WO2019049571A1 - 蓄電システム、管理装置 - Google Patents

蓄電システム、管理装置 Download PDF

Info

Publication number
WO2019049571A1
WO2019049571A1 PCT/JP2018/029194 JP2018029194W WO2019049571A1 WO 2019049571 A1 WO2019049571 A1 WO 2019049571A1 JP 2018029194 W JP2018029194 W JP 2018029194W WO 2019049571 A1 WO2019049571 A1 WO 2019049571A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage
sop
current
power conversion
Prior art date
Application number
PCT/JP2018/029194
Other languages
English (en)
French (fr)
Inventor
員史 西川
慎哉 西川
透 渡邊
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019540831A priority Critical patent/JP7117534B2/ja
Priority to CN201880046985.8A priority patent/CN110892606B/zh
Priority to US16/637,923 priority patent/US11329327B2/en
Publication of WO2019049571A1 publication Critical patent/WO2019049571A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/448End of discharge regulating measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage system and a management apparatus in which a plurality of storage blocks are connected in parallel.
  • a large scale storage system for example, a plurality of storage blocks configured by connecting a plurality of storage modules in series are connected in parallel and are constructed.
  • FR Frequency Regulation
  • a storage rack configured by stacking a plurality of storage modules is assumed as the storage block.
  • the internal resistance of the cells may differ due to the voltage difference, capacity difference, temperature difference, etc. of the cells. In this case, a difference in resistance occurs between the storage racks, and current variation occurs between the storage racks. If current variations occur between storage racks, current may be concentrated on a particular storage rack, and the maximum allowable current of the storage rack may be exceeded.
  • the present invention has been made in view of such a situation, and an object thereof is to secure necessary current as much as possible without exceeding the maximum allowable current of each storage block in a storage system in which a plurality of storage blocks are connected in parallel. It is about providing technology.
  • a storage system includes a plurality of storage blocks connected in parallel, and DC power discharged from the plurality of storage blocks converted into AC power to be used as a power system or load
  • SOP of the entire plurality of storage blocks is calculated based on the current flowing in each storage block, and the upper limit value of at least one of the charge and discharge of the power conversion unit is set based on the calculated entire SOP.
  • a managing unit estimates the current flowing to each storage block from the voltage and the internal resistance of each storage block before the power conversion unit starts power conversion.
  • FIGS. 5 (a) to 5 (d) are diagrams showing specific examples of weighting parameters. It is a flowchart which shows the flow of operation
  • FIG. 1 is a diagram showing a configuration of power storage system 1 according to the first embodiment of the present invention.
  • a load 3 is connected to a distribution line between the storage system 1 and the power system 2.
  • the storage system 1 includes a plurality of storage racks connected in parallel, a power conversion device 60, and a master management device 50m.
  • FIG. 1 shows an example in which three storage racks (a first storage rack 10, a second storage rack 20, and a third storage rack 30) are connected in parallel to the power conversion device 60.
  • Power conversion device 60 converts DC power discharged from a plurality of storage racks 10-30 into AC power and outputs the AC power to power system 2 or load 3, and converts AC power input from power system 2 into DC power. And charge the plurality of storage racks 10-30 connected in parallel.
  • Power converter 60 can be configured by a general power conditioner, includes a bidirectional inverter and a control circuit, and includes a bidirectional DC-DC converter as needed. In the following description, it is assumed that the power converter 60 includes a bi-directional DC-DC converter.
  • the bi-directional DC-DC converter can control the current / voltage of the DC power charged in the plurality of storage racks 10-30 or discharged from the plurality of storage racks 10-30, for example, CC / CV charging, CC / CV discharge is possible.
  • the bi-directional inverter performs conversion of direct current power to alternating current power or conversion of alternating current power to direct current power.
  • the control circuit controls the bi-directional DC-DC converter and the bi-directional inverter in accordance with the instruction from the master management device 50m. In the configuration without the bi-directional DC-DC converter, the bi-directional inverter also controls the current / voltage.
  • the first storage rack 10 includes a plurality of storage modules 11-1n connected in series, a first rack management unit 50a, and a first switch S1.
  • Each storage module 11-1n includes a plurality of cells connected in series or in series and parallel, and a monitoring circuit.
  • the cells lithium ion battery cells, nickel hydrogen battery cells, electric double layer capacitor cells, lithium ion capacitor cells, etc. can be used.
  • an example using a lithium ion battery cell is assumed.
  • the monitoring circuit of each storage module 11-1n detects the voltage, current, and temperature of a plurality of cells in each storage module 11-1n.
  • the monitoring circuit transmits the detected voltage, current, and temperature of the cell to the first rack management unit 50a via the in-rack communication line 90a.
  • serial communication compliant with the RS-485 standard can be used.
  • the monitoring circuits and the first rack management unit 50a may be connected by wireless communication or may be connected by power line communication.
  • the first switch S1 is interposed between the power line 70 connected to the power conversion device 60 and the plurality of storage modules 11-1 n connected in series.
  • a mechanical relay or a semiconductor switch can be used for the first switch S1.
  • the first rack management unit 50a is realized by cooperation of hardware resources and software resources. As hardware resources, microcomputers, DSPs, FPGAs, other LSIs, and analog elements can be used. Programs such as firmware can be used as software resources.
  • the first rack management unit 50a receives the voltage, current, and temperature of each cell from the monitoring circuit of each storage module 11-1n through the in-rack communication line 90a.
  • the first rack management unit 50a estimates the SOC (State Of Charge) and SOH (State Of Health) of the cell based on the received voltage, current and temperature of the cell.
  • the estimation of SOC and SOH may be performed by the monitoring circuit of each storage module 11-1n.
  • the SOC can be estimated by a current integration method or an OCV (Open Circuit Voltage) method.
  • SOH is defined by the ratio of the current full charge capacity to the initial full charge capacity, and a lower numerical value indicates that deterioration is in progress.
  • the SOH may be obtained by measuring the capacity by complete charge and discharge, or may be estimated based on the aging deterioration rate and the current deterioration rate obtained in advance by experiments and simulations.
  • the aging deterioration is mainly determined by the SOC and the temperature, and the current deterioration is mainly determined by the integrated current amount and the temperature.
  • the first rack management unit 50a estimates the standing deterioration degree based on the standing deterioration rate, S0C, and the temperature, calculates the current deterioration degree based on the current deterioration rate, the integrated current amount, and the temperature, and adds the two together. Can estimate the cell's SOH.
  • the first rack management unit 50a estimates a SOP (State Of Power) for discharge and a SOP for charge of the first storage rack 10.
  • the discharge SOP of the first storage rack 10 indicates the maximum power that can be discharged from the first storage rack 10, and the charge SOP of the first storage rack 10 indicates the maximum power that can charge the first storage rack 10. Show.
  • SOPd IdV (Equation 1)
  • Id (E-Vmin) / R (Equation 2)
  • SOPc IcV (Equation 3)
  • Ic (Vmax-E) / R (Equation 4)
  • E electromotive force
  • R internal resistance.
  • the electromotive force E depends on the SOC, and is higher as the SOC is higher.
  • the first rack management unit 50a may estimate the SOP with reference to a table in which the relationship between the SOC and the SOP obtained in advance by experiments or simulations is described.
  • the SOP calculated by the equations 1 and 3 decreases as the SOH decreases. Therefore, the current SOP can be estimated by multiplying the current SOH by the initial SOP specified by the table reference.
  • the first rack management unit 50a is connected to the master management device 50m, the second rack management unit 50b of the second storage rack 20, and the third rack management unit 50c of the third storage rack 30 via the inter-rack communication line 80.
  • Ru for communication via the inter-rack communication line 80, a communication method based on a standard such as RS-485, Ethernet (registered trademark), CAN (Controller Area Network) or the like can be used.
  • the first rack management unit 50a transmits monitoring data (battery information) of the first storage rack 10 to the master management device 50m via the inter-rack communication line 80.
  • the cell information may include cell voltage, current, power, temperature, SOC, SOH, SOP for storage rack discharge, and SOP for charge.
  • the measured value of the current is basically zero.
  • the voltage of the cell is basically measured by CCV (Closed Circuit Voltage). If a switch is provided to open both ends of the cell, OCV (Open Circuit Voltage) can also be measured.
  • the configurations and the operations of the second storage rack 20 and the third storage rack 30 are the same as the configuration and the operation of the first storage rack 10, so the description will be omitted.
  • the master management device 50m is realized by cooperation of hardware resources and software resources. As hardware resources, microcomputers, DSPs, FPGAs, other LSIs, and analog elements can be used. Programs such as firmware can be used as software resources.
  • the master management device 50 m manages the plurality of storage racks 10-30 by communicating with the rack management units 50 a-50 c via the inter-rack communication line 80. The master management device 50m also notifies the control circuit of the power conversion device 60 of a control signal.
  • Master management device 50m is a discharge SOP for the entire plurality of storage racks 10-30 connected in parallel (hereinafter referred to as discharging system SOP), and a charge SOP for the entire plurality of storage racks 10-30 (hereinafter for charging) Calculate the system SOP).
  • the discharge system SOP and the charge system SOP can be calculated by the following (Equation 5) and (Equation 6).
  • Discharge system SOP Minimum rack for discharge SOP * (total rack current / maximum rack current) ⁇ (Equation 5)
  • System for charging SOP Minimum rack for charging SOP * (total rack current / maximum rack current) ... (Equation 6)
  • the discharge minimum rack SOP is the minimum value among discharge storage SOPs of the plurality of storage racks 10-30.
  • the charging minimum rack SOP is the minimum value among the charging SOPs of the plurality of storage racks 10-30.
  • the total rack current is a total value of each current flowing to the plurality of storage racks 10-30.
  • the rack maximum current is the maximum value of each current flowing to the plurality of storage racks 10-30. If the SOP and current value among the plurality of storage racks 10-30 are ideally the same, the system SOP is a value obtained by multiplying the rack SOP by the number of parallel connections (3 in the example of FIG. 1). On the other hand, the larger the current deviation between the plurality of storage racks 10-30, the lower the system SOP.
  • Discharge system SOP min (discharge system SOPn) (Equation 7)
  • Discharge system SOPn discharge rack SOPn ⁇ I / In (Equation 8)
  • System for charge SOP min (system for charge SOPn) (Equation 9)
  • Charging system SOPn charging rack SOPn ⁇ I / In (Equation 10)
  • I is the sum of the currents flowing in the multiple storage racks connected in parallel (system current).
  • Master management device 50m converts the calculated power command value / current command value for discharging corresponding to discharge system SOP and the calculated power command value / current command value for charging system SOP into the power conversion device.
  • the current command value can be calculated, for example, by dividing the system SOP by the system voltage.
  • the bidirectional DC-DC converter of the power conversion device 60 performs discharge control with the set power command value / current command value for discharge as the upper limit value at the time of discharge. Similarly, the bidirectional DC-DC converter of the power conversion device 60 performs charge control with the set power command value / current command value for charge as the upper limit value at the time of charge.
  • a DC-DC converter is not separately provided between power conversion device 60 and each storage rack 10-30. Therefore, the current flowing to each storage rack 10-30 can be individually controlled. I can not Therefore, a current corresponding to the resistance ratio of the plurality of storage racks 10-30 flows to each storage rack 10-30.
  • bidirectional DC-DC converter of power converter 60 performs charge / discharge control within the range of discharge system SOP and charge system SOP, storage system 1 is prevented from exceeding the maximum allowable current of the entire system. As well as being able to prevent each storage rack 10-30 from exceeding its maximum allowable current.
  • the value of the current flowing through each storage rack 10-30 is required. After the storage system 1 starts operating, the current flowing to each storage rack 10-30 can be measured by a current sensor (not shown), but before the start of operation, the current flowing to each storage rack 10-30 is measured I can not do it.
  • the operation before the start of charge and discharge and the operation after the start of charge and discharge will be specifically described.
  • FIG. 2 is a flowchart showing the flow of the operation of power storage system 1 according to the first embodiment of the present invention.
  • Master management device 50m acquires SOP for discharge of each storage rack, charge SOP, SOC, temperature, and SOH of each cell included in each storage rack as battery information of each storage rack from each rack management unit 50a-50c. To do (S10).
  • the master management device 50m estimates the internal resistance and OCV of each cell based on the acquired SOC, temperature, and SOH of each cell (S11).
  • the OCV of a cell can be estimated from the SOC-OCV curve of the cell.
  • the internal resistance of the cell can be estimated with reference to a table in which the relationship between the internal resistance of the cell and the combination of the SOC, the temperature, and the SOH obtained in advance by experiment or simulation is described.
  • Master management device 50m combines internal resistances of the plurality of cells included in the storage rack for each storage rack to estimate the internal resistance of the storage rack.
  • the master management device 50m combines the OCVs of the plurality of cells included in the storage rack for each storage rack to estimate the OCV of the storage rack (S12).
  • Master management device 50m predicts the current estimated to flow to each storage rack from the internal resistance and OCV of each storage rack 10-30 (S13).
  • the current estimated to flow to each storage rack can be calculated by solving the simultaneous equations described in (Expression 11) to (Expression 13) below.
  • the number of storage racks connected in parallel is m.
  • OCV1, OCV2, OCV3, ..., OCVm of each storage rack and internal resistances R1, R2, R3, ..., Rm of each storage rack are known, and the voltage of each storage rack is known. It is unknown that V1, V2, V3, ..., Vm and currents I1, I2, I3, ..., Im flowing in the respective storage racks are unknown.
  • I I1 + I2 + I3... + Im (Equation 13)
  • the master management device 50m calculates the discharge system SOP based on the discharge SOP of each storage rack and the predicted value of the current In estimated to flow to each storage rack (S14). For example, by using the above (Equation 7) and (Equation 8), the sum of the SOP n for discharge of each storage rack, the predicted value of the current In estimated to flow to each storage rack, and the predicted value of the current In Based on a certain system current I, a discharge system SOP (hereinafter, referred to as a discharge prediction system SOP) is calculated.
  • a discharge prediction system SOP hereinafter, referred to as a discharge prediction system SOP
  • the master management device 50m calculates a charging system SOP based on the charging SOP of each storage rack and the predicted value of the current In estimated to flow to each storage rack (S15). For example, the sum of the SOP n for charging each storage rack, the predicted value of the current In estimated to flow to each storage rack, and the predicted value of the current In using the above (Equation 9) and (Equation 10) Based on a certain system current I, a charging system SOP (hereinafter referred to as a charging prediction system SOP) is calculated.
  • a charging prediction system SOP (hereinafter referred to as a charging prediction system SOP) is calculated.
  • Master management device 50m sets the current command value corresponding to the calculated prediction system for discharge SOP and the current command value corresponding to the calculated prediction system for charge SOP in the control circuit of power converter 60 (S16). Before the start of charge and discharge by the power conversion device 60 (N in S17), the processing from step S10 to step S16 is repeated in a fixed cycle (for example, 1 second cycle).
  • the master management device 50m acquires the actual measurement value of the current flowing to each storage rack from each rack management unit 50a-50c (S18).
  • the master management device 50m calculates the discharge system SOP based on the discharge SOP of each storage rack and the actual measurement value of the current In flowing in each storage rack (S19). For example, using the above (Equation 7) and (Equation 8), discharge is performed based on the measured SOP n of each storage rack, the measured value of current In flowing through each storage rack, and the measured value of system current I.
  • System SOP (hereinafter referred to as an actual system for discharge SOP).
  • the master management device 50m calculates a charging system SOP based on the charging SOP of each storage rack and the measured value of the current In flowing in each storage rack (S110). For example, using the above (Equation 9) and (Equation 10), charging is carried out based on the measured SOP n of each storage rack, the measured value of the current In flowing in each storage rack, and the measured value of the system current I.
  • System SOP (hereinafter referred to as a charging actual system SOP).
  • Master management device 50m sets the current command value corresponding to the calculated actual system for discharging SOP and the current command value corresponding to the calculated actual system for charging SOP in the control circuit of power converter 60 (S111). While charging / discharging by the power conversion device 60 continues (N in S112), the processing from step S17 to step S111 is repeated in a fixed cycle (for example, 1 second cycle). When the charge and discharge by the power conversion device 60 is stopped (Y in S112), the entire process is completed.
  • FIG. 3 is a diagram showing an example of transition of current flowing in each storage rack before and after the start of charge and discharge.
  • FIG. 3 a system configuration in which two storage racks are connected in parallel is assumed.
  • the internal resistance of the first storage rack is relatively smaller than the internal resistance of the second storage rack, and the current flowing through the first storage rack is larger than the current flowing through the second storage rack.
  • system SOP is calculated based on the predicted value of the current flowing to each storage rack before the start of charge and discharge, and after start of charge and discharge, system SOP is calculated based on the actual value of the current flowing to each storage rack. Calculate As shown in FIG. 3, the maximum allowable current of the entire system is not exceeded at the start of charging and after the start of charging, and the maximum allowable current of the first storage rack is not exceeded either. On the other hand, if the system SOP is not calculated based on the predicted value of the current flowing to each storage rack before the start of charge and discharge, the current of the first storage rack may be immediately after the start of charge and discharge depending on the temperature conditions. The maximum allowable current may be exceeded.
  • the current variation between the storage racks connected in parallel is predicted, and the current command value of power conversion device 60 is limited so as not to exceed the maximum allowable current of each storage rack.
  • the maximum charging and discharging power can be secured within a range not exceeding the maximum allowable current of each storage rack. Therefore, it is not necessary to set the electric power at the start of charge and discharge lower than necessary, and the capacity at the start can be secured at the maximum while securing the safety.
  • FIG. 4 is a flow chart showing the flow of the operation of the storage system 1 according to Embodiment 2 of the present invention.
  • the processes from S20 to S26 in the flowchart of FIG. 4 are the same as the processes from step S10 to step S16, and therefore the description thereof is omitted.
  • the master management device 50m After the start of charge / discharge by the power conversion device 60 (Y in S27), the master management device 50m acquires the actual measurement value of the current flowing to each storage rack from each rack management unit 50a-50c (S28). The master management device 50m calculates the actual system SOP for discharging based on the measured values of the current In flowing to each storage rack, and the SOP for charging each storage rack, SOP for each storage rack, The actual charging system SOP is calculated based on the actual measurement value of the current In flowing in each storage rack (S210).
  • the master management device 50m obtains the reference parameter for weighting, and calculates the weight of the prediction system for discharge SOP and the actual system for discharge SOP, and the weight of the prediction system for charge SOP and the actual system SOP for charge (S211) .
  • a reference parameter for weighting for example, the absolute value of charge / discharge power of power converter 60, charge / discharge stop time, maximum temperature change amount of cell during charge / discharge stop, maximum OCV change amount of cell during charge / discharge stop is used can do.
  • the master management device 50m calculates a weighted average value of the discharge prediction system SOP and the discharge actual system SOP based on the weight of the discharge prediction system SOP and the discharge actual system SOP, and corresponds to the weighted average value. Generate a current command value for discharge. Similarly, the master management device 50m calculates a weighted average value of the charging prediction system SOP and the charging actual system SOP based on the weight of the charging prediction system SOP and the charging actual system SOP, and uses the weighted average value as the weighted average value. A corresponding current command value for charging is generated.
  • Master management device 50m sets the calculated current command value for discharging and the calculated current command value for charging in the control circuit of power conversion device 60 (S212). While charging / discharging by the power conversion device 60 continues (N in S213), the processing from step S28 to step S212 is repeated in a fixed cycle (for example, 1 second cycle). When the charge and discharge by the power conversion device 60 is stopped (Y in S213), the entire processing ends.
  • the weighted average value of the prediction system for discharge SOP and the actual system for discharge SOP, and the weighted average value of the prediction system for charge SOP and the actual system for charge SOP can be calculated by the following (Equation 16) and (Equation 17) .
  • kd is the weight of the prediction system for discharge SOP
  • kc is the weight of the prediction system for charge SOP.
  • FIGS. 5 (a) to 5 (d) are diagrams showing specific examples of weighting parameters.
  • FIG. 5A is an example in which the weights kdp and kcp are set using the absolute value of the charge / discharge power of the power conversion device 60 as a parameter.
  • FIG. 5B is an example in which the weights kdt and kct are set using the latest charge / discharge stop time of the storage system 1 as a parameter.
  • the longer the charge and discharge stop time the larger the contribution of the prediction system SOP. This is because the longer the charge and discharge stop time, the lower the reliability of the current measurement value immediately after resuming operation.
  • FIG. 5C is an example in which the weights kdc and kcc are set using the maximum temperature change amount of the cell in the charge / discharge suspension state of the storage system 1 as a parameter.
  • the maximum temperature change amount of the cell during charge and discharge stop is larger, the degree of contribution of the prediction system SOP is increased. This is because the reliability of the current measurement value immediately after the restart of operation tends to be lower as the maximum temperature change amount of the cell during the charge / discharge stop is larger.
  • FIG. 5D is an example in which the weights kdc and kcc are set using the maximum OCV change amount of the cell in the charge / discharge suspension state of the storage system 1 as a parameter.
  • kd used in the above (formula 16) is calculated by the following (formula 18)
  • kc used in the above (formula 17) is calculated by the following (formula 19).
  • kd kdp ⁇ kdt ⁇ kdc ⁇ kdv
  • kc kcp ⁇ kct ⁇ kcc ⁇ kcv
  • the charging / discharging electric power of the power converter device 60 when the charging / discharging electric power of the power converter device 60 is included in the weighting parameter to be used, when the charging / discharging electric power of the power converter device 60 becomes more than predetermined value, it switches completely to control by real system SOP independent. When the charging / discharging power of the power conversion device 60 is not included in the weighting parameters to be used, the control is switched to the control by the real system SOP alone after the predetermined period has elapsed after the start of charging / discharging.
  • the same effect as that of the first embodiment can be obtained. Furthermore, by performing charge / discharge control using the weighted average value of the prediction system SOP and the actual system SOP immediately after the start of charge / discharge, the accuracy of charge / discharge control immediately after the start of charge / discharge can be improved. That is, it is possible to compensate for the accuracy of the actual system SOP during a period in which the charge / discharge power of the power conversion device 60 is small by adding the prediction system SOP.
  • the third embodiment will be described.
  • a method for improving the accuracy of the prediction system SOP by referring to the past history information will be described.
  • FIG. 6 is a flowchart showing the flow of the operation of the storage system 1 according to the third embodiment of the present invention (part 1).
  • FIG. 7 is a flowchart showing the flow of the operation of the storage system 1 according to Embodiment 3 of the present invention (part 2).
  • Master management device 50m acquires SOP for discharge of each storage rack, charge SOP, SOC, temperature, and SOH of each cell included in each storage rack as battery information of each storage rack from each rack management unit 50a-50c. To do (S30).
  • the master management device 50m calculates the internal resistance, OCV, temperature and SOH of each storage rack (S31).
  • the temperature of the storage rack can be estimated by calculating the average value or the median of the temperatures of the plurality of cells included in the storage rack.
  • the SOH of the storage rack can be estimated by calculating the average value or the median of the SOH of the plurality of cells included in the storage rack.
  • Master management device 50m calculates the maximum temperature difference, the maximum OCV difference, and the maximum SOH difference among the plurality of storage racks (S32).
  • the master management device 50m searches the combination of the calculated maximum temperature difference, maximum OCV difference, and maximum SOH difference in the past history database owned by itself using the key as a key.
  • the said past history database is a database which ties and hold
  • the master management device 50m extracts the current variation ratio under the condition closest to the combination of the calculated maximum temperature difference, maximum OCV difference, and maximum SOH difference (S33).
  • data stored immediately before charge / discharge termination is often extracted.
  • a charge / discharge stop period is long, it is not this limitation.
  • Master management device 50m predicts the current estimated to flow to each storage rack from the internal resistance and OCV of each storage rack 10-30, and calculates the current variation ratio (rack maximum current / total current) (S34).
  • the master management device 50m compares the current variation ratio extracted from the past history database with the current variation ratio calculated from the predicted value of the current (S35). If the current variation ratio extracted from the past history database is larger than the calculated current variation ratio (Y in S35), the calculated current variation ratio is replaced with the current variation ratio extracted from the past history database (S36). If the current variation ratio extracted from the past history database is less than or equal to the calculated current variation ratio (N in S35), the replacement of step S36 is skipped.
  • Master management device 50m calculates discharge system SOP based on the minimum value of the discharge SOP of the plurality of storage racks and the reciprocal of the current variation ratio (see the above (Equation 5)) (S37). Similarly, master management device 50m calculates charging system SOP based on the minimum value of the charging SOPs of the plurality of storage racks and the reciprocal of the current variation ratio (see the above (Equation 6)) (S38).
  • Master management device 50m sets the current command value corresponding to the calculated prediction system for discharge SOP and the current command value corresponding to the calculated prediction system for charge SOP in the control circuit of power conversion device 60 (S39). Before the start of charge and discharge by the power conversion device 60 (N in S310), the processing from step S30 to step S39 is repeated in a fixed cycle (for example, 1 second cycle).
  • the master management device 50m After the start of charge and discharge by the power conversion device 60 (Y in S310), the master management device 50m acquires the actual value of the current flowing to each storage rack from each rack management unit 50a-50c (S311). The master management device 50m calculates the actual system SOP for discharging based on the measured values of the current In flowing through each storage rack and the SOP for discharge of each storage rack (S312), and the SOP for charging each storage rack, An actual charging system SOP is calculated based on the actual measurement value of the current In flowing through each storage rack (S313).
  • Master management device 50m sets the current command value corresponding to the calculated actual system for discharging SOP and the current command value corresponding to the calculated actual system for charging SOP in the control circuit of power converter 60 (S314).
  • Master management device 50m acquires the SOC, temperature, and SOH of each cell included in each storage rack from each rack management unit 50a-50c (S315). Master management device 50m estimates the temperature, OCV, and SOH of each storage rack (S316). Master management device 50m calculates the maximum temperature difference between the plurality of storage racks, the maximum OCV difference, the maximum SOH difference, and the current variation ratio (maximum rack current / total current) under the conditions (S317). The master management device 50m links the calculated maximum temperature difference, maximum OCV difference, maximum SOH difference, and current variation ratio, and stores the same in the above-mentioned past history database (S318).
  • step S311 to step S318 is repeated in a fixed cycle (for example, 1 second cycle).
  • a fixed cycle for example, 1 second cycle.
  • the same effect as that of the first embodiment can be obtained. Furthermore, by referring to past history information whose conditions are similar, the accuracy of current prediction can be improved, and the accuracy of the prediction system SOP can be improved.
  • the master management device 50m is provided outside the rack management units 50a to 50c, but may be provided in any of the rack management units 50a to 50c. That is, a system configuration may be adopted in which one of the rack management units is a master unit and the remaining rack management units are slave units.
  • Embodiment 1-3 demonstrated the example which estimates internal resistance of a cell from SOC of a cell, temperature, and SOH, it estimates simply from SOC / voltage and temperature, without considering SOH. It is also good.
  • the internal resistance can also be estimated by dividing the voltage drop generated when a constant current flows in the cell for a predetermined time by the constant current.
  • the master management device 50m may use the internal resistance estimated by correcting the latest measurement value of the internal resistance of the cell with the current temperature.
  • the maximum temperature difference between the plurality of storage racks, the maximum OCV difference, the maximum SOH difference, and the current variation ratio are linked and stored in the past history database.
  • the maximum temperature difference between the plurality of storage racks, the maximum OCV difference, the maximum SOH difference, and the actual measurement value of the current of each storage rack may be linked and stored in the past history database.
  • the current variation ratio (rack maximum current / total current) is calculated after extraction from the past history database.
  • the current variation ratio extracted from the past history database is compared with the current variation ratio calculated from the predicted value of current, and if the extracted current variation ratio is large, the extracted current variation ratio is used
  • An example has been described. In this respect, when the extracted current variation ratio is large, an average value of the calculated current variation ratio and the extracted current variation ratio may be used. In addition, an average value of the current variation ratio calculated without comparing the two and the extracted current variation ratio may always be used.
  • the embodiment may be specified by the following items.
  • the SOPs of the entire plurality of storage blocks (10-30) are based on the single SOPs (State Of Power) of the plurality of storage blocks (10-30) and the current flowing in the storage blocks (10-30).
  • the management unit (50m) generates the current flowing through each storage block (10-30) from the voltage of each storage block (10-30) and the internal resistance before the power conversion unit (60) starts power conversion.
  • a power storage system (1) characterized by estimating. According to this, it is possible to calculate an appropriate overall SOP reflecting the single SOP from the stage before the power conversion unit (60) starts the power conversion.
  • the management unit acquires SOC (State Of Charge), temperature, and SOH (State Of Health) of a cell included in each storage block (10-30), and acquires SOC of the acquired cell, temperature, and Described in item 1 characterized in that the OCV (Open Circuit Voltage) and the internal resistance of the cell are estimated from the SOH, and the current flowing to each storage block (10-30) is estimated from the OCV and the internal resistance of the estimated cell.
  • Storage system (1) According to this, even in the state where the current flowing to each storage block (10-30) can not be measured, it is possible to calculate an appropriate overall SOP reflecting the single SOP.
  • the management unit (50m) flows to the individual SOPs of the plurality of storage blocks (10-30) and the storage blocks (10-30).
  • the power storage system (1) according to Item 1 or 2, wherein the entire SOP is calculated based on an actual measurement value of current. According to this, after the power conversion unit (60) starts power conversion, it is possible to calculate an appropriate overall SOP based on the actual measurement value of the current flowing to each storage block (10-30).
  • the management unit (50m) calculates the entire SOP calculated based on the predicted value of the current flowing to each storage block (10-30), and each storage The storage system according to Item 3, wherein the upper limit value is set based on the entire SOP calculated by weighted averaging the entire SOP calculated based on the actual value of the current flowing to the block (10-30). (1). According to this, it is possible to improve the accuracy of the entire SOP immediately after the start of power conversion.
  • the management unit (50m) increases the charge / discharge power of the power conversion unit (60) to increase the amount of current flowing through each storage block (10-30). Item 4.
  • the management unit (50 m) extracts the measured value of the current under the condition from the past history information in which the state and temperature condition of the plurality of power storage blocks (10-30) approximate, and The storage system (1) according to any one of items 1 to 5, wherein a predicted value of current estimated from the voltage and internal resistance of each storage block is corrected. According to this, it is possible to improve the accuracy of the predicted value of the current by using the past history information.
  • a plurality of storage blocks (10-30) connected in parallel and DC power discharged from the plurality of storage blocks (10-30) are converted to AC power and output to the electric power system (2) or load (3)
  • Management device (50 m) to be connected The management device (50 m) is The SOPs of the entire plurality of storage blocks (10-30) are based on the single SOPs (State Of Power) of the plurality of storage blocks (10-30) and the current flowing in the storage blocks (10-30).
  • the upper limit value of the power or current of at least one of charging and discharging of the power conversion unit (60) is set based on the total SOP calculated and calculated.
  • the current flowing to each storage block (10-30) is estimated from the voltage and the internal resistance of each storage block (10-30) Device (50 m). According to this, it is possible to calculate an appropriate overall SOP reflecting the single SOP from the stage before the power conversion unit (60) starts the power conversion.
  • 1 storage system 1 n storage module, S1 first switch, 2 power system, S2 second switch, 3 load, S3 third switch, 10 first storage rack, 11, 12 storage module, 20 second storage rack, 30 first 3 Storage rack, 50a 1st rack management unit, 50b 2nd rack management unit, 50c 3rd rack management unit, 50m master management unit, 60 power converter, 70 power lines, 80 inter-rack communication lines, 90 intra-rack communication lines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

管理部(50m)は、並列接続された複数の蓄電ブロック(10-30)の各単体のSOP(State Of Power)と、各蓄電ブロック(10-30)に流れる電流に基づいて複数の蓄電ブロック(10-30)全体のSOPを算出し、算出した全体のSOPをもとに電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値を設定する。管理部(50m)は、電力変換部(60)が電力変換を開始する前、各蓄電ブロック(10-30)に流れる電流を、各蓄電ブロック(10-30)の電圧と内部抵抗から推定する。

Description

蓄電システム、管理装置
 本発明は、複数の蓄電ブロックが並列接続された蓄電システム、管理装置に関する。
 近年、蓄電システムが普及してきており、ピークシフト、バックアップ、FR(Frequency Regulation)等に使用される。大規模な蓄電システムは、例えば複数の蓄電モジュールが直列接続されて構成された蓄電ブロックが、複数並列に接続されて構築される。以下本明細書では蓄電ブロックとして、複数の蓄電モジュールが積層されて構成される蓄電ラックを想定する。
 並列接続された蓄電ラック間において、セルの種類・数が同じであっても、セルの電圧差、容量差、温度差などにより、セルの内部抵抗が異なることがある。この場合、蓄電ラック間に抵抗差が発生し、蓄電ラック間に電流ばらつきが発生する。蓄電ラック間に電流ばらつきが発生すると、特定の蓄電ラックに電流が集中し、当該蓄電ラックの最大許容電流を超過する可能性がある。
 並列接続された蓄電ラック間の電流ばらつきを抑制し、各蓄電ラックの最大許容電流の超過を防止するために、パワーコンディショナに設定する指令値の変化幅に上限を設けて、指令値をゆっくり変化させる方法が提案されている(例えば、特許文献1参照)。
特開2014-193040号公報
 上述の方法では、指令値の変化が遅いため、必要な電力を瞬間的に供給することが難しくなる。充放電開始時の立ち上がりも遅くなる。また、温度差、容量差などによる蓄電ラック間の抵抗差が定常的に存在する場合、指令値をゆっくり変化させても、電流ばらつきの抑制に必ずしも寄与しないことがある。
 本発明はこうした状況に鑑みなされたものであり、その目的は、複数の蓄電ブロックが並列接続された蓄電システムにおいて、各蓄電ブロックの最大許容電流を超過させずに、必要な電流をできるだけ確保する技術を提供することにある。
 上記課題を解決するために、本発明のある態様の蓄電システムは、並列接続された複数の蓄電ブロックと、前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、前記複数の蓄電ブロックの各単体のSOP(State Of Power)と、各蓄電ブロックに流れる電流に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPをもとに前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値を設定する管理部と、を備える。前記管理部は、前記電力変換部が電力変換を開始する前、各蓄電ブロックに流れる電流を、各蓄電ブロックの電圧と内部抵抗から推定する。
 本発明によれば、複数の蓄電ブロックが並列接続された蓄電システムにおいて、各蓄電ブロックの最大許容電流を超過させずに、必要な電流をできるだけ確保することができる。
本発明の実施の形態1に係る蓄電システムの構成を示す図である。 本発明の実施の形態1に係る蓄電システムの動作の流れを示すフローチャートである。 充放電開始前後の各蓄電ラックに流れる電流の遷移例を示す図である。 本発明の実施の形態2に係る蓄電システムの動作の流れを示すフローチャートである。 図5(a)-(d)は、重み付けパラメータの具体例を示す図である。 本発明の実施の形態3に係る蓄電システムの動作の流れを示すフローチャートである(その1)。 本発明の実施の形態3に係る蓄電システムの動作の流れを示すフローチャートである(その2)。
 図1は、本発明の実施の形態1に係る蓄電システム1の構成を示す図である。蓄電システム1と電力系統2間の配電線に負荷3が接続される。蓄電システム1は、並列接続された複数の蓄電ラック、電力変換装置60、マスタ管理装置50mを備える。図1では3つの蓄電ラック(第1蓄電ラック10、第2蓄電ラック20、第3蓄電ラック30)が電力変換装置60に対して並列に接続される例を示している。
 電力変換装置60は、複数の蓄電ラック10-30から放電された直流電力を交流電力に変換して電力系統2または負荷3に出力し、電力系統2から入力される交流電力を直流電力に変換して並列接続された複数の蓄電ラック10-30に充電する。電力変換装置60は、一般的なパワーコンディショナで構成することができ、双方向インバータ、及び制御回路を備え、必要に応じて双方向DC-DCコンバータを備える。以下の説明では、電力変換装置60が双方向DC-DCコンバータを備える例を想定する。
 双方向DC-DCコンバータは、複数の蓄電ラック10-30に充電される又は複数の蓄電ラック10-30から放電される直流電力の電流/電圧を制御可能であり、例えば、CC/CV充電、CC/CV放電が可能である。双方向インバータは直流電力から交流電力への変換、又は交流電力から直流電力への変換を実行する。制御回路は、マスタ管理装置50mからの指示に従い、双方向DC-DCコンバータ及び双方向インバータを制御する。双方向DC-DCコンバータを備えない構成の場合、双方向インバータが電流/電圧の制御も行う。
 第1蓄電ラック10は、直列接続された複数の蓄電モジュール11-1n、第1ラック管理部50a、第1スイッチS1を備える。各蓄電モジュール11-1nは、直列または直並列接続された複数のセル及び監視回路を含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、リチウムイオン電池セルを使用する例を想定する。
 各蓄電モジュール11-1nの監視回路は、各蓄電モジュール11-1n内の複数のセルの電圧、電流、温度を検出する。監視回路は、検出したセルの電圧、電流、温度をラック内通信線90aを介して第1ラック管理部50aに送信する。各監視回路と第1ラック管理部50a間の通信には例えば、RS-485規格に準拠したシリアル通信を使用することができる。なお、各監視回路と第1ラック管理部50a間は無線通信で接続されてもよいし、電力線通信で接続されてもよい。
 第1スイッチS1は、電力変換装置60に繋がる電力線70と、直列接続された複数の蓄電モジュール11-1nとの間に介在する。第1スイッチS1には例えば、メカリレーや半導体スイッチを使用することができる。
 第1ラック管理部50aは、ハードウェア資源とソフトウェア資源の協働により実現される。ハードウェア資源として、マイクロコンピュータ、DSP、FPGA、その他のLSI、アナログ素子を利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。第1ラック管理部50aは、各蓄電モジュール11-1nの監視回路からラック内通信線90aを介して各セルの電圧、電流、温度を受信する。
 第1ラック管理部50aは、受信したセルの電圧、電流、温度をもとに、セルのSOC(State Of Charge)及びSOH(State Of Health)を推定する。なおSOC及びSOHの推定は、各蓄電モジュール11-1nの監視回路で行ってもよい。
 SOCは、電流積算法またはOCV(Open Circuit Voltage)法により推定することができる。SOHは、初期の満充電容量に対する現在の満充電容量の比率で規定され、数値が低いほど劣化が進行していることを示す。SOHは、完全充放電による容量計測により求めてもよいし、予め実験やシミュレーションにより得られた放置劣化速度と電流劣化速度をもとに推定してもよい。放置劣化は主にSOCと温度により決定され、電流劣化は主に積算電流量と温度により決定される。第1ラック管理部50aは、放置劣化速度、S0C、温度をもとに放置劣化度を推定し、電流劣化速度、積算電流量、温度をもとに電流劣化度を算出し、両者を合算してセルのSOHを推定できる。
 第1ラック管理部50aは、第1蓄電ラック10の放電用SOP(State Of Power)および充電用SOPを推定する。第1蓄電ラック10の放電用SOPは、第1蓄電ラック10から放電可能な最大電力を示し、第1蓄電ラック10の充電用SOPは、第1蓄電ラック10に対して充電可能な最大電力を示す。放電用SOP(=SOPd)は、第1蓄電ラック10の下限電圧(放電終止電圧)Vminを下回らない最大の放電電流Idに、第1蓄電ラック10の端子電圧Vを掛けることにより求めることができる(下記式1、2参照)。一方、充電用SOP(=SOPc)は、第1蓄電ラック10の上限電圧(満充電電圧)Vmaxを上回らない最大の充電電流Icに、第1蓄電ラック10の端子電圧Vを掛けることにより求めることができる(下記式3、4参照)。
 SOPd=IdV ・・・(式1)
 Id=(E-Vmin)/R ・・・(式2)
 SOPc=IcV ・・・(式3)
 Ic=(Vmax-E)/R ・・・(式4)
 Eは起電力、Rは内部抵抗。
 起電力EはSOCに依存し、SOCが高くなるほど高くなる関係にある。放電用SOP(=SOPd)は、第1蓄電ラック10が下限電圧Vminに到達するとゼロになり、充電用SOP(=SOPc)は、第1蓄電ラック10が上限電圧Vmaxに到達するとゼロになる。
 第1ラック管理部50aはSOPを、予め実験やシミュレーションにより得られたSOCとSOPとの関係が記述されたテーブルを参照して推定してもよい。なお、上記式1,3により算出されるSOPは、SOHの低下に従い減少する。従って、テーブル参照により特定した初期状態のSOPに現在のSOHを掛けることにより現在のSOPを推定することができる。
 蓄電ラック単体のSOPは、上記式1,3により定義されるものに限定されず、簡易的に蓄電ラックの最大定格電力と等しいものと扱ってもよい。その場合、蓄電ラック単体において放電終止時(SOC=0%)の蓄電ラックの放電用SOPを0に設定し、例えばSOC=2%となった時点で、放電用SOPを蓄電ラックの最大定格電力と等しい値に復帰させる。また、満充電時(SOC=100%)の蓄電ラックの充電用SOPを0に設定し、例えばSOC=98%となった時点で、蓄電ラックの充電用SOPを蓄電ラックの最大定格電力と等しい値に復帰させる。また、充電方式が疑似CC/CVの場合、充電用SOPを蓄電ラックの最大定格電力から小さい値に絞っていく場合もある。
 第1ラック管理部50aは、ラック間通信線80を介してマスタ管理装置50m、第2蓄電ラック20の第2ラック管理部50b、及び第3蓄電ラック30の第3ラック管理部50cと接続される。ラック間通信線80を介した通信には、RS-485、イーサネット(登録商標)、CAN(Controller Area Network)等の規格に準拠した通信方式を使用することができる。
 第1ラック管理部50aはラック間通信線80を介して、第1蓄電ラック10の監視データ(電池情報)をマスタ管理装置50mに送信する。電池情報には、セルの電圧、電流、電力、温度、SOC、SOH、蓄電ラックの放電用SOP、充電用SOPを含めることができる。なお、蓄電システム1の停止中は電流の計測値は基本的にゼロになる。第1スイッチS1-第3スイッチS3がオンの状態では、第1蓄電ラック10-第3蓄電ラック30間の横流成分が計測されることがある。セルの電圧は基本的にCCV(Closed Circuit Voltage)で計測される。セルの両端を開放するスイッチが設けられている場合、OCV(Open Circuit Voltage)も計測可能である。
 第2蓄電ラック20及び第3蓄電ラック30の構成および動作は、第1蓄電ラック10の構成および動作と同様であるため、説明を省略する。
 マスタ管理装置50mは、ハードウェア資源とソフトウェア資源の協働により実現される。ハードウェア資源として、マイクロコンピュータ、DSP、FPGA、その他のLSI、アナログ素子を利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。マスタ管理装置50mは、ラック間通信線80を介してラック管理部50a-50cと通信することにより、複数の蓄電ラック10-30を管理する。またマスタ管理装置50mは、電力変換装置60の制御回路に制御信号を通知する。
 マスタ管理装置50mは、並列接続された複数の蓄電ラック10-30全体の放電用SOP(以下、放電用システムSOPという)、及び複数の蓄電ラック10-30全体の充電用SOP(以下、充電用システムSOPという)を算出する。放電用システムSOP、充電用システムSOPは下記(式5)、(式6)により算出することができる。
 放電用システムSOP=放電用最小ラックSOP*(ラック電流合計/ラック最大電流) ・・・(式5)
 充電用システムSOP=充電用最小ラックSOP*(ラック電流合計/ラック最大電流) ・・・(式6)
 放電用最小ラックSOPは、複数の蓄電ラック10-30の放電用SOPの内の最小値である。充電用最小ラックSOPは、複数の蓄電ラック10-30の充電用SOPの内の最小値である。ラック電流合計は、複数の蓄電ラック10-30にそれぞれ流れる各電流の合計値である。ラック最大電流は、複数の蓄電ラック10-30にそれぞれ流れる各電流の最大値である。複数の蓄電ラック10-30間のSOPと電流値が理想的に同じであれば、システムSOPはラックSOPに並列接続数(図1の例では3)を掛けた値になる。これに対して、複数の蓄電ラック10-30間の電流偏差が大きくなるほど、システムSOPは低下する。
 上記(式5)、(式6)は、下記(式7)~(式10)と書き換えることもできる。
 放電用システムSOP=min(放電用システムSOPn) ・・・(式7)
 放電用システムSOPn=放電用ラックSOPn×I/In ・・・(式8)
 充電用システムSOP=min(充電用システムSOPn) ・・・(式9)
 充電用システムSOPn=充電用ラックSOPn×I/In ・・・(式10)
 Inは、第n蓄電ラックに流れる電流、
 Iは、並列接続された複数の蓄電ラックに流れる電流の合計(システム電流)。
 マスタ管理装置50mは、算出した放電用システムSOPに対応する放電用の電力指令値/電流指令値、及び算出した充電用システムSOPに対応する充電用の電力指令値/電流指令値を電力変換装置60の制御回路に設定する。電流指令値は例えば、システムSOPを系統電圧で割ることにより算出することができる。なお用途が放電に限られる場合は、放電用の電力指令値/電流指令値のみを設定してもよい。同様に用途が充電に限られる場合は、充電用の電力指令値/電流指令値のみを設定してもよい。
 電力変換装置60の双方向DC-DCコンバータは、設定された放電用の電力指令値/電流指令値を放電時の上限値として放電制御を行う。同様に電力変換装置60の双方向DC-DCコンバータは、設定された充電用の電力指令値/電流指令値を充電時の上限値として充電制御を行う。本実施の形態では、電力変換装置60と各蓄電ラック10-30の間に個別にDC-DCコンバータが介在しない回路構成であるため、各蓄電ラック10-30に流れる電流を個別に制御することができない。従って、複数の蓄電ラック10-30の抵抗比に応じた電流が、各蓄電ラック10-30に流れる。
 電力変換装置60の双方向DC-DCコンバータが、放電用システムSOP及び充電用システムSOPの範囲内で充放電制御していれば、蓄電システム1がシステム全体の最大許容電流を超過することを防止できるとともに、各蓄電ラック10-30がそれぞれの最大許容電流を超過することも防止できる。
 上述のように放電用システムSOP及び充電用システムSOPを算出するには、各蓄電ラック10-30に流れる電流の値が必要である。蓄電システム1の運転開始後は、各蓄電ラック10-30に流れる電流を、電流センサ(不図示)で計測することができるが、運転開始前は各蓄電ラック10-30に流れる電流を計測することができない。
 従来、電力変換装置60の双方向DC-DCコンバータの運転開始(=充放電開始)時の電力指令値/電流指令値は、システム全体の最大許容電流に応じた値に設定されることが一般的であった。しかしながら、複数の蓄電ラック10-30間に流れる電流のばらつきが大きい場合、運転開始時に、いずれかの蓄電ラックの最大許容電流を超過してしまうことがあった。本実施の形態では、運転開始前に複数の蓄電ラック10-30に流れる電流を予測することにより、運転開始時に蓄電ラック単体の最大許容電流を超過してしまうことを防止する仕組みを導入する。以下、充放電開始前の動作と充放電開始後の動作を具体的に説明する。
 図2は、本発明の実施の形態1に係る蓄電システム1の動作の流れを示すフローチャートである。マスタ管理装置50mは、各ラック管理部50a-50cから各蓄電ラックの電池情報として、各蓄電ラックの放電用SOP、充電用SOP、各蓄電ラックに含まれる各セルのSOC、温度、SOHを取得する(S10)。
 マスタ管理装置50mは、取得した各セルのSOC、温度、SOHをもとに各セルの内部抵抗、OCVを推定する(S11)。セルのOCVは、当該セルのSOC-OCV曲線から推定することができる。セルの内部抵抗は、予め実験やシミュレーションにより得られた当該セルの内部抵抗と、SOC、温度、SOHの組み合わせとの関係が記述されたテーブルを参照して推定することができる。
 マスタ管理装置50mは、蓄電ラックごとに、蓄電ラックに含まれる複数のセルの内部抵抗を合成して蓄電ラックの内部抵抗を推定する。またマスタ管理装置50mは、蓄電ラックごとに、蓄電ラックに含まれる複数のセルのOCVを合成して蓄電ラックのOCVを推定する(S12)。マスタ管理装置50mは、各蓄電ラック10-30の内部抵抗およびOCVから各蓄電ラックに流れると推定される電流を予測する(S13)。
 各蓄電ラックに流れると推定される電流は、下記(式11)~(式13)に記載の連立方程式を解くことにより算出することができる。下記(式11)~(式13)では、並列接続される蓄電ラックの数をm個としている。充放電開始前は、各蓄電ラックのOCV1、OCV2、OCV3、・・・、OCVmと、各蓄電ラックの内部抵抗R1、R2、R3、・・・、Rmが既知であり、各蓄電ラックの電圧V1、V2、V3、・・・、Vmと、各蓄電ラックに流れる電流I1、I2、I3、・・・、Imが未知である。
 V1=OCV1+I1×R1、V2=OCV2+I2×R2、V3=OCV3+I3×R3、・・・、Vm=OCVm+Im×Rm ・・・(式11)
 V1=V2=V3・・・=Vm ・・・(式12)
 I=I1+I2+I3・・・+Im ・・・(式13)
 上記(式11)~(式13)に記載の連立方程式を解くことにより、各蓄電ラックに流れると推定される電流I1、I2、I3、・・・、Imを算出することができる。下記(式14)、(式15)では、電流I1、Imの算出式を示しているが、電流I2、I3、・・・、I(m-1)も同様に算出可能である。
 I1=(I-((OCV1-OCV2)/R2)-((OCV1-OCV3)/R3)-・・・-((OCV1-OCVm)/Rm))/(1+R1/R2+R1/R3+・・・+R1/Rm) ・・・(式14)
 Im=I1*R1/Rm+((OCV1-OCVm)/Rm) ・・・式(15)
 マスタ管理装置50mは、各蓄電ラックの放電用SOP、各蓄電ラックに流れると推定される電流Inの予測値をもとに放電用システムSOPを算出する(S14)。例えば、上記(式7)、(式8)を用いて、各蓄電ラックの放電用SOPnと、各蓄電ラックに流れると推定される電流Inの予測値と、当該電流Inの予測値の合計であるシステム電流Iをもとに放電用システムSOP(以下、放電用予測システムSOPという)を算出する。
 同様にマスタ管理装置50mは、各蓄電ラックの充電用SOP、各蓄電ラックに流れると推定される電流Inの予測値をもとに充電用システムSOPを算出する(S15)。例えば、上記(式9)、(式10)を用いて、各蓄電ラックの充電用SOPnと、各蓄電ラックに流れると推定される電流Inの予測値と、当該電流Inの予測値の合計であるシステム電流Iをもとに充電用システムSOP(以下、充電用予測システムSOPという)を算出する。
 マスタ管理装置50mは、算出した放電用予測システムSOPに対応する電流指令値と、算出した充電用予測システムSOPに対応する電流指令値を電力変換装置60の制御回路に設定する(S16)。電力変換装置60による充放電の開始前において(S17のN)、一定周期(例えば、1秒周期)で、ステップS10からステップS16までの処理を繰り返す。
 電力変換装置60による充放電の開始後において(S17のY)、マスタ管理装置50mは、各ラック管理部50a-50cから各蓄電ラックに流れている電流の実測値を取得する(S18)。
 マスタ管理装置50mは、各蓄電ラックの放電用SOP、各蓄電ラックに流れている電流Inの実測値をもとに放電用システムSOPを算出する(S19)。例えば、上記(式7)、(式8)を用いて、各蓄電ラックの放電用SOPnと、各蓄電ラックに流れている電流Inの実測値と、システム電流Iの実測値をもとに放電用システムSOP(以下、放電用実システムSOPという)を算出する。
 同様にマスタ管理装置50mは、各蓄電ラックの充電用SOP、各蓄電ラックに流れている電流Inの実測値をもとに充電用システムSOPを算出する(S110)。例えば、上記(式9)、(式10)を用いて、各蓄電ラックの充電用SOPnと、各蓄電ラックに流れている電流Inの実測値と、システム電流Iの実測値をもとに充電用システムSOP(以下、充電用実システムSOPという)を算出する。
 マスタ管理装置50mは、算出した放電用実システムSOPに対応する電流指令値と、算出した充電用実システムSOPに対応する電流指令値を電力変換装置60の制御回路に設定する(S111)。電力変換装置60による充放電が継続している間(S112のN)、一定周期(例えば、1秒周期)で、ステップS17からステップS111までの処理を繰り返す。電力変換装置60による充放電が停止すると(S112のY)、全体の処理が終了する。
 図3は、充放電開始前後の各蓄電ラックに流れる電流の遷移例を示す図である。図3では、2つの蓄電ラックが並列接続されているシステム構成を前提としている。図3に示す例では第1蓄電ラックの内部抵抗が第2蓄電ラックの内部抵抗より相対的に小さく、第1蓄電ラックに流れる電流が第2蓄電ラックに流れる電流より大きくなっている。
 本実施の形態では、充放電開始前は各蓄電ラックに流れる電流の予測値をもとにシステムSOPを算出し、充放電開始後は各蓄電ラックに流れる電流の実測値をもとにシステムSOPを算出する。図3に示すように、充電開始時および充電開始後にシステム全体の最大許容電流を超過せず、かつ第1蓄電ラックの最大許容電流も超過していない。これに対して、充放電開始前に各蓄電ラックに流れる電流の予測値をもとにシステムSOPを算出していなければ、温度条件などによっては、充放電開始直後に第1蓄電ラックの電流が最大許容電流を超過する可能性がある。
 以上説明したように実施の形態1によれば、並列接続された蓄電ラック間の電流ばらつきを予測し、各蓄電ラックの最大許容電流を超過しないように、電力変換装置60の電流指令値に制限を加える。これにより、並列接続された蓄電ラック間に電流ばらつきがあっても、各蓄電ラックの最大許容電流の超過を防止することができる。また、各蓄電ラックの最大許容電流を超過しない範囲内で、最大の充放電電力を確保することができる。従って、充放電開始時の電力を必要以上に低く設定する必要がなく、安全性を確保しつつ起動時の容量を最大限に確保することができる。
 次に実施の形態2について説明する。実施の形態1では、充放電開始直後に、予測システムSOPによる充放電制御から、実システムSOPによる充放電制御に切り替える例を説明した。この点、各蓄電ラックに流れる電流が小さい段階では、電流計測値のS/N比が悪い状態であるため、実システムSOPによる充放電制御の精度が安定しないことがある。そこで実施の形態2では、充放電開始直後に、予測システムSOPと実システムSOPの加重平均値を使用して充放電制御を行う例を説明する。
 図4は、本発明の実施の形態2に係る蓄電システム1の動作の流れを示すフローチャートである。図4のフローチャートのS20~S26までの処理は、ステップS10からステップS16までの処理と同様であるため説明を省略する。
 電力変換装置60による充放電の開始後において(S27のY)、マスタ管理装置50mは、各ラック管理部50a-50cから各蓄電ラックに流れている電流の実測値を取得する(S28)。マスタ管理装置50mは、各蓄電ラックの放電用SOP、各蓄電ラックに流れている電流Inの実測値をもとに放電用実システムSOPを算出し(S29)、各蓄電ラックの充電用SOP、各蓄電ラックに流れている電流Inの実測値をもとに充電用実システムSOPを算出する(S210)。
 マスタ管理装置50mは、重み付け用の参照パラメータを取得して、放電用予測システムSOPと放電用実システムSOPの重みと、充電用予測システムSOPと充電用実システムSOPの重みを算出する(S211)。重み付け用の参照パラメータとして例えば、電力変換装置60の充放電電力の絶対値、充放電停止時間、充放電停止中のセルの最大温度変化量、充放電停止中のセルの最大OCV変化量を使用することができる。
 マスタ管理装置50mは、放電用予測システムSOPと放電用実システムSOPの重みをもとに、放電用予測システムSOPと放電用実システムSOPの加重平均値を算出し、当該加重平均値に対応する放電用の電流指令値を生成する。同様にマスタ管理装置50mは、充電用予測システムSOPと充電用実システムSOPの重みをもとに、充電用予測システムSOPと充電用実システムSOPの加重平均値を算出し、当該加重平均値に対応する充電用の電流指令値を生成する。
 マスタ管理装置50mは、算出した放電用の電流指令値と、算出した充電用の電流指令値を電力変換装置60の制御回路に設定する(S212)。電力変換装置60による充放電が継続している間(S213のN)、一定周期(例えば、1秒周期)で、ステップS28からステップS212までの処理を繰り返す。電力変換装置60による充放電が停止すると(S213のY)、全体の処理が終了する。
 放電用予測システムSOPと放電用実システムSOPの加重平均値と、充電用予測システムSOPと充電用実システムSOPの加重平均値は、下記(式16)、(式17)により算出することができる。
 放電用システムSOP(加重平均値)=kd×放電用予測システムSOP+(1-kd)×放電用実システムSOP ・・・(式16)
 充電用システムSOP(加重平均値)=kc×充電用予測システムSOP+(1-kc)×充電用実システムSOP ・・・(式17)
 kdは放電用予測システムSOPの重み、kcは充電用予測システムSOPの重み。
 図5(a)-(d)は、重み付けパラメータの具体例を示す図である。図5(a)は、電力変換装置60の充放電電力の絶対値をパラメータとして、重みkdp、kcpを設定する例である。電力変換装置60の充放電電力の絶対値が小さいほど、予測システムSOPの寄与度を大きくする。電力変換装置60の充放電電力が小さい段階では、実システムSOPの精度が安定しないためである。なお電力変換装置60の充放電電力がゼロの場合、予測システムSOPの寄与度が1(=実システムSOPの寄与度が0)になり、電力変換装置60の充放電電力が所定値以上になると予測システムSOPの寄与度が0(=実システムSOPの寄与度が1)になる。
 図5(b)は、蓄電システム1の直近の充放電停止時間をパラメータとして、重みkdt、kctを設定する例である。充放電停止時間が長いほど、予測システムSOPの寄与度を大きくする。充放電停止時間が長いほど、運転再開直後の電流計測値の信頼度が低くなる傾向にあるためである。
 図5(c)は、蓄電システム1の充放電停止中のセルの最大温度変化量をパラメータとして、重みkdc、kccを設定する例である。充放電停止中のセルの最大温度変化量が大きいほど、予測システムSOPの寄与度を大きくする。充放電停止中のセルの最大温度変化量が大きいほど、運転再開直後の電流計測値の信頼度が低くなる傾向にあるためである。
 図5(d)は、蓄電システム1の充放電停止中のセルの最大OCV変化量をパラメータとして、重みkdc、kccを設定する例である。充放電停止中のセルの最大OCV変化量が大きいほど、予測システムSOPの寄与度を大きくする。充放電停止中のセルの最大OCV変化量が大きいほど、運転再開直後の電流計測値の信頼度が低くなる傾向にあるためである。
 以上の4種類の重みを単独または組み合わせて使用することができる。例えば、4種類のパラメータを全て参照する場合、上記(式16)で使用するkdを下記(式18)により算出し、上記(式17)で使用するkcを下記(式19)により算出する。
 kd=kdp×kdt×kdc×kdv ・・・(式18)
 kc=kcp×kct×kcc×kcv ・・・(式19)
 また、電力変換装置60の充放電電力と充放電停止時間を重み付けパラメータとして使用する場合、上記(式16)で使用するkdを下記(式20)により算出し、上記(式17)で使用するkcを下記(式21)により算出する。
 kd=kdp×kdt ・・・(式20)
 kc=kcp×kct ・・・(式21)
 なお、使用する重み付けパラメータに電力変換装置60の充放電電力が含まれる場合、電力変換装置60の充放電電力が所定値以上になった時点で、実システムSOP単独による制御に完全に切り替わる。使用する重み付けパラメータに電力変換装置60の充放電電力が含まれない場合、充放電開始後、所定期間経過後に、実システムSOP単独による制御に切り替える。
 以上説明したように実施の形態2によれば、実施の形態1と同様の効果を奏する。さらに、充放電開始直後に、予測システムSOPと実システムSOPの加重平均値を使用して充放電制御を行うことにより、充放電開始直後の充放電制御の精度を向上させることができる。即ち、電力変換装置60の充放電電力が小さい期間の実システムSOPの精度を、予測システムSOPを加味することにより補うことができる。
 次に実施の形態3について説明する。実施の形態3では、過去履歴情報を参照することにより、予測システムSOPの精度を向上させる手法を説明する。
 図6は、本発明の実施の形態3に係る蓄電システム1の動作の流れを示すフローチャートである(その1)。図7は、本発明の実施の形態3に係る蓄電システム1の動作の流れを示すフローチャートである(その2)。マスタ管理装置50mは、各ラック管理部50a-50cから各蓄電ラックの電池情報として、各蓄電ラックの放電用SOP、充電用SOP、各蓄電ラックに含まれる各セルのSOC、温度、SOHを取得する(S30)。
 マスタ管理装置50mは、各蓄電ラックの内部抵抗、OCV、温度、SOHを算出する(S31)。蓄電ラックの温度は、当該蓄電ラックに含まれる複数のセルの温度の平均値または中央値を算出して、推定することができる。蓄電ラックのSOHは、当該蓄電ラックに含まれる複数のセルのSOHの平均値または中央値を算出して、推定することができる。
 マスタ管理装置50mは、複数の蓄電ラック間の最大温度差、最大OCV差、最大SOH差を算出する(S32)。マスタ管理装置50mは、自己が保有する過去履歴データベース内を、算出した最大温度差、最大OCV差、最大SOH差の組み合わせをキーに検索する。当該過去履歴データベースは、最大温度差、最大OCV差、最大SOH差の組み合わせと、その条件下の電流ばらつき割合(ラック最大電流/全体電流)を紐付けて保持しているデータベースである。マスタ管理装置50mは、算出した最大温度差、最大OCV差、最大SOH差の組み合わせに最も近似する条件下の電流ばらつき割合を抽出する(S33)。通常、充放電停止前の直近に保存されたデータが抽出されることが多い。なお、充放電停止期間が長い場合は、この限りでない。
 マスタ管理装置50mは、各蓄電ラック10-30の内部抵抗およびOCVから各蓄電ラックに流れると推定される電流を予測し、電流ばらつき割合(ラック最大電流/全体電流)を算出する(S34)。
 マスタ管理装置50mは、過去履歴データベースから抽出した電流ばらつき割合と、電流の予測値から算出した電流ばらつき割合を比較する(S35)。過去履歴データベースから抽出した電流ばらつき割合が、算出した電流ばらつき割合より大きい場合(S35のY)、算出した電流ばらつき割合を、過去履歴データベースから抽出した電流ばらつき割合に置き換える(S36)。過去履歴データベースから抽出した電流ばらつき割合が、算出した電流ばらつき割合以下の場合(S35のN)、ステップS36の置き換えはスキップされる。
 マスタ管理装置50mは、複数の蓄電ラックの放電用SOPの最小値、電流ばらつき割合の逆数をもとに放電用システムSOPを算出する(上記(式5)参照)(S37)。同様にマスタ管理装置50mは、複数の蓄電ラックの充電用SOPの最小値、電流ばらつき割合の逆数をもとに充電用システムSOPを算出する(上記(式6)参照)(S38)。
 マスタ管理装置50mは、算出した放電用予測システムSOPに対応する電流指令値と、算出した充電用予測システムSOPに対応する電流指令値を電力変換装置60の制御回路に設定する(S39)。電力変換装置60による充放電の開始前において(S310のN)、一定周期(例えば、1秒周期)で、ステップS30からステップS39までの処理を繰り返す。
 電力変換装置60による充放電の開始後において(S310のY)、マスタ管理装置50mは、各ラック管理部50a-50cから各蓄電ラックに流れている電流の実測値を取得する(S311)。マスタ管理装置50mは、各蓄電ラックの放電用SOP、各蓄電ラックに流れている電流Inの実測値をもとに放電用実システムSOPを算出し(S312)、各蓄電ラックの充電用SOP、各蓄電ラックに流れている電流Inの実測値をもとに充電用実システムSOPを算出する(S313)。
 マスタ管理装置50mは、算出した放電用実システムSOPに対応する電流指令値と、算出した充電用実システムSOPに対応する電流指令値を電力変換装置60の制御回路に設定する(S314)。
 マスタ管理装置50mは、各ラック管理部50a-50cから各蓄電ラックに含まれる各セルのSOC、温度、SOHを取得する(S315)。マスタ管理装置50mは、各蓄電ラックの温度、OCV、SOHを推定する(S316)。マスタ管理装置50mは、複数の蓄電ラック間の最大温度差、最大OCV差、最大SOH差と、当該条件下の電流ばらつき割合(ラック最大電流/全体電流)を算出する(S317)。マスタ管理装置50mは、算出した最大温度差、最大OCV差、最大SOH差と、電流ばらつき割合を紐付けて上記過去履歴データベースに保存する(S318)。
 電力変換装置60による充放電が継続している間(S319のN)、一定周期(例えば、1秒周期)で、ステップS311からステップS318までの処理を繰り返す。電力変換装置60による充放電が停止すると(S319のY)、全体の処理が終了する。
 以上説明したように実施の形態3によれば、実施の形態1と同様の効果を奏する。さらに、条件が近似する過去履歴情報を参照することにより、電流予測の精度を向上させることができ、予測システムSOPの精度を向上させることができる。
 以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 上述の実施の形態1-3では、マスタ管理装置50mをラック管理部50a-50cの外に設けたが、ラック管理部50a-50cのいずれかの中に設けてもよい。即ち、いずれかのラック管理部をマスタ機とし、残りのラック管理部をスレーブ機とするシステム構成でもよい。
 上述の実施の形態1-3では、セルのSOC、温度、SOHからセルの内部抵抗を推定する例を説明したが、SOHを考慮せずにSOC/電圧と、温度から簡易的に推定してもよい。また内部抵抗は、セルに定電流を所定時間流した際に発生する電圧降下を、当該定電流で割ることにより推定することもできる。マスタ管理装置50mは、セルの内部抵抗の直近の計測値を、現在温度で補正することにより推定した内部抵抗を使用してもよい。
 上述の実施の形態3では、複数の蓄電ラック間の最大温度差、最大OCV差、最大SOH差と、電流ばらつき割合を紐付けて過去履歴データベースに保存する例を説明した。この点、複数の蓄電ラック間の最大温度差、最大OCV差、最大SOH差と、各蓄電ラックの電流の実測値を紐付けて過去履歴データベースに保存してもよい。この場合、電流ばらつき割合(ラック最大電流/全体電流)は、過去履歴データベースから抽出後に算出される。
 また上述の実施の形態3では、過去履歴データベースから抽出した電流ばらつき割合と、電流の予測値から算出した電流ばらつき割合を比較し、抽出した電流ばらつき割合が大きい場合、抽出した電流ばらつき割合を使用する例を説明した。この点、抽出した電流ばらつき割合が大きい場合、算出した電流ばらつき割合と抽出した電流ばらつき割合との平均値を使用してもよい。また、両者を比較せずに算出した電流ばらつき割合と抽出した電流ばらつき割合との平均値を常に使用してもよい。
 なお、実施の形態は、以下の項目によって特定されてもよい。
[項目1]
 並列接続された複数の蓄電ブロック(10-30)と、
 前記複数の蓄電ブロック(10-30)から放電される直流電力を交流電力に変換して電力系統(2)または負荷(3)に出力し、前記電力系統(2)から入力される交流電力を直流電力に変換して前記複数の蓄電ブロック(10-30)に充電する電力変換部(60)と、
 前記複数の蓄電ブロック(10-30)の各単体のSOP(State Of Power)と、各蓄電ブロック(10-30)に流れる電流に基づいて前記複数の蓄電ブロック(10-30)全体のSOPを算出し、算出した全体のSOPをもとに前記電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値を設定する管理部(50m)と、を備え、
 前記管理部(50m)は、前記電力変換部(60)が電力変換を開始する前、各蓄電ブロック(10-30)に流れる電流を、各蓄電ブロック(10-30)の電圧と内部抵抗から推定することを特徴とする蓄電システム(1)。
 これによれば、電力変換部(60)が電力変換を開始する前の段階から、単体SOPを反映した適切な全体SOPを算出することができる。
[項目2]
 前記管理部(50m)は、各蓄電ブロック(10-30)に含まれるセルのSOC(State Of Charge)、温度、及びSOH(State Of Health)を取得し、取得したセルのSOC、温度、及びSOHから、セルのOCV(Open Circuit Voltage)と内部抵抗を推定し、推定したセルのOCVと内部抵抗から各蓄電ブロック(10-30)に流れる電流を推定することを特徴とする項目1に記載の蓄電システム(1)。
 これによれば、各蓄電ブロック(10-30)に流れる電流を計測できない状態でも、単体SOPを反映した適切な全体SOPを算出することができる。
[項目3]
 前記管理部(50m)は、前記電力変換部(60)が電力変換を開始した後、前記複数の蓄電ブロック(10-30)の各単体のSOPと、各蓄電ブロック(10-30)に流れる電流の実測値に基づいて、前記全体のSOPを算出することを特徴とする項目1または2に記載の蓄電システム(1)。
 これによれば、電力変換部(60)が電力変換を開始した後、各蓄電ブロック(10-30)に流れる電流の実測値にもとづき、適切な全体SOPを算出することができる。
[項目4]
 前記管理部(50m)は、前記電力変換部(60)が電力変換を開始した後、各蓄電ブロック(10-30)に流れる電流の予測値に基づいて算出した前記全体のSOPと、各蓄電ブロック(10-30)に流れる電流の実測値に基づいて算出した前記全体のSOPを加重平均して算出した前記全体のSOPをもとに、前記上限値を設定する項目3に記載の蓄電システム(1)。
 これによれば、電力変換開始直後の全体SOPの精度を向上させることができる。
[項目5]
 前記管理部(50m)は、前記電力変換部(60)が電力変換を開始した後、前記電力変換部(60)の充放電電力が大きくなるほど、各蓄電ブロック(10-30)に流れる電流の実測値に基づいて算出した前記全体のSOPの寄与度を高めることを特徴とする項目4に記載の蓄電システム(1)。
 これによれば、充放電電力が小さい状態における、実測値に基づく全体SOPの不安定さを補うことができる。
[項目6]
 前記管理部(50m)は、前記複数の蓄電ブロック(10-30)の状態および温度条件が近似する過去の履歴情報から、当該条件下における電流の実測値を抽出し、当該実測値をもとに、各蓄電ブロックの電圧と内部抵抗から推定する電流の予測値を補正することを特徴とする項目1から5のいずれかに記載の蓄電システム(1)。
 これによれば、過去履歴情報を使用することにより、電流の予測値の精度を向上させることができる。
[項目7]
 並列接続された複数の蓄電ブロック(10-30)と、前記複数の蓄電ブロック(10-30)から放電される直流電力を交流電力に変換して電力系統(2)または負荷(3)に出力し、前記電力系統(2)から入力される交流電力を直流電力に変換して前記複数の蓄電ブロック(10-30)に充電する電力変換部(60)と、を備える蓄電システム(1)に接続される管理装置(50m)であって、
 前記管理装置(50m)は、
 前記複数の蓄電ブロック(10-30)の各単体のSOP(State Of Power)と、各蓄電ブロック(10-30)に流れる電流に基づいて前記複数の蓄電ブロック(10-30)全体のSOPを算出し、算出した全体のSOPをもとに前記電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値を設定し、
 前記電力変換部(60)が電力変換を開始する前、各蓄電ブロック(10-30)に流れる電流を、各蓄電ブロック(10-30)の電圧と内部抵抗から推定することを特徴とする管理装置(50m)。
 これによれば、電力変換部(60)が電力変換を開始する前の段階から、単体SOPを反映した適切な全体SOPを算出することができる。
 1 蓄電システム、 1n 蓄電モジュール、 S1 第1スイッチ、 2 電力系統、 S2 第2スイッチ、 3 負荷、 S3 第3スイッチ、 10 第1蓄電ラック、 11,12 蓄電モジュール、 20 第2蓄電ラック、 30 第3蓄電ラック、 50a 第1ラック管理部、 50b 第2ラック管理部、 50c 第3ラック管理部、 50m マスタ管理装置、 60 電力変換装置、 70 電力線、 80 ラック間通信線、 90 ラック内通信線。

Claims (7)

  1.  並列接続された複数の蓄電ブロックと、
     前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、
     前記複数の蓄電ブロックの各単体のSOP(State Of Power)と、各蓄電ブロックに流れる電流に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPをもとに前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値を設定する管理部と、を備え、
     前記管理部は、前記電力変換部が電力変換を開始する前、各蓄電ブロックに流れる電流を、各蓄電ブロックの電圧と内部抵抗から推定することを特徴とする蓄電システム。
  2.  前記管理部は、各蓄電ブロックに含まれるセルのSOC(State Of Charge)、温度、及びSOH(State Of Health)を取得し、取得したセルのSOC、温度、及びSOHから、セルのOCV(Open Circuit Voltage)と内部抵抗を推定し、推定したセルのOCVと内部抵抗から各蓄電ブロックに流れる電流を推定することを特徴とする請求項1に記載の蓄電システム。
  3.  前記管理部は、前記電力変換部が電力変換を開始した後、前記複数の蓄電ブロックの各単体のSOPと、各蓄電ブロックに流れる電流の実測値に基づいて、前記全体のSOPを算出することを特徴とする請求項1または2に記載の蓄電システム。
  4.  前記管理部は、前記電力変換部が電力変換を開始した後、各蓄電ブロックに流れる電流の予測値に基づいて算出した前記全体のSOPと、各蓄電ブロックに流れる電流の実測値に基づいて算出した前記全体のSOPを加重平均して算出した前記全体のSOPをもとに、前記上限値を設定する請求項3に記載の蓄電システム。
  5.  前記管理部は、前記電力変換部が電力変換を開始した後、前記電力変換部の充放電電力が大きくなるほど、各蓄電ブロックに流れる電流の実測値に基づいて算出した前記全体のSOPの寄与度を高めることを特徴とする請求項4に記載の蓄電システム。
  6.  前記管理部は、前記複数の蓄電ブロックの状態および温度条件が近似する過去の履歴情報から、当該条件下における電流の実測値を抽出し、当該過去の実測値をもとに、各蓄電ブロックの電圧と内部抵抗から推定する電流の予測値を補正することを特徴とする請求項1から5のいずれかに記載の蓄電システム。
  7.  並列接続された複数の蓄電ブロックと、前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、を備える蓄電システムに接続される管理装置であって、
     前記管理装置は、
     前記複数の蓄電ブロックの各単体のSOP(State Of Power)と、各蓄電ブロック(10-30)に流れる電流に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPをもとに前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値を設定し、
     前記電力変換部が電力変換を開始する前、各蓄電ブロックに流れる電流を、各蓄電ブロックの電圧と内部抵抗から推定することを特徴とする管理装置。
PCT/JP2018/029194 2017-09-11 2018-08-03 蓄電システム、管理装置 WO2019049571A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019540831A JP7117534B2 (ja) 2017-09-11 2018-08-03 蓄電システム、管理装置
CN201880046985.8A CN110892606B (zh) 2017-09-11 2018-08-03 蓄电系统、管理装置
US16/637,923 US11329327B2 (en) 2017-09-11 2018-08-03 Electricity storage system and management device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-174086 2017-09-11
JP2017174086 2017-09-11

Publications (1)

Publication Number Publication Date
WO2019049571A1 true WO2019049571A1 (ja) 2019-03-14

Family

ID=65633853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029194 WO2019049571A1 (ja) 2017-09-11 2018-08-03 蓄電システム、管理装置

Country Status (4)

Country Link
US (1) US11329327B2 (ja)
JP (1) JP7117534B2 (ja)
CN (1) CN110892606B (ja)
WO (1) WO2019049571A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217622A1 (ja) * 2019-04-24 2020-10-29 株式会社日立製作所 蓄電システム、電池の販売方法及び電池集計システム
CN111942223A (zh) * 2019-05-16 2020-11-17 通用汽车环球科技运作有限责任公司 大电流快速充电电池的功率管理
WO2021010113A1 (ja) * 2019-07-18 2021-01-21 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
EP3787141A1 (de) * 2019-08-26 2021-03-03 Hochschule Für Angewandte Wissenschaften München Verfahren zum bestimmen eines leistungsanteils, betriebsverfahren, steuereinheit, energiespeicheranordnung und stromnetz
JP2021097586A (ja) * 2019-12-13 2021-06-24 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. 充電回路および電子機器
WO2022070715A1 (ja) * 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
JP2022102034A (ja) * 2020-12-25 2022-07-07 プライムプラネットエナジー&ソリューションズ株式会社 蓄電システム、および蓄電システムの制御装置
EP4075632A4 (en) * 2019-12-13 2024-02-07 Honda Motor Co., Ltd. ELECTRICITY STORAGE DEVICE, VEHICLE, METHOD FOR CONTROLLING AN ELECTRICITY STORAGE DEVICE AND PROGRAM

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710050B (zh) 2017-06-08 2023-02-17 松下知识产权经营株式会社 蓄电系统、管理装置
US11605839B2 (en) * 2020-02-10 2023-03-14 Anduril Industries, Inc. Battery system
US11125707B1 (en) * 2020-08-18 2021-09-21 Element Energy, Inc. Methods and systems for in-situ impedance spectroscopy analysis of battery cells in multi-cell battery packs
CN112083335B (zh) * 2020-09-28 2023-10-17 国联汽车动力电池研究院有限责任公司 一种车用蓄电池的快充方法及系统
KR20220102453A (ko) * 2021-01-13 2022-07-20 주식회사 엘지에너지솔루션 배터리 뱅크 전력 제어 장치 및 방법
CN114629905B (zh) * 2022-02-16 2022-10-28 福建时代星云科技有限公司 一种基于云端数据的储能系统sop优化方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215459A (ja) * 2003-01-08 2004-07-29 Hitachi Ltd 電源制御装置
WO2015189983A1 (ja) * 2014-06-13 2015-12-17 日産自動車株式会社 充電制御装置及び充電制御方法
JP2017028801A (ja) * 2015-07-17 2017-02-02 パナソニックIpマネジメント株式会社 電源装置、及び、電源装置の動作方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088202A (ja) 2008-09-30 2010-04-15 Toshiba Corp 電池ユニットおよびこれを用いた電池システム
JP5331493B2 (ja) * 2009-01-13 2013-10-30 日立ビークルエナジー株式会社 電池制御装置
WO2013008859A1 (ja) 2011-07-12 2013-01-17 三洋電機株式会社 蓄電池集合体制御システム
JP5850164B2 (ja) * 2012-08-30 2016-02-03 株式会社安川電機 蓄電装置
JP5932596B2 (ja) * 2012-10-11 2016-06-08 日立オートモティブシステムズ株式会社 車両の回生制御装置
US9182449B2 (en) * 2012-10-12 2015-11-10 GM Global Technology Operations LLC Method and system for estimating battery capacity in a vehicle
WO2014128941A1 (ja) 2013-02-25 2014-08-28 株式会社 日立製作所 並列接続蓄電システム
JP6100055B2 (ja) 2013-03-27 2017-03-22 株式会社東芝 蓄電システムの充放電装置及び充放電方法
US10361467B2 (en) * 2014-09-26 2019-07-23 Panasonic Intellectual Property Management Co., Ltd. Power supply device
KR102014451B1 (ko) 2015-11-13 2019-08-26 주식회사 엘지화학 이차 전지의 출력 파라미터를 조정하는 시스템 및 그 방법
KR102179677B1 (ko) 2017-04-12 2020-11-17 주식회사 엘지화학 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
JP7033734B2 (ja) 2017-06-08 2022-03-11 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
CN110710050B (zh) * 2017-06-08 2023-02-17 松下知识产权经营株式会社 蓄电系统、管理装置
WO2019207852A1 (ja) * 2018-04-23 2019-10-31 パナソニックIpマネジメント株式会社 データセンタのバックアップ用電源システム、バックアップ用電池ラック
JP7122635B2 (ja) * 2018-07-17 2022-08-22 パナソニックIpマネジメント株式会社 電源システム、及び管理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004215459A (ja) * 2003-01-08 2004-07-29 Hitachi Ltd 電源制御装置
WO2015189983A1 (ja) * 2014-06-13 2015-12-17 日産自動車株式会社 充電制御装置及び充電制御方法
JP2017028801A (ja) * 2015-07-17 2017-02-02 パナソニックIpマネジメント株式会社 電源装置、及び、電源装置の動作方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181667A (ja) * 2019-04-24 2020-11-05 株式会社日立製作所 蓄電システム、電池の販売方法及び電池集計システム
WO2020217622A1 (ja) * 2019-04-24 2020-10-29 株式会社日立製作所 蓄電システム、電池の販売方法及び電池集計システム
JP7185590B2 (ja) 2019-04-24 2022-12-07 株式会社日立製作所 蓄電システム、電池の販売方法及び電池集計システム
CN111942223A (zh) * 2019-05-16 2020-11-17 通用汽车环球科技运作有限责任公司 大电流快速充电电池的功率管理
WO2021010113A1 (ja) * 2019-07-18 2021-01-21 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
CN114080331A (zh) * 2019-07-18 2022-02-22 松下知识产权经营株式会社 管理装置以及电源系统
CN114080331B (zh) * 2019-07-18 2024-04-26 松下知识产权经营株式会社 管理装置以及电源系统
EP3787141A1 (de) * 2019-08-26 2021-03-03 Hochschule Für Angewandte Wissenschaften München Verfahren zum bestimmen eines leistungsanteils, betriebsverfahren, steuereinheit, energiespeicheranordnung und stromnetz
EP4075632A4 (en) * 2019-12-13 2024-02-07 Honda Motor Co., Ltd. ELECTRICITY STORAGE DEVICE, VEHICLE, METHOD FOR CONTROLLING AN ELECTRICITY STORAGE DEVICE AND PROGRAM
JP2021097586A (ja) * 2019-12-13 2021-06-24 北京小米移動軟件有限公司Beijing Xiaomi Mobile Software Co.,Ltd. 充電回路および電子機器
JP6990271B2 (ja) 2019-12-13 2022-01-12 北京小米移動軟件有限公司 充電回路および電子機器
US11539226B2 (en) 2019-12-13 2022-12-27 Beijing Xiaomi Mobile Software Co., Ltd. Charging circuit and electronic device
WO2022070715A1 (ja) * 2020-09-29 2022-04-07 パナソニックIpマネジメント株式会社 管理装置、及び電源システム
CN115916575A (zh) * 2020-09-29 2023-04-04 松下知识产权经营株式会社 管理装置和电源系统
CN115916575B (zh) * 2020-09-29 2024-05-14 松下知识产权经营株式会社 管理装置和电源系统
JP7323506B2 (ja) 2020-12-25 2023-08-08 プライムプラネットエナジー&ソリューションズ株式会社 蓄電システム、および蓄電システムの制御装置
JP2022102034A (ja) * 2020-12-25 2022-07-07 プライムプラネットエナジー&ソリューションズ株式会社 蓄電システム、および蓄電システムの制御装置

Also Published As

Publication number Publication date
US20200176829A1 (en) 2020-06-04
CN110892606A (zh) 2020-03-17
CN110892606B (zh) 2023-07-07
JP7117534B2 (ja) 2022-08-15
US11329327B2 (en) 2022-05-10
JPWO2019049571A1 (ja) 2020-08-20

Similar Documents

Publication Publication Date Title
WO2019049571A1 (ja) 蓄電システム、管理装置
JP7033734B2 (ja) 蓄電システム、管理装置
CN110912235B (zh) 储能系统及其均流方法
JP6571268B2 (ja) 電池監視装置及び方法
US20180337536A1 (en) Battery Balancing and Current Control
US10205335B2 (en) Storage battery management device, method, and computer program product
WO2011112862A1 (en) Battery management system for a distributed energy storage system, and applications thereof
JP2014110692A (ja) 蓄電システム及び蓄電池の劣化診断方法
CN110710050B (zh) 蓄电系统、管理装置
EP3200310B1 (en) Electrical storage system, control apparatus, and control method
US20180278064A1 (en) Storage battery management device, method, and computer program product
WO2019135300A1 (ja) 蓄電装置、蓄電システム、電源システム、及び蓄電装置の制御方法
WO2020246558A1 (ja) 電池制御装置
Pascoe et al. A VRLA battery simulation model
Bhosale et al. A novel control strategy to achieve SOC balancing for batteries in a DC microgrid without droop control
KR101761023B1 (ko) 배터리 모의 장치, 모의 방법 및 이를 이용한 모의 시스템
KR20180006264A (ko) 배터리 모의 장치 및 배터리 모의 방법
JP7240893B2 (ja) 電池制御装置
JP2018169237A (ja) 蓄電制御装置、蓄電制御システム、サーバ、蓄電制御方法及びプログラム
Yokita et al. Development of a Battery Monitoring and Control Unit Aiding Utilities in Demand Side Management
US20230369861A1 (en) Storage system configured for use with an energy management system
EP4348798A1 (en) State of health monitoring of a battery system
Alamgir et al. A Hybrid Approach to Balance Lithium-ion Cells by Implementing SoC Using Kalman Filter
KR20240017287A (ko) 배터리 위험도 평가 장치 및 그의 동작 방법
CN115085304A (zh) Bmu、包括该bmu的能量存储系统及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540831

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18854232

Country of ref document: EP

Kind code of ref document: A1