WO2019051936A1 - 基于主辅车概念以使轨道交通列车的运力倍增的调度方法 - Google Patents

基于主辅车概念以使轨道交通列车的运力倍增的调度方法 Download PDF

Info

Publication number
WO2019051936A1
WO2019051936A1 PCT/CN2017/107640 CN2017107640W WO2019051936A1 WO 2019051936 A1 WO2019051936 A1 WO 2019051936A1 CN 2017107640 W CN2017107640 W CN 2017107640W WO 2019051936 A1 WO2019051936 A1 WO 2019051936A1
Authority
WO
WIPO (PCT)
Prior art keywords
passengers
train
station
main
car
Prior art date
Application number
PCT/CN2017/107640
Other languages
English (en)
French (fr)
Inventor
韦克平
Original Assignee
韦克平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 韦克平 filed Critical 韦克平
Publication of WO2019051936A1 publication Critical patent/WO2019051936A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B1/00General arrangement of stations, platforms, or sidings; Railway networks; Rail vehicle marshalling systems

Definitions

  • the present application relates to the field of rail transit technology, and more particularly to a scheduling method based on the concept of a primary and secondary vehicle to multiply the capacity of a rail transit train.
  • Nanjing, Chongqing, Wuhan, Chengdu and other cities will build a basic network of rail transit, and cities such as Nantong, Shijiazhuang and Lanzhou will build rail transit backbones.
  • the construction of rail transit in other cities will also accelerate, thus raising the overall level of China's rail transit to a new level.
  • the present application provides a scheduling method based on the concept of the primary and secondary vehicles to multiply the capacity of the rail transit train.
  • the concept of the primary and secondary vehicles By defining the concept of the primary and secondary vehicles, the special attributes belonging to only the primary vehicle are mined, and the concept of the primary and secondary vehicles is defined based on the definition.
  • a scheduling method based on the concept of a primary and secondary vehicle to multiply the capacity of a rail transit train comprising:
  • the main vehicle is a large group train with special attributes, the length of the main vehicle is at least longer than the length of the platform, and the main vehicle is at least physically separated into two sections. ;
  • a method of balancing the density of passengers is derived based on the definition and special attributes of the host vehicle.
  • the stopping method for designing the main vehicle at the same station based on the definition of the main vehicle and the special attribute includes: a single docking method and a plurality of docking methods; wherein:
  • the classification criteria are: whether all passengers are allowed to get on and off;
  • the single stop method means that the main car only stops once at the same station.
  • the platform When the platform is docked, passengers on all sections of the main vehicle outside the platform are forbidden to get off.
  • the main vehicle is located in the platform and allows passengers to get on and off.
  • the single stop method includes some sub-methods. The different segments are docked at the platform and the impact on the passengers is different. Each time the docking is done, only a seed method is implemented;
  • the multiple docking method means that the number of stops of the main car on the same platform is greater than or equal to two. Through multiple stops, the passengers on the bus can get off the bus, ensuring that the passengers on the platform can board the bus that he wishes to ride. During the stop of the platform, passengers on all sections of the main vehicle outside the platform are forbidden to get off the bus. All sections of the main car are allowed to get on and off the bus. All the docking methods include some sub-methods. Two times and three times docking are different sub-methods;
  • non-recommended multiple docking method means that the main vehicle stops at least twice on the same platform, but still cannot guarantee all the vehicles on the platform. Passengers can get off.
  • the method for designing a scheduling based on the definition and special attributes of the host vehicle includes:
  • auxiliary vehicle refers to a common group train
  • the method for deriving a balanced passenger density based on the definition and special attributes of the host vehicle includes the following three methods:
  • Method 1 Set the credit card machine on the auxiliary vehicle, and guide the passenger to the main car by swiping the card and paying the discount; among them, the card swipe and payment are two concepts, only the last time the card is posted, the payment is completed, and other cards are swiped. It only records passenger behavior, provides technical support for the implementation of preferential policies, and gives preferential treatment to passengers who only take one or two auxiliary vehicles, guiding passengers to take the main vehicle as much as possible;
  • Method 2 Set the credit card machine on the main vehicle, using the main vehicle discount method
  • Method 3 Set up a credit card machine in the platform. Among them, the passengers need to brush the card once more, which is a necessary condition for obtaining the preferential.
  • the inbound port, the exit port and the transfer station infer the behavior of most people, and record the passenger's exchange.
  • the location of the car and the location of the boarding and unloading understand the passenger's driving mode, and set the reward conditions according to the driving mode.
  • the policy is as follows: the person who only takes one or two auxiliary vehicles gives the discount, and selects some stations with less passenger flow as the exchange. Take the reward station.
  • the technical solution provides a scheduling method based on the concept of the primary and secondary vehicles to multiply the capacity of the rail transit train, and defines the definition and special attributes of the main vehicle, wherein the main vehicle is a special attribute.
  • the length of the main car is at least more than the length of the platform, the main car is at least physically divided into two sections; based on the definition of the main car and the special attributes, the main car is parked on the same platform; based on the main car
  • the definition and special attribute design scheduling method based on the definition of the main vehicle and the special attribute to derive the method of equalizing the passenger density, the present invention proposes a super long train, passenger retention, jump station method, heavy stop method, two-way main vehicle method New concepts such as tidal method, hybrid scheduling of main and auxiliary vehicles, forced equalization, transfer station credit card, transfer reward station, and new methods of parasitic on these concepts. Therefore, the overload problem of the train can be avoided, the safety hazard of the rail transit operation is eliminated, and the passenger experience is improved
  • Embodiment 1 is a flow chart of Embodiment 1 of a scheduling method based on the concept of a primary and secondary vehicle to multiply the capacity of a rail transit train.
  • FIG. 1 which is a flowchart of Embodiment 1 of a scheduling method based on the concept of a primary and secondary vehicle to multiply the capacity of a rail transit train, the method includes the following steps:
  • the main vehicle is a large group train with special attributes.
  • the length of the main vehicle is at least longer than the length of the platform.
  • the main vehicle is at least physically separated into two sections. ;
  • the main car is a large group train with special attributes. It should be noted that in this case, the main car is sometimes not strictly called a large group train or a super long group, which is mainly for the language at the time. The characteristics of the large group trains of the main car are highlighted in the territory. There are five main differences between the main car and the ordinary marshalling train (which can be called an auxiliary car). These differences are only special attributes of the main car. The differences are as follows:
  • the inventor gives the length attribute of the main vehicle
  • the length of the main car is at least more than the length of the platform. Under normal circumstances, if the train group of a subway line has a maximum of N cars, the main car has at least N+1 cars.
  • the main car is at least physically separated into two sections. In non-special circumstances, passengers are prohibited from moving between each other. This separation is different from the access door on a conventional marshalling train. This separation is mandatory, not optional, and is necessary.
  • each section of the main car has a maximum of N cars.
  • the main car stops at the platform if you want the main car to have two sections at the same time, the main car has a maximum of N cars per two sections.
  • the criteria for classification are: whether all passengers are allowed to get on and off.
  • the single stop method means that the main car only stops once at the same station.
  • passengers on all sections of the main vehicle outside the platform are prohibited from getting off the bus. All sections of the main car located in the platform allow passengers to get on and off.
  • the single docking method includes some sub-methods, and the specific different sections of the main vehicle are docked on the platform to have different effects on the passengers. Therefore, every time you stop, you only implement a seed method.
  • the multiple docking method means that the number of stops of the main car on the same platform is greater than or equal to two. Through multiple stops, the passengers on the bus can get off the bus, ensuring that the passengers on the platform can board the bus that he wishes to ride. segment. When the platform is docked, passengers on all sections of the main vehicle outside the platform are prohibited from getting off the bus. All sections of the main car located in the platform allow passengers to get on and off.
  • Multiple docking methods contain sub-methods, and docking twice and docking three times are different sub-methods.
  • the method of stopping the main car at the same station is not recommended: non-recommended multiple docking method.
  • Non-recommended multiple stops The main car stops at least twice on the same platform, but there is still no guarantee that all passengers on the bus can get off. For example, under normal circumstances, if a regular train group of a subway line has a maximum of N cars, when the main car has at least 2N+1 cars, if the main car only stops twice, it is a non-recommended multiple docking method.
  • a scheduling method based on the concept of the main and auxiliary vehicles can be derived.
  • the design of the scheduling method based on the concept of the main and auxiliary vehicles includes some features of the design of the conventional scheduling method: for example, planning the number of trains per train, departure time, departure interval, driving speed, driving stop interval and so on.
  • the unique parts of the joint design method for the design of the main and auxiliary vehicles excavated by the inventor include:
  • the whole stop method is selected for each shift of the main car (the only way to stop the sub-station is selected for each station where the main car is parked) (the full stop method of the main car of each shift can be the same or different).
  • the third and fourth designs are the most difficult and have a huge impact on the passenger experience.
  • the super long group is the most fundamental measure to double the capacity.
  • Double capacity means: the departure interval is the same, the driving speed is the same, and the full passenger capacity is doubled. For short: the capacity is doubled.
  • the method of re-stopping is based on the most important sub-method of the main vehicle's multiple docking method.
  • the method of re-stopping is the method of docking twice on the same platform.
  • the main vehicle with twice the length of the platform first stops at the front half of the body and then stops at the rear half of the body, and the passenger gets on and off in two time periods.
  • the re-stopping method is one of the important sub-methods of the long-running group docking platform.
  • the advantage is that it is easy to understand, and it is convenient to get on and off (refer to any section where the passenger can get on and off the main car).
  • the disadvantage is wasting time and affecting capacity.
  • the jump station method is another name based on the single stop method of the host vehicle.
  • the name of the jumping station method can more directly remind passengers: in a specific station, in certain sections of the main vehicle, passengers cannot get on and off the vehicle. This phenomenon can be compared to the image: some sections of the main car skipped this station.
  • the jumping station method is different from the conventional vehicle in that the vehicle does not stop through a certain station.
  • the shortcoming of the jump station method is that it is difficult to understand. It is inconvenient to get on and off the bus (meaning that passengers can't arbitrarily go up and down some sections of the main car).
  • the advantage is that it saves time and helps increase the capacity.
  • the jump station method is the main method used in this case. Us One of the main purposes of studying the "scheduling method based on the concept of the main and auxiliary vehicles" is to try to avoid the shortcomings of the jumping station method.
  • the main car is at least physically separated into two sections to cause the passenger to stay.
  • Passenger temporary stay means that some of the trains are temporarily staying outside the platform. In case of non-emergency conditions, passengers in this part of the train cannot get on or off by any means. Passenger dwelling is a key point in the implementation of the jump station method, because some of the cars must be parked outside the platform. If this part of the car has internal communication with the car in the platform, some passengers will want to flow to the car inside the platform. As long as there are enough passengers to flow, it will cause confusion. Therefore, blocking circulation is the key.
  • the main purpose of the "Study on the Scheduling Method Based on the Concept of the Main and Subsidiary Vehicles” is to match the vehicle carrying capacity with the passenger flow and to improve the passenger experience as much as possible.
  • the passenger flow matching scheduling method can improve economic efficiency without compromising the passenger experience.
  • Passenger flow matching means increasing the carrying capacity when the passenger flow is large, and vice versa.
  • the adjustment means of passenger flow matching is mainly to "adjust the departure interval” and “adjust the proportion of shifts between the main and auxiliary vehicles".
  • the basis for adjustment is the size of the passenger flow.
  • the first step is to calculate the passenger flow information and use this as a basis to assess how many cars the main car needs.
  • the second step is to design a passenger flow matching scheduling method based on the concept of the primary and secondary vehicles.
  • the main vehicle scheduling method is refined to try to improve the passenger experience.
  • the passenger flow information is counted: on the day of the week, at a certain time period (the arrival time of the train at each station is different), at a certain station, how many passengers get off at each direction, in two How many passengers are in the direction of the car.
  • the passenger flow information includes time information, station information, direction information, and passenger number information. Then, based on the passenger flow information, calculate the difference between the number of passengers getting on and off the ideal train (the train with unlimited passenger capacity), and calculate the number of passengers in each interval (between two stations), and select the passengers of the train. The largest number of passengers, the number of passengers in this section is called the peak passenger of this train (also known as the current time period) number.
  • the largest number of "peak passengers” in the "peak passengers” of all time periods throughout the day is selected as a basis for evaluating at least how many cars the main car needs.
  • All the train numbers will be generated throughout the day to generate shift information. Each shift corresponds to a time period, and the departure interval between the two trains must be greater than or equal to the minimum departure interval. Adjust the carrying capacity of the line based on the analysis of the peak passenger number in a certain period of time and in a certain direction. The first is to adjust the departure interval. If the requirements for carrying capacity are still not met, the main vehicle can be arranged.
  • Design scheduling information for each shift If the train is an auxiliary vehicle, the dispatch information is processed in a conventional manner. In the case of the main vehicle, the dispatch information includes, in addition to the regular train departure time, driving direction, driving speed and other conventional items of each train, the number of the main vehicle and the main vehicle are also segmented. . Finally, for each shift of the main car, you must give a list of the main bus stop method, this list points out (for a single docking method) which segment of the main car should be parked at a specific station, and point out Whether to use multiple docking methods. The list of bus stop methods for each shift can be the same or different. The list of full stop methods for each shift and the interaction between them is critical to improving the passenger experience.
  • the present invention provides several basic scheduling method examples, which have different carrying capabilities and thus can match different passenger flow conditions. Examples include “examples of hybrid auxiliary dispatching method”, “one-way master vehicle method (tidal method) example”, “two-way master car method example” and “re-stopping method example”.
  • the “main and auxiliary vehicle hybrid scheduling method” is generated in conjunction with the “passenger flow matching method based on the concept of the main and auxiliary vehicles”.
  • Two scheduling methods are generated according to whether the heavy docking method is adopted: one is the scheduling method based on the jumping station method, and examples 1 to 6 can be seen. The second is the scheduling method using both the hopping method and the re-stopping method. See Example 8.
  • Example 7 dealt with three situations. One is that two subways have two connecting stations, and the other is that there are only one connecting station in two subways, and the third is It is not the connection between the two subways, but the passengers at the departure station are full.
  • the stations are sequentially numbered and can be divided into single stations and double stations.
  • the b-segment compartment is called the auxiliary section, and it has the characteristics that each platform is docked.
  • the single-station a and b-seat cars stop at the platform and open the door, and the passengers get on and off normally.
  • the c-segment compartment does not open the door and the passenger stays inside the carriage.
  • the double-station b and c-seat cars stop at the platform and open the door, and the passengers get on and off normally.
  • the section a carriage does not open the door and the passenger stays in the carriage.
  • the a-seat car can only get on and off at the odd-numbered station, the c-segment car can only get on and off at the double-numbered station, and the b-segment car can get on and off at all stations. Therefore, some passengers in sections a and c may need to transfer to the b-segment to reach their destination.
  • the number of cars in each section is not necessarily equal. The best value can be determined through simulation and experiment.
  • the length of the adjacent two sections shall not exceed the length of the platform, but should be as close as possible to the length of the platform.
  • the maximum number of conventional marshalling trains is 6 cars, then the three segments a, b, and c can be 2, 4, and 2 respectively.
  • the maximum grouping of conventional marshalling trains is 8 cars, and the three segments a, b, and c can be 3, 5, and 3, respectively.
  • Segmentation method divide a subway line into several sections, each with different scheduling strategies. And this scheduling strategy is clearly described.
  • List method Provide different tables for different subway drivers. This table indicates that at each stop the driver should park the part of the car at the platform. The list method refers only to lists that do not see obvious rules and cannot be clearly described.
  • the main car has two types of docking methods on one platform: a single docking method and multiple docking methods. It contains several seed methods.
  • Propose scheduling method restrictions such as a loop using several groups, the size of each group, and the time interval between groups.
  • a program for calculating the evaluation index is prepared based on the set conditions and data.
  • Example 5 There are only two trains with different stopping methods, so it is easy for passengers to remember, but there are individual passengers who must take the returning vehicle.
  • Example 6 There are three trains with different stopping methods. It is possible to wait for a longer time, but all passengers can go directly to the destination.
  • Example 7 is a special case of resolving the connection of two subways. Example 7 also solves the special case where the passenger station may be full of passengers at the originating station. In addition, these examples can be used in the tide method.
  • the author of the present invention feels - perhaps example 6 is the most A scheduling method that is popular with passengers.
  • Re-stopping application examples Re-stopping the law requires delays in passenger time. It is also a good method to delay passengers.
  • the length of the large group train is about 2 times the length of the platform, and the train length of the small group is similar to the length of the platform.
  • Large group trains are the main vehicles, and small group trains are the auxiliary vehicles.
  • the stations are sequentially numbered and can be divided into single stations and double stations.
  • the a-car compartment stops at the singular platform and drives the passengers to get on and off normally. At this time, the b-segment compartment does not open the door, and the passenger stays in the carriage.
  • the b-segment car stops at the double-numbered platform and drives the passengers to get on and off normally. At this time, the a-seat compartment does not open the door, and the passengers stay in the carriage. Small group trains open at every stop.
  • Mixed operation mode means that the size grouping is flexibly scheduled according to needs.
  • the main vehicle is less frequently equipped with auxiliary vehicles, and the main and auxiliary vehicles are alternately operated during peak hours, and only auxiliary vehicles are issued during the peak period.
  • the small group train can still be named as the XX line train.
  • the subway icon of the line is noted for all stations.
  • the a section of the large group train can be named the XXa line train.
  • the subway map of the line is only marked with a single station.
  • the b segment of the large group train can be named as the XXb line train.
  • the subway map of the line is marked with only a few stations.
  • the length of the large group train is about 3 times the length of the platform, and the train length of the small group is similar to the length of the platform.
  • Large group trains are the main vehicles, and small group trains are the auxiliary vehicles.
  • the station is divided into three categories: ab, B1, C1, A2, B2, C2, .
  • the b-segment cars are docked at stations such as B1, B2, B3... and the passengers on the doors are normally getting on and off. At this time, the a section and the c section of the car do not open the door, and the passenger stays in the compartment.
  • the c-segment cars are parked at stations such as C1, C2, C3... and the passengers on the doors are normally getting on and off. At this time, the a and b cars do not open the door, and the passengers stay in the carriage.
  • Mixed operation mode means that the size grouping is flexibly scheduled according to needs.
  • the main vehicle is less frequently equipped with auxiliary vehicles, and the main and auxiliary vehicles are alternately operated during peak hours, and only auxiliary vehicles are issued during the peak period.
  • the small group train can still be named as the XX line train.
  • the subway icon of the line is noted for all stations.
  • the a section of the large group train can be named the XXa line train.
  • the subway map of the line is only marked with A1, A2, A3... stations.
  • the b segment of the large group train can be named as the XXb line train.
  • the subway map of the line is only marked with B1, B2, B3... stations.
  • the c segment of the large group train can be named as the XXc train.
  • the subway map of the line is only marked with C1, C2, C3... stations.
  • the train length of the large group is more than three times the length of the platform, and the train length of the small group is similar to the length of the platform.
  • Large group trains are the main vehicles, and small group trains are the auxiliary vehicles.
  • the ride experience automatically guides passengers from high-density auxiliary vehicles to low-density main vehicles.
  • the propaganda and advocacy of operators can speed up this process, and operators can encourage passengers to take more seats in the main vehicle. If natural guidance and ceremonies guidance are still insufficient to balance passenger density, economic means can be used to enforce Balance passenger density.
  • the policy should be: give preferential treatment to passengers who only take one or two auxiliary vehicles. Guide passengers to take the main car as much as possible.
  • the card on the car will affect the speed of getting on and off, so consider setting up the card machine on the platform. It is a necessary condition for the passenger to get a card once more. To get a discount, you must get off. This can attract some passengers who are accustomed to taking the direct access to the auxiliary vehicle and get off the bus. Since you want to change your car, why not take the main car and take the auxiliary car less? Through the pit stop, the exit port and the transfer station can infer the behavior of most people. As long as you record the passenger's change location and the pick-up and drop-off location, you can get an idea of the passenger's ride mode. And set the reward conditions according to the ride mode.
  • the policy can be set as follows: People who only take one or two auxiliary vehicles will be given a discount. In addition, some stations with less passenger flow can be selected as the transfer reward station.
  • Examples 1 to 4 are all tidal methods.
  • the length of the large group train is about 2 times the length of the platform.
  • the train length of the small group is similar to the length of the platform. In one direction, only the large group train is used, and the other direction only uses the large group train. Use small group trains and only discuss the scheduling of large group trains.
  • Example 1 Example of the application of the two-stage method in the tide method.
  • the characteristic of the morning peak of Line 6 is that the length of the east and west sections is roughly equal to the ten-mile station.
  • the first type of stop train is divided into the first half and the second half.
  • the first half is called 6ss and the second half is called 6dd.
  • the 6ss only stops at the single station. 6dd only stops the double station.
  • the parking here refers only to the car parked in the platform, not including the car parked outside the platform. The same reason.
  • the trains of the second type of docking method are also divided into the first half and the second half.
  • the first half is called 6sd and the second half is called 6ds.
  • 6sd In the eastern section, 6sd only stops in a single station. In the western section, 6sd only stops the double station.
  • 6ds In the eastern section, 6ds only stops double stations. In the western section, 6ds only stops at a single station.
  • Line 6 will be extended to the Apple Orchard Station in the future. With such a long subway line, the scheduling should be made more elaborate.
  • the sixth line is divided into three sections of East, West and West.
  • the first type of stop train is divided into the first half and the second half.
  • the first half is called 6sss, the latter half is called 6ddd.
  • 6sss only stops at a single station. 6ddd only stops the double station.
  • the trains of the second type of docking method are also divided into the first half and the second half.
  • the first half is called 6sds and the second half is called 6dsd.
  • 6sds In the eastern section, 6sds only stops at a single station. In the middle, 6sds only stops the double station. In the western section, 6sds only stops at a single station.
  • 6dsd only stops the double station. In the middle, 6dsd only stops the single station. In the western section, 6dsd only stops double stations.
  • the sixth line is divided into three sections of East, West and West.
  • the first type of stop train is divided into the first half and the second half.
  • the first half is called 6ssd and the second half is called 6dds.
  • 6ssd only stops at a single station. In the middle section, 6ssd only stops the single station. In the western section, 6ssd only stops in double stations.
  • 6dds In the eastern section, 6dds only stopped the double station. In the middle, 6dds only stops the double station. In the western section, 6dds only stopped the single station.
  • the trains of the second type of docking method are also divided into the first half and the second half.
  • the first half is called 6sdd and the second half is called 6dss.
  • 6sdd only stops at a single station. In the middle, 6sdd only stops the double station. In the western section, 6sdd Only stop the double station.
  • 6dss In the eastern section, 6dss only stops dual stations. In the middle, 6dss only stops at a single station. In the western section, 6dss only stops at a single station.
  • the passengers on the east section of the example 1 can only reach the single station in the west section, and the passengers on the east section of the number of stations can only reach the west station.
  • the passengers on the east section of the example 2 can only reach the western section of the station, and the passengers on the east section of the number of stations can only reach the single section of the west section.
  • An additional benefit of alternating scheduling instances 2 and 3 is that passengers in the eastern section can reach any station in the western section.
  • the application range of the example 4 is wider, and even the unexpanded line 6 can be applied.
  • the segmentation method only has an advantage for passengers who travel across the section, so the benefit of the first example of Comparative Example 1 is that more segments create more cross-segment passengers.
  • Examples 1 to 4 discuss the tidal method. The two-way capacity multiplication is discussed below.
  • Example 5 Example of a large group train application using two docking methods - multi-segment method and double-way capacity multiplication.
  • This example is suitable for passengers who like to come to the car.
  • This example is suitable for two-way passenger traffic, and there is no abnormality in the demand for getting on and off the line at both ends of the line.
  • the two-way passenger flow is very large, in order to double the two-way capacity (the starting interval is unchanged, the driving speed is the same, the full passenger capacity is doubled, the abbreviation: the capacity is doubled),
  • Large group trains with twice the length of the platform are used in both directions. Since a similar scheduling method is used in both directions, we only discuss the scheduling method in one direction. In one direction, two large trains with different docking methods are used.
  • the first half of the large group train is called the front car
  • the second half of the large group train is called the rear car.
  • the first line is the serial number of the station, only the first two stations are marked.
  • the second line is the docking method used by the first large group train (XX2 line).
  • the third line is the method of docking used by the second large group train (XX8 line).
  • both cars are: the front car only stops odd-numbered stations, and the rear car only stops even-numbered stations.
  • the first type of docking method 26 stations are numbered from 1 station to 26 stations, which can be divided into single station and double station.
  • the car with the first type of docking method is divided into the front and the rear.
  • the front car only stops at a single station. After the car only stops the double station.
  • the parking here refers only to the car parked in the platform, not including the car parked outside the platform. The same reason.
  • the car using the first method of docking is called the XX2 line
  • XX is the name of the subway line
  • 2 is a cycle of every two stations.
  • the first method of docking includes two sub-methods, namely the front-vehicle docking method and the rear-vehicle docking method.
  • the second method of docking divide 26 stations into 6 segments, and number them into segments 1 to 6, which can be divided into singular segments and double segments.
  • the car with the second stop method is divided into the front and the rear.
  • the front car only stops and must stop for a few stations.
  • the rear car only stops and must stop at several stations.
  • the car with the second stop method is called the XX8 line, XX is the subway line name, and 8 represents the cycle period from 8 stations to 10 stations.
  • the second method of docking includes two sub-methods, namely the front-vehicle docking method and the rear-vehicle docking method.
  • passenger capacity refers to full passenger capacity
  • the full capacity of the large group trains is doubled compared to the full capacity of the ordinary trains.
  • passengers on the odd-numbered station can only reach the single-station station, and passengers on the double-number station can only reach the double-number station, and only half of the passengers can reach the destination directly.
  • Method 1 First take the XX2 line to the previous station of the destination, then change to the XX8 line to reach the destination, if necessary, take the XX2 line to the next stop of the destination, then take the reverse XX8 line to arrive at the station. destination.
  • Method 2 Multiply the current segment by the XX2 line and then take the XX8 line to reach the destination.
  • Each segment of the XX8 line constitutes one cycle.
  • the number of passengers in the front car gradually increased, and the number of passengers in the second stage gradually increased. After the cycle was completed, the passengers in front and rear were basically balanced.
  • the front and rear passengers have upper and lower passengers, and the passenger density shows a characteristic of floating at a high level.
  • stations located on both sides of the segment boundary line may force passengers to sit back and take the car, considering the transfer station of the returning car or the next stop at the destination, or the last stop at the departure point. It is best for the two transfer stations to share a station hall in two directions.
  • the method of this example evolves into a tide method if it is used only in one direction and the normal group train is used in the opposite direction, and each station stops.
  • Example 6 Example of a large group train application using three docking methods - multi-segment method and double-way capacity multiplication.
  • This example is suitable for passengers who do not like to change cars.
  • This example is suitable for two-way passenger traffic, and there is no abnormality in the demand for getting on and off the line at both ends of the line.
  • the two-way passenger flow is very large, in order to double the two-way capacity (the starting interval is unchanged, the driving speed is the same, the full passenger capacity is doubled, the abbreviation: the capacity is doubled),
  • Large group trains with twice the length of the platform are used in both directions, and all cars are divided into front and rear. Since a similar scheduling method is used in both directions, we only discuss the scheduling method in one direction. In one direction, three large trains with different docking methods are used.
  • the first half of the large group train is called the front car
  • the second half of the large group train is called the rear car.
  • the first line is the serial number of the station, only the first two stations are marked.
  • the second line is the docking method used by the first large group train (XX2 line).
  • the third line is the docking method used by the second large group train (XX4a line).
  • the fourth line is the docking method used by the third large group train (XX4b line).
  • the front car only stops at odd stations, and the rear car only stops even stations.
  • the first type of docking method 26 stations are numbered from 1 station to 26 stations, which can be divided into single station and double station.
  • the front car only stops at the single station. After the car only stops the double station.
  • the car using the first method of docking is called the XX2 line
  • XX is the name of the subway line
  • 2 is a cycle of every two stations.
  • the first method of docking includes two sub-methods, namely the front-vehicle docking method and the rear-vehicle docking method.
  • the second method of docking divide 26 stations into 13 segments, and number them into segments 1 to 13, which can be divided into single segment and double segment.
  • the front car only stops and must stop for a single station.
  • the rear car only stops and must stop at several stations.
  • the car with the second stop method is called the XX4a line
  • XX is the subway line name
  • 4 represents the cycle period of 4 stations.
  • the second method of docking includes two sub-methods, namely the front-vehicle docking method and the rear-vehicle docking method.
  • the third method of docking the first station is numbered as the first paragraph, the 26th station is numbered as the 14th paragraph, and the middle 24 stations are equally divided into 12 sections, which are numbered from the second paragraph to the 13th paragraph. , can be divided into singular and double segments.
  • the front car only stops and must stop for a single station.
  • the rear car only stops and must stop at several stations.
  • the car with the third docking method is called the XX4b line, XX is the name of the subway line, and 4 stands for The ring period is 4 stations.
  • the third method of docking includes two sub-methods, the front-vehicle docking method and the rear-vehicle docking method.
  • passenger capacity refers to full passenger capacity
  • the full capacity of the large group trains is doubled compared to the full capacity of the ordinary trains.
  • case 5 or example 6 should be slightly modified.
  • Sub-example 1 The situation of two subway stations with two connecting stations
  • Line 1 is divided into 8 segments, Sihui East Station is No. 1 and Sihui Station is No. 2, these two segments are non-standard segments, and the remaining stations are divided into 6 segments, numbered 3 to 8.
  • the Sihui East Station is a single-station station and a single-segment station.
  • the Sihui Station, that is, the double-number station is also a double-numbered station.
  • Passengers on the Batong Line are convenient to transfer to the odd-numbered station, single-segment, double-station or double-segment of Line 1.
  • Sub-example 2 Multiple capacity options for two subways with two docking stations.
  • the scheduling method based on the example 5 or the example 6 is a purely large grouping method.
  • the size grouping hybrid scheduling method provided in this article is a combination of size and grouping.
  • the eight-line line runs a small group, and the line 1 runs a purely large group.
  • the eight-way line runs a purely large group, and the first line runs a small group.
  • the eight-way line runs a purely large group, and the No. 1 line runs a size group combination.
  • the eight-way line runs a purely large group, and the first line runs a purely large group.
  • Line 5 is divided into 6 sections, Songjiazhuang Station is No. 1, Songjiazhuang Station and its adjacent 3 stations are No. 2, and other stations are divided into No. 3 to No. 6.
  • Line 5 has a total of 23 stations, Songjiazhuang Station is numbered as Station 1 and Station 2, and other stations are numbered 3 to 24.
  • XX2 is executed according to the method of heavy stop. First stop the car before stopping, then stop the car at the other stations, and stop at the other stations.
  • XX8 is executed according to the method of heavy stop. First stop the car before stopping, then stop the car in the other sections, and stop the car in the other few sections.
  • the north direction can double the capacity.
  • XX2 and XX8 are all executed according to the heavy stop method, first stop the car, then stop the car.
  • the capacity in the south direction can be enhanced. But the enhancement is less than doubled and nearly doubled.
  • Sub-example 4 Not two subways are connected, only the passengers at the departure station are full.
  • Tiantongyuan North Station the northernmost part of Beijing Metro Line 5
  • Tiantongyuan North Station the northernmost part of Beijing Metro Line 5
  • the heavy stop method like Songjiazhuang Station.
  • the re-stop method requires a certain amount of time, it is recommended to use it in conjunction with the jump station method.
  • Example 8 Application examples of large group trains
  • the two-way passenger flow is very large.
  • large-sized trains with twice the platform length can be used in both directions. All cars are divided into front and rear vehicles. . Since a similar scheduling method is used in both directions, we only discuss the scheduling method in the south-down direction. In the south, use a large group train with only one stop method.
  • the first half of the large group train is called the front car
  • the second half of the large group train is called the rear car.
  • the first line is the name of the station, only the first two stations are marked.
  • Line 2 is the docking method used by the front car.
  • Line 3 is the docking method used by the rear car.
  • the dividing line of the section is located within the station (not between the two stations).
  • the station on the dividing line is called the connecting station, and the station at both ends of the line is also called the connecting station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于主辅车概念以使轨道交通列车的运力倍增的调度方法,在基本不改造站台的条件下明确主车的定义与特殊属性,其中,主车是一种带有特殊属性的大编组列车,主车的长度至少超过站台的长度一节车厢,主车至少被物理的分隔成两段;基于主车的定义与特殊属性设计主车在同一个站台的停靠方法;基于主车的定义与特殊属性设计调度方法;基于主车的定义与特殊属性派生出均衡乘客密度的方法。本申请提出了超长编组列车、乘客暂留、跳站法、重停靠法、双向主车法、潮汐法、主辅车混合调度、强制均衡、换乘站刷卡、换乘奖励站等新概念以及寄生在这些概念上的新方法,因此可避免列车的超载问题,消除了轨道交通运行的安全隐患,提升了乘客体验感。

Description

基于主辅车概念以使轨道交通列车的运力倍增的调度方法
本申请要求于2017年9月18日提交中国专利局、申请号为201710841349.1、发明名称为“基于主辅车概念以使轨道交通列车的运力倍增的调度方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及轨道交通技术领域,更具体地说,涉及一种基于主辅车概念以使轨道交通列车的运力倍增的调度方法。
背景技术
预计到2020年,北京、上海、广州、深圳等城市将建成较为完善的轨道交通网络,南京、重庆、武汉、成都等城市建成轨道交通基本网络,南通、石家庄、兰州等城市建成轨道交通骨干线,其他城市轨道交通建设也将加快,从而使我国轨道交通的总体水平提升到一个新的层次。
然而随着某些城市人口的增多,轨道交通的超载情况却日益严重,尤其是在高峰时期,除车厢内乘客密度极高列车超载严重以外,乘客往往需要等待许久才能上车,列车的超载不仅为轨道交通的运行造成的安全隐患,而且,乘客体验感差。然而,现有技术中却没有针对这一问题提出的解决方案。
发明内容
本申请提供了一种基于主辅车概念以使轨道交通列车的运力倍增的调度方法,通过定义主辅车概念,挖掘出仅仅属于主车的特殊属性,基于定义的主辅车概念研究出使轨道交通列车运力倍增的调度方法,进而提升乘客的乘车体验感。
为了实现上述目的,本申请提供了以下技术方案:
一种基于主辅车概念以使轨道交通列车的运力倍增的调度方法,包括:
明确主车的定义与特殊属性,其中,所述主车是一种带有特殊属性的大编组列车,主车的长度至少超过站台的长度一节车厢,主车至少被物理的分隔成两段;
基于所述主车的定义与特殊属性设计主车在同一个站台的停靠方法;
基于所述主车的定义与特殊属性设计调度方法;
基于所述主车的定义与特殊属性派生出均衡乘客密度的方法。
优选地,所述基于所述主车的定义与特殊属性设计主车在同一个站台的停靠方法包括:单次停靠法和多次停靠法;其中:
分类标准为:是否允许所有乘客上下车;
单次停靠法是指:主车在同一站台只停靠一次。停靠站台时,主车位于站台之外的所有段上的乘客都禁止下车,主车位于站台之内的所有段都允许乘客上下车,其中,单次停靠法包含一些子方法,主车具体的不同的段停靠在站台对乘客的影响是不同的,每一次停靠,只是实现了一种子方法;
多次停靠法是指:主车在同一站台的停靠次数大于等于两次,通过多次停靠的方法,保证车上的乘客都能下车,保证站台上的乘客都能够登上他所希望乘坐的段;停靠站台时,主车位于站台之外的所有段上的乘客都禁止下车,主车位于站台之内的所有段都允许乘客上下车;其中,多次停靠法包含一些子方法,停靠两次和停靠三次是不同的子方法;
主车在同一个站台不被推荐的停靠方法是:非推荐多次停靠法;其中,非推荐多次停靠法是指主车在同一站台至少停靠了两次,但是仍然不能保证车上的所有乘客都能下车。
优选地,所述基于所述主车的定义与特殊属性设计调度方法包括:
确定是不是需要使用辅车以及全天需要多少班次辅车,其中,所述辅车指普通编组列车;
全天需要多少班次主车;
为每一班次主车选择出全程停靠方法;
确定所有的主车和辅车的发车顺序。
优选地,所述基于所述主车的定义与特殊属性派生出均衡乘客密度的方法包括以下三种方法:
方法一:在辅车上设置刷卡机,通过刷卡以及交费优惠将乘客引导到主车;其中,刷卡和交费为两个概念,只有出站时的最后一次刷卡才完成交费,其他刷卡只是记录乘客行为,为优惠政策的实施提供技术保障,对只坐一两站辅车的乘客给予优惠,引导乘客尽量坐主车;
方法二:在主车上设置刷卡机,采用主车打折方式;
方法三:在站台内设置刷卡机,其中,乘客多刷一次卡,是得到优惠的必要条件,通过进站口,出站口和换乘站推断出大多数人的行为,通过纪录乘客的换车地点和上下车地点,了解乘客的乘车模式,并依据乘车模式设立奖励条件,政策定为:只坐一两站辅车的人给予优惠,以及选定一些客流较少的车站作为换乘奖励车站。
综上所述,本技术方案提供了一种基于主辅车概念以使轨道交通列车的运力倍增的调度方法,明确主车的定义与特殊属性,其中,主车是一种带有特殊属性的大编组列车,主车的长度至少超过站台的长度一节车厢,主车至少被物理的分隔成两段;基于主车的定义与特殊属性设计主车在同一个站台的停靠方法;基于主车的定义与特殊属性设计调度方法;基于主车的定义与特殊属性派生出均衡乘客密度的方法,本发明提出了超长编组列车、乘客暂留、跳站法、重停靠法、双向主车法、潮汐法、主辅车混合调度、强制均衡、换乘站刷卡、换乘奖励站等新概念以及寄生在这些概念上的新方法。因此可避免列车的超载问题,消除了轨道交通运行的安全隐患,提升了乘客体验感。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明公开的一种基于主辅车概念以使轨道交通列车的运力倍增的调度方法的实施例1的流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
如图1所示,为本发明公开的一种基于主辅车概念以使轨道交通列车的运力倍增的调度方法的实施例1的流程图,本方法包括以下步骤:
S101、明确主车的定义与特殊属性,其中,主车是一种带有特殊属性的大编组列车,主车的长度至少超过站台的长度一节车厢,主车至少被物理的分隔成两段;
S102、基于主车的定义与特殊属性设计主车在同一个站台的停靠方法;
S103、基于主车的定义与特殊属性设计调度方法;
S104、基于主车的定义与特殊属性派生出均衡乘客密度的方法。
具体的,在上述实施例中:
(一)明确了主车的定义与特殊属性
主车是一种带有特殊属性的大编组列车,需要说明的是,在本案中,主车有时也不严格的称为大编组列车或称为超长编组,这主要是为了在当时的语境中突出主车的大编组列车属性。主车与普通编组列车(可称为辅车)之间有五个主要区别。这些区别是仅仅属于主车的特殊属性。区别如下:
1、发明者赋予主车的长度属性
主车的长度至少超过站台的长度一节车厢。在常规情况下,如果一条地铁线路的列车编组最多有N节车厢,则主车至少有N+1节车厢。
2、发明者赋予主车的分段属性
主车至少被物理的分隔成两段。非特殊情况,各段之间禁止乘客相互流动。这种分隔不同于普通编组列车上的通道门,这种分隔是强制性的,不是可有可无的,是必须的。
如果一条地铁线路的常规列车编组最多有N节车厢,并且希望主车同一时间只有一个段停靠站台,则主车的每一段最多有N节车厢。在某些情况下,主车停靠站台时,如果希望主车有两个段同时停靠站台,则主车每两个段最多有N节车厢。
3、发明者挖掘出的属性:主车在同一个站台的停靠方法
主车在同一个站台有两类被推荐的停靠方法:单次停靠法和多次停靠法。
分类的标准是:是否允许所有乘客上下车。
单次停靠法是指:主车在同一站台只停靠一次。停靠站台时,主车位于站台之外的所有段上的乘客都禁止下车,主车位于站台之内的所有段都允许乘客上下车。
单次停靠法包含一些子方法,主车具体的不同的段停靠在站台对乘客的影响是不同的。因此,每一次停靠,只是实现了一种子方法。
多次停靠法是指:主车在同一站台的停靠次数大于等于两次,通过多次停靠的方法,保证车上的乘客都能下车,保证站台上的乘客都能够登上他所希望乘坐的段。停靠站台时,主车位于站台之外的所有段上的乘客都禁止下车,主车位于站台之内的所有段都允许乘客上下车。
多次停靠法包含一些子方法,停靠两次和停靠三次是不同的子方法。
主车在同一个站台不被推荐的停靠方法是:非推荐多次停靠法。
非推荐多次停靠法:主车在同一站台至少停靠了两次,但是仍然不能保证车上的所有乘客都能下车。例如,在常规情况下,如果一条地铁线路的常规列车编组最多有N节车厢,当主车至少有2N+1节车厢时,如果主车只停靠了两次,就属于非推荐多次停靠法。
4、发明者挖掘出的“基于主辅车概念的调度方法设计”所独有的特点:
基于主车概念,可以派生出基于主辅车概念的调度方法设计。
设计基于主辅车概念的调度方法包含了设计常规调度方法的一些特点:例如规划每一班列车的车厢数、发车时间、发车间隔、行车速度、行车停靠区间等等。
发明者挖掘出的设计主辅车联合调度方法的特有部分包含:
第一,确定是不是需要使用辅车。全天需要多少班次辅车。
第二,全天需要多少班次主车。
第三,为每一班次主车选择出全程停靠方法(为主车所停靠的每一站选择出唯一的停靠子方法)(各个班次主车的全程停靠方法可以相同,也可以不同)。
第四,确定所有的主车和辅车的发车顺序。
其中第三、第四两项设计难度最大,并且对乘客体验有巨大影响。
5、基于主车概念,可以派生出均衡乘客密度的方法。
(二)本发明特点的进一步说明
1、超长编组是运力加倍的最根本措施。
运力加倍是指:发车间隔不变,行车速度不变,满员载客量加倍,简称:运力加倍。
2、重停靠法是基于主车的多次停靠法的最主要子方法。
重停靠法是超长编组分段分时两次停靠同一站台的停靠法。例如两倍站台长度的主车,先停靠前一半车身再停靠后一半车身,乘客分两个时段上下车。重停靠法是超长编组停靠站台的重要子方法之一。优点是便于理解,上下车方便(是指乘客能够上下主车的任意段)。缺点是浪费时间,影响运力增加。
3、跳站法是基于主车的单次停靠法的另一种称呼。
跳站法的称呼可以更直接的提醒乘客:在一个具体的车站,主车的某些段,乘客是不能上下车的。这种现象可以形象的比喻为:主车的某些段跳过了此站。跳站法不同于常规情况下的整车通过某站不停车。跳站法的缺点是难于理解,上下车不方便(是指乘客不能任意上下主车的某些段),优点是节省时间,有助于运力增加。跳站法是本案使用的主要方法。我们 研究“基于主辅车概念的调度方法”的主要目的之一就是:要尽量规避跳站法的缺点。
4、主车至少被物理的分隔成两段可致使乘客暂留。
乘客暂留是指部分车厢暂时停留在站台外,非紧急情况,这部分车厢乘客不能通过任何方法上下车。乘客暂留是执行跳站法的关键点,因为执行跳站法必有部分车厢停靠在站台之外。这部分车厢如果与站台之内的车厢有内部连通,必有部分乘客希望向站台之内的车厢流动,只要流动的乘客足够多,势必引起混乱。因此,阻断流通是关键。
5、基于主辅车概念的调度方法研究。
“基于主辅车概念的调度方法研究”的主要目的是为了使车辆运载能力与客流量相互匹配,并尽量改善乘客体验。
客流匹配调度法可以在不损害乘客体验的条件下提高经济效益。
客流匹配是指在客流量大时,加大运载能力,反之亦然。
客流匹配的调节手段主要是“调整发车间隔”和“调节主辅车之间的班次比例”。调节的依据是客流量的大小。
“基于主辅车概念的调度方法研究”一般分三个步骤。
第一步,统计客流信息并以此为依据评估主车至少需要多少节车厢。
第二步,设计基于主辅车概念的客流匹配调度法。
第三步,主车调度方法细化,以便尽量改善乘客体验。
将以上3个基本任务粗略展开。
第一步:
首先,统计客流信息,既:在星期几、在某一时间段(列车在每个站台的到达时间是不同的)、在某一个站台、在两个方向各有多少乘客下车,在两个方向各有多少乘客上车。客流信息包含了时间信息、站台信息、方向信息和上下车的乘客人数信息。然后根据客流信息计算出某班理想列车(载客量无限大的列车)的上下车乘客人数的差值,从而计算出各个区间(两站之间)的乘客人数,并挑选出该班列车乘客人数最多的区间,将这一区间的乘客人数称为这该班列车的(也称为当前时间段的)峰值乘客人 数。
其次,在全天所有时间段的“峰值乘客人数”中挑选最大的那个“峰值乘客人数”,以此为依据评估主车至少需要多少节车厢。
第二步:
将全天开行的所有列车编号从而生成班次信息,每一班次对应一个时间段,两班列车之间的发车间隔必须大于等于最小发车间隔。基于某一时间段、某一方向的峰值乘客人数分析,调整线路的运载能力。首先是调整发车间隔,如果仍不满足运载能力的要求则可安排加开主车。
第三步:
设计每一班次的调度信息。如果该班次列车是辅车则调度信息按常规方法处理。如果是主车,则调度信息里除了包含每一班次列车的始发站发车时间、行车方向、行车速度等常规的项目之外,还要确定主车的车厢数目,并对主车进行分段。最后对每一班次的主车都要给出一张主车全程停靠方法列表,这张列表指出,(对于单次停靠法)在具体的某一站要停靠主车的哪些个段,并指出是否使用多次停靠法。各个班次的主车全程停靠方法列表可以相同也可以不同。各个班次的全程停靠方法列表的以及它们之间的相互配合对于改善乘客体验至关重要。
本发明提供了几种基本的调度方法举例,它们的运载能力都不相同,因而可以匹配不同的客流情况。这些举例包括“主辅车混合调度法举例”、“单向主车法(潮汐法)举例”、“双向主车法举例”和“重停靠法举例”。
6、在“主辅车混合调度应用举例”部分,提供了强制均衡乘客密度的方法,这也属于本发明内容。
(三)发明者首先提出的“基于主辅车概念的调度方法”分类的几个切入点。
这些切入点都是仅仅属于主车的特有属性。
1、基于主车的分段属性,可以有两种调度方法:其一是主车每段长度不能超过站台长度,但应尽量接近站台长度。其二是相邻两段加起来的长度,不应超过站台长度,但应尽量接近站台长度。这两种分段方法各有优 缺点,适合不同的情况。
2、配合“基于主辅车概念的乘客流量匹配调度法”而产生了“主辅车混合调度法”。
3、根据乘客流量的方向性差异而产生两种调度方法:即“单向主车法(也就是潮汐法)”和“双向主车法”。
4、根据是否采用重停靠法而产生了两种调度方法:其一是基于跳站法的调度方法,可见例1到例6。其二是同时使用跳站法和重停靠法的调度方法,可见例8。
5、在两条地铁线衔接时的主辅车调度方法。可见“例7、两条地铁衔接的情况”例7处理了3种情况,其一是两条地铁有两个衔接站的情况,其二是两条地铁只有一个衔接站的情况,其三是并非两条地铁衔接,只是始发站乘客已经爆满的情况。
下面通过举例先介绍一种简单实用的调度方法,因为其主车分段方法与其他所有例子都不一样,所以提前介绍一下。
在主车中插入辅车段的方法介绍:
1、将车站顺序编号,即可分为单数站与双数站。
2、利用带锁的门将大编组列车车厢分为a,b,c三段,三段车厢间旅客不可相互流通。b段车厢称为辅车段,它具备每个站台都停靠的特性。
3、单数站a和b段车厢停靠站台并开门,乘客正常上下车。c段车厢不开门,乘客暂留在车厢之内。
双数站b和c段车厢停靠站台并开门,乘客正常上下车。a段车厢不开门,乘客暂留在车厢之内。
4、a段车厢只能在单数站上下车,c段车厢只能在双数站上下车,b段车厢则在所有车站都可以上下车。因此a和c段的有些乘客有可能需要转乘b段车厢到达目的地。
5、各段车厢数目不一定相等,可通过仿真及实验确定最佳值。相邻两段加起来的长度,不应超过站台长度,但应尽量接近站台长度。例如常规编组列车最大编组为6节车厢,则a,b,c三段可分别为2节、4节和2 节。例如常规编组列车最大编组为8节车厢,则a,b,c三段可分别为3节、5节和3节。
下面通过举例介绍几种基本的调度方法,包括“主辅车混合调度法举例”、“单向主车法(潮汐法)举例”、“双向主车法举例”和“重停靠法举例”。
在举例之前首先介绍这些例子的分析方法:分段法与列表法,然后罗列一下这几种方法各自的优缺点,最后分别介绍几种方法。
(一)分析方法:分段法与列表法
分段法:将一条地铁线路分成若干段,每段采用不同的调度策略。并且这种调度策略是可清晰描述的。
列表法:为不同的地铁司机提供不同的表,这张表指出,在每一站司机应该把车厢的那一部分停靠在站台。列表法仅指那些看不出明显规律,不可清晰描述的列表。
关于列表法的说明:
主车在一个站台有两类停靠方法:单次停靠法和多次停靠法。其中包含若干种子方法。
例如地铁6号线有26个车站,如果不对停靠方法作任何限制,那么到底有多少种停靠方法是计算不出来的。如果限制每个站只有两种子停靠方法则有2的26次方个停靠方法。如果进一步限制每两个站只有两种停靠方法,例如第一站停前半段,则第二站必停后半段,反之亦然。这样6号线就有2的13次方(8192)个停靠方法。
什么是最好的方法呢?挑出来的最好方法不过是供司机或自动驾驶仪使用的列表,而列表的产生过程才是工程师要关心的事情。其中,工程师关心的事情为:
(1)产生客流数据,例如每个时段从某站上车到某站下车的乘客平均数。
(2)设定评价指标,例如乘客平均换乘次数、乘客平均等待时间、对回程车的影响、车厢乘客平均密度以及各种指标的加权值,其中加权值的 大小在一定程度上就是反应人的愿望。对不同的人有不同的最佳调度方法。怎样满足大多数人的愿望,是社会工程。
(3)提出调度方法限制,例如一个循环使用几个编组,每个编组的大小,编组之间的时间间隔。
(4)提出停靠方法限制条件(例如是否可以使用重停靠法,最多可以跳几个站等)并自动生成所有的停靠方法。
(5)根据设定的条件和数据编制出计算评价指标的程序。
(6)运行程序,并根据评价指标选出最优调度方法,也就是生成几张最优列表,以及它们之间的循环关系和时间间隔。
(二)增加运力的若干方法包括:
1、主辅车混合调度法,
具体的例子可见(三)“主辅车混合调度法应用举例”。特点是主辅车轮流开行,既提高了运力,又为不太理解主车的乘客提供了方便。缺点是由于存在辅车,妨碍了运力的进一步提升,同时也难以均衡主辅车乘客密度。
2单向主车法(潮汐法),
具体的例子可见(四)“单向主车法(潮汐法)应用举例”。特点是一个方向开行主车,另一个方向开行辅车。潮汐法很适合某些线路的早晚高峰的乘客规律。在本文所举例子中,潮汐法可在一个方向实现运力倍增。例1到例4缺点是部份乘客必须坐一站回头车。
3双向主车法,
具体的例子可见(五)“双向主车法应用举例”。只有在两个方向开行主车,才有可能实现双向运力倍增。在本文所举例子中,基本可实现双向运力倍增。例5只有两种不同停靠方法的列车,因此便于乘客记忆,但是有个别乘客必须搭乘回头车。例6有三种不同停靠方法的列车,有可能等车时间较长,但是所有乘客都可直达目的地。例7是解决两条地铁衔接的特殊情况。例7同时解决了始发站就可能乘客爆满的特殊情况。另外,这几个例子完全可以用在潮汐法中。本发明的作者感觉到——也许例6是最 受乘客欢迎的调度方法。
4重停靠法,
具体的例子可见(六)“重停靠法应用举例”。重停靠法需要耽误乘客时间,只要耽误乘客时间不是太多,也是很好的方法。
(三)主辅车混合调度法应用举例
一、运力提高50%左右的方法:
大编组列车长度为站台长度2倍左右,小编组列车长度与站台长度差不多。大编组列车为主车,小编组列车为辅车。
1、将车站顺序编号,即可分为单数站与双数站。
2、利用带锁的门或其他措施将大编组列车等分为a和b两段,两段车厢间旅客不可相互流通。
3、a段车厢在单数站台停靠并开车门乘客正常上下车。此时b段车厢不开门,乘客暂留在车厢之内。b段车厢在双数站台停靠并开车门乘客正常上下车。此时a段车厢不开门,乘客暂留在车厢之内。小编组列车每站都开门。
4、混合运行方式是指:大小编组根据需要灵活调度。极端情况多发主车少发辅车,高峰时段主辅车交替运行,平峰时段只发辅车。
5、大编组列车有些乘客需要转乘小编组列车到达目的地。
6、如果原地铁线路命名为XX号线,则小编组列车仍可命名为XX号线列车。该线的地铁图标注全部车站。大编组列车的a段可命名为XXa号线列车。该线的地铁图只标注单数车站。大编组列车的b段可命名为XXb号线列车。该线的地铁图只标注双数车站。
7、命名方法不要求保护排他性。
二、运力提高一倍左右的方法:
大编组列车长度为站台长度3倍左右,小编组列车长度与站台长度差不多。大编组列车为主车,小编组列车为辅车。
1、将车站分为abc三类,其顺序安排为A1,B1,C1,A2,B2,C2,.....
2、利用带锁的门或其他措施将大编组列车分为abc三段。三段车厢间 旅客不可相互流通。
3、a段车厢在A1,A2,A3...等站台停靠并开车门乘客正常上下车。此时b段和c段车厢不开门,乘客暂留在车厢之内。
b段车厢在B1,B2,B3...等站台停靠并开车门乘客正常上下车。此时a段和c段车厢不开门,乘客暂留在车厢之内。
c段车厢在C1,C2,C3...等站台停靠并开车门乘客正常上下车。此时a段和b段车厢不开门,乘客暂留在车厢之内。
小编组列车每站都开门。
4、混合运行方式是指:大小编组根据需要灵活调度。极端情况多发主车少发辅车,高峰时段主辅车交替运行,平峰时段只发辅车。
5、大编组列车有些乘客需要转乘小编组列车到达目的地。
6、如果原地铁线路命名为XX号线,则小编组列车仍可命名为XX号线列车。该线的地铁图标注全部车站。
大编组列车的a段可命名为XXa号线列车。该线的地铁图只标注A1,A2,A3...车站。
大编组列车的b段可命名为XXb号线列车。该线的地铁图只标注B1,B2,B3...车站。
大编组列车的c段可命名为XXc号线列车。该线的地铁图只标注C1,C2,C3...车站。
7、命名方法不要求保护排他性。
三、运力提高一倍以上的方法:
大编组列车长度为站台长度3倍以上,小编组列车长度与站台长度差不多。大编组列车为主车,小编组列车为辅车。
具体措施按前述方法类推即可。
四、强制均衡乘客密度
乘坐体验会自动引导乘客从高密度的辅车流向低密度的主车。但是运营商的宣传倡导可以加速这一过程,运营商可倡导乘客多坐主车少坐辅车。如果自然引导与宣传引导仍不足以均衡乘客密度,可通过经济手段强制均 衡乘客密度。
可考虑使用下面三种方法之一:
1、在辅车上设置刷卡机的方法
通过刷卡以及交费优惠把乘客引导到主车。其中,刷卡和交费实际是两个概念,只有出站时的最后一次刷卡才完成交费。其他刷卡只是记录乘客行为,为优惠政策的实施提供技术保障。政策应该是:对只坐一两站辅车的乘客给予优惠。引导乘客尽量坐主车。
2、在主车上设置刷卡机的方法
采用主车打折的方式。
3、在站台内设置刷卡机的方法
在车上设置刷卡机会影响上下车的速度,因此可考虑在站台上设置刷卡机。乘客多刷一次卡,是得到优惠的必要条件。要想优惠,必须下车。这可以吸引一部分习惯于乘坐辅车直达的乘客中途下车刷卡。既然要换车,为什么不多坐主车,少坐辅车?通过进站口,出站口和换乘站可以推断出大多数人的行为。只要纪录乘客的换车地点和上下车地点,即可大致了解乘客的乘车模式。并依据乘车模式设立奖励条件。政策可定为:只坐一两站辅车的人给予优惠。另外,可选定一些客流较少的车站作为换乘奖励车站。
(四)单向主车法(潮汐法)应用举例
例1到例4都是潮汐法,在这几个例子中,大编组列车长度为站台长度2倍左右,小编组列车长度与站台长度差不多,一个方向只使用大编组列车,另一个方向只使用小编组列车,并且只讨论大编组列车的调度。
例1两段法在潮汐法中的应用举例。
北京地铁六号线,早高峰时段,从通州进城方向客流量很大,而出城方向客流量较小。这种情况很适合潮汐法的应用。
从东到西的方向,可以采用两倍站台长度的大编组列车。而从西向东方向,只采用普通编组列车。为防止列车在西边过渡积压,普通编组列车可在回程顺便拖带空车。被拖带的空车不上人。
六号线早高峰的特点是:以十里堡车站为界,东西两段长度大致相等。
十里堡以东,几乎只上人不下人。十里堡以西,上车的人越来越少,下车的人越来越多。
为达到客运量大,乘客又方便的目的,可对调度方法的使用更加细化一些。具体方法是:
1、以十里堡车站为界,将六号线分为东西两段。
2、交替发送两种停靠方法的编组列车。
3、第一种停靠方法的编组列车,分为前半段与后半段。前半段称为6ss,后半段称为6dd。
不管在东段还是西段,6ss只停单数站。6dd只停双数站。
其中,这里的停车仅指停在站台内的那段车厢,不包括停在站台外的车厢。以下同理。
4、第二种停靠方法的编组列车,也分为前半段与后半段。前半段称为6sd,后半段称为6ds。
在东段,6sd只停单数站。在西段,6sd只停双数站。
在东段,6ds只停双数站。在西段,6ds只停单数站。
这样东段单数站上车的乘客可选择6ss或者6sd。东段双数站上车的乘客可选择6dd或者6ds。
总体来说,东段上车东段下车的乘客有一半可以直达目的地。西段上车西段下车的乘客有一半可以直达目的地。东段上车西段下车的乘客都可以直达目的地。因为大部分乘客都在东段上车西段下车,因此绝大部分乘客都可以直达目的地,只有少部分乘客需要坐一站回头车。
例2:三段法在潮汐法中的应用举例
根据规划,六号线将来会西延到苹果园站,有这么长的地铁线路,就应该把调度做的更精细一点。
1、根据需要,把六号线分为东中西三段。
2、交替发送两种停靠方法的编组列车。
3、第一种停靠方法的编组列车,分为前半段与后半段。前半段称为 6sss,后半段称为6ddd。
不管在那段,6sss只停单数站。6ddd只停双数站。
4、第二种停靠方法的编组列车,也分为前半段与后半段。前半段称为6sds,后半段称为6dsd。
在东段,6sds只停单数站。在中段,6sds只停双数站。在西段,6sds只停单数站。
在东段,6dsd只停双数站。在中段,6dsd只停单数站。在西段,6dsd只停双数站。
这样东段单数站上车的乘客可选择6sss或者6sds。东段双数站上车的乘客可选择6ddd或者6dsd。
东段上车中段下车的乘客都可以直达目的地。
东段上车西段下车的乘客应该非常少,因为线路太长了,在西郊上班的乘客很少有住通州的。
这样中段单数站上车的乘客可选择6sss或者6dsd。中段双数站上车的乘客可选择6ddd或者6sds。
中段上车西段下车的乘客都可以直达目的地。
例3:三段法在潮汐法中的应用举例
1、根据需要,把六号线分为东中西三段。
2、交替发送两种停靠方法的编组列车。
3、第一种停靠方法的编组列车,分为前半段与后半段。前半段称为6ssd,后半段称为6dds。
在东段,6ssd只停单数站。在中段,6ssd只停单数站。在西段,6ssd只停双数站。
在东段,6dds只停双数站。在中段,6dds只停双数站。在西段,6dds只停单数站。
4、第二种停靠方法的编组列车,也分为前半段与后半段。前半段称为6sdd,后半段称为6dss。
在东段,6sdd只停单数站。在中段,6sdd只停双数站。在西段,6sdd 只停双数站。
在东段,6dss只停双数站。在中段,6dss只停单数站。在西段,6dss只停单数站。
这样东段单数站上车的乘客可选择6ssd或者6sdd。东段双数站上车的乘客可选择6dds或者6dss。
东段上车中段下车的乘客都可以直达目的地。
东段上车西段下车的乘客应该非常少,因为线路太长了,在西郊上班的乘客很少有住通州的。
这样中段单数站上车的乘客可选择6ssd或者6dss。中段双数站上车的乘客可选择6dds或者6sdd。
中段上车西段下车的乘客都可以直达目的地。
例4:三段法在潮汐法中的应用举例
交替调度例2和例3就产生了例4(比如第一辆和第二辆车执行例2,第三辆和第四辆车执行例3)。例2和例3的性能一模一样。唯一的区别是:
例1的东段单数站上车的乘客只能到达西段单数站,东段双数站上车的乘客只能到达西段双数站。
例2的东段单数站上车的乘客只能到达西段双数站,东段双数站上车的乘客只能到达西段单数站。
交替调度例2和例3的额外好处是东段的乘客可达西段任何站。
这样,例4的应用范围更广,即使未延长的6号线也可应用。
分段法只对跨段乘车的旅客有优势,因此例4对比例1的好处是:更多的分段制造了更多的跨段乘客。
(五)双向主车法应用举例
例1到例4讨论的都是潮汐法,下面讨论双向运力倍增。
例5使用两种停靠方法的大编组列车应用举例——多段法与双向运力倍增。
本例适合喜欢来车就上的乘客。
本例适合双向客流量都很大,线路两头上下车需求无异常的情况。
不适合始发站或终到站与另一条地铁衔接的情况,也不适合始发站乘客已经爆满的情况。
假如地铁某号线有26个车站,早晚高峰时段,双向客流量都很大,为使双向运力加倍(发车间隔不变,行车速度不变,满员载客量加倍,简称:运力加倍),可以在两个方向都采用两倍站台长度的大编组列车。因为在两个方向采用类似的调度方法,我们只讨论一个方向的调度方法。在一个方向,使用两种有不同停靠方法的大编组列车。
为叙述方便将大编组列车的前半部分称为前车,将大编组列车的后半部分称为后车。
先上一张有助于理解调度方法的表格。其中,
第一行是车站的序号,只标注了首尾两站。
第二行是第一辆大编组列车(XX2线)使用的停靠方法。
第三行是第二辆大编组列车(XX8线)使用的种停靠方法。
1                                                 26
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0
以上表格中,两辆车都是:前车只停奇数站,后车只停偶数站。
1、调度方法
1.1、交替发送两种停靠方法的大编组列车。
1.2、第一种停靠方法:将26个站编号为1站到26站,即可分为单数站与双数站。
采用第一种停靠方法的车,等分为前车与后车。前车只停单数站。后车只停双数站。
其中,这里的停车仅指停在站台内的那段车厢,不包括停在站台外的车厢。以下同理。
采用第一种停靠方法的车称为XX2线,XX是地铁线路名,2代表每两个站为一个循环周期。
要注意的是第一种停靠方法包括两个子方法,即前车停靠法和后车停靠法。
1.3、第二种停靠方法:将26个车站分为6段,将其编号为1段到6段,即可分为单数段与双数段。
其中4个段每段有4个车站,2个段每段有5个车站。每段站数不一样,可使得例5更有普遍性。
采用第二种停靠方法的车,等分为前车与后车。前车只停并必停单数段车站。后车只停并必停双数段车站。
采用第二种停靠方法的车称为XX8线,XX是地铁线路名,8代表循环周期为8站到10站。
要注意的是第二种停靠方法包括两个子方法,即前车停靠法和后车停靠法。
2、性能
2.1、载客量(指满员载客量)
对于一条地铁线路两端的段来说,大编组列车只有一半车厢载客,因此在两端,大编组列车的载客量与普通编组列车的载客量并无区别。
好在这并无大碍,因为在一条线路两端的段,本来乘客就不多(条件是这些段里包含的站不要太多)。
对于一条线路除去两端的其它段来说,大编组列车的满员载客量比普通编组列车的满员载客量增加一倍。
2.2、可直达的的乘客数量:
对于XX2线,单数站上车的乘客只能到达单数站,双数站上车的乘客只能到达双数站,只有一半乘客可直达目的地。
对于XX8线,单数段车站上车的乘客只能到达单数段车站,双数段车站上车的乘客只能到达双数段车站,只有一半乘客可直达目的地。
可以证明有四分之三的乘客可直达目的地,有四分之一的人必须换车。所谓四分之一只是大约数,因为这与乘客的分布有关。
2.3、结论:
在除去两端段的区间,满员载客量增加一倍。
大约4分之3的人可直达,4分之1的人换乘一次即可达(见换乘策略)。
3.、换乘
3.1、在什么条件下必须坐回头车?
可以证明必须坐回头车的条件是:乘客在这条线路只希望坐一站车,这一站又恰巧跨越了段的分界线。
3.2、换乘策略
先乘坐XX2线然后乘坐XX8线的的方法:
方法1.首选乘XX2线到达目的地的前一站,然后换车乘一站XX8线到达目的地,必要时乘XX2线到达目的地的下一站,然后乘一站反向的XX8线到达目的地。
方法2.乘XX2线跨过当前段,然后乘XX8线到达目的地。
先乘坐XX8线然后乘坐XX2线的的方法:
首选在上车站乘XX8线,乘坐了奇数个站之后下车,然后乘XX2线到达目的地。
必要时在上车站乘一站反向的XX8线,然后乘XX2线到达目的地。
方法很多,不一一讨论了。
3.3、换乘特点:
大部分乘客可做到来车就上,不必在意是XX2线还是XX8线。其中一半乘客可直达,另一半乘客只须换乘一次。如果不在意等车,只有4分之1的人需要换乘一次。
4、分段讨论
4.1、乘客密度特点
XX8线每两段构成一个周期。
在第一个周期第一段,前车乘客逐步增多,第二段后车乘客逐步增多,周期完成之后,前后车乘客基本均衡。
在最后一个周期第一段,前车乘客逐步减少最后清空,第二段后车乘 客逐步减少最后清空,周期完成之后,前后车乘客都清空。
在中间的周期,前后车乘客有上有下,乘客密度呈现出在高水平上有浮动的特点。
4.2、段分界线划在那里?
通过3.1的讨论可知道,位于段分界线两边的车站有可能迫使乘客坐回头车,考虑到坐回头车的换乘站或位于目的地的下一站,或位于出发地的上一站,因此这两个换乘车站最好是两个方向列车共用一个站厅。
5、本例的方法如果只使用在一个方向,反方向使用普通编组列车,并且每个站都停车,就演变成潮汐法。
例6使用三种停靠方法的大编组列车应用举例——多段法与双向运力倍增。
本例适合不喜欢换车的乘客。
本例适合双向客流量都很大,线路两头上下车需求无异常的情况。
不适合始发站或终到站与另一条地铁衔接的情况,也不适合始发站乘客已经爆满的情况。
假如地铁某号线有26个车站,早晚高峰时段,双向客流量都很大,为使双向运力加倍(发车间隔不变,行车速度不变,满员载客量加倍,简称:运力加倍),可以在两个方向都采用两倍站台长度的大编组列车,所有车都均分为前车与后车。因为在两个方向采用类似的调度方法,我们只讨论一个方向的调度方法。在一个方向,使用三种有不同停靠方法的大编组列车。
为叙述方便将大编组列车的前半部分称为前车,将大编组列车的后半部分称为后车。
先上一张有助于理解调度方法的表格。其中,
第1行是车站的序号,只标注了首尾两站。
第2行是第1辆大编组列车(XX2线)使用的停靠方法。
第3行是第2辆大编组列车(XX4a线)使用的停靠方法。
第4行是第3辆大编组列车(XX4b线)使用的停靠方法。
1                                                 26
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
上述表格中,前车只停奇数站,后车只停偶数站。
1、调度方法
1.1、交替发送3种停靠方法的大编组列车。
1.2、第一种停靠方法:将26个站编号为1站到26站,即可分为单数站与双数站。
采用第一种停靠方法的车,前车只停单数站。后车只停双数站。
采用第一种停靠方法的车称为XX2线,XX是地铁线路名,2代表每两个站为一个循环周期。
要注意的是第一种停靠方法包括两个子方法,即前车停靠法和后车停靠法。
1.3、第二种停靠方法:将26个车站等分为13段,将其编号为1段到13段,即可分为单数段与双数段。
采用第二种停靠方法的车,前车只停并必停单数段车站。后车只停并必停双数段车站。
采用第二种停靠方法的车称为XX4a线,XX是地铁线路名,4代表循环周期为4站。
要注意的是第二种停靠方法包括两个子方法,即前车停靠法和后车停靠法。
1.4、第三种停靠方法:将第1站编号为第1段,将第26站编号为第14段,将中间24个车站等分为12段,将其编号为第2段到第13段,即可分为单数段与双数段。
采用第三种停靠方法的车,前车只停并必停单数段车站。后车只停并必停双数段车站。
采用第三种停靠方法的车称为XX4b线,XX是地铁线路名,4代表循 环周期为4站。
要注意的是第3种停靠方法包括两个子方法,即前车停靠法和后车停靠法。
2、性能
2.1、载客量(指满员载客量)
对于一条线路除去两端的其它段来说,大编组列车的满员载客量比普通编组列车的满员载客量增加一倍。
2.2、可直达的的乘客数量:
乘客如果坚持等车,所有人可直达。
例7、两条地铁衔接的情况
一条地铁的始发站如果与另一条地铁衔接,则始发站就可能乘客爆满,使得前后车乘客密度失衡。因此应对例5或例6稍加改造。
子例1:两条地铁有两个衔接站的情况
北京地铁1号线与地铁八通线分别在四惠东与四惠站衔接。
为叙述方便,假设八通线按常规方法运行,1号线的运行方法以例5为基础稍加改造。
将1号线分为8个段,四惠东站为1号段,四惠站为2号段,这两个段是非标准段,其余站分为6个段,编号为3到8段。
除了分段方法不同,其它都按例5的方法调度。四惠东站即是单数站也是单数段,四惠站即双数站也是双数段。
八通线的乘客不论想要换乘1号线的单数站、单数段、双数站还是双数段都很方便。
反过来也一样,一号线的乘客随便上一辆车,一定可以到达这两站之一,然后换乘八通线。
子例1的衔接过程不存在运力减弱现象。也不存在前后车乘客密度不均衡。
因为换乘1号线的单数站或单数段的乘客在四惠东站换乘,上的是前 车。换乘1号线的双数站或双数段的乘客在四惠站换乘,上的是后车。
子例2:两条地铁有两个衔接站的情况下的多种运力选择。
简称以例5或例6为基础改造的调度方式为纯大编组方式。
简称本文提供的大小编组混合调度方式为大小编组组合方式。
简称目前地铁使用的常规方式为小编组方式。
多种运力选择:
1、八通线运行小编组,1号线运行纯大编组。
2、八通线运行纯大编组,1号线运行小编组。
3、八通线运行大小编组组合,1号线运行纯大编组。
4、八通线运行纯大编组,1号线运行大小编组组合。
5、八通线运行纯大编组,1号线运行纯大编组。
还有其他选择,不一一列举了。
子例3:两条地铁只有一个衔接站的情况
北京地铁5号线与地铁亦庄线在宋家庄站衔接。假设亦庄线按常规方法运行,5号线的运行方法以例5为基础稍加改造即可。
合理假定只在地铁始发站执行重停靠法不会对列车发车间隔造成任何影响。
先考虑从宋家庄北上的方向。
将5号线分为6个段,宋家庄站为1号段,宋家庄站及其邻近的3个站为2号段,其他站则被分进3到6号段。
5号线共有23个站,宋家庄站编为1号站和2号站,其他站编为3到24号站。
按照例5的说法,交替执行XX2和XX8。
在宋家庄站,XX2按重停靠法执行,先停前车,再停后车,其他站单数站停前车,双数站停后车。
在宋家庄站,XX8按重停靠法执行,先停前车,再停后车,其他段单数段停前车,双数段停后车。
北上方向可以运力加倍。
再考虑南下的方向。
除了宋家庄站外,其它站完全仿照例5停靠。
在宋家庄站,XX2和XX8都按重停靠法执行,先停前车,再停后车。
只在终点站执行重停靠法,对发车间隔有一定影响,对全程行车时间影响不大。
也可以保持发车间隔不变,在接近宋家庄站时列车减速,等待前面的列车离开,这种方法对全程行车时间有一定影响。
南下方向运力可以增强。但增强不到一倍,接近一倍。
子例4:并非两条地铁衔接,只是始发站乘客已经爆满的情况。
参照子例3执行。
例如北京地铁5号线最北端的天通苑北站,完全可以像宋家庄站那样,对XX2线和XX8线按重停靠法执行。
(六)重停靠法应用举例
因为重停靠法需要多使用一定的时间,因此建议与跳站法结合使用。
例8大编组列车重停靠法应用举例
例如北京地铁5号线早晚高峰时段,双向客流量都很大,为使双向运力增加,可以在两个方向都采用两倍站台长度的大编组列车,所有车都均分为前车与后车。因为在两个方向采用类似的调度方法,我们只讨论南下方向的调度方法。在南下方向,使用只有一种停靠方法的大编组列车。
为叙述方便将大编组列车的前半部分称为前车,将大编组列车的后半部分称为后车。
先上一张有助于理解调度方法的表格。其中,
第1行是车站的的名字,只标注了首尾两站。
第2行是前车使用的停靠方法。
第3行是后车使用的停靠方法。
Figure PCTCN2017107640-appb-000001
Figure PCTCN2017107640-appb-000002
上述表格中,前车与后车都只停标记为1的车站。如果一个车站标记为2,代表执行重停靠法,先停前车,再停后车。
1、只开行仅有一种停靠方法的大编组列车。
2、如上表所示,将全部车站分为若干段。段的分界线位于车站之内(而非两站之间),位于分界线上的车站称为衔接站,线路两端的车站也称为衔接站。
3、对所有段顺序编号。
4、前车停靠位于单数段的车站,后车停靠位于双数段的车站。在衔接站先停前车,再停后车,也就是执行重停靠法。
5、不能直达的乘客可在衔接站换车。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (4)

  1. 一种,基于主辅车概念以使轨道交通列车的运力倍增的调度方法,其特征在于,包括:
    明确主车的定义与特殊属性,其中,所述主车是一种带有特殊属性的大编组列车,主车的长度至少超过站台的长度一节车厢,主车至少被物理的分隔成两段;
    基于所述主车的定义与特殊属性设计主车在同一个站台的停靠方法;
    基于所述主车的定义与特殊属性设计调度方法;
    基于所述主车的定义与特殊属性派生出均衡乘客密度的方法。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述主车的定义与特殊属性设计主车在同一个站台的停靠方法包括:单次停靠法和多次停靠法;其中:
    分类标准为:是否允许所有乘客上下车;
    单次停靠法是指:主车在同一站台只停靠一次,停靠站台时,主车位于站台之外的所有段上的乘客都禁止下车,主车位于站台之内的所有段都允许乘客上下车,其中,单次停靠法包含一些子方法,主车具体的不同的段停靠在站台对乘客的影响是不同的,每一次停靠,只是实现了一种子方法;
    多次停靠法是指:主车在同一站台的停靠次数大于等于两次,通过多次停靠的方法,保证车上的乘客都能下车,保证站台上的乘客都能够登上他所希望乘坐的段;停靠站台时,主车位于站台之外的所有段上的乘客都禁止下车,主车位于站台之内的所有段都允许乘客上下车;其中,多次停靠法包含一些子方法,停靠两次和停靠三次是不同的子方法;
    主车在同一个站台不被推荐的停靠方法是:非推荐多次停靠法;其中,非推荐多次停靠法是指主车在同一站台至少停靠了两次,但是仍然不能保证车上的所有乘客都能下车。
  3. 根据权利要求2所述的方法,其特征在于,所述基于所述主车的定义与特殊属性设计调度方法包括:
    确定是不是需要使用辅车以及全天需要多少班次辅车;
    全天需要多少班次主车;
    为每一班次主车选择出全程停靠方法;
    确定所有的主车和辅车的发车顺序。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述主车的定义与特殊属性派生出均衡乘客密度的方法包括以下三种方法:
    方法一:在辅车上设置刷卡机,通过刷卡以及交费优惠将乘客引导到主车;其中,刷卡和交费为两个概念,只有出站时的最后一次刷卡才完成交费,其他刷卡只是记录乘客行为,为优惠政策的实施提供技术保障,对只坐一两站辅车的乘客给予优惠,引导乘客尽量坐主车;
    方法二:在主车上设置刷卡机,采用主车打折方式;
    方法三:在站台内设置刷卡机,其中,乘客多刷一次卡,是得到优惠的必要条件,通过进站口,出站口和换乘站推断出大多数人的行为,通过纪录乘客的换车地点和上下车地点,了解乘客的乘车模式,并依据乘车模式设立奖励条件,政策定为:只坐一两站辅车的人给予优惠,以及选定一些客流较少的车站作为换乘奖励车站。
PCT/CN2017/107640 2017-09-18 2017-10-25 基于主辅车概念以使轨道交通列车的运力倍增的调度方法 WO2019051936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710841349.1A CN109515480A (zh) 2017-09-18 2017-09-18 基于主辅车概念以使轨道交通列车的运力倍增的调度方法
CN201710841349.1 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019051936A1 true WO2019051936A1 (zh) 2019-03-21

Family

ID=65723459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107640 WO2019051936A1 (zh) 2017-09-18 2017-10-25 基于主辅车概念以使轨道交通列车的运力倍增的调度方法

Country Status (2)

Country Link
CN (1) CN109515480A (zh)
WO (1) WO2019051936A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113002565A (zh) * 2021-03-17 2021-06-22 重庆交通大学 一种智能网联捷运系统及运行控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112441089B (zh) * 2019-08-30 2022-03-18 比亚迪股份有限公司 列车调度控制方法、平台及系统、智能车厢和介质
CN115214746B (zh) * 2022-06-07 2023-08-29 卡斯柯信号有限公司 一种超长列车在区间实现追踪运行的方法、设备及介质
CN115471137A (zh) * 2022-10-25 2022-12-13 深圳市旗扬特种装备技术工程有限公司 一种可动态调整运力的城市轨道交通运营调度系统
CN116714608B (zh) * 2023-06-09 2024-06-28 深圳技术大学 一种基于灵活编组的轨道交通列车调度方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786460A (zh) * 2010-01-28 2010-07-28 沈嘉琦 一种具有区段分路运行模式的轨道交通系统
CN102556079A (zh) * 2012-02-17 2012-07-11 陈卫东 提高列车运行效率的控制方法
CN103253276A (zh) * 2013-05-29 2013-08-21 高原 地铁系统及提高其运输能力的方法
CN103448733A (zh) * 2012-05-28 2013-12-18 及佳 城市轨道交通加长列车编组客运方法
CN103818387A (zh) * 2013-01-24 2014-05-28 侯庆生 地铁混合列车
WO2015027356A1 (zh) * 2013-08-26 2015-03-05 Liu Jian 长度超出站台的轨道列车编组方法
CN205186189U (zh) * 2015-09-23 2016-04-27 王雅群 一种城市轨道交通车厢客流预警系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2658467A1 (fr) * 1990-02-21 1991-08-23 Arnaud Jean Augmentation de debit d'un reseau comportant un troncon central et deux embranchements.
CN103318185B (zh) * 2012-03-21 2019-08-23 王哲 一种地铁或轻轨超长列车编组运行和站台长度确定的方法
WO2015019435A1 (ja) * 2013-08-07 2015-02-12 株式会社日立製作所 乗客案内システム
CN204586871U (zh) * 2014-08-25 2015-08-26 刘健 长超站台的轨道列车编组系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786460A (zh) * 2010-01-28 2010-07-28 沈嘉琦 一种具有区段分路运行模式的轨道交通系统
CN102556079A (zh) * 2012-02-17 2012-07-11 陈卫东 提高列车运行效率的控制方法
CN103448733A (zh) * 2012-05-28 2013-12-18 及佳 城市轨道交通加长列车编组客运方法
CN103818387A (zh) * 2013-01-24 2014-05-28 侯庆生 地铁混合列车
CN103253276A (zh) * 2013-05-29 2013-08-21 高原 地铁系统及提高其运输能力的方法
WO2015027356A1 (zh) * 2013-08-26 2015-03-05 Liu Jian 长度超出站台的轨道列车编组方法
CN205186189U (zh) * 2015-09-23 2016-04-27 王雅群 一种城市轨道交通车厢客流预警系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113002565A (zh) * 2021-03-17 2021-06-22 重庆交通大学 一种智能网联捷运系统及运行控制方法
CN113002565B (zh) * 2021-03-17 2024-05-07 重庆交通大学 一种智能网联捷运系统及运行控制方法

Also Published As

Publication number Publication date
CN109515480A (zh) 2019-03-26

Similar Documents

Publication Publication Date Title
WO2019051936A1 (zh) 基于主辅车概念以使轨道交通列车的运力倍增的调度方法
Wu et al. Development and application of an energy use and CO2 emissions reduction evaluation model for China's online car hailing services
CN110580404B (zh) 一种基于城市多模式交通网络的网络运能确定方法
Freyss et al. Continuous approximation for skip-stop operation in rail transit
CN109543934B (zh) 城市公交线网的综合指标的评价方法
CN103241268B (zh) 一种减少通道换乘站换乘时间的地铁发车时刻优化方法
CN110148297B (zh) 一种使用班车接驳的停车换乘系统及优化方法
CN109308574A (zh) 一种实时响应的互联网半灵活公交调度方法
Liao Smart mobility: challenges and trends
Ye et al. Optimization model of autonomous vehicle parking facilities, developed with the nondominated sorting genetic algorithm with an elite strategy 2 and by comparing different moving strategies
CN106203783A (zh) 一种城市轨道交通车站的机场值机系统及其方法
CN111325649B (zh) 一种城市轨道交通组合式站点停靠方法
Zhang et al. Optimising the design of a limited-stop bus service for a branching network
JP2020500772A (ja) 車両が各駅に停車せず、他の車両を追い越さないようにする地下鉄交通管理方式
CN114275014B (zh) 一种地铁拥挤程度缓解方法、装置、服务器和存储介质
CN114331060B (zh) 一种MaaS背景下面向高铁站接驳的DRT车辆路径生成方法
CN205061314U (zh) 一种基于双向环结构的全自动人行通道
Melis et al. The integrated on-demand bus routing problem: Combining on-demand buses with a high-frequency fixed line public transport network
Ren et al. Coordinated passenger flow control and bus connection setting during peak hour of urban rail transit
Fridman et al. Visual conflict framing in public transport innovation
CN112541989B (zh) 一路一线模式用于实时调度的客流数据描述方法
CN106875133A (zh) 一种网状式公交系统的构建方法
CN202434062U (zh) 站台出行信息交互系统
Profillidis et al. High-speed railways: present situation and future prospects
Chen et al. Research on Passenger Flow Conversion Capacity of Integrated Transit Hub Based on Zipper Theory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924887

Country of ref document: EP

Kind code of ref document: A1