WO2019050336A1 - 이중 촉매층 반응기 및 이를 이용한 합성가스 제조 시스템 - Google Patents

이중 촉매층 반응기 및 이를 이용한 합성가스 제조 시스템 Download PDF

Info

Publication number
WO2019050336A1
WO2019050336A1 PCT/KR2018/010506 KR2018010506W WO2019050336A1 WO 2019050336 A1 WO2019050336 A1 WO 2019050336A1 KR 2018010506 W KR2018010506 W KR 2018010506W WO 2019050336 A1 WO2019050336 A1 WO 2019050336A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reactor
reactant
synthesis gas
reaction part
Prior art date
Application number
PCT/KR2018/010506
Other languages
English (en)
French (fr)
Inventor
김용태
전기원
박해구
곽근재
이윤조
민지은
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2019050336A1 publication Critical patent/WO2019050336A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a syngas production system for producing syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing a catalyst for synthesis gas production.
  • the syngas produced in the reforming process is a mixture of hydrogen and carbon monoxide and can be used as a reactant for the synthesis of expensive chemical products such as ammonia and methanol.
  • the reforming process is an essential technology for the production of synthetic fuels because it is used as a reactant for next-generation DME (Dimethylesther) synthesis and FT (Fischer-Tropsch) synthesis process.
  • SRM steam reforming of methane
  • POM partial oxidation of methane
  • CDR carbon dioxide reforming reaction of methane and carbon dioxide reforming of methane
  • H 2 / CO carbon monoxide and hydrogen
  • H 2 / CO ratio of 3 or more can be obtained, which is a reforming reaction suitable for hydrogen production and ammonia synthesis reaction.
  • H 2 / CO ratio is about 2 Methanol reforming reaction and the Fischer-Tropsch reaction.
  • This individual reforming process is also called auto-thermal reforming (ATR) and tri-reforming in which POM and SRM are mixed for maintaining the proper H 2 / CO ratio with increasing energy and carbon efficiency
  • ATR auto-thermal reforming
  • POM, SRM and CDR three reforming reactions
  • synthetic gas having different H 2 / CO ratios can be prepared depending on the kind of the reforming reaction and the catalyst, and patents using the differentiation in which the subsequent synthesis process using the synthesis gas is appropriately changed are currently being filed [Korean Patent Open No. 2006-0132293; Korean Patent Publication No. 2005-0051820].
  • a catalyst in the form of noble metals such as ruthenium (Ru), rhodium (Rh), platinum (Pt), iridium (Ir), osmium (Os) / Alumina, Rh / Alumina, etc.
  • Ru ruthenium
  • Rh platinum
  • Ir iridium
  • Os osmium
  • the present invention has been made keeping in mind the above problems occurring in the prior art, and it is an object of the present invention to provide a reactor having a double catalyst bed capable of easily controlling the composition of a synthesis gas produced at an excellent conversion rate, System.
  • the present invention relates to a reactor containing a synthesis gas producing catalyst for producing a synthesis gas from a reactant containing natural gas, wherein the reactor comprises a first reactor provided on a side to which the reactant is introduced, wherein the first catalyst is a catalyst for synthesizing an alkali-treated synthetic gas and the second catalyst is a synthetic catalyst containing a second catalyst, which is a catalyst for synthesizing a synthesis gas, is contained in the first reaction part, A reactor for gas production is provided.
  • the volume of the first reaction part may be 1/2 to 1.5 times the volume of the second reaction part.
  • the second catalyst comprises at least a support material comprising magnesium (Mg) and aluminum (Al), an active promoting material comprising at least cerium (Ce) and an active material comprising at least nickel (Ni)
  • the O 2 storage amount of the oxide of the metal and the activity promoting material, which are the active materials exposed on the surface of the substrate, is 60 to 70 ⁇ mol O 2 / g cat .
  • the first catalyst is a catalyst which is alkali-treated on the surface of a forming catalyst.
  • the present invention also relates to a process for the preparation of a reaction product comprising a reactant supply part for supplying a reactant containing natural gas, water vapor and carbon dioxide to a reactor through a feed line; And a reactor for receiving the reactant and containing a synthesis gas producing catalyst for producing a synthesis gas, wherein the reactor includes a first reactor provided on a side to which the reactant is introduced, and a second reactor provided on the side from which the synthesis gas produced from the reactant flows
  • the second reaction unit includes a second catalyst, which is a catalyst for synthesizing a synthesis gas.
  • the first reaction unit includes a synthesis catalyst, which is a reactor containing a first catalyst, which is an alkali- Gas production system.
  • a fuel supply unit for supplying the fuel including the fuel gas and the ignition air through the fuel line differentiated from the supply line, wherein the heat exchange unit is disposed at the upstream side of the reactor with the reactant and the fuel, And further comprising:
  • the heat exchanger may raise the temperature of the reactant to 700 to 800 ° C.
  • the heat exchanger may raise the temperature of the fuel to 300 to 400 ° C.
  • the present invention provides a reactor having a dual catalyst bed to allow a reactant containing natural gas to pass first through an alkali treated first catalyst to prevent deactivation of the catalyst due to carbon deposition and to reduce the endothermic reaction,
  • the reforming reaction is prevented from being intensively generated and the second catalyst that has not been subjected to the alkali treatment is allowed to pass through, thereby increasing the conversion rate.
  • FIG. 1 shows a schematic diagram of a synthesis gas production system according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a bench scale synthesis gas production system commonly used in the experimental example of the present invention.
  • a reactor 20 for producing a synthesis gas according to an embodiment of the present invention is a reactor containing a synthesis gas producing catalyst for producing a synthesis gas from a reactant containing natural gas, Can be easily controlled and carbon deposition phenomenon of the catalyst can be suppressed.
  • the reactants including natural gas, are converted to syngas while passing through a dual catalyst bed packed in a reactor 20 for producing syngas according to the present invention.
  • the reactor (20) includes a first reactor (21) provided on a side where a reactant is introduced and a second reactor (22) provided on a side from which a synthesis gas produced from the reactor flows.
  • a first catalyst which is an alkaline-treated synthesis gas producing catalyst, is accommodated in the first reactor 21, and a second catalyst, which is a catalyst for synthesizing a synthesis gas, is accommodated in the second reactor 22. It is possible to prevent the deactivation of the catalyst due to carbon deposition by allowing the reactant to pass through the alkali treated first catalyst in advance and to reduce the endothermic reaction so that the reforming reaction is intensively generated at the upper end of the reactor And at the same time pass through the second catalyst not subjected to the alkali treatment, so that the conversion rate can be increased.
  • the volume of the first reaction part 21 is set to 1/2 to 1.5 times the volume of the second reaction part 22.
  • the volume of the first reaction part 21 is less than 1/2 times the volume of the second reaction part 22, there is a problem that it is difficult to control the strong endothermic reaction because there are few low active reaction parts.
  • the volume is more than 1.5 times There is a problem in that the activity of the reactor 20 is lowered because the low activity reaction part is long.
  • the second catalyst is a catalyst in which the active material is exposed to the surface at 1.3 to 5.6%.
  • Nickel oxide in the forming catalyst is converted to nickel metal or nickel-alumina during the catalyst pretreatment (reduction) process, in which nickel contained in 14.3 to 100% of the catalyst is converted to nickel metal, which is dependent on the interaction of each element component .
  • the second catalyst includes at least a portion of an oxide of an active material, an oxide of an activity promoting material, and an oxide of a support material. More specifically, the precursor of the active material and the precursor of the activity promoting material are impregnated with a support material, followed by drying and firing to produce a shaped catalyst. The active material and the promoting material are partially reduced and oxidized, At least a part of the phosphorus metal (M 1 ), the oxide (M 1 O) of the active material, the metal (M 2 ) which is the activity promoting material and the oxide (M 2 O) of the activity promoting material are exposed.
  • the second catalyst is characterized in that at least a portion of the metal as the active material is exposed to the catalyst surface at an amount of 1.3 to 5.6% to contact at least some of the oxide of the active promoting material exposed to the surface.
  • the metal as the active material is exposed to less than 1.3% of the surface of the catalyst, the catalytic activity is too low.
  • the metal is exposed to more than 5.6%, the catalyst activity is too high, have.
  • the second catalyst is characterized in that the molar ratio (M 1 / M 1 O) of the metal (M 1 ) as the active material to the oxide (M 1 O) of the active material is 0.1 to 1.3. If the molar ratio is less than 0.1, there is a problem that the catalyst activity is too low. When the molar ratio is more than 1.3, the catalytic activity is too high, and the catalyst life is reduced due to carbon deposition and sintering. More preferably, the molar ratio of the active material, the metal (M 1) with the active material oxide (M 1 O) (M 1 / M 1 O) is 0.8 to 1.0.
  • the second catalyst is characterized in that the molar ratio of one (M 1 / M 2) of the active material of a metal (M 1) and activity promoting material is a metal (M 2) exposed at the surface it is 0.2 to 2.
  • the molar ratio (M 1 / M 2 ) is less than 0.2, there is a problem that oxygen is difficult to supply to the active metal during the reaction and the activity is lowered.
  • the mole ratio is more than 2, the metal oxide of the active promoter clogs the active metal .
  • the molar ratio (M 1 / M 2 ) is in the above range, the resistance of the catalyst material to the poisoning material that may be contained in the reactant is considered to be high, and the stability is high, and the lifetime of the catalyst is also good.
  • the activity promoting material is a substance that increases the oxygen storage ability and is included in the catalyst, so that the deactivation of the catalyst by carbon deposition during the reforming reaction can be primarily suppressed.
  • the second catalyst includes a mesopore having an average pore size of 18.6 to 33.5 nm and a micropore having a pore size of 1 nm or less. And preferably has a mesopore / micropore volume ratio of 92 to 115. If the mesopore / micropore volume ratio is too low, there is a problem that the dispersion of the metal on the surface of the support becomes low due to the large particles of the active material metal. If the mesopore / micropore volume ratio is too high, It can fall.
  • the second catalyst includes a support having a hydrotalcite crystal structure as a metal oxide containing a support material.
  • the support material is at least magnesium (Mg) and aluminum comprises (Al), if the support is formed of a MgO / Al 2 O 3 weight ratio is 3/7 to 7/3 of the hydrotalcite crystal structure as the active substance and the active form Providing a support structure in which the promoting material can be chemically bonded.
  • the crystal size of the metal oxide containing the support material is 14.4 to 64.3 nm.
  • the concentration of the total base point / acid point is increased and the catalytic activity is negatively affected. 64.3 nm, there is a problem that the concentration of the total base point / acid point is lowered, resulting in carbon deposition during the reaction.
  • the second catalyst is a catalyst formed into a form including at least two or more holes having a metal oxide storage amount of 60 to 70 ⁇ mol O 2 / g cat of metal and an activity promoting material exposed to the surface.
  • the present invention provides a syngas production system for producing syngas by simultaneously modifying natural gas with steam and carbon dioxide using a reactor containing the catalyst for synthesizing a synthetic gas, Can be maintained. Preferably, it is molded in a 4-hole form.
  • the second catalyst is prepared by first supporting a precursor of an activity promoting material containing at least cerium (Ce) on a support formed of a support material containing at least magnesium (Mg) and aluminum (Al) Thereby preparing a mixture on which a precursor of an active material containing nickel (Ni) is supported. And then dried at 100 to 150 ° C to obtain a powdery catalyst.
  • the water and the catalyst of the powder type are mixed and ball-milling is carried out for 9 to 12 hours, followed by a spray drying process using a ball milled powder, followed by using a spherical spray-dried powder Thereby obtaining a catalyst-shaped body having at least two or more holes.
  • the obtained shaped catalyst is calcined at a temperature of 950 to 1050 ⁇ to produce a catalyst for synthesizing a synthetic gas having the above physical properties.
  • a Mg-Al metal oxide having a hydrotalcite structure having a weight ratio of MgO / Al 2 O 3 of 3/7 to 7/3 as a support of the second catalyst is used to precipitate Ce
  • the mixture is prepared so that the metal is 3 to 20% by weight based on the weight of the total catalyst produced, and at the same time, 5 to 20% by weight based on the total weight of the catalyst prepared using the nickel precursor. Thereafter, the mixture is stirred at 50 to 100 ° C for 10 to 15 hours using a vacuum drier, and then water as a solvent is prepared and dried at 100 to 150 ° C for at least 24 hours to obtain a powdery catalyst.
  • the water and the catalyst of the powder type are mixed and ball-milling is carried out for 9 to 12 hours, followed by a spray drying process using a ball milled powder, followed by using a spherical spray-dried powder Thereby obtaining a catalyst-shaped body having at least two or more holes.
  • the obtained shaped catalyst is calcined at a temperature of 950 to 1050 ⁇ for 5 to 8 hours to prepare a second catalyst, Ni-Ce / Mg-Al.
  • the first catalyst is a catalyst obtained by alkali treatment of a catalyst having the same composition (component and content) as that of the second catalyst.
  • Potassium, K Sodium, Na, Magnesium, Mg
  • calcium Ca, Ca
  • the first catalyst includes 10 to 20 mol.% Of an alkali metal material with respect to the active material contained in the catalyst.
  • an alkali metal material with respect to the active material contained in the catalyst.
  • the amount of the alkaline substance is less than 10 mol.%, There is a problem that the catalytic activity is maintained as it is and the heat absorption amount can not be controlled.
  • the amount of the alkaline substance is more than 20 mol.%, The catalytic activity is very low.
  • the alkali material is contained in an amount of 15 mol% to 20 mol%. More preferably, it is a catalyst containing 15 to 20 mol.% Of potassium relative to nickel contained in the alkali-treated nickel-based catalyst.
  • the first catalyst has an effect of reducing the active site of the active material by reducing the conversion rate by intercalating the alkali metal with the active material, but it is suitable as the upper catalyst because it reduces the endothermic reaction at the upper end of the reforming reactor.
  • the number of base points increases, so that the adsorption ability and activation ability to CO 2 are increased and the amount of carbon deposition is reduced.
  • the total base amount is 180 to 230 ⁇ mol CO 2 / g cat because the conversion rate is lowered.
  • Alkali-treated catalysts have the effect of inhibiting the accumulation of coke on the surface of the catalyst and reducing the carbon deposition by its ability to gasify the coke, but the alkali metal interactions with the active material,
  • the conversion rate is lower than that of the alkali-treated catalyst, and the conversion rate is decreased as the amount of the alkali component treated in the catalyst is increased. Therefore, the alkali treated catalyst is accommodated in the first reaction part 21, which is the upper end of the reactor 20 according to the present invention, to prevent the carbon deposition phenomenon, and the untreated catalyst is accommodated in the second reaction part 22, Thereby preventing the conversion rate from being lowered.
  • the first catalyst is a second catalyst, and after the shaping catalyst is prepared, incipient wetness impregnation of the prepared catalyst into the alkaline precursor solution is performed. After mixing, the catalyst is heated at 100 to 120 ° C for 2 to 4 hours Drying and calcining at 500 to 700 ° C for 4 to 6 hours.
  • the prepared second catalyst is supported and mixed in an alkali precursor aqueous solution through incipient wetness impregnation.
  • the alkali material is supported so as to be 4 to 16 mol% with respect to the Ni metal of the molding catalyst. Even when carried by the mass production method, it is preferable to carry at least one hour at room temperature.
  • the supported and mixed composition is dried at 100 to 120 ° C for 2 hours or more. If the drying temperature is lower than 100 ° C, water may not be dried in an alkali metal aqueous solution. When drying is performed for less than 2 hours, there is a problem that water can not be dried in the pores of the formed catalyst.
  • the dried composition is calcined to obtain an alkaline-treated nickel-based catalyst in a final form, and calcination is performed at 500 to 700 ° C for 4 to 6 hours.
  • nitrate contained in the alkali metal precursor is not decomposed when baking to less than 500 ° C, and there is a problem that when baking is performed at a temperature higher than 700 ° C, the alkali metals may aggregate together.
  • the alkali metals may aggregate together.
  • a syngas production system includes a reactant supply unit 10 for supplying a reactant containing natural gas, steam and carbon dioxide to a reactor through a supply line, And a reactor (20) containing a catalyst for synthesis gas production.
  • the reactor 20 uses the reactor according to the present invention described above.
  • a schematic diagram of a synthesis gas production system according to an embodiment of the present invention is shown in FIG.
  • the reactant supply part 10 regulates the molar ratio of the components contained in the reactant to obtain a synthesis gas containing the product of the required composition to supply the natural gas.
  • the carbon dioxide may be supplied at a ratio of 0.1 to 0.5 mole based on the natural gas supplied as the reactant.
  • the syngas production system further comprises a fuel supply part (30) for supplying fuel including fuel gas and ignition air through a fuel line which is distinguished from the supply line, And a heat exchange unit 40 for exchanging heat with reactants and fuel. And a heating unit 50 for providing heat required in the reactor 20 and heat exchange in the heat exchange unit 40.
  • the heat exchanger 40 is a heat exchanger indirectly heating a heating medium heated in a boiler or the like.
  • the temperature of the reaction mixture is raised to 700 to 800 ° C, and the temperature of the combustion air is raised to 300 to 400 ° C.
  • the heating unit 50 is a heater which is directly heated by heat such as combustion or resistance heat, and is heated in the reactor 20 so that the reaction temperature for synthesis gas production is maintained at 800 to 1000 ° C.
  • the synthesis gas produced through the syngas production system using the reactor 20 for producing a synthesis gas according to the present invention has a molar ratio of H 2 / (2CO + 3CO 2 ) adjusted to 0.8 to 1.2.
  • PURAL MG30 (a product of Sasol, having a specific surface area of at least 250 m 2 / g is Mg-Al metal oxide having a hydrotalcite structure with a weight ratio of MgO / Al 2 O 3 of 3/7 as a support of a catalyst for synthesis gas synthesis, hereinafter, "Mg-Al” means any) to use and also by using the cerium acetate precipitation and such that 6 wt% of the catalyst weight producing a Ce metal whole at the same time the nickel as nickel precursor nitrate (Ni (NO 3) 2 6H 2 O), and the mixture was stirred at 70 ° C for 12 hours using a vacuum drier.
  • Ni (NO 3) 2 6H 2 O) nickel as nickel precursor nitrate
  • NCMA catalyst (K-NCMA) was impregnated with 450 g of H 2 O and 77.5 g of KNO 3, 2000 g of the prepared NCMA catalyst was impregnated, and the mixture was dried at 110 ° C. for 2 hours or more and calcined at 600 ° C. for 5 hours. .
  • Alkali-treated catalysts were prepared by changing the contents and kinds of alkalis as shown in Table 1 below.
  • Example 2 Reactor composition for synthesis gas production
  • the catalyst compositions contained in the reactor are shown in Table 2 below.
  • the volume ratios of the first reaction part and the second reaction part are shown in Table 2 below.
  • the molar ratio of CH 4 : CO 2 : H 2 O: N 2 as a reactant was fixed at a ratio of 1: 0.4: 1.6: 1 as a reactant in the feed part, and the reforming reaction was carried out by injecting into the reactor.
  • the bench reactor consisted of three heaters, and the temperature of the heaters was set at 850 ° C.
  • the reactor has an inner diameter of 32.52 mm and a total length of the reactor of 110 cm.
  • a TC capable of indicating the temperature was installed in the catalyst layer.
  • the shaped catalyst it was pulverized to a size of 4.8 to 6.4 mm for a bench scale reactor experiment with a size of at least 2 cm. As shown in FIG. 3, the actual catalyst bed reaction area is 66 cm, and 5 temperature points can be designated.
  • the catalyst was charged into the reforming reactor in the volume composition shown in Table 2 and subjected to reduction treatment at 700 ° C. in hydrogen (5 vol% H 2 / N 2 ) atmosphere for 3 hours. Thereafter, three heater temperatures were set at 850 ° C., The reaction was carried out at a rate of 5000 L (CH 4 ) / kg cat / hr for 24 hours. The temperature of the catalyst layer during the reaction reached equilibrium and maintained was shown in Table 3 below. .
  • Example 1 720 746 784 799 812
  • Example 2 754 771 783 797 813
  • Example 3 759 774 788 799 812
  • Example 4 750 770 780 794 809
  • Example 5 748 768 783 793 809
  • Example 6 753 771 784 791 810
  • Example 8 753 764 780 794 810
  • Example 9 754 766 781 793 811 Comparative Example 1 714 734 778 805 815 Comparative Example 2 717 740 781 803 815
  • Comparative Example 3 770 774 782 788 803 Comparative Example 4 721 739 779 804 813 Comparative Example 5 729 739 778 799 812 Comparative Example 6 753 767 782 789 805 Comparative Example 754 768 780 7
  • Comparative Example 1 the catalyst was filled with only the NCMA catalyst, so that the temperature was relatively low at the temperature of 1, and in Comparative Example 2, the first catalyst was filled with the 5K-NCMA catalyst, The temperature distribution similar to that of Comparative Example 1 is shown. In the case of Comparative Example 4, the activity of the commercial catalyst is shown as it is, and the temperature of the temperature 1 is low. In the case of Comparative Example 5, it was confirmed that the volume ratio of the 15K-NCMA catalyst as the first catalyst was relatively small, so that the temperature 1 was low. In the case of Comparative Examples 1, 2, 4 and 5, it can be seen that the temperature 1 is relatively low and the temperature deviation is large.
  • Comparative Example 3 when the low activity 30K-NCMA catalyst is packed with the first catalyst, the temperature distribution is advantageous because of low activity, but when the low active first catalyst is filled, the overall activity is low .
  • a catalyst having an activity such that the equilibrium conversion rate can be reached while maintaining the temperature distribution uniformly should be utilized as the first catalyst.
  • the temperature deviation is relatively small, which is advantageous for controlling the reaction heat.
  • the heat of the endothermic reaction can be controlled by the composition of the first catalyst, and the temperature distribution gap can be reduced due to the controlled reaction heat. This can greatly help to reduce the stress of the actual reformer material.
  • the carbon deposition measurement results of the first catalyst contained in the first reaction unit and the carbon deposition measurement results of the second catalyst contained in the second reaction unit are shown in Table 5 below.
  • the amount of carbon deposition was confirmed by thermo-gravimetric analysis (TGA) on the catalysts contained in each reaction part.
  • the first reaction part The second reaction part Volume ratio Example 1 - - 1: 1 Example 2 - - 1: 1 Example 3 - - 1: 1 Example 4 - - 1: 1 Example 5 - - 1: 1 Example 6 - - 1: 1 Example 7 - - 1: 2 Example 8 - - 3: 2 Example 9 - - 2: 3 Comparative Example 1 - - 1: 1 Comparative Example 2 - - 1: 1 Comparative Example 3 - - 1: 1 Comparative Example 4 3.2 wt% - 1: 1 Comparative Example 5 - - 1: 3 Comparative Example 6 - - 2: 1 Comparative Example 7 - - 3: 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 천연가스를 포함하는 반응물로부터 합성가스를 제조하는 합성가스 제조용 촉매가 수용된 반응기로서, 상기 반응기는 상기 반응물이 유입되는 측에 구비되는 제1 반응부 및 상기 반응물로부터 제조된 합성가스가 유출되는 측에 구비되는 제2 반응부를 포함하며, 상기 제1 반응부에는 알칼리 처리된 합성가스 제조용 촉매인 제1 촉매가 수용되고, 상기 제2 반응부에는 합성가스 제조용 촉매인 제2 촉매가 수용된 합성가스 제조용 반응기 및 이를 이용한 합성가스 제조 시스템에 관한 것으로, 이중의 촉매층을 구비한 반응기를 제공함으로써 천연가스를 포함하는 반응물이 알칼리 처리된 제1 촉매를 우선 통과 하도록 하여 탄소 침적에 따른 촉매의 비활성화를 방지함과 동시에 알칼리 처리되지 않은 제2 촉매를 통과 하도록 하여 전환율을 상승시킬 수 있다.

Description

이중 촉매층 반응기 및 이를 이용한 합성가스 제조 시스템
본 발명은 합성가스 제조용 촉매가 수용된 반응기를 이용하여 천연가스를 수증기와 이산화탄소로 동시에 개질하여 합성가스를 제조하는 합성가스 제조 시스템에 관한 것이다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다.
리포밍(reforming) 공정에서 생산되는 합성가스는 수소와 일산화탄소로 구성된 혼합물로서, 주로 암모니아, 메탄올 등과 같은 고가의 화학제품 합성의 반응물로 사용될 수 있다. 또한 차세대 연료인 DME(Dimethylesther) 합성, FT(Fischer-Tropsch) 합성공정의 반응물로써 사용되기 때문에 리포밍 공정은 합성연료 제조에 필수적인 기술이라 볼 수 있다.
천연가스를 이용한 합성가스를 제조하기 위한 방법으로는 크게 메탄의 수증기 개질반응(steam reforming of methane; SRM), 산소를 이용한 메탄의 부분산화반응(partial oxidation of methane; POM), 메탄의 이산화탄소 개질반응(carbon dioxide reforming of methane; CDR)으로 크게 구분될 수 있으며 각 개질반응으로부터 생성되는 일산화탄소와 수소(H2/CO) 비는 후속 공정에서 최적으로 요구되는 비에 따라서 다르게 사용될 수 있다.
일례로, 강한 흡열반응인 SRM 반응의 경우에는 H2/CO 비가 3 이상으로 얻어 질 수 있어서 수소 생산 및 암모니아 합성반응에 적합한 개질 반응이며, POM 반응의 경우에는 H2/CO 비가 2 정도로 얻어져서 메탄올 합성 반응 및 피셔-트롭쉬 반응에 의한 탄화수소 생성에 유리한 개질반응으로 알려져 있다.
상기의 개별 개질공정은 에너지 및 카본 효율 증대와 함께 적절한 H2/CO비의 유지를 위하여 POM과 SRM이 혼합된 자열개질 반응(auto-thermal reforming; ATR) 및 삼중개질반응(tri-reforming)이라고도 불리우는 POM, SRM 및 CDR의 3가지 개질반응이 혼합된 방법 등이 잘 알려져 있다. 또한, 개질반응의 종류 및 촉매에 따라서 H2/CO 비가 상이한 합성가스를 제조할 수 있으며, 이를 적절하게 이용하는 후속 합성 공정이 변화되는 차별성을 이용한 특허들이 현재 많이 출원되어지고 있는 실정이다[한국특허공개 제2006-0132293호; 한국특허공개 제2005-0051820호].
한편, 니켈이 촉매활성물질로 사용될 경우에는 반응 과정 중에 생성된 CO가 니켈 표면에 흡착되어서 반응식과 같이 탄소가 침적되는 부두아르(Boudouard) 반응이 일어나게 된다.
2CO ↔ CO2 + C(coke)
이러한 코크(coke) 형성 반응을 막기 위하여, 과량의 수증기를 공급하여 steam(H2O)과 Methane(CH4)의 비를 3 이상으로 유지하면서, 염기성 금속산화물들(BaO, MgO 등)이나 다양한 금속들을 넣기도 한다. 소형 수소생산용 개질기에사용되는 촉매의 경우에는 표면적이 큰 알루미나 (Al2O3, Alumina)에 촉매활성물질인 귀금속들이 담지되거나, 함침된 형태로 사용되고 있다.
즉, 루테늄 (Ru), 로듐 (Rh), 백금 (Pt), 이리듐 (Ir), 오스뮴(Os) 등과 같은 귀금속들이 지지체인 알루미나에담지 또는 함침된 형태의 촉매가 사용되고 있는데(예를 들어, Ru/Alumina, Rh/Alumina 등), 이렇게 귀금속을 지지체에 담지 또는 함침시켜 사용될 경우에는, 약 1만 시간 이상 개질기를 사용하여도 초기 촉매 성능 또는 활성이 대부분 유지되는 것으로 알려져 있다.
니켈계 촉매의 경우, 장시간 사용할 경우 탄소침적에 의한 성능저하가 필연적으로 발생하므로, 이를 해결하기 위해서는 귀금속의 도입을 통한 탄소침적 방지가 반드시 필요하지만, 상기와 같은 귀금속들의 국제가격은 니켈 금속의 국제가격에 비해서 약 100 ~ 1000배 비싸므로, 주요한 촉매 활성물질로 니켈을 사용하면서 탄소침적을 방지하기 위해서 귀금속을 사용할 경우에는, 약 0.5wt% 이하의 소량만으로 귀금속을 사용할 수 밖에 없다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로 우수한 전환율로 제조되는 합성가스의 조성 조절이 용이하고 함과 동시에 촉매의 탄소 침적 현상을 억제할 수 있는 이중의 촉매층이 수용된 반응기 및 이를 이용한 합성가스 제조 시스템을 제공하는 것이다.
그러나 본 발명의 목적들은 상기에 언급된 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명은 천연가스를 포함하는 반응물로부터 합성가스를 제조하는 합성가스 제조용 촉매가 수용된 반응기로서, 상기 반응기는 상기 반응물이 유입되는 측에 구비되는 제1 반응부 및 상기 반응물로부터 제조된 합성가스가 유출되는 측에 구비되는 제2 반응부를 포함하며, 상기 제1 반응부에는 알칼리 처리된 합성가스 제조용 촉매인 제1 촉매가 수용되고, 상기 제2 반응부에는 합성가스 제조용 촉매인 제2 촉매가 수용된 합성가스 제조용 반응기를 제공한다.
또한 상기 반응기는 상기 제1 반응부의 부피가 상기 제2 반응부의 부피에 대하여 1/2배 내지 1.5배로 구성되는 것을 특징으로 한다.
또한 상기 제2 촉매는 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하는 지지물질, 적어도 세륨(Ce)을 포함하는 활성촉진물질 및 적어도 니켈(Ni)을 포함하는 활성물질을 포함하고, 상기 촉매의 표면에 노출된 활성물질인 금속 및 활성촉진물질의 산화물의 O2 저장량이 60 내지 70 μmol O2/gcat 인 것을 특징으로 한다.
또한 상기 제1 촉매는 성형 촉매의 표면에 알칼리 처리된 촉매인 것을 특징으로 한다.
또한 본 발명은 천연가스, 수증기 및 이산화탄소를 포함하는 반응물을 공급 라인을 통해 반응기로 공급하는 반응물 공급부; 및 상기 반응물을 공급받아 합성가스를 제조하는 합성가스 제조용 촉매가 수용된 반응기;를 포함하고, 상기 반응기는 상기 반응물 유입되는 측에 구비되는 제1 반응부 및 상기 반응물로부터 제조된 합성가스가 유출되는 측에 구비되는 제2 반응부를 포함하며, 상기 제2 반응부에는 합성가스 제조용 촉매인 제2 촉매가 수용되고, 상기 제1 반응부에는 알칼리 처리된 합성가스 제조용 촉매인 제1 촉매가 수용된 반응기인 합성가스 제조 시스템을 제공한다.
또한 상기 공급 라인과 구별되는 연료 라인을 통해 연료용 가스 및 발화용 공기를 포함하는 연료를 공급하는 연료 공급부;를 더 포함하고, 상기 반응기 전단에 상기 반응물 및 상기 연료와 열교환이 이루어지는 열교환부;를 더 포함하는 것을 특징으로 한다.
또한 상기 열교환부는 상기 반응물의 온도를 700 내지 800℃로 승온시키는 것을 특징으로 한다.
또한 상기 열교환부는 상기 연료의 온도를 300 내지 400℃로 승온시키는 것을 특징으로 한다.
본 발명은 이중의 촉매층을 구비한 반응기를 제공함으로써 천연가스를 포함하는 반응물이 알칼리 처리된 제1 촉매를 우선 통과 하도록 하여 탄소 침적에 따른 촉매의 비활성화를 방지하고, 흡열반응을 줄임으로써 반응기 상단에서 리포밍 반응이 집중적으로 발생되는 것을 방지함과 동시에 알칼리 처리되지 않은 제2 촉매를 통과하도록 하여 전환율을 상승시킬 수 있다.
도 1은 본 발명의 일 실시예에 따른 합성가스 제조 시스템의 구성도를 나타낸 것이다.
도 2는 본 발명의 실험예에 상용하는 벤치 규모급 합성가스 제조 시스템 구성도를 나타낸 것이다.
이하에 본 발명을 상세하게 설명하기에 앞서, 본 명세서에 사용된 용어는 특정의 실시예를 기술하기 위한 것일 뿐 첨부하는 특허청구의 범위에 의해서만 한정되는 본 발명의 범위를 한정하려는 것은 아님을 이해하여야 한다. 본 명세서에 사용되는 모든 기술용어 및 과학용어는 다른 언급이 없는 한은 기술적으로 통상의 기술을 가진 자에게 일반적으로 이해되는 것과 동일한 의미를 가진다.
본 명세서 및 청구범위의 전반에 걸쳐, 다른 언급이 없는 한 포함(comprise, comprises, comprising)이라는 용어는 언급된 물건, 단계 또는 일군의 물건, 및 단계를 포함하는 것을 의미하고, 임의의 어떤 다른 물건, 단계 또는 일군의 물건 또는 일군의 단계를 배제하는 의미로 사용된 것은 아니다.
한편, 본 발명의 여러 가지 실시예들은 명확한 반대의 지적이 없는 한 그 외의 어떤 다른 실시예들과 결합될 수 있다. 특히 바람직하거나 유리하다고 지시하는 어떤 특징도 바람직하거나 유리하다고 지시한 그 외의 어떤 특징 및 특징들과 결합될 수 있다. 이하, 첨부된 도면을 참조하여 본 발명의 실시예 및 이에 따른 효과를 설명하기로 한다.
본 발명의 일실시예에 따른 합성가스 제조용 반응기(20)는 천연가스를 포함하는 반응물로부터 합성가스를 제조하는 합성가스 제조용 촉매가 수용된 반응기로서, 이중의 촉매층이 수용된 반응기를 제공함으로써 제조되는 합성가스의 조성 조절이 용이함과 동시에 촉매의 탄소 침적 현상을 억제할 수 있는 효과를 제공한다.
천연가스를 포함하는 반응물은 본 발명에 따른 합성가스 제조용 반응기(20)에 충전된 이중의 촉매층을 통과하면서 합성가스로 전환된다. 반응기(20)는 반응물이 유입되는 측에 구비되는 제1 반응부(21) 및 상기 반응물로부터 제조된 합성가스가 유출되는 측에 구비되는 제2 반응부(22)를 포함한다.
제1 반응부(21)에는 알칼리 처리된 합성가스 제조용 촉매인 제1 촉매가 수용되고, 제2 반응부(22)에는 합성가스 제조용 촉매인 제2 촉매가 수용된다. 이중의 촉매층을 구비한 반응기를 제공함으로써 반응물이 알칼리 처리된 제1 촉매를 우선 통과 하도록 하여 탄소 침적에 따른 촉매의 비활성화를 방지하고, 흡열반응을 줄임으로써 반응기 상단에서 리포밍 반응이 집중적으로 발생되는 것을 방지함과 동시에 알칼리 처리되지 않은 제2 촉매를 통과 하도록 하여 전환율을 상승시킬 수 있다.
더욱 구체적으로 반응기(20)는 제1 반응부(21)의 부피가 제2 반응부(22)의 부피에 대하여 1/2 배 내지 1.5 배로 구성된다. 제1 반응부(21)의 부피가 제2 반응부(22)의 부피에 대하여 1/2 배 미만인 경우 저활성 반응 부분이 적어 강한 흡열 반응을 제어하기 어려운 문제점이 있고, 1.5 배를 초과하는 경우 저활성 반응이 부분이 길어지기 때문에 반응기(20)의 활성이 낮아지는 문제점이 있다.
상기 제2 촉매는 하기 반응식 1 및 반응식 2로 표현되는 메탄(CH4)을 포함하는 천연가스의 수증기 개질반응(Steam reforming of methane; SRM)과, 메탄(CH4)의 이산화탄소(CO2) 개질반응(Carbon dioxide reforming of methane; CDR)을 동시에 수행하는 혼합 개질반응을 수행하여 일산화탄소(CO) 및 수소(H2)를 포함하는 합성가스를 제조하는데 이용되는 니켈계 촉매이다.
[반응식 1]
CH4 + H2O = 3H2 + CO
[반응식 2]
CH4 + CO2 = 2H2 + 2CO
상기 제2 촉매는 활성물질이 표면에 1.3 내지 5.6 % 노출된 촉매로서, 다른 측면에서 설명하면 상기 촉매 표면에 노출된 환원된 금속 활성점 1개당 흡착되는 수소원자(H)의 개수 측정 시 이론 값 (H/Ni=1) 대비 측정 수소흡착량이 1.3 내지 5.6 %인 촉매이다. 성형 촉매 내 산화니켈은 촉매 전처리(환원)과정에서 니켈금속 또는 니켈-알루미나 등으로 전환되는데, 14.3 내지 100%의 촉매에 함유된 니켈이 니켈금속으로 전환되며 이는 각 요소성분의 상호작용에 의존적이다.
상기 제2 촉매는 활성물질의 산화물, 활성촉진물질의 산화물 및 지지물질의 산화물을 적어도 일부 포함한다. 더욱 구체적으로 상기 활성물질의 전구체 및 활성촉진물질의 전구체에 지지물질을 함침시킨 후 건조 및 소성하여 성형 촉매를 제조함에 있어서 상기 활성물질 및 활성촉진물질이 부분적으로 환원되고 산화됨으로써 촉매 표면에 활성물질인 금속(M1), 활성물질의 산화물(M1O), 활성촉진물질인 금속(M2) 및 활성촉진물질의 산화물(M2O)의 적어도 일부를 노출시키게 된다. 촉매 요소성분의 상호작용에 따라서 활성물질-활성촉진물질(M1-M2), 활성물질-지지물질(M1-S), 활성촉진물질-지지물질(M2-S)의 혼합산화물이 생성될 수 있다.
상기 제2 촉매는 상기 활성물질인 금속의 적어도 일부가 촉매 표면에 1.3 내지 5.6% 노출되어 상기 표면에 노출된 적어도 일부의 활성촉진물질의 산화물과 접촉하는 것을 일 특징으로 한다. 상기 활성물질인 금속이 촉매 표면에 1.3% 미만으로 노출되는 경우 촉매 활성이 너무 낮은 문제점이 있고, 5.6% 초과하여 노출되는 경우 촉매 활성이 너무 높아 탄소침적과 소결로 인해 촉매 수명이 감소되는 문제점이 있다.
상기 제2 촉매는 활성물질인 금속(M1)과 활성물질의 산화물(M1O)의 몰비(M1/M1O)가 0.1 내지 1.3인 것을 일 특징으로 한다. 상기 몰비가 0.1 미만인 경우 촉매 활성이 너무 낮은 문제점이 있고, 1.3 초과하는 경우 촉매 활성이 너무 높아 탄소침적과 소결로 인해 촉매 수명이 감소되는 문제점이 있다. 더욱 바람직하게는 활성물질 금속(M1)과 활성물질 산화물(M1O)의 몰비(M1/M1O)가 0.8 내지 1.0인 것이 좋다.
상기 제2 촉매는 표면에 노출된 활성물질인 금속(M1)과 활성촉진물질인 금속(M2)의 몰비(M1/M2)가 0.2 내지 2인 것을 일 특징으로 한다. 상기 몰비(M1/M2)가 0.2 미만인 경우 반응 중 활성금속으로 산소공급이 어려워 활성이 낮아지는 문제점이 있고, 2 초과하는 경우 활성 촉진제 금속 산화물이 활성금속을 막거나 분산도를 떨어뜨리는 문제점이 있다. 상기 몰비(M1/M2)가 상기 범위인 경우 반응물에 포함되어 있을 수 있는 피독 물질에 대한 촉매 물질의 저항성이 높을 것으로 생각되며 안정성도 높아져 촉매의 수명도 좋다.
상기 활성촉진물질은 산소 저장 능력을 상승시키는 물질로서 촉매에 포함되어 개질 반응 중에 탄소 침적에 의한 촉매의 비활성화를 1차적으로 억제할 수 있다.
상기 제2 촉매는 평균 기공크기가 18.6 내지 33.5nm인 메조 세공(mesopore) 및 공경이 1nm 이하인 마이크로 세공(micropore)을 포함하는 것을 일 특징으로 한다. 바람직하게는 메조 세공/마이크로 세공 부피비가 92 내지 115인 것을 특징으로 한다. 메조 세공/마이크로 세공 부피비가 너무 낮으면 활성물질 금속의 입자가 커 지지체 표면에서의 분산도가 낮아지는 문제점이 있고, 메조 세공/마이크로 세공 부피비가 너무 높으면 활성물질과 활성촉진물질의 산화물의 근접성이 떨어질 수 있다.
상기 제2 촉매는 지지물질이 포함된 금속산화물로서 하이드로탈사이트(hydrotalcite) 결정구조의 지지체를 포함한다. 지지물질은 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하며, 지지체로 형성되는 경우 MgO/Al2O3 중량비가 3/7 내지 7/3인 하이드로탈사이트 결정구조 형태로서 상기 활성물질 및 활성촉진물질이 화학적으로 결합할 수 있는 지지구조를 제공한다.
상기 지지물질이 포함된 금속산화물의 결정크기는 14.4 내지 64.3nm 이다. 금속산화물의 결정크기에 따라서 표면에 존재하는 산점과 염기점의 농도가 변화하는데, 결정크기가 14.4nm 미만인 경우 총 염기점/산점의 농도가 높아져서 촉매 반응활성에 부정적인 영향을 끼치는 문제점이 있고, 64.3nm 초과하는 경우 총 염기점/산점의 농도가 낮아져서 반응 중 탄소침적을 야기하는 문제점이 있다.
상기 제2 촉매는 표면에 노출된 활성물질인 금속 및 활성촉진물질의 금속산화물 산소 저장량이 60 내지 70 μmol O2/gcat 인 적어도 2이상의 홀을 포함하는 형태로 성형된 촉매이다. 상기 합성가스 제조용 촉매가 수용된 반응기를 이용하여 천연가스를 수증기와 이산화탄소로 동시에 개질하여 합성가스를 제조하는 합성가스 제조 시스템을 제공함으로써, 산소 저장 능력이 좋기 때문에 탄소 침적에 강하여 복합 리포밍을 하더라도 안정성을 유지할 수 있는 효과를 제공할 수 있다. 바람직하게는 4-hole 형태로 성형된 것이 좋다.
상기 제2 촉매의 제조방법은 먼저, 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하는 지지물질로 형성되는 지지체에 적어도 세륨(Ce)을 포함하는 활성촉진물질의 전구체를 담지하고 동시에 또는 차례로 적어도 니켈(Ni)을 포함하는 활성물질의 전구체를 담지한 혼합물을 제조한다. 이후 100 내지 150℃에서 건조시켜 파우더 형태의 촉매를 얻는다. 물과 상기 파우더 형태의 촉매를 혼합하여 볼밀 작업(ball-milling)을 9 내지 12시간 진행하고, 볼밀된 파우더를 이용하여 스프레이 드라이(spray dry) 공정을 진행한 후 구형의 스프레이 드라이된 파우더를 이용하여 적어도 2 개 이상의 홀(hole)을 갖는 촉매 형상체를 수득한다. 수득된 성형 촉매를 950 내지 1050℃의 온도에서 소성함으로써 상기 물성을 갖는 합성가스 제조용 촉매를 제조할 수 있다.
더욱 구체적으로 설명하면, 제2 촉매의 지지체로서 MgO/Al2O3 중량비가 3/7 내지 7/3인 하이드로탈사이트 구조의 Mg-Al 금속산화물을 이용하여 함침법으로 세륨전구체를 이용하여 Ce 금속이 제조된 전체 촉매 무게 대하여 3 내지 20 중량%가 되도록 하고 동시에 니켈 전구체를 이용하여 제조된 전체 촉매 무게 대비 5 내지 20 중량%를 담지한 혼합물을 제조한다. 이후 진공건조기를 이용하여 50 내지 100℃에서 10 내지 15시간 교반한 후에 용매인 물을 제고하고 100 내지 150℃에서 24시간 이상 건조시켜 파우더 형태의 촉매를 얻는다. 물과 상기 파우더 형태의 촉매를 혼합하여 볼밀 작업(ball-milling)을 9 내지 12시간 진행하고, 볼밀된 파우더를 이용하여 스프레이 드라이(spray dry) 공정을 진행한 후 구형의 스프레이 드라이된 파우더를 이용하여 적어도 2 개 이상의 홀(hole)을 갖는 촉매 형상체를 수득한다. 수득된 성형 촉매를 950 내지 1050℃의 온도에서 5 내지 8시간 동안 소성하여 제2 촉매인 Ni-Ce/Mg-Al를 제조한다.
상기 제1 촉매는 상기 제2 촉매와 동일한 조성(성분 및 함량)의 촉매에 알칼리 처리한 촉매로서, 상기 제2 촉매에 칼륨(Potassium, K), 나트륨(Sodium, Na), 마그네슘(Magnasium, Mg) 또는 칼슘(calcium, Ca)을 포함하는 알칼리 처리한 촉매이다.
상기 제1 촉매는 촉매에 포함된 활성물질에 대하여 알칼리 금속 물질이 10 내지 20 mol.%로 포함된다. 알칼리 물질이 10 mol.% 미만으로 포함되는 경우 촉매활성이 그대로 유지되어 흡열량을 제어할 수 없는 문제점이 있고, 20 mol.% 초과하여 포함되는 경우에는 촉매활성이 매우 낮아지는 문제점이 있다. 바람직하게는 알칼리 물질이 15 mol.% 내지 20 mol.% 로 포함되는 것이 좋다. 더욱 바람직하게는 알칼리 처리된 니켈계 촉매에 포함된 니켈(Nickel)에 대하여 칼륨(Potasium)이 15 내지 20 mol.% 으로 포함된 촉매인 것이 좋다.
상기 제1 촉매는 알칼리 금속이 활성물질과 interation 하면서 활성물질의 active site를 일부 감소시켜 전환율이 감소시키는 영향이 있으나, 이는 리포밍 반응기 상단부에서 흡열 반응을 줄이기 때문에 상단 촉매로서 적합하다. 또한 알칼리계 금속이 담지 될수록 염기점이 많아지기 때문에 CO2 와의 흡착능력 및 activation 능력이 상승되어 탄소 침적양이 감소된다. 그러나 염기점이 너무 많아질 경우, 전환율이 하락하기 때문에 총 염기량이 180 내지 230 μmol CO2/gcat 인 것이 좋다.
알칼리 처리된 촉매는 촉매의 표면 상에 코크의 축적을 방해하고, 코크를 가스화하는 능력에 의해 탄소 침적이 줄어드는 효과가 있지만, 알칼리 금속이 활성물질과 상호작용(interation)하면서 활성점을 일부 감소시키기 때문에 알칼리 처리되지 않은 촉매에 비하여 전환율이 떨어지고, 또한 촉매에 처리된 알칼리 성분의 양이 많아질수록 전환율이 감소하는 것을 발견하였다. 따라서 본 발명에 따른 반응기(20)의 상단인 제1 반응부(21)에 알칼리 처리된 촉매를 수용하여 탄소 침적 현상을 방지하면서 하단인 제2 반응부(22)에 알칼리 처리되지 않은 촉매를 수용하여 전환율이 저하되는 것을 방지하였다.
상기 제1 촉매는 제2 촉매인 성형 촉매를 제조한 후, 제조된 성형 촉매를 알칼리 전구체 수용액에 초기 함침(incipient wetness impregnation)하고, 혼합(mixing) 후 100 내지 120℃에서 2시간 내지 4시간 동안 건조(Drying)하고 500 내지 700℃에서 4 내지 6시간 동안 소성(calcination)하여 제조한다.
더욱 구체적인 알칼리 처리 방법을 설명하면, 상기 제조된 제2 촉매를 알칼리 전구체 수용액에 초기 함침 방법(incipient wetness impregnation)을 통해 담지하고 혼합한다. 이때, 알칼리 물질이 성형 촉매의 Ni 금속에 대하여 4 내지 16 mol.%가 되도록 담지한다. 대량 생산법으로 담지할 경우에도 상온에서 1시간 이상 담지 하는 것이 좋다. 이후 상기 담지 및 혼합된 조성물을 100 내지 120℃에서 2시간 이상 건조(Drying)한다. 100℃ 미만으로 건조하는 경우 알칼리 금속 수용액에서 물이 건조되지 못하는 문제점이 있다. 2시간 미만으로 건조하는 경우 성형 촉매 기공 내에 물이 건조 되지 못하는 문제점이 있다. 바람직하게는 105 내지 115℃에서 2시간 내지 3시간 동안 건조하는 것이 좋다. 이후 상기 건조된 조성물을 소성하여 최종 형태의 알칼리 처리된 니켈계 촉매를 얻는 단계로서 500 내지 700℃에서 4 내지 6시간 동안 소성(calcination)한다. 500℃ 미만으로 소성하는 경우 알칼리 금속 전구체에 포함되어 있는 나이트레이트의 분해가 되지 않는 문제점이 있고, 700℃ 초과하여 소성하는 경우 알칼리 금속끼리 뭉쳐짐 현상이 발생 할 수 있는 문제점이 있다. 바람직하게는 550 내지 650℃에서 5 내지 6시간 동안 소성하는 것이 좋다.
본 발명의 또 다른 일실시예에 따른 합성가스 제조 시스템은 천연가스, 수증기 및 이산화탄소를 포함하는 반응물을 공급 라인을 통해 반응기로 공급하는 반응물 공급부(10) 및 상기 반응물을 공급받아 합성가스를 제조하는 합성가스 제조용 촉매가 수용된 반응기(20);를 포함한다. 반응기(20)는 전술한 본 발명에 따른 반응기를 사용한다. 본 발명의 일실시예에 따른 합성가스 제조 시스템의 구성도를 도 1에 나타내었다.
상기 반응물 공급부(10)는 요구되는 조성의 생성물을 포함하는 합성가스를 얻기 위하여 반응물에 포함된 성분들의 몰비를 조절하여 천연가스를 공급한다. 예를 들어, 상기 이산화탄소는 반응물로 공급되는 천연가스 대비 0.1 내지 0.5 몰비로 공급된다.
또한 본 발명에 따른 합성가스 제조 시스템은 상기 공급 라인과 구별되는 연료 라인을 통해 연료용 가스 및 발화용 공기를 포함하는 연료를 공급하는 연료 공급부(30)를 더 포함하고, 상기 반응기(20) 전단에 반응물 및 연료와 열교환이 이루어지는 열교환부(40)를 더 포함한다. 또한 상기 열교환부(40)에서의 열교환 및 반응기(20)에서 필요한 반응열을 제공하는 가열부(50)를 더 포함한다.
상기 열교환부(40)는 보일러 등에서 가열된 열매체와 간접적으로 가열시키는 열교환기로서, 상기 반응물의 온도를 700 내지 800℃로 승온시키고, 상기 combustion air 의 온도를 300 내지 400 ℃로 승온시킨다.
상기 가열부(50)는 직접적으로 연소, 저항열 등의 발열에 의해 가열시키는 히터로서, 반응기(20)에서 합성가스 제조를 위한 반응 온도 800 ∼ 1000 ℃가 유지되도록 가열한다.
본 발명에 따른 합성가스 제조용 반응기(20)를 이용한 합성가스 제조 시스템을 통해 제조되는 합성가스는 H2/(2CO+3CO2)의 몰 비율이 0.8 내지 1.2로 조절된다.
실시예 1 - 합성가스 제조용 촉매의 제조
(1) 성형촉매(제2 촉매)의 제조
먼저, 합성가스 제조용 촉매의 지지체로서 MgO/Al2O3 중량비가 3/7 인 하이드로탈사이트 구조의 Mg-Al 금속산화물인 PURAL MG30(sasol사 제품, 비표면적은 최소 250 m2/g 이상임, 이하, "Mg-Al"이라 함)을 이용하여 함침법으로 세륨아세테이트를 이용하여 Ce 금속이 전체 제조된 촉매 무게 대비 6 중량%가 되도록 하고 동시에 니켈 전구체로서 니켈나이트레이트(Ni(NO3)2·6H2O)를 이용하여 전체 제조된 촉매 무게 대비 15 중량%를 담지하고 진공건조기를 이용하여 70 ℃에서 12시간 교반한 후에 용매인 물을 제거하고 100 ℃의 오븐에서 24시간 이상 건조한 이후, 물과 파우더를 혼합하여 ball-milling 작업을 10시간 진행한다. Ball-milled 파우더를 이용하여 spray dry 공정을 진행한다. 구형의 spray-dried 파우더를 이용하여 4-hole 형태의 촉매를 성형하고, 1000 ℃에 6시간동안 소성하여 최종 촉매인 Ni-Ce/Mg-Al를 제조하였다.
(2) 알칼리 처리된 촉매(제1 촉매)의 제조
H2O 450g 및 KNO3 77.5 g 수용액에 상기 제조된 NCMA 촉매 2000g을 함침시키고, 혼합 후 110℃에서 2시간 이상 건조시키고 600℃에서 5시간 동안 소성하여 칼륨 처리된 NCMA 촉매(K-NCMA)를 제조하였다.
하기 표 1에 나타나는 것과 같이 알칼리의 함량 및 종류를 변경하여 알칼리 처리된 촉매를 제조하였다.
비교예로서, 상용촉매인 촉매(제조예 10)를 구입하였다.
처리 성분 알칼리 금속 함량(mol.%) 촉매
제조예 1 - - NCMA
제조예 2 K 5 5K-NCMA
제조예 3 K 10 10K-NCMA
제조예 4 K 15 15K-NCMA
제조예 5 K 20 20K-NCMA
제조예 6 K 30 30K-NCMA
제조예 7 Na 15 15Na-NCMA
제조예 8 Mg 15 15Mg-NCMA
제조예 9 Ca 15 15Ca-NCMA
제조예 10 - - SRM 상용촉매
실시예 2 - 합성가스 제조용 반응기 구성
반응기에 수용된 촉매 구성은 하기 표 2에 나타내었다. 또한 제1 반응부와 제2 반응부의 부피비를 하기 표 2에 나타내었다.
제1 반응부 제2 반응부 부피비
실시예 1 제조예 3 제조예 1 1:1
실시예 2 제조예 4 제조예 1 1:1
실시예 3 제조예 5 제조예 1 1:1
실시예 4 제조예 7 제조예 1 1:1
실시예 5 제조예 8 제조예 1 1:1
실시예 6 제조예 9 제조예 1 1:1
실시예 7 제조예 3 제조예 1 1:2
실시예 8 제조예 3 제조예 1 2:3
실시예 9 제조예 3 제조예 1 3:2
비교예 1 제조예 1 제조예 1 1:1
비교예 2 제조예 2 제조예 1 1:1
비교예 3 제조예 6 제조예 1 1:1
비교예 4 제조예 10 제조예 1 1:1
비교예 5 제조예 3 제조예 1 1:3
비교예 6 제조예 3 제조예 1 2:1
비교예 7 제조예 3 제조예 1 3:1
실험예
(1) 메탄(CH4) 및 이산화탄소(CO2)의 전환율 측정
공급부에서 반응물로는 CH4 : CO2 : H2O : N2 의 몰 비를 1 : 0.4 : 1.6 : 1의 비율로 고정하여 반응기로 주입하여 개질반응을 수행하였다. 벤치 반응기는 3개의 히터로 구성되어 있고, 히터들의 온도는 850℃로 설정하였다. 반응기는 내경이 32.52 mm 이고 반응기의 총 길이는 110 cm이다. 반응기 내부에 촉매층은 온도를 지시할 수 있는 T.C.를 설치하였다. 성형된 촉매의 경우, 크기가 2cm 이상으로 벤치 규모 반응기 실험을 위해 4.8 내지 6.4 mm의 크기로 분쇄하였다. 도 3과 같이 실제 촉매층 반응 영역은 66cm 이고, 5개의 온도를 지시할 수 있도록 하였다.
표 2와 같은 부피 조성으로 촉매를 개질반응기에 장입하고 700 ℃의 수소(5 부피%H2/N2) 분위기 하에서 3시간 환원 처리한 후에 3개의 히터온도를 850℃, 반응압력 0.5 MPa, 공간속도 5000 L(CH4)/kgcat/hr의 조건에서 반응을 24시간 수행하였으며, 반응이 평형에 도달하고 유지되는 동안 촉매층의 온도를 하기 표 3에 나타내었고, 전환율 측정 결과는 하기 표 4에 나타내었다.
외부제어 (히터 830oC) 온도1(oC) 온도2(oC) 온도3(oC) 온도4(oC) 온도5(oC)
실시예 1 720 746 784 799 812
실시예 2 754 771 783 797 813
실시예 3 759 774 788 799 812
실시예 4 750 770 780 794 809
실시예 5 748 768 783 793 809
실시예 6 753 771 784 791 810
실시예 7 748 759 781 793 813
실시예 8 753 764 780 794 810
실시예 9 754 766 781 793 811
비교예 1 714 734 778 805 815
비교예 2 717 740 781 803 815
비교예 3 770 774 782 788 803
비교예 4 721 739 779 804 813
비교예 5 729 739 778 799 812
비교예 6 753 767 782 789 805
비교예 7 754 768 780 788 803
비교예 1의 경우 NCMA 촉매만으로 충진되어 있어 상대적으로 반응성이 높아서 온도1의 온도가 상대적으로 많이 낮고, 비교예 2의 경우 제 1촉매가 5K-NCMA 촉매로 충진되어 있어서 상대적으로 반응성이 높게 유지되어 비교예 1과 비슷한 온도 분포를 보여준다. 비교예 4의 경우, 상용 촉매의 활성이 그대로 보여주고 있어서 온도 1의 온도가 낮은 것을 알 수 있다. 비교예 5의 경우, 제 1촉매인 15K-NCMA 촉매의 부피 비율이 상대적으로 작아서 온도1의 온도가 낮은 것을 확인하였다. 비교예 1, 2, 4 및 5의 경우 온도1의 온도가 상대적으로 낮아서 온도편차가 큰 것을 확인할 수 있다. 비교예 3의 경우, 활성이 낮은 30K-NCMA 촉매를 제 1촉매로 충진할 경우, 낮은 활성으로 인해 온도 분포에는 장점이 있지만, 낮은 활성 제 1 촉매를 충진할 경우 전체 활성이 낮아지는 단점이 있다. 온도 분포를 고르게 유지 하면서도, 평형 전환율에 도달할 수 있을 정도의 활성을 가지는 촉매를 제 1 촉매로 활용해야한다. 본 발명에 따른 실시예들의 경우, 비교적 온도 편차가 작아서 반응열 제어하기에 유리한 것을 확인 할 수 있다. 제1 촉매의 조성으로 반응 초입부의 흡열 반응열을 제어할 수 있으며, 제어된 반응열로 인해 온도 분포 격차를 줄일 수 있다. 이는 실제 리포머 재질의 스트레스를 줄이는데 크게 도움을 줄 수 있다.
외부제어 (히터 830oC) CH4 전환율(%) CO2 전환율(%)
실시예 1 90.7 14.8
실시예 2 90.8 14.7
실시예 3 90.7 14.6
실시예 4 90.7 14.6
실시예 5 90.8 14.7
실시예 6 90.9 14.9
실시예 7 90.7 14.4
실시예 8 90.4 14.7
실시예 9 90.6 14.9
비교예 1 91.1 15.3
비교예 2 90.9 14.8
비교예 3 89.2 13.5
비교예 4 90.7 14.7
비교예 5 90.6 14.8
비교예 6 89.3 13.7
비교예 7 89.1 13.5
리포밍 반응의 경우, 온도 의존적인 반응으로서 최하단 온도에 따라 전환율이 변화한다. 실시예 1 내지 9 및 비교예 1 내지 5는 표 3에서와 같이 온도5가 비슷한 것을 확인할 수 있으며, 표 4에서와 같이 CH4 전환율, CO2 전환율이 유사한 것을 확인할 수 있다. 비교예 6 및 7의 경우, 제 1촉매인 15K-NCMA 촉매의 부피 비율이 상대적으로 높아서 온도5 상대적으로 낮은 것을 확인하였다. 이에 CH4 전환율, CO2 전환율도 상대적으로 가장 낮은 것을 확인할 수 있다. 상대적으로 활성이 낮은 제 1촉매의 부피를 과도하게 설정하게 되면, 하단의 온도5 촉매층 온도가 낮아지게 되고, 이는 곧 리포밍 반응 전체의 전환율을 낮추게 되는 단점이 있다. 따라서 제 1촉매의 부피는 제 2촉매의 부피의 1/2 내지 1.5 배 내외로 유지하는 것이 바람직하다.
(2) 탄소 침적 측정
제1 반응부에 수용된 제1 촉매의 탄소 침적 측정 결과와 제2 반응부에 수용된 제2 촉매의 탄소 침적 측정 결과를 하기 표 5에 나타내었다. 각 반응부에 수용된 촉매를 대상으로 열중량분석법(Thermo-Gravimetric Analysis, TGA)을 통해 각각의 탄소 침적량을 확인하였다.
제1 반응부 제2 반응부 부피비
실시예 1 - - 1:1
실시예 2 - - 1:1
실시예 3 - - 1:1
실시예 4 - - 1:1
실시예 5 - - 1:1
실시예 6 - - 1:1
실시예 7 - - 1:2
실시예 8 - - 3:2
실시예 9 - - 2:3
비교예 1 - - 1:1
비교예 2 - - 1:1
비교예 3 - - 1:1
비교예 4 3.2 wt% - 1:1
비교예 5 - - 1:3
비교예 6 - - 2:1
비교예 7 - - 3:1
전술한 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
[부호의 설명]
10: 반응물 공급부
20: 반응기
21: 제1 반응부 22:제2 반응부
30: 연료 공급부
40: 열교환부
50: 가열부

Claims (8)

  1. 천연가스를 포함하는 반응물로부터 합성가스를 제조하는 합성가스 제조용 촉매가 수용된 반응기로서,
    상기 반응기는 상기 반응물이 유입되는 측에 구비되는 제1 반응부 및 상기 반응물로부터 제조된 합성가스가 유출되는 측에 구비되는 제2 반응부를 포함하며,
    상기 제1 반응부에는 알칼리 처리된 합성가스 제조용 촉매인 제1 촉매가 수용되고, 상기 제2 반응부에는 합성가스 제조용 촉매인 제2 촉매가 수용된 합성가스 제조용 반응기.
  2. 제1항에 있어서,
    상기 반응기는 상기 제1 반응부의 부피가 상기 제2 반응부의 부피에 대하여 1/2배 내지 1.5배로 구성되는 것을 특징으로 하는 합성가스 제조용 반응기.
  3. 제1항에 있어서,
    상기 제2 촉매는 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하는 지지물질, 적어도 세륨(Ce)을 포함하는 활성촉진물질 및 적어도 니켈(Ni)을 포함하는 활성물질을 포함하고, 상기 촉매의 표면에 노출된 활성물질인 금속 및 활성촉진물질의 산화물의 O2 저장량이 60 내지 70 μmol O2/gcat 인 것을 특징으로 하는 적어도 2이상의 홀을 포함하는 형태로 성형된 촉매인 합성가스 제조용 반응기.
  4. 제1항에 있어서,
    상기 제1 촉매는 성형 촉매의 표면에 알칼리 처리된 촉매이며,
    상기 성형 촉매는 적어도 마그네슘(Mg) 및 알루미늄(Al)을 포함하는 지지물질, 적어도 세륨(Ce)을 포함하는 활성촉진물질 및 적어도 니켈(Ni)을 포함하는 활성물질을 포함하고, 상기 촉매의 표면에 노출된 활성물질인 금속 및 활성촉진물질의 산화물의 O2 저장량이 60 내지 70 μmol O2/gcat 인 것을 특징으로 하는 적어도 2 이상의 홀을 포함하는 형태로 성형된 촉매인 합성가스 제조용 반응기.
  5. 천연가스, 수증기 및 이산화탄소를 포함하는 반응물을 공급 라인을 통해 반응기로 공급하는 반응물 공급부; 및
    상기 반응물을 공급받아 합성가스를 제조하는 합성가스 제조용 촉매가 수용된 반응기;를 포함하고,
    상기 반응기는 상기 반응물 유입되는 측에 구비되는 제1 반응부 및 상기 반응물로부터 제조된 합성가스가 유출되는 측에 구비되는 제2 반응부를 포함하며,
    상기 제2 반응부에는 합성가스 제조용 촉매인 제2 촉매가 수용되고, 상기 제1 반응부에는 알칼리 처리된 합성가스 제조용 촉매인 제1 촉매가 수용된 반응기인 합성가스 제조 시스템.
  6. 제5항에 있어서,
    상기 공급 라인과 구별되는 연료 라인을 통해 연료용 가스 및 발화용 공기를 포함하는 연료를 공급하는 연료 공급부;를 더 포함하고,
    상기 반응기 전단에 상기 반응물 및 상기 연료와 열교환이 이루어지는 열교환부;를 더 포함하는 것을 특징으로 하는 합성가스 제조 시스템.
  7. 제6항에 있어서,
    상기 열교환부는 상기 반응물의 온도를 700 내지 800℃로 승온시키는 것을 특징으로 하는 합성가스 제조 시스템.
  8. 제6항에 있어서,
    상기 열교환부는 상기 연료의 온도를 300 내지 400℃로 승온시키는 것을 특징으로 하는 합성가스 제조 시스템.
PCT/KR2018/010506 2017-09-07 2018-09-07 이중 촉매층 반응기 및 이를 이용한 합성가스 제조 시스템 WO2019050336A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0114246 2017-09-07
KR20170114246 2017-09-07

Publications (1)

Publication Number Publication Date
WO2019050336A1 true WO2019050336A1 (ko) 2019-03-14

Family

ID=65634360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010506 WO2019050336A1 (ko) 2017-09-07 2018-09-07 이중 촉매층 반응기 및 이를 이용한 합성가스 제조 시스템

Country Status (2)

Country Link
KR (1) KR102142686B1 (ko)
WO (1) WO2019050336A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960009892B1 (ko) * 1993-08-25 1996-07-24 재단법인 한국화학연구소 이산화탄소로 부터 합성가스의 제조방법
KR100390774B1 (ko) * 2000-09-30 2003-07-10 한국화학연구원 산소개질 또는 수증기-산소 혼합개질에 의한천연가스로부터 합성가스의 제조방법
KR20090011299A (ko) * 2007-07-25 2009-02-02 한국에너지기술연구원 합성가스 제조 반응기 및 합성가스 제조방법
KR20120037821A (ko) * 2010-10-12 2012-04-20 한국과학기술연구원 디젤의 수증기 개질반응용 니켈계 하이드로탈사이트 촉매, 이의 제조방법 및 이를 이용한 디젤의 개질반응에 의한 수소의 제조방법
KR20150076362A (ko) * 2013-12-26 2015-07-07 재단법인 포항산업과학연구원 환원가스 제조용 개질 촉매, 그 제조방법 및 상기 개질 촉매를 이용하여 환원가스를 제조하는 방법

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0911076A1 (en) 1997-10-23 1999-04-28 Haldor Topsoe A/S Reformer furnace with internal recirculation
GB9817526D0 (en) 1998-08-13 1998-10-07 Ici Plc Steam reforming
JP4132295B2 (ja) 1998-09-30 2008-08-13 千代田化工建設株式会社 炭酸ガスを含む低級炭化水素ガスから液体炭化水素油を製造する方法
KR100450872B1 (ko) 2004-04-10 2004-10-01 이지봉 단자결착기의 단자이송 조절기구
KR100481121B1 (ko) 2004-06-25 2005-04-07 (주) 베스콘 불소-함유 아크릴레이트 또는 메타크릴레이트 단량체,가교제 및 이로부터 제조되는 소프트 렌즈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960009892B1 (ko) * 1993-08-25 1996-07-24 재단법인 한국화학연구소 이산화탄소로 부터 합성가스의 제조방법
KR100390774B1 (ko) * 2000-09-30 2003-07-10 한국화학연구원 산소개질 또는 수증기-산소 혼합개질에 의한천연가스로부터 합성가스의 제조방법
KR20090011299A (ko) * 2007-07-25 2009-02-02 한국에너지기술연구원 합성가스 제조 반응기 및 합성가스 제조방법
KR20120037821A (ko) * 2010-10-12 2012-04-20 한국과학기술연구원 디젤의 수증기 개질반응용 니켈계 하이드로탈사이트 촉매, 이의 제조방법 및 이를 이용한 디젤의 개질반응에 의한 수소의 제조방법
KR20150076362A (ko) * 2013-12-26 2015-07-07 재단법인 포항산업과학연구원 환원가스 제조용 개질 촉매, 그 제조방법 및 상기 개질 촉매를 이용하여 환원가스를 제조하는 방법

Also Published As

Publication number Publication date
KR102142686B1 (ko) 2020-08-07
KR20190027763A (ko) 2019-03-15

Similar Documents

Publication Publication Date Title
JP3345784B2 (ja) オートサーマルリフォーミング法による合成ガスの製造方法
US6878667B2 (en) Nickel-rhodium based catalysts for synthesis gas production
WO2010013958A2 (ko) 천연가스와 이산화탄소로부터 합성가스 제조를 위한 촉매 및 이의 제조방법
RU2175636C2 (ru) Устройство для осуществления частичного окисления и способ частичного окисления
WO2019054557A1 (ko) 탄소 침적의 감소를 위해, 금속이온이 치환된 페로브스카이트 금속산화물 촉매 및 이의 제조 방법, 그리고 이를 이용한 메탄 개질 반응 방법
WO2015183059A1 (ko) 활성 및 수명 특성이 향상된 피셔-트롭쉬 촉매의 제조방법
JP2001322803A (ja) 水素を含有する気体混合物中の一酸化炭素の転化法およびこのための触媒
WO2015183061A1 (ko) 고활성 피셔-트롭쉬 촉매의 제조방법
WO2018030604A1 (ko) 고온 연소촉매를 이용한 버너
KR20070112802A (ko) 희토류 원소에 의해 변형된 산화물 지지체를 가진 귀금속수성 가스 전화 반응 촉매
WO2014092474A1 (ko) 수증기-이산화탄소 개질에 의한 합성가스 제조용 촉매 및 이를 이용한 합성가스 제조방법
WO2019050337A1 (ko) 알칼리 처리된 니켈계 촉매 및 이의 제조방법
CN112875734A (zh) 单一晶相镁铝尖晶石及其制备方法和甲烷蒸汽重整催化剂
US6242380B1 (en) Process for preparing supported nickel catalyst for reforming hydrocarbons
GB2085314A (en) Hydrocarbon cracking process and catalyst
WO2014092482A1 (ko) 수증기-이산화탄소 개질에 의한 합성가스 제조용 란탄함유 촉매 및 이를 이용한 합성가스 제조방법
WO2019050336A1 (ko) 이중 촉매층 반응기 및 이를 이용한 합성가스 제조 시스템
WO2017090864A1 (ko) 저온 개질반응용 코발트 담지촉매 및 이의 제조방법
WO2019050335A1 (ko) 니켈계 촉매 및 이를 이용한 합성가스 제조 시스템
KR100277048B1 (ko) 수소 제조법과 그에 사용되는 촉매
Jun et al. Nickel-calcium phosphate/hydroxyapatite catalysts for partial oxidation of methane to syngas: effect of composition
JPS63248444A (ja) 炭化水素の水蒸気改質および/または部分酸化用触媒
JPH04331704A (ja) 一酸化炭素および水素を含有する合成ガスの製造方法
JPH02227141A (ja) メタノール改質用触媒
JPH03202151A (ja) 炭化水素の水蒸気改質用触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18853060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18853060

Country of ref document: EP

Kind code of ref document: A1