可能に設けられ、外周部に前記シフトドラム(36)の回転位置を規定する複数の谷底(38b)を有するシフトドラムプレート(38)と、前記シフトドラム(36)を支持する変速機ケース(17)に支持され、前記シフトドラムプレート(38)の前記谷底(38b)に付勢状態で係合して、前記シフトドラム(36)の回転位置を規定するストッパ(39b)と、を備え、前記制御部(60)は、前記学習モード時に、前記シフトドラムプレート(38)の前記谷底(38b)に前記ストッパ(39b)が位置するように、隣接する前記谷底(38b)の間の頂部(38d)を前記ストッパ(39b)が越えたときに前記クラッチ装置(26)の油圧を低減し、前記シフトドラム(36)を前記回転位置規定機構(39K)で定められた前記回転位置とした状態で、前記シフトドラム(36)の回転角度を学習してもよい。
(3)上記(2)の態様において、前記制御部(60)は、前記学習モード時に、前記シフトドラムプレート(38)の前記頂部(38d)から前記谷底(38b)に向かって前記ストッパ(39b)が移動するときに、前記クラッチ装置(26)の油圧を予め定めた第一油圧値(PS1)未満又は以下に設定してもよい。
(4)上記(3)の態様において、前記制御部(60)は、前記学習モード時に、前記クラッチ装置(26)の油圧を前記第一油圧値(PS1)未満又は以下に設定したときに、前記シフトドラム(36)の回転角度の学習を許可してもよい。
(5)上記(2)から(4)のいずれか1つの態様において、前記制御部(60)は、前記学習モード時に、前記シフトドラムプレート(38)の前記谷底(38b)から前記頂部(38d)に向かって前記ストッパ(39b)が移動するときに、前記クラッチ装置(26)の油圧を予め定めた第二油圧値(PS2)以上又は越える値に設定してもよい。
(6)上記(5)の態様において、前記制御部(60)は、前記学習モード時に、前記シフトドラムプレート(38)の前記頂部(38d)を前記ストッパ(39b)が乗り越えるまで、前記クラッチ装置(26)の油圧を前記第二油圧値(PS2)以上又は越える値に設定した状態を維持してもよい。
(7)上記(1)から(6)のいずれか1つの態様において、前記シフト操作子(32)に連結され、前記シフト操作子(32)へのシフト操作により中立位置(D1)から動作して前記シフトドラム(36)を回転させるマスターアーム(31a)を備え、前記制御部(60)は、前記学習モード時に、前記マスターアーム(31a)が前記中立位置(D1)にあることを検出したときに、前記シフトドラム(36)の回転角度の学習を許可してもよい。
(8)上記(1)から(7)のいずれか1つの態様において、前記制御部(60)は、前記学習モード時に、前記シフトドラム(36)の回転角度が予め定めた範囲内にあるときに、前記シフトドラム(36)の回転角度の学習を許可してもよい。
(9)上記(1)から(8)のいずれか1つの態様において、前記シフトドラム(36)の回転位置からギアポジションを検出するギアポジションセンサ(41)を備え、前記制御部(60)は、前記学習モード時に、前記ギアポジションセンサ(41)が検出するギアポジションと予め定めた目標とするギアポジションとが一致したときに、前記シフトドラム(36)の回転角度の学習を許可してもよい。
(10)上記(1)から(9)のいずれか1つの態様において、前記制御部(60)を通常モードから前記学習モードに切り替える切替スイッチ(59)を備えてもよい。
 上記(1)の態様によれば、変速段を切り替えるシフトドラムの回転角度を学習する学習モードにおいて、回転位置規定機構が機械的に定めたシフトドラムの回転角度を記憶することが可能となる。すなわち、学習モードにおいて、クラッチ装置の断接を制御し、例えば変速機に生じるドグあたりを回避した後にクラッチ装置を切断することで、シフトドラムの回転位置を回転位置規定機構により機械的に定めることが可能となる。このため、精度の高いインギア位置の学習を行うことができる。
 上記(2)の場合、学習モードにおいて、シフトドラムプレートの隣接する谷底間の頂部をストッパが越えたときにクラッチ装置を切断状態することで、シフトドラムの回転位置を回転位置規定機構により機械的に定めることが可能となる。このため、ストッパがシフトドラムプレートの谷底に自動的に誘導され、精度の高いインギア位置の学習を行うことができる。
 上記(3)の場合、クラッチ油圧を切断状態相当にすることで、ストッパの付勢力のみでシフトドラムプレートを回転させてストッパを谷底位置に誘導し、精度の高いインギア位置の学習を行うことができる。
 上記(4)の場合、ストッパの付勢力のみでシフトドラムプレートを回転させてストッパを谷底位置に誘導した状態で、精度の高いインギア位置の学習を行うことができる。
 上記(5)の場合、クラッチ油圧を弱接続状態として変速機にエンジンのトルクを僅かに伝達し、変速機に生じるドグあたりを回避する制御を行うことができる。
 上記(6)の場合、変速機に生じるドグあたりを回避する制御を確実に行うことができる。
 上記(7)の場合、シフト操作子への外力でマスターアームが中立位置から動いた際に、マスターアームがシフトドラムの位置ずれを発生させることがあるが、シフトアームが中立位置にあるときにシフトドラムの回転角度の学習を許可することで、シフトアームがシフトドラムの位置ずれを発生させていないことを担保し、精度の高いインギア位置の学習を行うことができる。
 上記(8)の場合、シフトドラムプレートの回転角度が所定範囲を超えてずれている場合には、変速機のドグあたり等が発生している可能性があることから、シフトドラムの回転角度の学習を許可しないことで、結果的に精度の高いインギア位置の学習を行うことができる。
 上記(9)の場合、ギアポジションセンサが検出する現在ギアポジションと制御部に予め定めた目標ギアポジションとが一致しない場合は、シフトドラムの回転角度の学習を許可せず誤学習を防止し、結果的に精度の高いインギア位置の学習を行うことができる。
 上記(10)の場合、シフトドラムの回転角度の学習は、工場および販売店等での作業を前提としていることから、学習時のみ切替スイッチの操作により学習モードに切り替え可能とすることで、通常制御時の誤操作を防ぐことができる。
本実施形態の自動二輪車の左側面図である。 上記自動二輪車の変速機およびチェンジ機構の断面図である。 クラッチアクチュエータを含むクラッチ作動システムの概略説明図である。 変速システムのブロック図である。 クラッチアクチュエータの供給油圧の変化を示すグラフである。 シフトアームおよびシフト操作検知スイッチをシフトスピンドルの軸方向から見た正面図である。 図6のVII-VII断面図である。 シフト操作検知スイッチがシフト操作を検知した状態の図6に相当する正面図である。 学習モードでシフトドラムプレートの谷底位置を検出する際の制御フローを示すフローチャートである。 図9のステップS9内のAND条件の制御フローを示すフローチャートである。 図10の制御フローに係る要素の時間変化を示すタイミングチャートである。
 以下、本発明の実施形態について図面を参照して説明する。なお、以下の説明における前後左右等の向きは、特に記載が無ければ以下に説明する車両における向きと同一とする。また以下の説明に用いる図中適所には、車両前方を示す矢印FR、車両左方を示す矢印LH、車両上方を示す矢印UPが示されている。
<車両全体>
 図1に示すように、本実施形態は、鞍乗り型車両である自動二輪車1に適用されている。自動二輪車1の前輪2は、左右一対のフロントフォーク3の下端部に支持されている。
 左右フロントフォーク3の上部は、ステアリングステム4を介して、車体フレーム5の前端部のヘッドパイプ6に支持されている。ステアリングステム4のトップブリッジ上には、バータイプの操向ハンドル4aが取り付けられている。
 車体フレーム5は、ヘッドパイプ6と、ヘッドパイプ6から車幅方向(左右方向)中央を下後方へ延びるメインチューブ7と、メインチューブ7の後端部の下方に連なる左右ピボットフレーム8と、メインチューブ7および左右ピボットフレーム8の後方に連なるシートフレーム9と、を備えている。左右ピボットフレーム8には、スイングアーム11の前端部が揺動可能に枢支されている。スイングアーム11の後端部には、自動二輪車1の後輪12が支持されている。
 左右メインチューブ7の上方には、燃料タンク18が支持されている。燃料タンク18の後方でシートフレーム9の上方には、前シート19および後シートカバー19aが前後に並んで支持されている。シートフレーム9の周囲は、リヤカウル9aに覆われている。
 左右メインチューブ7の下方には、自動二輪車1の原動機であるパワーユニットPUが懸架されている。パワーユニットPUは、後輪12と例えばチェーン式伝動機構を介して連係されている。
 パワーユニットPUは、その前側に位置するエンジン13と後側に位置する変速機21とを一体に有している。エンジン13は、例えばクランクシャフト14の回転軸を左右方向(車幅方向)に沿わせた複数気筒エンジンである。エンジン13は、クランクケース15の前部上方にシリンダ16を起立させている。クランクケース15の後部は、変速機21を収容する変速機ケース17とされている。
<変速機>
 図2に示すように、変速機21は、メインシャフト22およびカウンタシャフト23ならびに両シャフト22,23に跨る変速ギア群24を有する有段式のトランスミッションである。カウンタシャフト23は変速機21ひいてはパワーユニットPUの出力軸を構成している。カウンタシャフト23の端部はクランクケース15の後部左側に突出し、前記チェーン式伝動機構を介して後輪12に連結されている。
 変速ギア群24は、両シャフト22,23にそれぞれ支持された変速段数分のギアを有する。変速機21は、両シャフト22,23間で変速ギア群24の対応するギア対同士が常に噛み合った常時噛み合い式とされる。両シャフト22,23に支持された複数のギアは、対応するシャフトに対して回転可能なフリーギアと、対応するシャフトにスプライン嵌合するスライドギア(シフター)とに分類される。これらフリーギア及びスライドギアの一方には軸方向で凸のドグが、他方にはドグを係合させるべく軸方向で凹のスロットがそれぞれ設けられている。すなわち、変速機21は、いわゆるドグミッションである。
 図3を併せて参照し、変速機21のメインシャフト22及びカウンタシャフト23は、クランクシャフト14の後方で前後に並んで配置されている。メインシャフト22の右端部には、クラッチアクチュエータ50により作動するクラッチ装置26が同軸配置されている。クラッチ装置26は、例えば湿式多板クラッチであり、いわゆるノーマルオープンクラッチである。すなわち、クラッチ装置26は、クラッチアクチュエータ50からの油圧供給によって動力伝達可能な接続状態となり、クラッチアクチュエータ50からの油圧供給がなくなると動力伝達不能な切断状態に戻る。
 図2を参照し、クランクシャフト14の回転動力は、クラッチ装置26を介してメインシャフト22に伝達され、メインシャフト22から変速ギア群24の任意のギア対を介してカウンタシャフト23に伝達される。カウンタシャフト23におけるクランクケース15の後部左側に突出した左端部には、前記チェーン式伝動機構のドライブスプロケット27が取り付けられている。
 変速機21の後上方には、変速ギア群24のギア対を切り替えるチェンジ機構25が収容されている。チェンジ機構25は、両シャフト22,23と平行な中空円筒状のシフトドラム36の回転により、その外周に形成されたリード溝のパターンに応じて複数のシフトフォーク36aを作動させ、変速ギア群24における両シャフト22,23間の動力伝達に用いるギア対を切り替える。
 チェンジ機構25は、シフトドラム36と平行なシフトスピンドル31を有している。
 シフトスピンドル31の回転時には、シフトスピンドル31に固定されたシフトアーム31aがシフトドラム36を回転させ、リード溝のパターンに応じてシフトフォーク36aを軸方向移動させて、変速ギア群24の内の動力伝達可能なギア対を切り替える(すなわち、変速段を切り替える。)。後にチェンジ機構25の詳細を説明する。
 シフトスピンドル31は、チェンジ機構25を操作可能とするべくクランクケース15の車幅方向外側(左方)に軸外側部31bを突出させている。シフトスピンドル31の軸外側部31bには、シフト荷重センサ42(シフト操作検知手段)が同軸に取り付けられている(図1参照)。シフトスピンドル31の軸外側部31b(またはシフト荷重センサ42の回転軸)には、揺動レバー33が取り付けられている。揺動レバー33は、シフトスピンドル31(または回転軸)にクランプ固定される基端部33aから後方へ延び、その先端部33bには、リンクロッド34の上端部が上ボールジョイント34aを介して揺動自在に連結されている。リンクロッド34の下端部は、運転者が足操作するシフトペダル32に、下ボールジョイント(不図示)を介して揺動自在に連結されている。
 図1に示すように、シフトペダル32は、その前端部がクランクケース15の下部に左右方向に沿う軸を介して上下揺動可能に支持されている。シフトペダル32の後端部には、ステップ32aに載せた運転者の足先を掛けるペダル部が設けられ、シフトペダル32の前後中間部には、リンクロッド34の下端部が連結されている。
 図2に示すように、シフトペダル32、リンクロッド34およびチェンジ機構25を含んで、変速機21の変速段ギアの切り替えを行うシフトチェンジ装置35が構成されている。シフトチェンジ装置35において、変速機ケース17内で変速機21の変速段を切り替える集合体(シフトドラム36、シフトフォーク36a等)を変速作動部35a、シフトペダル32への変速動作が入力されてシフトスピンドル31の軸回りに回転し、この回転を前記変速作動部35aに伝達する集合体(シフトスピンドル31、シフトアーム31a等)を変速操作受け部35b、という。
 ここで、自動二輪車1は、変速機21の変速操作(シフトペダル32の足操作)のみを運転者が行い、クラッチ装置26の断接操作はシフトペダル32の操作に応じて電気制御により自動で行うようにした、いわゆるセミオートマチックの変速システム(自動クラッチ式変速システム)を採用している。
<変速システム>
 図4に示すように、上記変速システムは、クラッチアクチュエータ50、ECU60(Electronic Control Unit、制御装置)および各種センサ40~45を備えている。
 ECU60は、シフトドラム36の回転角から変速段を検知するギアポジションセンサ41、およびシフトスピンドル31に入力された操作トルクを検知するシフト荷重センサ(例えばトルクセンサ)42からの検知情報、ならびにスロットル開度センサ43、車速センサ44およびエンジン回転数センサ45等からの各種の車両状態検知情報等に基づいて、クラッチアクチュエータ50を作動制御するとともに、点火装置46および燃料噴射装置47を作動制御する。ECU60には、後述する油圧センサ57,58、並びにシフト操作検知スイッチ(シフトニュートラルスイッチ)48からの検知情報も入力される。
 また、ECU60は、油圧制御部61、通常モード制御部62、学習モード制御部63を備えており、これらの機能については後述する。
 図3を併せて参照し、クラッチアクチュエータ50は、ECU60により作動制御されることで、クラッチ装置26を断接する液圧を制御可能とする。クラッチアクチュエータ50は、駆動源としての電気モータ52(以下、単にモータ52という。)と、モータ52により駆動されるマスターシリンダ51と、を備えている。クラッチアクチュエータ50は、マスターシリンダ51および油圧給排ポート50pの間に設けられる油圧回路装置53とともに、一体のクラッチ制御ユニット50Aを構成している。
 ECU60は、予め設定された演算プログラムに基づいて、クラッチ装置26を断接するためにスレーブシリンダ28に供給する油圧の目標値(目標油圧)を演算し、下流側油圧センサ58で検出されるスレーブシリンダ28側の油圧(現在油圧)が目標油圧に近づくように、クラッチ制御ユニット50Aを制御する。
 マスターシリンダ51は、シリンダ本体51a内のピストン51bをモータ52の駆動によりストロークさせて、シリンダ本体51a内の作動油をスレーブシリンダ28に対して給排可能とする。図中符号55はボールネジ機構としての変換機構、符号54はモータ52および変換機構55に跨る伝達機構、符号51eはマスターシリンダ51に接続されるリザーバをそれぞれ示す。
 油圧回路装置53は、マスターシリンダ51からクラッチ装置26側(スレーブシリンダ28側)へ延びる主油路(油圧給排油路)53mの中間部位を開通又は遮断するバルブ機構(ソレノイドバルブ56)を有している。油圧回路装置53の主油路53mは、ソレノイドバルブ56よりもマスターシリンダ51側となる上流側油路53aと、ソレノイドバルブ56よりもスレーブシリンダ28側となる下流側油路53bと、に分けられる。油圧回路装置53はさらに、ソレノイドバルブ56を迂回して上流側油路53aと下流側油路53bとを連通するバイパス油路53cを備えている。
 ソレノイドバルブ56は、いわゆるノーマルオープンバルブである。バイパス油路53cには、上流側から下流側への方向のみ作動油を流通させるワンウェイバルブ53c1が設けられている。ソレノイドバルブ56の上流側には、上流側油路53aの油圧を検出する上流側油圧センサ57が設けられている。ソレノイドバルブ56の下流側には、下流側油路53bの油圧を検出する下流側油圧センサ58が設けられている。
 図1に示すように、クラッチ制御ユニット50Aは、例えばリヤカウル9a内に収容されている。スレーブシリンダ28は、クランクケース15の後部左側に取り付けられている。クラッチ制御ユニット50Aとスレーブシリンダ28とは、油圧配管53e(図3参照)を介して接続されている。
 図2に示すように、スレーブシリンダ28は、メインシャフト22の左方に同軸配置されている。スレーブシリンダ28は、クラッチアクチュエータ50からの油圧供給時には、メインシャフト22内を貫通するプッシュロッド28aを右方へ押圧する。スレーブシリンダ28は、プッシュロッド28aを右方へ押圧することで、該プッシュロッド28aを介してクラッチ装置26を接続状態へ作動させる。スレーブシリンダ28は、前記油圧供給が無くなると、プッシュロッド28aの押圧を解除し、クラッチ装置26を切断状態に戻す。
 クラッチ装置26を接続状態に維持するには油圧供給を継続する必要があるが、その分だけ電力を消費することとなる。そこで、図3に示すように、クラッチ制御ユニット50Aの油圧回路装置53にソレノイドバルブ56を設け、クラッチ装置26側への油圧供給後にソレノイドバルブ56を閉じている。これにより、クラッチ装置26側への供給油圧を維持し、圧力低下分だけ油圧を補う(リーク分だけリチャージする)構成として、エネルギー消費を抑えている。
<クラッチ制御>
 次に、クラッチ制御系の作用について図5のグラフを参照して説明する。図5のグラフにおいて、縦軸は下流側油圧センサ58が検出する供給油圧、横軸は経過時間をそれぞれ示している。
 自動二輪車1の停車時(アイドリング時)、ECU60で制御されるモータ52およびソレノイドバルブ56は、ともに電力供給が遮断された状態にある。すなわち、モータ52は停止状態にあり、ソレノイドバルブ56は開弁状態にある。このとき、スレーブシリンダ28側(下流側)はタッチポイント油圧TPより低い低圧状態となり、クラッチ装置26は非締結状態(切断状態、解放状態)となる。この状態は、図5の領域Aに相当する。
 自動二輪車1の発進時、エンジン13の回転数を上昇させると、モータ52にのみ電力供給がなされ、マスターシリンダ51から開弁状態のソレノイドバルブ56を経てスレーブシリンダ28へ油圧が供給される。スレーブシリンダ28側(下流側)の油圧がタッチポイント油圧TP以上に上昇すると、クラッチ装置26の締結が開始され、クラッチ装置26が一部の動力を伝達可能な半クラッチ状態となる。これにより、自動二輪車1の滑らかな発進が可能となる。この状態は、図5の領域Bに相当する。
 やがて、クラッチ装置26の入力回転と出力回転との差が縮まり、スレーブシリンダ28側(下流側)の油圧が下限保持油圧LPに達すると、クラッチ装置26の締結がロック状態に移行し、エンジン13の駆動力が全て変速機21に伝達される。この状態は、図5の領域Cに相当する。
 マスターシリンダ51側からスレーブシリンダ28側に油圧を供給する際には、ソレノイドバルブ56を開弁状態とし、モータ52に通電して正転駆動させて、マスターシリンダ51を加圧する。これにより、スレーブシリンダ28側の油圧がクラッチ締結油圧に調圧される。このとき、クラッチアクチュエータ50の駆動は、下流側油圧センサ58の検出油圧に基づきフィードバック制御される。
 そして、スレーブシリンダ28側(下流側)の油圧が上限保持油圧HPに達すると、ソレノイドバルブ56に電力供給がなされて該ソレノイドバルブ56が閉弁作動するとともに、モータ52への電力供給が停止されて油圧の発生が停止される。すなわち、上流側は油圧が解放して低圧状態となる一方、下流側が高圧状態(上限保持油圧HP)に維持される。これにより、マスターシリンダ51が油圧を発生することなくクラッチ装置26が締結状態に維持され、自動二輪車1の走行を可能とした上で電力消費を抑えることができる。
 ここで、変速操作によっては、クラッチ装置26に油圧を充填した直後に変速を行うような場合も有り得る。この場合、ソレノイドバルブ56が閉弁作動して上流側を低圧状態とする前に、ソレノイドバルブ56が開弁状態のままでモータ52を逆転駆動し、マスターシリンダ51を減圧するとともにリザーバ51eを連通させ、クラッチ装置26側の油圧をマスターシリンダ51側へリリーフする。このとき、クラッチアクチュエータ50の駆動は、上流側油圧センサ57の検出油圧に基づきフィードバック制御される。
 ソレノイドバルブ56を閉弁し、クラッチ装置26を締結状態に維持した状態でも、図5の領域Dのように、下流側の油圧は徐々に低下(リーク)する。すなわち、ソレノイドバルブ56およびワンウェイバルブ53c1のシールの変形等による油圧漏れや温度低下といった要因により、下流側の油圧は徐々に低下する。
 一方、図5の領域Eのように、温度上昇等により下流側の油圧が上昇する場合もある。
 下流側の細かな油圧変動であれば、不図示のアキュムレータにより吸収可能であり、油圧変動の度にモータ52およびソレノイドバルブ56を作動させて電力消費を増やすことはない。
 図5の領域Eのように、下流側の油圧が上限保持油圧HPまで上昇した場合、ソレノイドバルブ56への電力供給を低下させる等により、ソレノイドバルブ56を段階的に開弁状態として、下流側の油圧を上流側へリリーフする。
 図5の領域Fのように、下流側の油圧が下限保持油圧LPまで低下した場合、ソレノイドバルブ56は閉弁したままでモータ52への電力供給を開始し、上流側の油圧を上昇させる。上流側の油圧が下流側の油圧を上回ると、この油圧がバイパス油路53cおよびワンウェイバルブ53c1を介して下流側に補給(リチャージ)される。下流側の油圧が上限保持油圧HPになると、モータ52への電力供給を停止して油圧の発生を停止する。これにより、下流側の油圧は上限保持油圧HPと下限保持油圧LPとの間に維持され、クラッチ装置26が締結状態に維持される。
 自動二輪車1の停止時に変速機21がニュートラルになると、モータ52およびソレノイドバルブ56への電力供給をともに停止する。これにより、マスターシリンダ51は油圧発生を停止し、スレーブシリンダ28への油圧供給を停止する。ソレノイドバルブ56は開弁状態となり、下流側油路53b内の油圧がリザーバ51eに戻される。以上により、スレーブシリンダ28側(下流側)はタッチポイント油圧TPより低い低圧状態となり、クラッチ装置26が非締結状態となる。この状態は、図5の領域G,Hに相当する。
 一方、自動二輪車1の停止時に変速機21がインギアのままだと、スレーブシリンダ28側に待機油圧WPが付与された待機状態となる。
 待機油圧WPは、クラッチ装置26の接続を開始するタッチポイント油圧TPよりも若干低い油圧であり、クラッチ装置26を接続しない油圧(図5の領域A,Hで付与する油圧)である。待機油圧WPの付与により、クラッチ装置26の無効詰め(各部のガタや作動反力のキャンセル並びに油圧経路への予圧の付与等)が可能となり、クラッチ装置26の接続時の作動応答性が高まる。
<チェンジ機構>
 図2、図6を参照し、チェンジ機構25は、シフトドラム36の一端部に配置されてシフトドラム36と一体回転するシフトドラムセンタ37と、シフトドラム36の他端部に配置されて同じくシフトドラム36と一体回転するシフトドラムプレート38と、を備えている。シフトドラムセンタ37の軸方向外側には、シフトアーム31aが対向配置されている。シフトドラムセンタ37には、シフトアーム31a側に突出する送りピン37aが周方向に複数並んで固設されている。シフトドラムプレート38の外周部には、複数の谷部38aおよび山部38cが周方向に交互に並んで形成されている。
 変速機ケース17には、シフトドラムプレート38の外周部に向けて延びるストッパアーム39が揺動可能に支持されている。ストッパアーム39は、アーム本体39aの先端部に、シフトドラムプレート38の何れかの谷部38aに係合可能なストッパローラ39bを支持している。ストッパアーム39は、ストッパローラ39bをシフトドラムプレート38の谷部38aに押し付けるべく付勢されている。谷部38aは、ストッパローラ39bの外周面を整合させる軸方向視円弧状の谷底38bを形成している。ストッパアーム39は、ストッパローラ39bをシフトドラムプレート38の谷底38bに押し付けることで、シフトドラムプレート38ひいてはシフトドラム36の回転を規制する。
 ストッパアーム39は、シフトドラム36に所定以上のシフト操作力が付与されたときは、自身の付勢力に抗して揺動してシフトドラム36の回転を許容する。このとき、ストッパローラ39bは、現在係合している谷部38aの周方向一側の斜面を転動して、隣接する山部38cに乗り上げる。ストッパローラ39bは、乗り上げた山部38cの頂部38dを越えると、この頂部38dの先の斜面を転動して、シフトドラムプレート38ひいてはシフトドラム36を周方向他側に付勢して回転させる。その後、ストッパローラ39bは、係合していた谷部38aの次の谷部38aに係合し、次段のシフト位置においてシフトドラムプレート38ひいてはシフトドラム36の回転を規制する。シフトドラムプレート38およびストッパローラ39bは、シフトドラム36の回転位置を規定する回転位置規定機構39Kを構成している。
 シフトアーム31aは、アーム本体31a1とシフタプレート31a2とを備えている。アーム本体31a1は、シフトスピンドル31と直交する板状をなし、基端側がシフトスピンドル31に固定されている。アーム本体31a1は、軸方向視でシフトドラム36と重なるように延出基準線L1に沿って延びている。アーム本体31a1は、軸方向視で先端側がシフトドラム36を通り過ぎるまで延びている。アーム本体31a1の先端側には、シフタプレート31a2がシフトドラム36側から取り付けられている。
 アーム本体31a1の基端側で、軸方向視で延出基準線L1に対して所定角度を有する位置には、変速機ケース17に固設された規制ボルト31a3が係合している。シフトスピンドル31のアーム本体31a1近傍には、トーションコイルスプリングである復帰バネ31a4が外嵌されている。復帰バネ31a4における径方向に延びる一対のコイル端部の間には、規制ボルト31a3が挟み込まれるとともに、アーム本体31a1の基端側に形成されたバネ受け部31a5が挟み込まれている。
 シフトスピンドル31の回転に伴いシフトアーム31aが回転すると、バネ受け部31a5と規制ボルト31a3との相対移動によって、復帰バネ31a4の一対のコイル端部が互いに離間するように広げられる。その後、シフトアーム31aを回転させる力が消失すると、復帰バネ31a4の弾性力によってシフトアーム31aが中立位置D1に戻される。
 シフタプレート31a2は、アーム本体31a1と平行な板状をなしている。シフタプレート31a2は、アーム本体31a1に対して、ガイドピンおよび長孔の組み合わせを一対設けてなるスライド機構31a6を介して取り付けられている。シフタプレート31a2は、アーム本体31a1に対して、延出基準線L1に沿って所定量だけスライド可能とされている。シフタプレート31a2は、アーム本体31a1に対して、不図示の付勢手段によりシフトスピンドル31側に付勢されている。
 シフトドラムプレート38は、変速機21の複数の変速段(例えば6段)に対応する谷部38aを有している。各谷部38aは、シフトドラム36が変速機21の何れかの変速段に対応する回転位置となったとき、谷底38bにストッパローラ39bを係合させる。
 ストッパローラ39bは、シフトドラムプレート38の谷底38bに付勢状態で係合することで、シフトドラム36の回転を規制するとともに、シフトドラム36の各変速段に対応する回転位置を規定する。1速および2速に対応する谷部38aの間の山部38cの頂部38dには、ニュートラルに対応する凹部(不図示)が形成されている。
 シフトアーム31aとシフトドラムセンタ37との間には、シフトアーム31aの揺動に応じてシフトドラムセンタ37を所定の回転角度だけ間欠送りするラチェット機構37Rが構成されている。
 ラチェット機構37Rは、シフトアーム31aの中立位置D1からの揺動に伴い、シフトドラムセンタ37を、シフトドラムプレート38およびストッパローラ39bで規定された回転位置から、シフトアップ側またはシフトダウン側に回転させる。ラチェット機構37Rは、シフトドラムセンタ37の回転後には、シフトアーム31aのみを揺動前の中立位置D1に戻すこと可能とする。これにより、シフトスピンドル31の正逆回転の繰り返しにより、シフトドラム36を所定角度だけ間欠送りして変速段の切り替え可能とする。
 シフタプレート31a2には、シフトドラムセンタ37の送りピン37aに係合する一対の送り爪31a7が形成されている。シフトアーム31aが中立位置D1にあるとき、シフタプレート31a2の一対の送り爪31a7は、シフトドラムセンタ37の複数の送りピン37aの何れかに係合する。この状態で、乗員によるシフト操作によってチェンジスピンドルが正逆いずれかの方向に回転すると、これに伴いシフトアーム31aが一体的に回転し、シフタプレート31a2の一対の送り爪31a7の一方およびこれに係合する送りピン37aを介して、シフトドラムプレート38ひいてはシフトドラム36が回転する。
 シフトアーム31aは、例えば規制ボルト31a3との係合によって規定された角度だけ回転する。この間、ストッパローラ39bは、現在係合している谷部38aの周方向一側に隣接する山部38cに乗り上げるとともに、この山部38cの頂部38dを越えて次の谷部38aに達する。シフトアーム31aの回転は、ストッパローラ39bが次の谷部38aの谷底38bに至る前に規制されるが、ストッパローラ39bが山部38cの頂部38dを越えていれば、ストッパローラ39bの付勢力によって、シフトドラムプレート38ひいてはシフトドラム36が周方向他側に付勢されて回転する。これにより、シフトドラム36は、シフトドラムプレート38およびストッパローラ39bで規定された次段の変速段に対応する回転位置で停止する。
 シフト操作後には、復帰バネ31a4の弾性力によってシフトアーム31aが中立位置D1に戻される。シフタプレート31a2の一対の送り爪31a7の先端部には、シフトアーム31aが中立位置D1に戻る際に送りピン37aに摺接するカム面31a8が形成されている。カム面31a8は、シフトアーム31aが中立位置D1に戻る際に送りピン37aに摺接し、シフタプレート31a2をアーム本体31a1の先端側へストロークさせる。これにより、シフトアーム31aが中立位置D1に戻る際に送り爪31a7が送りピン37aを乗り越える。このとき、シフトドラム36の回転位置は、ストッパローラ39bおよびシフトドラムプレート38の係合により安定的に保持される。シフタプレート31a2は、シフトアーム31aが中立位置D1に戻ると、付勢力によりアーム本体31a1の基端側へストロークし、一対の送り爪31a7をシフトドラムセンタ37の送りピン37aに係合させた状態に戻る。これらシフタプレート31a2およびシフトドラムセンタ37を主に、ラチェット機構37Rが構成されている。
 シフトスピンドル31およびシフトアーム31aが所定角度だけ正逆回転の一往復動を行うと、ラチェット機構37Rを介してシフトドラムセンタ37およびシフトドラム36が一方向に所定角度(6速の場合は60度)だけ回転する。この回転角度は、変速機21の変速段を一段シフトアップ又はシフトダウンさせる角度に相当する。このシフトドラム36の回転により、変速機21が現在の変速段をシフトアップ側またはシフトダウン側の次段の変速段に変化させる。シフトスピンドル31およびシフトアーム31aが所定角度の正逆回転の往復動を繰り返すことで、変速機21を段階的にシフトアップ又はシフトダウンさせる。
 シフトドラム36は、シフトポジション検出用のカム面を有している。カム面は、ニュートラルを含む全ての変速段に対応した突出部を有している。このカム面の突出部をギアポジションセンサ41(図4参照)で検出してECU60に送ることで、変速機21の現在の変速段が検知される。なお、シフトドラムセンタ37とシフトドラムプレート38とをシフトドラム36の同側に配置したり、シフトドラムセンタ37とシフトドラムプレート38とを互いに一体化してもよい。
<学習モード>
 ECU60は、通常制御モードの他に、変速機21の組み付け時や交換時等において、変速機21のギア位置を正確に検出するためのギア位置学習モードを有している。
 ECU60は、通常はギアポジションセンサ41でシフトドラム36の回転位置を検出することで、変速機21のギア位置を検出する。しかし、ギアポジションセンサ41でシフトドラム36のカム面を検出するような構成では、シフトドラム36の回転位置を正確に検出することはできない。
 また、変速機21の組み付け時や交換、メンテナンス時等、さらにはドラム角度センサ40の組み付け時や交換、メンテナンス時等の直後では、ギアポジションセンサ41の出力値が変速機21のどのギア位置に対応するものであるのか正確には判明せず、変速機21のギア位置を正確に検出することができない。
 近年では、変速機21のギア位置に応じた様々な電気制御が提案されているため、変速機21のギア位置、ひいてはシフトドラム36の回転位置を正確かつ精度よく検出することが要望されている。
 本実施形態の変速システム(自動クラッチシステム)では、変速時にエンジン出力低減制御を行い、次段への正規インギアを確認した後に、エンジン出力を復帰させる制御を行う。次段への正規インギアは、シフトドラム36の回転位置が次段ギアに対応する正規インギア位置(次段正規インギア位置)にあることで判定する。シフトドラム36の次段正規インギア位置が不明確な場合には、必要以上にエンジン出力低下時間が延び、駆動抜け時間のバラつきが大きくなる。
 シフトドラム36の次段正規インギア位置は、回転位置規定機構39Kで定められるシフトドラム36の回転位置に相当する。しかし、部品公差や組み付け公差等の影響から、シフトドラム36の回転位置と回転位置規定機構39Kが規定する回転位置との間にずれが生じることがある。この場合、次段正規インギア位置が不明確となり、必要以上にエンジン出力低下時間が延び、駆動抜け時間のバラつきが大きくなる。
 本実施形態では、ギア位置学習モードにおいて、シフトドラム36が回転位置規定機構39Kで定められた回転位置となるように、クラッチ装置26の断接を制御する。すなわち、シフトドラム36の回転角度とクラッチ装置26の油圧制御とは互いに連動している。これにより、次段正規インギア位置を明確にし、全変速段において上記駆動抜け時間のバラつきを抑制し、変速フィーリングの安定化を図ることとした。後に学習制御の詳細を説明する。
 ECU60は、CPU(Central Processing Unit)の他、ROM(Read Only Memory)およびRAM(Random Access Memory)等のメモリを備えている。ROMに記憶されるデータとしては、燃料噴射装置47および点火装置46の制御プログラムの他、ギアポジションセンサ41の検出値とシフトドラム36の回転角度との相関を示す設計上のマップ等が挙げられる。RAMに記憶されるデータとしては、学習モードで得られた各変速段に対するシフトドラム36の回転角度(正規インギア位置)等が挙げられる。
 本実施形態において、ECU60は、通常のクラッチ制御を行う通常モード制御部62の他、シフトドラム36の回転角度を学習する制御を行う学習モード制御部63を有している。学習モード制御部63は、シフトドラム36の回転角度を学習する学習モードとなったとき、シフトドラム36が回転位置規定機構39Kで定められた回転位置となるように、クラッチ装置26の断接を制御する。
 ECU60は、学習モード時のクラッチ制御において、例えば変速機21に生じるドグあたりを回避した後にクラッチ装置26を切断状態とする。
 図5、図6を参照し、ECU60は、学習モード時において、シフトドラムプレート38の複数の頂部38dの何れかにストッパローラ39bが至るまでは、クラッチ油圧を待機油圧WP+α(図5に示すシフト用油圧値PS2以上(又はシフト用油圧値PS2を越える値))とする。これにより、変速機21にエンジン13のトルクが僅かに伝達され、変速機21に生じるドグあたりを解消することができる。
 ECU60は、シフトドラムプレート38の頂部38dをストッパローラ39bが越えると、クラッチ装置26の油圧を低減してクラッチ装置26をほぼ切断する。具体的に、ECU60は、学習モード時において、シフトドラムプレート38の複数の頂部38dの何れかをストッパローラ39bが乗り越えた後は、クラッチ油圧を待機油圧WP-α(図5に示す学習用油圧値PS1以下(又は未満))とする。これにより、クラッチ装置26が切断状態となり、ストッパローラ39bの付勢力のみでシフトドラムプレート38ひいてはシフトドラム36を回転させ、ストッパローラ39bをシフトドラムプレート38における次段の谷底38bまで誘導させることが可能となる。
 このように、シフトドラム36が回転位置規定機構39Kの付勢力のみで回転位置を規定した状態で、インギア時のシフトドラム36の回転角度を精度良く学習することができる。
 ECU60は、ストッパローラ39bが谷底38bに至った状態におけるシフトドラム36の角度を記憶した後、クラッチ油圧を待機油圧WP-α程度として待機し、次段のインギア位置の学習に備える。
 なお、学習モードにおいては、シフト荷重が完全に抜けている状態でなければ、シフトドラム36の正規インギア位置の判定ができない。一方、シフト荷重センサ42は、一定以上の荷重がかからないと出力が変化しない。このため、シフト荷重センサ42の出力のみでは、シフトドラム36の正規インギア位置を判定することはできない。
 本実施形態では、正規インギア位置を正確に判定するために、シフトペダル32に連動するシフトアーム31aの中立位置D1を検出するシフト操作検知スイッチ(シフトニュートラルスイッチ)48を利用している。これにより、ペダル荷重が完全に抜けている状態を検出し、正規インギア位置の正確な学習が可能となる。
 図6、図11を参照し、ECU60は、学習モード時において、シフトドラムプレート38の何れかの山部38cの頂部38dから隣接する谷部38aの谷底38bに向かってストッパローラ39bが移動するときに、クラッチ装置26への供給油圧を予め定めた学習用油圧値PS1未満又は以下に設定する。これにより、クラッチ油圧を切断状態相当にすることが可能となり、ストッパローラ39bの付勢力のみでシフトドラムプレート38を回転させ、シフトドラム36の回転位置を回転位置規定機構39Kによって機械的に定めることができる。
 そして、ECU60は、学習モード時において、クラッチ装置26への供給油圧を学習用油圧値PS1未満又は以下に設定したときに、シフトドラム36の回転角度の学習を許可する。これにより、シフトドラム36の回転位置が回転位置規定機構39Kによって機械的に定められた状態で、インギア位置の学習を精度よく行うことができる。ECU60は、「シフトドラムプレート38の頂部38dをストッパローラ39bが越えるとき」や、「シフトドラムプレート38の谷底38bから頂部38dに向かってストッパローラ39bが移動するとき」などを、シフトドラム36の回転角度から検知する。
 また、ECU60は、学習モード時において、シフトドラムプレート38の何れかの谷部38aの谷底38bから隣接する山部38cの頂部38dに向かってストッパローラ39bが移動するときに、クラッチ装置26への供給油圧を予め定めたシフト用油圧値PS2以上又は越える値に設定する。そして、ECU60は、シフトドラムプレート38の頂部38dをストッパローラ39bが乗り越えるまで、クラッチ油圧をシフト用油圧値PS2以上又は越える値に設定した状態を維持する。これにより、クラッチ油圧を弱接続状態として変速機21にエンジン13のトルクを僅かに伝達し、変速機21に生じるドグあたりを回避する制御を行うことができる。
 ECU60は、学習モード時において、シフトアーム31aが中立位置D1にあることを検出したときに、シフトドラム36の回転角度の学習を許可する。すなわち、シフトペダル32への外力でシフトアーム31aが中立位置D1から動いた際には、シフトアーム31aがシフトドラム36の位置ずれを発生させる虞があるが、シフトアーム31aが中立位置D1にあるときにシフトドラム36の回転角度の学習を許可することで、シフトアーム31aがシフトドラム36の位置ずれを発生させていないことを担保することができる。
 ECU60は、学習モード時において、シフトドラム36の回転角度が、予め定めた範囲内にあるときに、シフトドラム36の回転角度の学習を許可する。前記「予め定めた範囲内にあるとき」とは、シフトドラム36のニュートラル位置等の基準位置に対するシフトドラム36の回転角度が、設計上の回転角度に対して予め定めた範囲内にあるとき、の意である。シフトドラム36の回転角度が所定範囲を超えてずれている場合には、変速機21のドグあたり等が発生している可能性があることから、この場合のシフトドラム36の回転角度の学習をキャンセルすることができる。なお、シフトドラム36の回転角度が、ギアポジションセンサ41が検出するギアポジションにおける設計上の回転角度に対して予め定めた範囲内にあるとき、としてもよい。
 また、ECU60は、学習モード時において、ギアポジションセンサ41が検出するギアポジションと予め定めた目標とするギアポジションとが一致したときに、シフトドラム36の回転角度の学習を許可する。これにより、ギアポジションセンサ41が検出する現在ギアポジションとECU60に予め定めた目標ギアポジションとが一致しない場合は、シフトドラム36の回転角度の学習を許可せず、誤学習を防止することができる。
 図4を参照し、本実施形態では、ECU60のモード切り替えを行う切替スイッチ59を備えている。シフトドラム36の回転角度の学習は、工場および販売店等での作業を前提としているので、切替スイッチ59は、通常の運転時に乗員が誤操作しないように、例えば車体カバーの内側やシート下等に配置されている。これにより、通常制御時の誤操作を防ぐことができる。
<変速制御>
 次に、自動二輪車1の変速制御について説明する。
 本実施形態の自動二輪車1は、変速機21のギアポジションが1速のインギア状態にあり、かつ車速が停車に相当する設定値未満にあるインギア停車状態において、シフトペダル32に対する1速からニュートラルへのシフト操作を行う際に、スレーブシリンダ28に供給する待機油圧WPを低下させる制御を行う。
 ここで、自動二輪車1が停車状態であり、変速機21のギアポジションがニュートラル以外の何れかの変速段位置にある場合、すなわち、変速機21がインギア停車状態にある場合には、スレーブシリンダ28に予め設定した待機油圧WPが供給される。
 待機油圧WPは、通常時(シフトペダル32の変速操作が検知されていない非検知状態の場合)は、標準待機油圧である第一設定値P1(図5参照)に設定される。これにより、クラッチ装置26が前記無効詰めがなされた待機状態となり、クラッチ締結時の応答性が高まる。つまり、運転者がスロットル開度を大きくしてエンジン13の回転数を上昇させると、スレーブシリンダ28への油圧供給により直ちにクラッチ装置26の締結が開始されて、自動二輪車1の速やかな発進加速が可能となる。
 自動二輪車1は、シフトペダル32に対する運転者のシフト操作を検知するために、シフト荷重センサ42とは別にシフト操作検知スイッチ48を備えている。
 そして、インギア停車状態において、シフト操作検知スイッチ48が1速からニュートラルへのシフト操作を検知した際には、油圧制御部61が待機油圧WPを、変速操作を行う前の第一設定値P1よりも低い第二設定値P2(低圧待機油圧、図5参照)に設定する制御を行う。
 変速機21がインギア状態にある場合、通常時は第一設定値P1相当の標準待機油圧がスレーブシリンダ28に供給されるため、クラッチ装置26には僅かながらいわゆる引きずりが生じる。このとき、変速機21のドグクラッチにおける互いに噛み合うドグおよびスロット(ドグ孔)が回転方向で押圧し合い、係合解除の抵抗を生じさせてシフト操作を重くすることがある。このような場合に、スレーブシリンダ28に供給する待機油圧WPを第二設定値P2相当の低圧待機油圧に低下させると、ドグおよびスロットの係合が解除しやすくなり、シフト操作を軽くすることとなる。
<シフト操作検知スイッチ>
 図6、図7に示すように、シフト操作検知スイッチ48は、シフトスピンドル31の回転中心(軸心)C1から径方向外側に延びるシフトアーム31aの外周端部に、径方向で対向するように設けられている。図6中矢印SUPはシフトスピンドル31の回転方向におけるシフトアップ側、矢印SDNはシフトスピンドル31の回転方向におけるシフトダウン側をそれぞれ示す。
 図6を参照し、シフトアーム31aは、軸心C1を通る延出基準線L1に沿って延びている。シフト操作検知スイッチ48は、変速機ケース17側に支持されており、このシフト操作検知スイッチ48に対してシフトアーム31aが相対回転する。
 シフト操作検知スイッチ48は円柱状をなし、中心線L2をシフトスピンドル31の径方向に沿わせて配置されている。シフト操作検知スイッチ48は、中心線L2に沿ってストロークする検出子48sを有している。検出子48sは、シフトアーム31aの外周端部に設けられた被検知部材49に向けて突出している。
 シフトアーム31aは、シフト操作検知スイッチ48の中心線L2に延出基準線L1の延長線を一致させる位置を中立位置D1とする。シフトアーム31aは、不図示のリターンスプリングにより中立位置D1に向けて付勢されている。シフトアーム31aの外周端部には、シフト操作検知スイッチ48に対向して、被検知部材49が設けられている。被検知部材49は、径方向外側に凸のV字形状をなし、延出基準線L1に関して対称形状に設けられている。被検知部材49は、径方向外側に向けた突出頂部49tと、シフトスピンドル31の回転方向で突出頂部49tの両側に形成された一対の傾斜面部49sと、を有している。一対の傾斜面部49sは、互いに略直角に配置されている。突出頂部49tには、シフト操作検知スイッチ48の検出子48sの先端球面と同等半径の丸面取りがなされている。
 図6に示すように、シフトアーム31aは、シフトペダル32からの操作荷重が作用していない状態では、中立位置D1に配置される。このとき、シフト操作検知スイッチ48の検出子48sに対し、被検知部材49の突出頂部49tが径方向で正対する。これにより、シフト操作検知スイッチ48の検出子48sが没入状態となり、シフト操作検知スイッチ48がON又はOFF状態(図ではON状態)となる。
 一方、図8に示すように、シフトペダル32に操作荷重が作用してシフトスピンドル31が回転すると、シフトアーム31aも一体に回転する。図8では、シフトスピンドル31およびシフトアーム31aがシフトアップ側に回転している。シフトアーム31aが回転すると、被検知部材49の突出頂部49tがシフト操作検知スイッチ48の検出子48sに対して周方向に変位する。すると、検出子48sが一対の傾斜面部49sの一方に摺接しながら突出状態に変化し、シフト操作検知スイッチ48のON、OFF状態を切り替える。これにより、ECU60がシフトスピンドル31の中立位置D1からの回転、すなわちシフトペダル32への変速操作を検知する。このときのシフトアーム31aの回転位置(シフト操作検知位置)D2は、中立位置D1から2~3度の小角度θ1だけ回転した位置である。
 なお、図6、図8では検出子48sの没入でON、突出でOFFのようにON・OFFを検知することが記載されているが、検出子48sが傾斜面部49sに接触することでON、接触しないことでOFFのようにON・OFFを検知することも可能である。
 このように、シフトスピンドル31よりも外周側に延びるシフトアーム31aの外周端部に、突出頂部49tを有した被検知部材49を設けることで、シフト操作検知スイッチ48においては、シフトペダル32の変速操作によるシフトスピンドル31の僅かな回転を高感度に検知する。また、シフト操作荷重から変速操作を検知する場合に比して、シフトスピンドル31に固定されたシフトアーム31aの回転位置から変速操作を検知することでも、高感度な検知が可能となる。また、シフトスピンドル31とは別体をなす作動部材(シフトドラム36等)の変位を検知する場合に比して、変速操作をよりダイレクトに検知可能である。
<学習制御>
 次に、谷底位置の学習制御時にECU60で行う処理の一例について、図9のフローチャートを参照して説明する。図9に示す制御フローは、車速が予め定めた設定値を下回った停車状態である場合に、規定の制御周期(1~10msec)で繰り返し実行される。
 まず、ECU60は、ニュートラルポジションの学習を許可するか否かを判定する(ステップS1)。例えば、ECU60は、エンジン始動時かつ停車時(アイドリング時)において、切替スイッチ59により学習モードに切り替わることで、ニュートラルポジションの学習を許可する(ステップS1でYES)。エンジン停止時や非停車時、あるいは切替スイッチ59が通常モードのままの場合、学習制御に移行せず(ステップS1でNO)、一旦処理を終了する。
 ステップS1でニュートラルポジションの学習を許可すると、ECU60は、シフトドラム36の回転位置からニュートラル位置を学習、記憶する(ステップS2)。
 次に、ECU60は、学習したニュートラル位置を基準に、各変速段の谷底位置の学習許可範囲を算出、決定する(ステップS3)。この学習許可範囲は、前述したように、ニュートラル位置に対するシフトドラム36の回転角度が、各変速段の設計上の回転角度に対して予め定めた範囲内にあるか否かを判定する際の、前記「予め定めた範囲」として用いられる。
 次に、ECU60は、1速へのシフト操作がなされたか否かを判定する(ステップS4)。なお、本実施形態の変速機21はリターン式の6速変速機である。図6、図7を参照し、変速機21は、シフトドラム36がニュートラル位置にあるときを基準に、シフトスピンドル31の矢印SDNで指し示すシフトダウン側への一往復動で1速にシフトチェンジし、矢印SUPで指し示すシフトアップ側への繰り返しの往復動で往復毎に順次2速~6速にシフトチェンジする。ステップS4でYES(シフト操作がなされた)の場合、ステップS5に進み、ステップS4でN0(シフト操作がなされていない)の場合、一旦処理を終了する。
 ステップS5では、ECU60は、ドグあたりがあるか否かを判定する。この判定では、図11に示す領域Jのように、シフト操作時のシフトドラム角度の変化が、シフトチェンジ分の所定角度に達する前に停止した場合に、ドグあたりが生じているものと判定する。
 ドグあたりが発生している場合(ステップS5でYES)、ステップS6に進み、ドグあたり解消用に目標油圧を昇圧させる。例えば、ECU60は、図11に示す領域Kのように、クラッチ油圧を待機油圧WP+αに上昇させ、クラッチ容量を増やしてドグあたりを解消する。ドグあたりが発生していない場合(ステップS5でNO)、およびステップS6でドグあたりを解消した場合、ステップS7に進む。
 ステップS7では、シフトチェンジ後の次段の変速段にインギアしたか否かを判定する。この判定では、図11に示す領域Lのように、シフト操作時のシフトドラム角度の変化が、シフトチェンジ分の所定角度に対し、前記「予め定めた範囲」内に達した場合に、次段の変速段にインギアしたと判定する。ステップS7でYES(次段にインギアした)の場合、ステップS8に進み、ステップS7でN0(次段にインギアしていない)の場合、一旦処理を終了する。
 ステップS8では、クラッチ装置26への供給油圧を前記第一油圧値(学習用油圧値PS1)未満又は以下に設定する。これにより、クラッチ装置26を切断状態とし、シフトドラム36の回転位置が、回転位置規定機構39Kのストッパローラ39bの付勢力のみによって定められた状態とする。ここで、シフトドラム36に対する回転方向の荷重が回転位置規定機構39Kの付勢力のみで、ストッパローラ39bがシフトドラムプレート38の谷底38bに押し付けられて係合しているときのシフトドラム36の回転位置を、正規インギア位置または谷底位置という。
 次に、ECU60は、シフトドラム36の谷底位置の学習を許可するか否かを判定する(ステップS9)。この判定については後に図10を参照して説明する。
 ステップS9でYES(谷底位置の学習を許可する)の場合、ECU60は、1速の谷底位置としてシフトドラム36の回転角度を学習、記憶して一旦処理を終了する(ステップS10)。ステップS9でNO(谷底位置の学習を許可しない)の場合も一旦処理を終了する。
 図10を参照し、ステップS9で谷底位置の学習を許可するか否かを判定するか否かを判定する際の処理について説明する。
 まず、ECU60は、目標ギアポジションと現在ギアポジションとが一致しているか否かを判定する(ステップS11)。一致している場合(ステップS11でYES)はステップS12に進み、一致していない場合(ステップS11でNO)はステップS9の判定をNOとする。
 ここで、目標ギアポジションとは、各変速段の谷底位置の学習順序として予め設定されている。本実施形態では、ニュートラルポジションの学習後、1速から6速の順に設定されている。すなわち、ニュートラルポジションの学習後は目標ギアポジションが1速に更新され、1速ギアポジションの学習後は目標ギアポジションが2速に更新される。現在ギアポジションとは、ギアポジションセンサ41が検出する現在のギアポジションである。
 目標ギアポジションと現在ギアポジションとの一致を判定条件とすることで、現在ギアポジションの誤学習を防止する。
 次に、ECU60は、シフトドラム36の回転角度がバラつき含めた学習許可範囲内にあるか否かを判定する(ステップS12)。範囲内にある場合(ステップS12でYES)はステップS13に進み、範囲内にない場合(ステップS12でNO)はステップS9の判定をNOとする。シフトドラム36の実際の回転角度に基づく判定により、変速機21のドグあたり等が発生していないことを確実に検知する。
 次に、ECU60は、スレーブ油圧が設定値(学習用油圧値PS1)以下であるか否かを判定する(ステップS13)。設定値以下の場合(ステップS13でYES)はステップS14に進み、設定値を越える場合(ステップS13でNO)はステップS9の判定をNOとする。図11のグラフでは、スレーブ油圧およびマスター油圧の両方が設定値以下となったときに谷底学習許可フラグが立っており、クラッチ制御油圧が十分低下していることを条件に谷底学習を許可している。
 次に、ECU60は、シフトニュートラルスイッチが中立状態にあるか否か(シフトアーム31aが中立位置D1にあるか否か)を判定する(ステップS14)。中立状態にある場合(ステップS14でYES)はステップS9の判定をYESとし、中立状態にない場合(ステップS14でNO)はステップS9の判定をNOとする。例えば、シフトペダル32に軽く足を乗せた状態など、低いシフト荷重が加わったときには、シフトドラム36の回転位置は、谷底位置から動く可能性がある。前述のような低いシフト荷重は、シフト荷重センサ42では検出できないことがあるが、シフトペダル32に連動するシフトアーム31aの動きを検知するシフトニュートラルスイッチを用いることで、谷底位置の誤学習を防止する。
 1速ギアポジションの谷底位置の学習後、ECU60は、目標ギアポジションを2速とし、ステップS4~S10を繰り返す。ECU60は、6速ギアポジションまで谷底位置の学習を行った後、例えばクラッチ油圧を待機油圧WP-α程度まで戻し、学習制御を終了する。このとき、学習制御の終了をランプやブザー等の手段で外部に報知する構成でもよい。
 以上説明したように、上記実施形態の自動クラッチ変速機のギア位置学習装置は、自動二輪車1の運転者の操作によって変速がなされる変速機21と、変速機21とエンジン13との間の伝動経路に配置され、クラッチアクチュエータ50の作動によって断接がなされるクラッチ装置26と、クラッチアクチュエータ50によるクラッチ装置26の断接を制御するECU60と、シフトペダル32に対する運転者のシフト操作に応じて回転して変速機21の変速段を切り替えるシフトドラム36と、シフトドラム36の回転位置を規定する回転位置規定機構39Kと、を備え、ECU60は、シフトドラム36の回転角度を学習する学習モードを有し、この学習モード時に、シフトドラム36が回転位置規定機構39Kで定められた回転位置となるように、クラッチ装置26の断接を制御する。
 この構成によれば、変速段を切り替えるシフトドラム36の回転角度を学習する学習モードにおいて、回転位置規定機構39Kが機械的に定めたシフトドラム36の回転角度を記憶することが可能となる。すなわち、学習モードにおいて、クラッチ装置26の断接を制御し、例えば変速機21に生じるドグあたりを回避した後にクラッチ装置26を切断することで、シフトドラム36の回転位置を回転位置規定機構39Kにより機械的に定めることが可能となる。このため、精度の高いインギア位置の学習を行うことができる。
 なお、本発明は上記実施形態に限られるものではなく、例えば、シフト操作子は足で操作するシフトペダルに限らず、手で操作するレバー等であってもよい。また電気的に駆動してシフト操作を行うアクチュエータが介在してもよい。
 上記実施形態のようにクラッチ操作を自動化した鞍乗り型車両への適用に限らず、マニュアルクラッチ操作を基本としながら、所定の条件下でマニュアルクラッチ操作を行わずに駆動力を調整して変速を可能とする、いわゆるクラッチ操作レスの変速装置を備える鞍乗り型車両にも適用可能である。
 例えば操向ハンドル4a近傍のメータ装置等に、学習モードであることを周囲に告知するインジケータ(情報出力部)を備えてもよい。インジケータは、例えばランプであり、学習モードであるときに点灯又は点滅する。インジケータは、学習モードであることを示す情報を、車両周囲の作業者等に向けて出力する。
 また、前記鞍乗り型車両には、運転者が車体を跨いで乗車する車両全般が含まれ、自動二輪車(原動機付自転車及びスクータ型車両を含む)のみならず、三輪(前一輪かつ後二輪の他に、前二輪かつ後一輪の車両も含む)又は四輪の車両も含まれ、かつ電気モータを原動機に含む車両も含まれる。
 そして、上記実施形態における構成は本発明の一例であり、当該発明の要旨を逸脱しない範囲で種々の変更が可能である。
 1 自動二輪車(鞍乗り型車両)
 13 エンジン(原動機)
 17 変速機ケース
 21 変速機
 26 クラッチ装置
 31a シフトアーム(マスターアーム)
 32 シフトペダル(シフト操作子)
 36 シフトドラム
 38 シフトドラムプレート
 38b 谷底
 38d 頂部
 39b ストッパローラ(ストッパ)
 39K 回転位置規定機構
 41 ギアポジションセンサ
 50 クラッチアクチュエータ
 59 切替スイッチ
 60 ECU(制御部)
 PS1 学習用油圧値(第一油圧値)
 PS2 シフト用油圧値(第二油圧値)
 D1 中立位置

Claims (10)

  1.  車両の運転者の操作によって変速がなされる変速機と、
     前記変速機とエンジンとの間の伝動経路に配置され、クラッチアクチュエータの作動によって断接がなされるクラッチ装置と、
     前記クラッチアクチュエータによる前記クラッチ装置の断接を制御する制御部と、
     シフト操作子に対する運転者のシフト操作に応じて回転して前記変速機の変速段を切り替えるシフトドラムと、
     前記シフトドラムの回転位置を規定する回転位置規定機構と、を備え、
     前記制御部は、前記シフトドラムの回転角度を学習する学習モードを有し、この学習モード時に、前記シフトドラムが前記回転位置規定機構で定められた回転位置となるように、前記クラッチ装置の断接を制御する、
    自動クラッチ変速機のギア位置学習装置。
  2.  前記クラッチ装置は、油圧が供給されて接続状態となる油圧クラッチであり、
     前記回転位置規定機構は、
     前記シフトドラムに同軸かつ一体回転可能に設けられ、外周部に前記シフトドラムの回転位置を規定する複数の谷底を有するシフトドラムプレートと、
     前記シフトドラムを支持する変速機ケースに支持され、前記シフトドラムプレートの前記谷底に付勢状態で係合して、前記シフトドラムの回転位置を規定するストッパと、を備え、
     前記制御部は、前記学習モード時に、前記シフトドラムプレートの前記谷底に前記ストッパが位置するように、隣接する前記谷底の間の頂部を前記ストッパが越えたときに前記クラッチ装置の油圧を低減し、前記シフトドラムを前記回転位置規定機構で定められた前記回転位置とした状態で、前記シフトドラムの回転角度を学習する、
    請求項1に記載の自動クラッチ変速機のギア位置学習装置。
  3.  前記制御部は、前記学習モード時に、前記シフトドラムプレートの前記頂部から前記谷底に向かって前記ストッパが移動するときに、前記クラッチ装置の油圧を予め定めた第一油圧値未満又は以下に設定する、
    請求項2に記載の自動クラッチ変速機のギア位置学習装置。
  4.  前記制御部は、前記学習モード時に、前記クラッチ装置の油圧を前記第一油圧値未満又は以下に設定したときに、前記シフトドラムの回転角度の学習を許可する、
    請求項3に記載の自動クラッチ変速機のギア位置学習装置。
  5.  前記制御部は、前記学習モード時に、前記シフトドラムプレートの前記谷底から前記頂部に向かって前記ストッパが移動するときに、前記クラッチ装置の油圧を予め定めた第二油圧値以上又は越える値に設定する、
    請求項2から4の何れか一項に記載の自動クラッチ変速機のギア位置学習装置。
  6.  前記制御部は、前記学習モード時に、前記シフトドラムプレートの前記頂部を前記ストッパが乗り越えるまで、前記クラッチ装置の油圧を前記第二油圧値以上又は越える値に設定した状態を維持する、
    請求項5に記載の自動クラッチ変速機のギア位置学習装置。
  7.  前記シフト操作子に連結され、前記シフト操作子へのシフト操作により中立位置から動作して前記シフトドラムを回転させるマスターアームを備え、
     前記制御部は、前記学習モード時に、前記マスターアームが前記中立位置にあることを検出したときに、前記シフトドラムの回転角度の学習を許可する、
    請求項1から6の何れか一項に記載の自動クラッチ変速機のギア位置学習装置。
  8.  前記制御部は、前記学習モード時に、前記シフトドラムの回転角度が予め定めた範囲内にあるときに、前記シフトドラムの回転角度の学習を許可する、
    請求項1から7の何れか一項に記載の自動クラッチ変速機のギア位置学習装置。
  9.  前記シフトドラムの回転位置からギアポジションを検出するギアポジションセンサを備え、
     前記制御部は、前記学習モード時に、前記ギアポジションセンサが検出するギアポジションと予め定めた目標とするギアポジションとが一致したときに、前記シフトドラムの回転角度の学習を許可する、
    請求項1から8の何れか一項に記載の自動クラッチ変速機のギア位置学習装置。
  10.  前記制御部を通常モードから前記学習モードに切り替える切替スイッチを備えている、
    請求項1から9の何れか一項に記載の自動クラッチ変速機のギア位置学習装置。
PCT/JP2018/022738 2017-09-15 2018-06-14 自動クラッチ変速機のギア位置学習装置 WO2019053978A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18856974.3A EP3683475B1 (en) 2017-09-15 2018-06-14 Gear-position learning device for automatic clutch transmission
US16/646,162 US11073185B2 (en) 2017-09-15 2018-06-14 Gear-position learning device for automatic clutch transmission
JP2019541657A JP6722827B2 (ja) 2017-09-15 2018-06-14 自動クラッチ変速機のギア位置学習装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-177699 2017-09-15
JP2017177699 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019053978A1 true WO2019053978A1 (ja) 2019-03-21

Family

ID=65723329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022738 WO2019053978A1 (ja) 2017-09-15 2018-06-14 自動クラッチ変速機のギア位置学習装置

Country Status (4)

Country Link
US (1) US11073185B2 (ja)
EP (1) EP3683475B1 (ja)
JP (1) JP6722827B2 (ja)
WO (1) WO2019053978A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021162066A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 鞍乗り型車両における変速検知装置
CN115405688A (zh) * 2022-07-18 2022-11-29 东风汽车集团股份有限公司 换挡鼓位置自学习及电机选型方法、装置、介质、设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776575B (zh) * 2021-07-02 2022-09-01 光陽工業股份有限公司 電動機車

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124203A (ja) * 1999-10-22 2001-05-11 Honda Motor Co Ltd 車両用変速機のチェンジ装置
JP2004203313A (ja) * 2002-12-26 2004-07-22 Honda Motor Co Ltd 変速機のギアポジション検知装置
JP2006097702A (ja) * 2004-09-28 2006-04-13 Honda Motor Co Ltd 車両用変速機のシフトポジション検知装置
WO2009090612A1 (en) * 2008-01-16 2009-07-23 Sila Holding Industriale S.P.A. Gear shift control device for a vehicle gearbox with a rotating and axially floating drum
JP2009275760A (ja) * 2008-05-13 2009-11-26 Honda Motor Co Ltd 変速機の変速制御装置
JP2012177392A (ja) 2011-02-25 2012-09-13 Keihin Corp ギア位置検出装置
JP2014059003A (ja) * 2012-09-14 2014-04-03 Yamaha Motor Co Ltd 変速装置及び車両
WO2014196318A1 (ja) * 2013-06-05 2014-12-11 株式会社エフ・シー・シー 車両用動力伝達システム
JP2016070357A (ja) * 2014-09-30 2016-05-09 本田技研工業株式会社 変速機のシフトドラム角検出装置
JP2017177699A (ja) 2016-03-31 2017-10-05 株式会社プライムポリマー 多層フィルム及びその製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826442B1 (en) * 2006-02-24 2010-09-01 Yamaha Hatsudoki Kabushiki Kaisha Automatic transmission control method and automatic transmission controller
JP6196254B2 (ja) * 2015-03-30 2017-09-13 本田技研工業株式会社 車両の変速装置
US10480596B2 (en) * 2015-03-30 2019-11-19 Honda Motor Co., Ltd. Vehicle transmission device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001124203A (ja) * 1999-10-22 2001-05-11 Honda Motor Co Ltd 車両用変速機のチェンジ装置
JP2004203313A (ja) * 2002-12-26 2004-07-22 Honda Motor Co Ltd 変速機のギアポジション検知装置
JP2006097702A (ja) * 2004-09-28 2006-04-13 Honda Motor Co Ltd 車両用変速機のシフトポジション検知装置
WO2009090612A1 (en) * 2008-01-16 2009-07-23 Sila Holding Industriale S.P.A. Gear shift control device for a vehicle gearbox with a rotating and axially floating drum
JP2009275760A (ja) * 2008-05-13 2009-11-26 Honda Motor Co Ltd 変速機の変速制御装置
JP2012177392A (ja) 2011-02-25 2012-09-13 Keihin Corp ギア位置検出装置
JP2014059003A (ja) * 2012-09-14 2014-04-03 Yamaha Motor Co Ltd 変速装置及び車両
WO2014196318A1 (ja) * 2013-06-05 2014-12-11 株式会社エフ・シー・シー 車両用動力伝達システム
JP2016070357A (ja) * 2014-09-30 2016-05-09 本田技研工業株式会社 変速機のシフトドラム角検出装置
JP2017177699A (ja) 2016-03-31 2017-10-05 株式会社プライムポリマー 多層フィルム及びその製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3683475A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021162066A (ja) * 2020-03-31 2021-10-11 本田技研工業株式会社 鞍乗り型車両における変速検知装置
JP7105270B2 (ja) 2020-03-31 2022-07-22 本田技研工業株式会社 鞍乗り型車両における変速検知装置
CN115405688A (zh) * 2022-07-18 2022-11-29 东风汽车集团股份有限公司 换挡鼓位置自学习及电机选型方法、装置、介质、设备
CN115405688B (zh) * 2022-07-18 2023-12-19 东风汽车集团股份有限公司 换挡鼓位置自学习及电机选型方法、装置、介质、设备

Also Published As

Publication number Publication date
US11073185B2 (en) 2021-07-27
JP6722827B2 (ja) 2020-07-15
US20200271174A1 (en) 2020-08-27
JPWO2019053978A1 (ja) 2020-04-09
EP3683475A1 (en) 2020-07-22
EP3683475B1 (en) 2021-09-29
EP3683475A4 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
US7673727B2 (en) Automatic shift control device and vehicle
WO2019053978A1 (ja) 自動クラッチ変速機のギア位置学習装置
JP2019120292A (ja) クラッチ制御装置およびクラッチ制御システム
WO2019146297A1 (ja) 変速装置
JP2019120293A (ja) クラッチ制御装置
CN109838474B (zh) 离合器控制装置
CN111279094B (zh) 离合器控制装置
WO2019087511A1 (ja) クラッチ制御装置
CN110869634B (zh) 车辆用变速系统
JP6982699B2 (ja) 鞍乗り型車両の変速装置
CN109838475B (zh) 离合器控制装置
WO2020195789A1 (ja) クラッチ制御装置
WO2020184552A1 (ja) 変速装置および変速装置の制御方法
WO2020195895A1 (ja) クラッチ制御装置
JP6953633B2 (ja) クラッチ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019541657

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018856974

Country of ref document: EP

Effective date: 20200415