WO2019051976A1 - 一种oled器件及制备用于该器件的待喷射液态材料的方法 - Google Patents

一种oled器件及制备用于该器件的待喷射液态材料的方法 Download PDF

Info

Publication number
WO2019051976A1
WO2019051976A1 PCT/CN2017/110199 CN2017110199W WO2019051976A1 WO 2019051976 A1 WO2019051976 A1 WO 2019051976A1 CN 2017110199 W CN2017110199 W CN 2017110199W WO 2019051976 A1 WO2019051976 A1 WO 2019051976A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
oled device
carbon nanotube
prepared
film thickness
Prior art date
Application number
PCT/CN2017/110199
Other languages
English (en)
French (fr)
Inventor
张育楠
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/576,860 priority Critical patent/US20190088899A1/en
Publication of WO2019051976A1 publication Critical patent/WO2019051976A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to the field of display technologies, and in particular, to an OLED device and a method of preparing a liquid material to be sprayed for the device.
  • the structure of the total reflection anode and the semi-transparent cathode is generally prepared to realize the top emission of the OLED device, and the microcavity effect of the TOLED is effectively adjusted by the optimization of the structure.
  • the thickness of the cathode is generally required to be about several tens of nanometers, which places high demands on the conductive properties of the cathode.
  • the prior art top-emitting OLED device in which the cathode conductive property cannot meet the requirements of the top emitting device for the transparent cathode, and also fails to meet the requirements of the inkjet printing process.
  • the invention provides an OLED device and a method for preparing the liquid material to be sprayed for the device, which can meet the requirements of the top emitting device for the transparent cathode, and can also meet the requirements of the jet printing process.
  • the invention provides an OLED device comprising:
  • a pixel defining layer prepared on the substrate, the pixel defining layer comprising spaced apart isolation pillars for separating adjacent two pixels;
  • An anode layer is prepared on the substrate and located between two adjacent isolation columns;
  • An electron transport layer prepared on the light emitting layer is an electron transport layer prepared on the light emitting layer
  • the cathode layer is a carbon nanotube-polymer layer composite transparent electrode;
  • the cathode layer comprises carbon nanotube powder and a polymer material, and the type of the carbon nanotube powder is single-wall carbon nanometer a tube, a double-walled carbon nanotube, a multi-walled carbon nanotube, and a modified carbon nanotube, wherein the polymer material is an aqueous solution of poly 3,4-ethylenedioxythiophene: polystyrene sulfonate, and the solid content is 1.0 to 1.7%.
  • the anode layer material is indium tin oxide and silver, wherein indium tin oxide is formed by magnetron sputtering, and the film thickness is 20 Between nm and 200 nm, silver is deposited by vacuum evaporation to a thickness of between 10 nm and 100 nm.
  • the material of the hole transporting layer is poly 3,4-ethylenedioxythiophene: polystyrene sulfonate, which is formed by a spray printing method, and has a film thickness of between 1 nm and 100 nm. .
  • the material of the luminescent layer is a blue polymer luminescent material, which is formed by a jet printing method, and has a film thickness of between 1 nm and 100 nm.
  • the material of the electron transport layer is zinc oxide, which is formed by a spray printing method, and has a film thickness of between 0.5 nm and 10 nm.
  • the material of the cathode layer is carbon nanotubes/(poly 3,4-ethylenedioxythiophene: polystyrene sulfonate), which is formed by a spray printing method, and the film thickness is 10 nm. To 1000nm.
  • the present invention also provides a method of preparing a liquid material to be sprayed for use in the OLED device described above, the method comprising the steps of:
  • Step S1 The carbon nanotube solution and the aqueous solution of poly 3,4-ethylenedioxythiophene:polystyrene sulfonate are directly mixed, and stirred to obtain a uniformly dispersed mixed aqueous solution;
  • Step S2 adding a high boiling point solvent having a boiling point of more than 200 ° C, reducing the saturated vapor pressure of the entire mixed aqueous solution system, wherein the high boiling point solvent is an ether or an ester compound;
  • Step S3 Adding a surface tension modifier, the small molecule compound of the surface tension modifier is one or more of imidazole and its derivatives, phenol, hydroquinone;
  • Step S4 adding a viscosity modifier, one or more of an alcohol, an ether, an ester, a phenol, and an amine.
  • the method before the step S1, the method further comprises the following steps:
  • Step S5 Dissolving the carbon nanotube powder in an aqueous solution of an alkylated quaternary ammonium base, and then adding a water-soluble anionic surfactant under stirring; wherein the aqueous solution of the alkylated quaternary ammonium base is cetyltrimethyl hydroxide An aqueous solution of ammonium, dodecyltrimethylammonium hydroxide, tetradecyltrimethylammonium hydroxide, and benzyltrimethylammonium hydroxide organic base, the water-soluble anionic surfactant being butylbenzoic acid, An aqueous solution of phthalic acid, cinnamic acid, phenylacetic acid, and salicylic acid.
  • the method before the step S5, the method further comprises the following steps:
  • Step S6 The carbon nanotubes are dispersed in an organic solvent to form a suspension, allowed to stand for swelling, centrifuged, and washed; then added to concentrated nitric acid, reacted at 120 ° C for 4 hours, centrifuged, washed to neutral, and dried to obtain pure carbon nanotube powder.
  • the invention also provides an OLED device comprising:
  • a pixel defining layer prepared on the substrate, the pixel defining layer comprising spaced apart isolation pillars for separating adjacent two pixels;
  • An anode layer is prepared on the substrate and located between two adjacent isolation columns;
  • An electron transport layer prepared on the light emitting layer is an electron transport layer prepared on the light emitting layer
  • the cathode layer is a carbon nanotube-polymer layered composite transparent electrode.
  • the anode layer material is indium tin oxide and silver, wherein indium tin oxide is formed by magnetron sputtering, and the film thickness is 20 Between nm and 200 nm, silver is deposited by vacuum evaporation to a thickness of between 10 nm and 100 nm.
  • the material of the hole transporting layer is poly 3,4-ethylenedioxythiophene: polystyrene sulfonate, which is formed by a spray printing method, and has a film thickness of between 1 nm and 100 nm. .
  • the material of the luminescent layer is a blue polymer luminescent material, which is formed by a jet printing method, and has a film thickness of between 1 nm and 100 nm.
  • the material of the electron transport layer is zinc oxide, which is formed by a spray printing method, and has a film thickness of between 0.5 nm and 10 nm.
  • the material of the cathode layer is carbon nanotubes/(poly 3,4-ethylenedioxythiophene: polystyrene sulfonate), which is formed by a spray printing method, and the film thickness is 10 nm. To 1000nm.
  • the beneficial effects of the present invention are: Compared with the prior art top-emitting OLED device, the OLED device of the present invention uses a carbon nanotube-polymer composite transparent electrode as a cathode to enhance the conductivity of the transparent cathode, wherein carbon
  • the excellent optoelectronic properties of the nanotubes can meet the requirements of the top emitting device for the transparent cathode.
  • the introduction of the conductive polymer material improves the processability of the whole system, so that the carbon nanotube-polymer layer composite system can meet the jet printing process. Requirements.
  • FIG. 1 is a schematic structural view of an OLED device provided by the present invention.
  • FIG. 2 is a flow chart of a method of preparing a liquid material to be sprayed for use in an OLED device provided by the present invention.
  • the present invention is directed to a prior art top-emitting OLED device in which the conductive properties of the cathode do not satisfy the requirements of the top emitting device for the transparent cathode, and at the same time, the technical problems of the requirements of the jet printing process are not met, and the present embodiment can solve the drawback.
  • a schematic structural diagram of an OLED device includes: a substrate 101; a pixel defining layer, which is prepared on the substrate 101, and the pixel defining layer includes spaced spacer columns 107, For separating two adjacent pixels; an anode layer 102 is prepared on the substrate 101 and located between two adjacent spacers 107; a hole transport layer 103 is prepared on the anode layer 102. a light emitting layer 104 prepared on the hole transport layer 103; an electron transport layer 105 prepared on the light emitting layer 104; and a cathode layer 106 prepared on the electron transport layer 105; wherein the cathode The layer 106 is a carbon nanotube-polymer layered composite transparent electrode.
  • the cathode layer 106 includes a carbon nanotube powder and a polymer material, and the carbon nanotube powder is a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, and a modified carbon nanotube.
  • the polymer material is an aqueous solution of poly 3,4-ethylenedioxythiophene:polystyrene sulfonate, and has a solid content of 1.0 to 1.7%.
  • the material of the anode layer 102 is indium tin oxide and silver, wherein indium tin oxide is formed by magnetron sputtering, the film thickness is between 20 nm and 200 nm, and the silver is vacuum deposited to form a film with a thickness between 10 nm and 100 nm.
  • the material of the hole transport layer 103 is poly 3,4-ethylenedioxythiophene:polystyrene sulfonate, which is formed by a jet printing method and has a film thickness of between 1 nm and 100 nm.
  • the material of the luminescent layer 104 is a blue polymer luminescent material, which is formed by a jet printing method, and has a film thickness of between 1 nm and 100 nm.
  • the material of the electron transport layer 105 is zinc oxide, which is formed by a jet printing method, and has a film thickness of between 0.5 nm and 10 nm.
  • the material of the cathode layer 106 is carbon nanotubes/(poly 3,4-ethylenedioxythiophene:polystyrene sulfonate), which is formed by a spray printing method, and has a film thickness of between 10 nm and 1000 nm.
  • poly 3,4-ethylenedioxythiophene polystyrene sulfonate
  • PEDOT:PSS polystyrene sulfonate
  • the PEDOT:PSS is composed of two substances, PEDOT and PSS.
  • PEDOT is a polymer of EDOT (3,4-ethylenedioxythiophene monomer), and PSS is a polystyrene sulfonate.
  • the P electrons of the carbon atoms on the carbon nanotubes form a wide range of delocalized ⁇ bonds, and the carbon nanotubes have good electrical conductivity due to the significant conjugation effect, and the PEDOT:PSS is made of the carbon nanotubes.
  • the carbon nanotube-polymer layered composite transparent electrode The carbon nanotube-polymer layered composite transparent electrode can exhibit good strength, elasticity, fatigue resistance and isotropy, so that the cathode layer has good transparency and electrical conductivity.
  • the present invention also provides a method for preparing a liquid material to be sprayed (ie, a carbon nanotube-polymer composite cathode material (ink)) for use in the OLED device described above, as shown in FIG. 2, the method comprising the following steps :
  • Step S1 The carbon nanotube solution and the aqueous solution of poly 3,4-ethylenedioxythiophene:polystyrene sulfonate are directly mixed, and stirred to obtain a uniformly dispersed mixed aqueous solution;
  • Step S2 adding a high boiling point solvent having a boiling point of more than 200 ° C, reducing the saturated vapor pressure of the entire mixed aqueous solution system, wherein the high boiling point solvent is an ether or an ester compound;
  • Step S3 Adding a surface tension modifier, the small molecule compound of the surface tension modifier is one or more of imidazole and its derivatives, phenol, hydroquinone;
  • Step S4 adding a viscosity modifier, one or more of an alcohol, an ether, an ester, a phenol, and an amine.
  • the method for preparing the carbon nanotube solution comprises the following steps:
  • Step S5 The carbon nanotube powder is dispersed in an aqueous solution of an alkylated quaternary ammonium base, and then a water-soluble anionic surfactant is added under stirring to prepare a carbon nanotube solution.
  • the aqueous solution of the alkylated quaternary ammonium base is cetyltrimethylammonium hydroxide, dodecyltrimethylammonium hydroxide, tetradecyltrimethylammonium hydroxide, benzyltrimethyl
  • an aqueous solution of an organic alkali such as ammonium hydroxide, the water-soluble anionic surfactant is butyl benzoic acid, (PT) dodecylbenzenesulfonic acid, phthalic acid, p-tert-butylbenzoic acid, p-hydroxybenzoic acid,
  • the method for preparing the carbon nanotube powder comprises the following steps:
  • Step S6 dispersing the carbon nanotubes into a suspension in an organic solvent, allowing to stand for swelling, centrifuging, and washing; adding to concentrated nitric acid, reacting at 120 ° C for 4 hours, centrifuging, washing to neutral, and drying to obtain pure carbon nanotubes. powder.
  • the OLED device is composed of a pixel array, and each of the pixels is composed of three sub-pixel pits, and the liquid material to be ejected must be prevented from overflowing into the adjacent sub-pixel pits during printing, so the sub-pixels are It is necessary to create a spacer having a low surface energy between the pits for isolation.
  • the volume of each material to be ejected should satisfy the requirements of the film thickness. Since the droplet volume ejected is determined by the diameter of the printhead, a respective diameter of the print head can be selected according to the size of the sub-pixel pit, and the respective film layers of the OLED device are subjected to jet printing.
  • the OLED device of the present invention uses a carbon nanotube-polymer composite transparent electrode as a cathode to enhance the conductivity of the transparent cathode, wherein the excellent photoelectric properties of the carbon nanotube can be
  • the requirements of the top emitting device for the transparent cathode are satisfied, and the introduction of the conductive polymer material improves the processability of the whole system, so that the carbon nanotube-polymer layered composite material system can meet the requirements of the jet printing process.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种OLED器件及制备用于该器件的待喷射液态材料的方法,OLED器件包括在基板(101)上层叠制备的像素界定层、阳极层(102)、空穴传输层(103)、发光层(104)、电子传输层(105)、以及阴极层(106);其中,阴极层(106)为一种碳纳米管-高分子层状复合透明电极。

Description

一种OLED器件及制备用于该器件的待喷射液态材料的方法 技术领域
本发明涉及显示技术领域,尤其涉及一种OLED器件及制备用于该器件的待喷射液态材料的方法。
背景技术
随着小面积、无源驱动技术的日趋成熟,大面积、有源驱动技术已成为目前有机发光研究的主流。实现大尺寸显示需要采用TFT驱动技术,而传统的底发射器件(Bottom-emitting OLEDs,BOLEDs)是以透明衬底上的氧化铟锡(ITO)阳极作为出光面的,当使用非透明的硅衬底或迁移率小的非晶硅、有机TFT为衬底时,容易造成开口率低的问题。因此,要实现有源驱动的大面积、高亮度有机发光显示屏,必须研制顶发射结构的有机发光器件 (Top-emitting OLEDs,TOLEDs),通过将出光面与衬底(TFT)分开,从而使开口率的问题得到根本解决。
在现有的顶发射OLED制备过程中,一般制备全反射阳极和半透明阴极的结构实现OLED器件的顶发射,同时通过结构的优化有效地调节TOLED的微腔效应。但是在这样的器件结构中,为了保证阴极的半透明性质,一般会要求阴极的厚度在几十个纳米左右,这就会对阴极的导电性质提出很高的要求。
综上所述,现有技术的顶发射OLED器件,其中阴极导电性质不能满足顶发射器件对于透明阴极的要求,同时也不能满足喷墨打印工艺的要求。
技术问题
本发明提供的一种OLED器件及制备用于该器件的待喷射液态材料的方法,能够满足顶发射器件对于透明阴极的要求,同时也能够满足喷射打印工艺的要求。
技术解决方案
为解决上述问题,本发明提供的技术方案如下:
本发明提供一种OLED器件,包括:
基板;
像素界定层,制备于所述基板上,所述像素界定层包括间隔设置的隔离柱,用以将相邻的两个像素隔开;
阳极层,制备于所述基板上且位于相邻两所述隔离柱之间;
空穴传输层,制备于所述阳极层上;
发光层,制备于所述空穴传输层上;
电子传输层,制备于所述发光层上;以及
阴极层,制备于所述电子传输层上;
其中,所述阴极层为一种碳纳米管-高分子层状复合透明电极;所述阴极层包括碳纳米管粉体和高分子材料,所述碳纳米管粉体的种类为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管以及改性的碳纳米管,所述高分子材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐的水溶液,固含量为1.0~1.7%。
根据本发明一优选实施例,所述阳极层材料为氧化铟锡以及银,其中氧化铟锡采用磁控溅射成膜,膜厚在20 nm到200nm之间,银采用真空蒸镀成膜,厚度在10nm到100nm之间。
根据本发明一优选实施例,所述空穴传输层的材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐,采用喷射打印法成膜,膜厚在1nm到100nm之间。
根据本发明一优选实施例,所述发光层的材料为蓝光聚合物发光材料,采用喷射打印法成膜,膜厚在1nm到100nm之间。
根据本发明一优选实施例,所述电子传输层的材料为氧化锌,采用喷射打印法成膜,膜厚在0.5nm到10nm之间。
根据本发明一优选实施例,所述阴极层的材料为碳纳米管/(聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐),采用喷射打印法成膜,膜厚在10nm到1000nm之间。
本发明还提供一种制备用于上述所述的OLED器件的待喷射液态材料的方法,所述方法包括以下步骤:
步骤S1、 将碳纳米管溶液和聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐的水溶液直接混合,搅拌后得到均匀分散的混合水溶液;
步骤S2、加入高沸点溶剂,所述溶剂沸点大于200℃,降低整个所述混合水溶液体系的饱和蒸气压,其中所述高沸点溶剂为醚类、酯类化合物;
步骤S3、 加入表面张力调节剂,所述表面张力调节剂的小分子化合物为咪唑及其衍生物、苯酚、对苯二酚中的一种或一种以上;
步骤S4、 加入黏度调节剂,所述粘度调节剂为醇、醚、酯、酚、胺中的一种或一种以上。
根据本发明一优选实施例,在所述步骤S1之前,所述方法还包括以下步骤:
步骤S5、 将碳纳米管粉末分散于烷基化季铵碱的水溶液中,然后在搅拌下加入水溶性阴离子表面活性剂;其中所述烷基化季铵碱的水溶液为十六烷基三甲基氢氧化铵、十二烷基三甲基氢氧化铵、十四烷基三甲基氢氧化铵以及苄基三甲基氢氧化铵有机碱水溶液,所述水溶性阴离子表面活性剂为丁基苯甲酸、邻苯二甲酸、肉桂酸、苯乙酸以及水杨酸的水溶液。
根据本发明一优选实施例,在所述步骤S5之前,所述方法还包括以下步骤:
步骤S6、 将碳纳米管在有机溶剂分散成悬浊液,静置溶胀,离心,清洗;再加入到浓硝酸中,120℃下反应4h,离心,清洗至中性,干燥得纯净碳纳米管粉末。
本发明还提供一种OLED器件,包括:
基板;
像素界定层,制备于所述基板上,所述像素界定层包括间隔设置的隔离柱,用以将相邻的两个像素隔开;
阳极层,制备于所述基板上且位于相邻两所述隔离柱之间;
空穴传输层,制备于所述阳极层上;
发光层,制备于所述空穴传输层上;
电子传输层,制备于所述发光层上;以及
阴极层,制备于所述电子传输层上;
其中,所述阴极层为一种碳纳米管-高分子层状复合透明电极。
根据本发明一优选实施例,所述阳极层材料为氧化铟锡以及银,其中氧化铟锡采用磁控溅射成膜,膜厚在20 nm到200nm之间,银采用真空蒸镀成膜,厚度在10nm到100nm之间。
根据本发明一优选实施例,所述空穴传输层的材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐,采用喷射打印法成膜,膜厚在1nm到100nm之间。
根据本发明一优选实施例,所述发光层的材料为蓝光聚合物发光材料,采用喷射打印法成膜,膜厚在1nm到100nm之间。
根据本发明一优选实施例,所述电子传输层的材料为氧化锌,采用喷射打印法成膜,膜厚在0.5nm到10nm之间。
根据本发明一优选实施例,所述阴极层的材料为碳纳米管/(聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐),采用喷射打印法成膜,膜厚在10nm到1000nm之间。
有益效果
本发明的有益效果为:相较于现有的顶发射OLED器件,本发明的OLED器件,采用了一种碳纳米管-高分子复合透明电极作为阴极,以增强透明阴极的导电性,其中碳纳米管优异的光电性质可以满足顶发射器件对于透明阴极的要求,同时导电高分子材料的引入提高了整个体系的可加工性,使得碳纳米管-高分子层状复合材料体系能够满足喷射打印工艺的要求。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的OLED器件结构示意图;
图2为用于本发明提供的OLED器件的待喷射液态材料的制备方法的流程图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有技术的顶发射OLED器件,其中阴极的导电性质不能满足顶发射器件对于透明阴极的要求,同时也不能满足喷射打印工艺的要求的技术问题,本实施例能够解决该缺陷。
如图1所示,为本发明提供的OLED器件结构示意图,所述OLED器件包括:基板101;像素界定层,制备于所述基板101上,所述像素界定层包括间隔设置的隔离柱107,用以将相邻的两个像素隔开;阳极层102,制备于所述基板101上且位于相邻两所述隔离柱107之间;空穴传输层103,制备于所述阳极层102上;发光层104,制备于所述空穴传输层103上;电子传输层105,制备于所述发光层104上;以及阴极层106,制备于所述电子传输层105上;其中,所述阴极层106为一种碳纳米管-高分子层状复合透明电极。
所述阴极层106包括碳纳米管粉体和高分子材料,所述碳纳米管粉体的种类为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管以及改性的碳纳米管,所述高分子材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐的水溶液,固含量为1.0~1.7%。 所述阳极层102的材料为氧化铟锡以及银,其中氧化铟锡采用磁控溅射成膜,膜厚在20nm到200nm之间,银采用真空蒸镀成膜,厚度在10nm到100nm之间。所述空穴传输层103的材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐,采用喷射打印法成膜,膜厚在1nm到100nm之间。所述发光层104的材料为蓝光聚合物发光材料,采用喷射打印法成膜,膜厚在1nm到100nm之间。所述电子传输层105的材料为氧化锌,采用喷射打印法成膜,膜厚在0.5nm到10nm之间。 所述阴极层106的材料为碳纳米管/(聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐),采用喷射打印法成膜,膜厚在10nm到1000nm之间。
其中,聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐,简称为PEDOT:PSS,是一种高分子聚合物的水溶液,导电率很高,根据不同的配方,可以得到导电率不同的水溶液。所述PEDOT:PSS是由PEDOT和PSS两种物质构成。PEDOT是EDOT(3,4-乙撑二氧噻吩单体)的聚合物,PSS是聚苯乙烯磺酸盐。
所述碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,因此所述碳纳米管具有良好的导电性能,所述PEDOT:PSS与所述碳纳米管制成所述碳纳米管-高分子层状复合透明电极, 可使所述碳纳米管-高分子层状复合透明电极表现出良好的强度、弹性、抗疲劳性及各向同性,使所述阴极层具有良好的透明度以及导电性能。
本发明还提供一种制备用于上述所述的OLED器件的待喷射液态材料(即碳纳米管-高分子复合阴极材料(墨水))的方法,如图2所示,所述方法包括以下步骤:
步骤S1、 将碳纳米管溶液和聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐的水溶液直接混合,搅拌后得到均匀分散的混合水溶液;
步骤S2、加入高沸点溶剂,所述溶剂沸点大于200℃,降低整个所述混合水溶液体系的饱和蒸气压,其中所述高沸点溶剂为醚类、酯类化合物;
步骤S3、 加入表面张力调节剂,所述表面张力调节剂的小分子化合物为咪唑及其衍生物、苯酚、对苯二酚中的一种或一种以上;
步骤S4、 加入黏度调节剂,所述粘度调节剂为醇、醚、酯、酚、胺中的一种或一种以上。
其中,在所述步骤S1的所述方法之前,还包括所述碳纳米管溶液的制备方法,所述碳纳米管溶液的制备方法包括以下步骤:
步骤S5、 将碳纳米管粉末分散于烷基化季铵碱的水溶液中,然后在搅拌下加入水溶性阴离子表面活性剂,以制得碳纳米管溶液。
其中所述烷基化季铵碱的水溶液为十六烷基三甲基氢氧化铵、十二烷基三甲基氢氧化铵、十四烷基三甲基氢氧化铵、苄基三甲基氢氧化铵等有机碱水溶液,所述水溶性阴离子表面活性剂为丁基苯甲酸、(P-T)十二烷基苯磺酸、邻苯二甲酸、对叔丁基苯甲酸、对羟基苯甲酸、肉桂酸、苯乙酸、水杨酸等的水溶液。
其中,在所述步骤S5的所述方法之前,还包括所述碳纳米管粉末的制备方法,所述碳纳米管粉末的制备方法包括以下步骤:
步骤S6、将碳纳米管在有机溶剂分散成悬浊液,静置溶胀,离心,清洗;再加入到浓硝酸中,120℃下反应4h,离心,清洗至中性,干燥得纯净碳纳米管粉末。
所述OLED器件由像素阵列组成,每个所述像素又是由三个子像素坑组成,打印时必须防止所述待喷射液态材料溢出到相邻所述子像素坑中,所以在所述子像素坑之间需要创建低表面能的隔离柱用以隔离,向所述子像素坑中打印所述待喷射液态材料的墨水时,首先应该使各种待喷射的材料体积满足其薄膜厚度的要求。由于喷射的液滴体积是由打印头直径决定的,则可以根据所述子像素坑的尺寸选择相应的直径的打印头,对所述OLED器件的各个膜层进行喷射打印。
相较于现有的顶发射OLED器件,本发明的OLED器件,采用了一种碳纳米管-高分子复合透明电极作为阴极,以增强透明阴极的导电性,其中碳纳米管优异的光电性质可以满足顶发射器件对于透明阴极的要求,同时导电高分子材料的引入提高了整个体系的可加工性,使得碳纳米管-高分子层状复合材料体系能够满足喷射打印工艺的要求。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (15)

  1. 一种OLED器件,其包括:
    基板;
    像素界定层,制备于所述基板上,所述像素界定层包括间隔设置的隔离柱,用以将相邻的两个像素隔开;
    阳极层,制备于所述基板上且位于相邻两所述隔离柱之间;
    空穴传输层,制备于所述阳极层上;
    发光层,制备于所述空穴传输层上;
    电子传输层,制备于所述发光层上;以及
    阴极层,制备于所述电子传输层上;
    其中,所述阴极层为一种碳纳米管-高分子层状复合透明电极;所述阴极层包括碳纳米管粉体和高分子材料,所述碳纳米管粉体的种类为单壁碳纳米管、双壁碳纳米管、多壁碳纳米管以及改性的碳纳米管,所述高分子材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐的水溶液,固含量为1.0~1.7%。
  2. 根据权利要求1所述的OLED器件,其中,所述阳极层材料为氧化铟锡以及银,其中氧化铟锡采用磁控溅射成膜,膜厚在20 nm到200nm之间,银采用真空蒸镀成膜,厚度在10nm到100nm之间。
  3. 根据权利要求1所述的OLED器件,其中,所述空穴传输层的材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐,采用喷射打印法成膜,膜厚在1nm到100nm之间。
  4. 根据权利要求1所述的OLED器件,其中,所述发光层的材料为蓝光聚合物发光材料,采用喷射打印法成膜,膜厚在1nm到100nm之间。
  5. 根据权利要求1所述的OLED器件,其中,所述电子传输层的材料为氧化锌,采用喷射打印法成膜,膜厚在0.5nm到10nm之间。
  6. 根据权利要求1所述的OLED器件,其中,所述阴极层的材料为碳纳米管/(聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐),采用喷射打印法成膜,膜厚在10nm到1000nm之间。
  7. 一种制备用于如权利要求1所述的OLED器件的待喷射液态材料的方法,其所述方法包括以下步骤:
    步骤S1、 将碳纳米管溶液和聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐的水溶液直接混合,搅拌后得到均匀分散的混合水溶液;
    步骤S2、加入高沸点溶剂,所述溶剂沸点大于200℃,降低整个所述混合水溶液体系的饱和蒸气压,其中所述高沸点溶剂为醚类、酯类化合物;
    步骤S3、 加入表面张力调节剂,所述表面张力调节剂的小分子化合物为咪唑及其衍生物、苯酚、对苯二酚中的一种或一种以上;
    步骤S4、 加入黏度调节剂,所述粘度调节剂为醇、醚、酯、酚、胺中的一种或一种以上。
  8. 根据权利要求7所述的制备方法,其中,在所述步骤S1之前,所述方法还包括以下步骤:
    步骤S5、 将碳纳米管粉末分散于烷基化季铵碱的水溶液中,然后在搅拌下加入水溶性阴离子表面活性剂;其中所述烷基化季铵碱的水溶液为十六烷基三甲基氢氧化铵、十二烷基三甲基氢氧化铵、十四烷基三甲基氢氧化铵以及苄基三甲基氢氧化铵有机碱水溶液,所述水溶性阴离子表面活性剂为丁基苯甲酸、邻苯二甲酸、肉桂酸、苯乙酸以及水杨酸的水溶液。
  9. 根据权利要求8所述的制备方法,其中,在所述步骤S5之前,所述方法还包括以下步骤:
    步骤S6、 将碳纳米管在有机溶剂分散成悬浊液,静置溶胀,离心,清洗;再加入到浓硝酸中,120℃下反应4h,离心,清洗至中性,干燥得纯净碳纳米管粉末。
  10. 一种OLED器件,其包括:
    基板;
    像素界定层,制备于所述基板上,所述像素界定层包括间隔设置的隔离柱,用以将相邻的两个像素隔开;
    阳极层,制备于所述基板上且位于相邻两所述隔离柱之间;
    空穴传输层,制备于所述阳极层上;
    发光层,制备于所述空穴传输层上;
    电子传输层,制备于所述发光层上;以及
    阴极层,制备于所述电子传输层上;
    其中,所述阴极层为一种碳纳米管-高分子层状复合透明电极。
  11. 根据权利要求10所述的OLED器件,其中,所述阳极层材料为氧化铟锡以及银,其中氧化铟锡采用磁控溅射成膜,膜厚在20 nm到200nm之间,银采用真空蒸镀成膜,厚度在10nm到100nm之间。
  12. 根据权利要求10所述的OLED器件,其中,所述空穴传输层的材料为聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐,采用喷射打印法成膜,膜厚在1nm到100nm之间。
  13. 根据权利要求10所述的OLED器件,其中,所述发光层的材料为蓝光聚合物发光材料,采用喷射打印法成膜,膜厚在1nm到100nm之间。
  14. 根据权利要求10所述的OLED器件,其中,所述电子传输层的材料为氧化锌,采用喷射打印法成膜,膜厚在0.5nm到10nm之间。
  15. 根据权利要求10所述的OLED器件,其中,所述阴极层的材料为碳纳米管/(聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐),采用喷射打印法成膜,膜厚在10nm到1000nm之间。
PCT/CN2017/110199 2017-09-18 2017-11-09 一种oled器件及制备用于该器件的待喷射液态材料的方法 WO2019051976A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/576,860 US20190088899A1 (en) 2017-09-18 2017-11-09 Organic light emitting diode device and method for manufacturing liquid material to be sprayed for the device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710839371.2A CN107623074A (zh) 2017-09-18 2017-09-18 一种oled器件及制备用于该器件的待喷射液态材料的方法
CN201710839371.2 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019051976A1 true WO2019051976A1 (zh) 2019-03-21

Family

ID=61090285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110199 WO2019051976A1 (zh) 2017-09-18 2017-11-09 一种oled器件及制备用于该器件的待喷射液态材料的方法

Country Status (2)

Country Link
CN (1) CN107623074A (zh)
WO (1) WO2019051976A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521702A (zh) * 2022-09-23 2022-12-27 湖南纳昇电子科技有限公司 一种可增透、高硬度的pedot:pss电子涂层及其制备方法和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109994648B (zh) * 2018-06-22 2021-06-04 友达光电股份有限公司 显示面板及其制作方法
CN111384275B (zh) * 2018-12-29 2021-08-10 Tcl科技集团股份有限公司 一种薄膜及其制备方法和发光二极管
CN109873086A (zh) * 2019-02-27 2019-06-11 深圳市华星光电半导体显示技术有限公司 一种可交联空穴传输层材料及其制备方法
CN110137226B (zh) * 2019-05-05 2021-04-27 深圳市华星光电半导体显示技术有限公司 被动式电致有机发光二极管的基板、制造方法和剥离板
CN211654862U (zh) * 2019-12-13 2020-10-09 南京国兆光电科技有限公司 一种硅基有源矩阵式有机发光显示器的反射阳极结构
WO2021253278A1 (zh) * 2020-06-17 2021-12-23 中国科学院深圳先进技术研究院 一种触觉传感器、制备方法及包括触觉传感器的智能设备
CN112071997B (zh) 2020-09-09 2021-08-06 Tcl华星光电技术有限公司 显示装置及显示装置的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040170861A1 (en) * 2003-02-28 2004-09-02 Eastman Kodak Company Organic light emitting diodes for production of polarized light
CN105321592A (zh) * 2014-08-01 2016-02-10 广东阿格蕾雅光电材料有限公司 碳纳米管-高分子层状复合透明柔性电极及其制备方法
WO2016197353A1 (en) * 2015-06-11 2016-12-15 Dow Global Technologies Llc Organic electroluminescent compound and organic electroluminescent device comprising the same
CN106299117A (zh) * 2016-08-10 2017-01-04 苏州高通新材料科技有限公司 具有各向异性载流子迁移率的磺化石墨烯‑导电高分子分散液、其制备方法与应用
CN106898707A (zh) * 2017-04-28 2017-06-27 深圳市华星光电技术有限公司 一种顶发射oled器件及制备方法、显示面板
CN106981588A (zh) * 2017-05-02 2017-07-25 深圳市华星光电技术有限公司 一种有机发光器件及其制造方法
CN107086272A (zh) * 2017-04-27 2017-08-22 深圳市华星光电技术有限公司 Oled器件的制作方法、oled器件及oled显示面板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101872842A (zh) * 2010-06-24 2010-10-27 电子科技大学 一种有机光电器件及其制备方法
CN102074660A (zh) * 2010-12-01 2011-05-25 郑州大学 一种顶发射有机电致发光器件
CN102184938B (zh) * 2011-05-03 2015-06-24 昆山维信诺显示技术有限公司 有机电致发光器件及其制备方法
CN103000816B (zh) * 2012-09-07 2017-12-26 天津工业大学 一种基于柔性碳纳米管薄膜的有机发光器件
CN104059432B (zh) * 2013-03-20 2016-01-06 北京阿格蕾雅科技发展有限公司 透明碳纳米管高分子复合导电墨水及其制备方法
CN103641098A (zh) * 2013-11-29 2014-03-19 太原理工大学 一种将纳米碳材料快速组装到油水界面形成柔性薄膜的方法
CN105295554B (zh) * 2014-08-01 2018-04-06 北京阿格蕾雅科技发展有限公司 高分散、粘度可控的碳纳米管透明电极墨水
CN204088384U (zh) * 2014-08-15 2015-01-07 苏州方昇光电装备技术有限公司 一种基于柔性基板的倒置oled器件结构
KR20160099979A (ko) * 2015-02-13 2016-08-23 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040170861A1 (en) * 2003-02-28 2004-09-02 Eastman Kodak Company Organic light emitting diodes for production of polarized light
CN105321592A (zh) * 2014-08-01 2016-02-10 广东阿格蕾雅光电材料有限公司 碳纳米管-高分子层状复合透明柔性电极及其制备方法
WO2016197353A1 (en) * 2015-06-11 2016-12-15 Dow Global Technologies Llc Organic electroluminescent compound and organic electroluminescent device comprising the same
CN106299117A (zh) * 2016-08-10 2017-01-04 苏州高通新材料科技有限公司 具有各向异性载流子迁移率的磺化石墨烯‑导电高分子分散液、其制备方法与应用
CN107086272A (zh) * 2017-04-27 2017-08-22 深圳市华星光电技术有限公司 Oled器件的制作方法、oled器件及oled显示面板
CN106898707A (zh) * 2017-04-28 2017-06-27 深圳市华星光电技术有限公司 一种顶发射oled器件及制备方法、显示面板
CN106981588A (zh) * 2017-05-02 2017-07-25 深圳市华星光电技术有限公司 一种有机发光器件及其制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115521702A (zh) * 2022-09-23 2022-12-27 湖南纳昇电子科技有限公司 一种可增透、高硬度的pedot:pss电子涂层及其制备方法和应用
CN115521702B (zh) * 2022-09-23 2023-10-17 湖南纳昇电子科技有限公司 一种可增透、高硬度的pedot:pss电子涂层及其制备方法和应用

Also Published As

Publication number Publication date
CN107623074A (zh) 2018-01-23

Similar Documents

Publication Publication Date Title
WO2019051976A1 (zh) 一种oled器件及制备用于该器件的待喷射液态材料的方法
US10756273B2 (en) Fabricating a plurality of layers in an OLED device by a solution film method
Xu et al. Recent advances in flexible organic light-emitting diodes
WO2018196124A1 (zh) 一种顶发射oled器件及制备方法、显示面板
US10192932B2 (en) Quantum dot LED and OLED integration for high efficiency displays
Zheng et al. All-solution processed polymer light-emitting diode displays
WO2019095452A1 (zh) Oled显示器及其制作方法
US20060014044A1 (en) Organic light-emitting display with multiple light-emitting modules
WO2013094848A1 (ko) 전 용액 공정이 가능한 유기발광소자
CN106129263B (zh) Oled显示器件及其制作方法
US20110017975A1 (en) Organic optoelectronic device electrodes with nanotubes
WO2013180361A1 (ko) 아민기를 갖는 비공액 고분자를 포함하는 유기전자소자용 기능층 및 이를 포함하는 유기전자소자
Liu et al. Improved efficiency of indium-tin-oxide-free organic light-emitting devices using PEDOT: PSS/graphene oxide composite anode
JP2006190671A (ja) 電界発光素子及びその製造方法
Zeng et al. Solution-processed OLEDs for printing displays
KR20070067308A (ko) 유기 발광 다이오드 및 그 제조 방법, 상기 유기 발광다이오드를 포함하는 유기 발광 표시 장치
CN111004243B (zh) 吲哚并[3,2,1-jk]咔唑衍生物、有机电致发光器件及显示面板
Xie et al. Solution processable small molecule based organic light-emitting devices prepared by dip-coating method
CN109273509B (zh) 柔性显示装置
WO2018148999A1 (zh) 有机电致发光显示装置
CN102110775B (zh) 实现半导体聚合物图形化的方法及其应用器件
WO2018201568A1 (zh) 顶发射有机发光二极管及制造方法
US20190088899A1 (en) Organic light emitting diode device and method for manufacturing liquid material to be sprayed for the device
KR100805270B1 (ko) 유기투명전극을 적용한 플렉시블 유기 발광 소자, 이를이용한 디스플레이 패널 및 그 제조 방법
Xue et al. Transparent and conformable organic light-emitting diodes for skin-attachable invisible displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925179

Country of ref document: EP

Kind code of ref document: A1