JP7240893B2 - 電池制御装置 - Google Patents

電池制御装置 Download PDF

Info

Publication number
JP7240893B2
JP7240893B2 JP2019026947A JP2019026947A JP7240893B2 JP 7240893 B2 JP7240893 B2 JP 7240893B2 JP 2019026947 A JP2019026947 A JP 2019026947A JP 2019026947 A JP2019026947 A JP 2019026947A JP 7240893 B2 JP7240893 B2 JP 7240893B2
Authority
JP
Japan
Prior art keywords
battery
charge
relationship
discharge amount
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019026947A
Other languages
English (en)
Other versions
JP2020134279A (ja
Inventor
耕平 本蔵
啓 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2019026947A priority Critical patent/JP7240893B2/ja
Publication of JP2020134279A publication Critical patent/JP2020134279A/ja
Application granted granted Critical
Publication of JP7240893B2 publication Critical patent/JP7240893B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、電池制御装置に関する。
近年、移動体向け蓄電装置や系統連系安定化用蓄電装置、非常用蓄電装置といった多数の電池を内蔵する電池制御装置の利用が拡大している。これら電池制御装置の性能を引き出すために、電池の充電状態(以下、SOC)や劣化状態(以下、SOH)、充放電可能な最大電流(許容電流値)などを適切に算出する必要がある。
電池電圧が上限または下限を逸脱しない最大電流を演算するためには、電池の開回路電圧(OCV)や内部抵抗等の電池の内部状態やパラメータを使う必要がある。特に、常時不規則な電流が流れている移動体向けや系統連係安定化用蓄電装置では、電池に電流を流した瞬間に生じる電圧変化をもたらす内部抵抗(直流抵抗)に加えて、電流を流し続ける場合の電圧変化をもたらす内部抵抗(分極抵抗)の影響を考慮する必要がある。
直流抵抗や分極抵抗などのパラメータは一般に、電池のSOCおよび温度によって変化する。そこで、バッテリコントローラは種々のSOCおよび温度において、直流抵抗および分極抵抗などのパラメータがどのような値を示すかをデータテーブルまたはデータを表す関数として保持しておく。そして、セルコントローラから送られてくる情報に基づいて、SOCを推定したうえで、データテーブルまたは関数からパラメータの値を特定することが一般的である。しかし、これらのパラメータは電池の初期状態において測定されるため、電池が劣化した場合には実際の値とは異なる値がデータテーブルまたは関数から読み込まれてしまい、SOC、電池電圧値、許容電流値等を誤って算出してしまう。
電池の劣化に応じて、直流抵抗成分と分極抵抗成分のデータテーブルを更新する手法も提案されている。例えば特許文献1には、初期状態の直流抵抗と拡散係数のデータテーブルを保有する一方で、充放電中の電池電圧波形の測定値と所定の電池モデルに基づく計算で同定した直流抵抗と拡散係数の値に応じて、測定されたSOCと温度に対応する箇所のデータテーブルを更新する学習型のアルゴリズムが提案されている。
特開2013-44598号公報
電池が劣化した場合に応じて、電池のデータを簡便に修正することができず、計算負荷が大きい。
本発明による電池制御装置は、初期状態の電池の正極および負極のそれぞれについて、直流抵抗成分と充放電量の関係、分極抵抗成分と充放電量の関係を含む正極および負極データを記憶する記憶部と、現在の電池の劣化状態を推定する劣化状態推定部と、前記記憶部に記憶された前記正極および前記負極データを基に、前記劣化状態推定部で推定された現在の電池の劣化状態に応じて、直流抵抗成分と充放電量の関係、分極抵抗成分と充放電量の関係を含む電池の電池データを算出するパラメータ計算部とを備える。
本発明によれば、電池が劣化した場合に応じて、電池のデータを簡便に修正することができ、そのための計算負荷も少ない。
電池システムの構成図である。 バッテリコントローラの機能ブロック図である。 (A)(B)電池に矩形波電流を印加した場合の電池の電圧挙動を示す図である。 電池の等価回路モデルを示す図である。 正極データテーブルおよび負極データテーブルを示す図である。 (A)(B)25℃における正極・負極の放電量と分極抵抗を示すグラフである。 電池データテーブルを示す図である。 電池の初期状態と劣化後における電池の分極抵抗の電池データテーブルの例を示す図である。
以下、図面を参照して本発明の実施形態について説明する。
図1は、電池システム100の構成図である。電池システム100は、電池制御装置1、インバータ2、モータなどの負荷3、上位コントローラ4を備える。電池制御装置1の出力電圧は、電池の残容量や出力電流等により変動する直流電圧のため、負荷3に直接電力を供給するには適さない場合がある。そこで、図1に示す例では、インバータ2により電池制御装置1の出力電圧を三相交流に変換し、負荷3に供給している。電池制御装置1、インバータ2は、上位コントローラ4により制御される。
なお、負荷3に直流電圧や他の多相交流、単相交流を供給する場合も同様の構成となる。また、負荷3が電力を出力する場合には、インバータ2を双方向インバータとすることにより、負荷3が出力した電力を電池制御装置1内の電池モジュールに蓄えることができる。また、インバータ2と並列に充電システムを接続することで、必要に応じて電池モジュールを充電することも可能である。
電池制御装置1は、インバータ2や負荷3の制御に有用な電池の充電率(SOC)や劣化率(SOH)、電池に流すことができる最大充放電電流(許容電流値)、電池温度、電池異常の有無等の電池状態に関する情報を、上位コントローラ4に送信する。上位コントローラ4は、これらの情報に基づき、エネルギーマネージメントや異常検知等を行う。また、上位コントローラ4は、電池制御装置1をインバータ2または負荷3から切り離すべきと判断した場合は、切断指示を電池制御装置1に対し送信する。
電池制御装置1は、複数個の電池からなる1台以上の電池モジュール11と、電池制御装置1の状態を監視・推定・制御するバッテリコントローラ12と、電池制御装置1の出力を断続するリレー13と、電池モジュール11に流れた電流を計測する電流センサ14と、電池モジュール11の電圧を計測する電圧センサ15と、電池制御装置1とアースとの間の絶縁抵抗を計測する漏電センサ16と、電池温度を計測する温度センサ17と、電池制御装置1の出力電圧に応じ制御される遮断器18とを備えている。図1に示す電池制御装置1は、遮断器18を介して直列接続された2台の電池モジュール11を備えている。
バッテリコントローラ12は、各種演算を行うCPU121、後述するデータテーブルが記憶される記憶部122を備えている。
電池モジュール11は複数個の単位電池を有し、電池モジュール11内部の温度や各単位電池の電圧を計測する回路、および、必要に応じ単位電池毎での充放電を行う回路を備えている。これにより単位電池毎での電圧監視や電圧調整が可能となり、また温度に応じて特性が変化する電池状態の推定に必要な温度情報が計測可能となる。
直列接続された電池モジュール11には、電流センサ14と一対のリレー13とが直列に接続される。電流センサ14は、電池モジュール11の状態を監視・推定するために必要な電流値を計測する。一対のリレー13の開閉を上位コントローラ4の指令に基づき制御することで、電池制御装置1の出力を遮断または接続することができる。電池モジュール11の電圧が例えば100V以上の高電圧となる場合には、電池制御装置1への電力入出力を人力で遮断するためのスイッチをリレー13と直列に追加することがある。スイッチを用いて強制的に遮断を行うことで、電池制御装置1の組み立て時や解体時、電池制御装置1を搭載した装置の事故対応時に短絡などの発生を防ぐことが可能となる。
なお、電池モジュール17が複数台並列に接続されている場合は、各列にリレー13、スイッチ、電流センサ14を設けてもよいし、電池制御装置1の出力部分にのみリレー13、スイッチ、電流センサ14を設けてもよい。また、各列および電池制御装置1の出力部の両方にリレー13、スイッチ、電流センサ14を設けてもよい。
リレー13は1台のリレーで構成してもよいし、メインリレーとプリチャージリレー、抵抗の組で構成してもよい。後者の構成ではプリチャージリレーと直列に抵抗を配置し、これらをメインリレーと並列接続する。そしてリレー13を接続する場合、まずプリチャージリレーを接続する。プリチャージリレーを流れる電流は直列接続した抵抗により制限されるため、前者の構成で生じうる突入電流を制限することができる。そしてプリチャージリレーを流れる電流が十分小さくなったのちにメインリレーを接続する。メインリレー接続のタイミングはプリチャージリレーを流れる電流を基準にしてもよいし、抵抗にかかる電圧やメインリレーの端子間電圧を基準にしてもよい。また、プリチャージリレーを接続してから経過した時間を基準にしてもよい。
電圧センサ15は、電池モジュール11の状態監視・推定に必要な電圧値を計測する。電圧センサ15は、1台または複数台の電池モジュール11に対して並列接続される。また、電池モジュール11には漏電センサ16が接続され、漏電が生じる前に漏電が生じうる状態、すなわち絶縁抵抗が低下した状態を検知し、事故の発生を予防可能にする。
電池モジュール11、電流センサ14、電圧センサ15、漏電センサ16の計測値はバッテリコントローラ12に送信される。バッテリコントローラ12は、受信した計測値に基づいて、電池モジュール11の電池状態の監視や推定、および制御を行う。ここで制御とは、例えば、各単位電池の電圧を均等化するための単位電池毎の充放電や、各センサの電源制御、各センサのアドレッシング、バッテリコントローラ12に接続されたリレー13の制御等を指す。電池状態の監視や推定、制御に必要な演算はCPU121が行う。
なお、電池制御装置1にはシステム冷却用のファンが含まれてもよく、その制御をバッテリコントローラ12が行うこともある。このように冷却まで電池制御装置1が行うことで、上位コントローラ4との通信量を削減することが可能となる。
図1に示す例では、電圧センサ15や漏電センサ16をバッテリコントローラ12とは別部品とすることで自由度を持たせているが、バッテリコントローラ12に電圧センサ15や漏電センサ16を内蔵する構成としても良い。内蔵構成とすることで、個別のセンサを用意する場合に較べてハーネス本数が減り、センサ取り付けの手間も削減できる。ただし、センサを内蔵することで対応可能な電池制御装置1の規模(最大出力電圧、電流等)が限定されてしまう場合もあるので、そのような場合には別部品とするのが望ましい。
図2は、バッテリコントローラ12の機能ブロック図である。バッテリコントローラ12は、例えば、許容電流値を演算する。許容電流値の演算は、CPU121において行われる。CPU121は、機能構成として、劣化状態推定部1201、充電状態推定部1202、パラメータ計算部1203、許容電流演算部1204を備え、記憶部の構成として、電池データテーブル1205、正極データテーブル1206、負極データテーブル1207、パラメータ保持部1208を備えている。
劣化状態推定部1201、充電状態推定部1202には、電流センサ14、電圧センサ15、温度センサ17などのセンサ群から電流、電圧、温度の各値が入力される。
劣化状態推定部1201は、センサ群から出力される電流I、電圧V、および温度Tに基づき電池の状態を推定する。推定する対象は電池の状態を表す指標を任意に選んでよいが、例えば電池の容量減少を推定する。電池の容量減少の推定としては、例えば以下の方法がある。
ある時点Aから別の時点Bまでの充放電量Q_ABを積算する。また充電状態推定部1202を参照し、時点AにおけるOCV_Aと時点BにおけるOCV_Bを計算し、初期状態の電池データテーブル1205を参照して、OCV_Aに対応する充放電量Q_ABとOCV_Bに対応する充放電量Q’_ABを求める。その上で、Q’_AB/Q_ABを容量減少率とする。この容量減少率をSOHとする。本実施例では、この容量減少率、あるいは容量減少率に電池の初期容量Q_0を掛けた容量減少量Q_degを電池の劣化状態の指標とする。
なお、SOHは抵抗上昇率によって求めてもよい。例えば、電池の初期状態における内部抵抗と現在の内部抵抗の比を抵抗上昇率とし、この抵抗上昇率をSOHとする。さらに、電池の正極と負極それぞれの容量減少率や抵抗上昇率に基づいて、電池の正極と負極のSOHを求めてもよい。
充電状態推定部1202は、センサ群から出力される電流I、電圧V、および温度Tと電池の等価回路モデルに基づき電池の充電状態を推定する。ここで、等価回路モデルについて、図3、4を参照して説明する。
図3は、電池に矩形波電流を印加した時の電池の電圧挙動の一例を示す図である。図3(A)は電池に印加した矩形波電流Iを示す、図3(B)は電池の電圧Vを示す。いずれも横軸は経過時間である。電池に対して、例えば図3(A)のグラフ31に示す矩形波の電流Iを印加すると、電池の電圧V、すなわち電池のCCV(閉回路電圧)は、図3(B)のグラフ32に示すように変化する。この電圧Vの変化は、図3(B)に示すように、直流電圧成分I×R0、分極電圧成分Vp、OCV変動成分ΔOCVの3つの成分に大別される。R0は直流抵抗成分である。
1つ目の成分である直流電圧成分I×R0は、電流Iの変化に対して瞬間的に応答する。すなわち、電流Iの立ち上がりに応じて瞬間的に上昇し、一定のレベルで推移した後に、電流Iの立ち下がりと共に消滅する。2つ目の成分である分極電圧成分Vpは、電流Iの変化に対して遅延して変動する。すなわち、電流Iの立ち上がり後に徐々に上昇し、電流Iの立ち下がり後に徐々に低下する。3つ目の成分であるOCV変動成分ΔOCVは、電池のOCVの変化を表しており、充電開始前のOCV値であるOCV1と充電開始後のOCV値であるOCV2との差に相当する。このOCV変動成分ΔOCVは、充放電量に応じた電池の充電状態の変化量に対応する。
図4は、電池の等価回路モデルの一例を示す図である。図4において、R0は直流抵抗成分を表している。この直流抵抗成分R0に電流Iをかけることで、直流電圧成分I×R0が求められる。一方、Rpは分極抵抗成分、Cpは分極容量成分をそれぞれ表しており、これらの値と電流Iと充放電時間tから分極電圧成分Vpが求められる。また、OCVの変化量からOCV変動成分ΔOCVが求められる。また、図4に示した等価回路より、分極電圧成分Vpは時定数RpCpにおける指数関数的な変動を示す。
充電状態推定部1202は、例えば、第一の方式では、等価回路モデルで電池のCCVを解析することによって求めた電池のOCVに基づいて、電池のSOCとOCVの関係を示す後述の電池データテーブル1205を参照してSOCを演算する。なお、第二の方式として、電流Iを積算した充放電電気量ΔQに基づいて、充放電電気量とSOCの関係に基づいてSOCを演算してもよい。または、両方式を組み合わせてSOCを演算してもよい。本実施形態では第一の方式の例で説明する。
正極データテーブル1206、負極データテーブル1207には、電池の初期状態における直流抵抗成分、分極抵抗成分、分極容量成分がそれぞれの温度と充放電量とOCVとの関係で記憶されている。
図5は、正極データテーブル1206および負極データテーブル1207を示す図である。テーブルの項目は、温度T(℃)、充放電量Qi(Ah)、OCVVi(V)、直流抵抗Roi(Ω)、分極抵抗Rpi(Ω)、分極容量Cpi(F)である。ここで、テーブル内の添え字iは正極pos、負極negのいずれかを示す。正極データテーブル1206では、iは正極posを、負極データテーブル1207では、iは負極negである。図5では、正極データテーブル1206および負極データテーブル1207を統一的に図示するが、正極データテーブル1206および負極データテーブル1207はそれぞれ独立して設けられている。なお、正極データテーブル1206および負極データテーブル1207は、データテーブルの形式で記憶してもよく、またはデータを表す関数として記憶してもよい。
正極データテーブル1206および負極データテーブル1207は、温度T(℃)がT1において、充放電量QiがQi,1~Qi,n、OCVがVi,1~Vi,nにおける直流抵抗Roi(Ω)、分極抵抗Rpi(Ω)、分極容量Cpi(F)を記憶している。そして、温度T(℃)がTmまで、充放電量QiがQi,1~Qi,n、OCVがVi,1~Vi,nにおける直流抵抗Roi(Ω)、分極抵抗Rpi(Ω)、分極容量Cpi(F)を記憶している。
図6(A)(B)は、25℃における正極・負極の充放電量(Ah)と分極抵抗Rpの一例を示すグラフである。図6(A)は、25℃における正極の充放電量Q_pos(Ah)と分極抵抗Rp_posの電池の初期状態におけるグラフであり、図6(B)は、25℃における負極の充放電量Q_neg(Ah)と分極抵抗Rp_negの電池の初期状態におけるグラフである。分極抵抗Rpの例を示したが、直流抵抗Roi(Ω)、分極容量Cpi(F)も同様に、これらのグラフを基に電池の正極データテーブル1206および負極データテーブル1207を作成する。
パラメータ計算部1203は、劣化状態推定部1201で推定した電池の劣化状態と、正極データテーブル1206、負極データテーブル1207に基づき電池データテーブル1205の値を、例えば、以下の式(1)~(5)を用いて計算する。
Q_cell=Q_pos*A_pos+B_pos=Q_neg*A_neg+B_neg ・・・(1)
OCV_cell=OCV_pos-OCV_neg ・・・(2)
Ro_cell=Ro_pos*D_pos+Ro_neg*D_neg ・・・(3)
Rp_cell=Rp_pos*E_pos+Rp_neg*E_neg ・・・(4)
Cp_cell=Max(Cp_pos*Rp_pos*F_pos、Cp_neg*Rp_neg*F_neg)/Rp_cell
・・・(5)
ここで、パラメータA_pos、B_pos、A_neg、B_neg、D_pos、D_neg、E_pos、E_neg、F_pos、F_negは各成分の変化率であり、その初期値はパラメータ保持部1208に予め記憶されている。
値Q_pos、Q_neg、OCV_pos、OCV_neg、Ro_pos、Ro_neg、Rp_pos、Rp_neg、Cp_pos、Cp_negは、正極データテーブル1206もしくは負極データテーブル1207より読み出す。
また、式(5)において、Max(Cp_pos*Rp_pos*F_pos、Cp_neg*Rp_neg*F_neg)は、いずれか大きい値を用いることを意味する。
また、パラメータ計算部1203は、劣化状態推定部1201で推定した電池の劣化状態に基づき、パラメータA_pos、B_pos、A_neg、B_neg、D_pos、D_neg、E_pos、E_neg、F_pos、F_negの少なくとも1つを更新する。例えば、電池の劣化状態を反映した容量減少量Q_degをB_negの初期値から差し引き、B_negを更新し、その他のパラメータは初期値を用いる。また例えば、容量減少量Q_degをB_negの初期値から差し引き、B_negを更新した後、式(1)~(5)を用いて仮の電池データテーブル1205を計算し、仮の電池データテーブル1205において所定のOCVに対応する電池の内部抵抗(Ro_cell+Ro_cell)を抽出し、抽出した電池の内部抵抗と初期の電池の内部抵抗の比をD_pos、D_neg、E_pos、E_negにそれぞれ乗じてD_pos、D_neg、E_pos、E_negを更新する。また例えば、センサ群からの入力を処理して電池の充放電量Q_cellと電池のOCV:OCV_cell(V)、および直流抵抗Roi(Ω)、分極抵抗Rpi(Ω)の関係テーブルの観測値を構築し、式(1)~(5)と正極データテーブルと負極データテーブルによって計算される電池の充放電量Q_cellと電池のOCV:OCV_cell(V)、および直流抵抗Roi(Ω)、分極抵抗Rpi(Ω)の関係テーブルの計算値が上記観測値に一致するようにパラメータA_pos、B_pos、A_neg、B_neg、D_pos、D_neg、E_pos、E_neg、F_pos、F_negを計算で探索し、更新する。このように、パラメータ計算部1203は、パラメータ保持部1208に保持していた初期値を、劣化状態推定部1201で推定した現在の電池の劣化状態のパラメータに更新する。そして、正極データテーブル1206もしくは負極データテーブル1207を参照して、式(1)~(5)を用いて計算する。これにより、電池の正極および負極の充放電量Q_pos、Q_negとOCV_pos、OCV_negの関係、電池の正極および負極の充放電量Q_pos、Q_negと直流抵抗成分Ro_pos、Ro_negの関係、電池の正極および負極の充放電量Q_pos、Q_negと分極抵抗成分Rp_pos、Rp_negの関係と、所定のモデル、例えば式(1)~(5)、に基づいて、電池の充放電量Q_cellとOCV_cellの関係、電池の充放電量Q_cellと直流抵抗成分Ro_cellの関係、電池の充放電量Q_cellと分極抵抗成分Rp_cellの関係、正極と負極と電池との充放電量Q_pos、Q_neg、Q_cellの対応関係を決定する。計算結果は電池データテーブル1205に記憶する。
図7は、電池データテーブル1205を示す図である。テーブルの項目は、温度T(℃)、充放電量Q_cell(Ah)、OCV_cell(V)、直流抵抗Ro_cell(Ω)、分極抵抗Rp_cell(Ω)、分極容量Cp_cell(F)である。電池データテーブル1205は、温度T(℃)がT1において、充放電量Q_cellがQ1~Qn、OCV_cellがV1~Vnにおける直流抵抗Ro_cell(Ω)、分極抵抗Rp_cell(Ω)、分極容量Cp_cell(F)を記憶している。そして、温度T(℃)がTmまで、充放電量Q_cellがQ1~Qn、OCV_cellがV1~Vnにおける直流抵抗Ro_cell(Ω)、分極抵抗Rp_cell(Ω)、分極容量Cp_cell(F)を記憶している。
許容電流演算部1204は、電池データテーブル1205に記憶された電池の直流抵抗、分極抵抗、分極容量を現在の電池の温度に基づいて参照し、電池の許容電流を演算する。許容電流の演算は、電池の過電圧を防ぐ安全機能の一部として、許容電流値を超えないように電流を制限することで、電池制御装置1の安全性を維持するために行われる。以下に許容電流の演算の一例を示す。
充電許容電流は、例えば以下の式(6)を用いて算出する。
Icmax=(Vmax-OCV)/R ・・・(6)
ここで、Vmaxは上限電圧、Rは電池の内部抵抗である。
放電許容電流は、例えば以下の式(7)を用いて算出する。
Idmax=(OCV-Vmin)/R ・・・(7)
ここで、Vminは下限電圧、Rは電池の内部抵抗である。
電池の内部抵抗Rは、例えば以下の式(8)を用いて算出する。
Figure 0007240893000001
ここで、Ro、Rp、Cpは電池データテーブル1205を参照して求める。tは時間(秒)である。
また、許容電流演算部1204は、電池データテーブル1205に記憶された電池の直流抵抗、分極抵抗、分極容量に基づき、電池の許容入力、許容出力を演算する。以下に演算の一例を示す。
許容入力は、例えば以下の式(9)を用いて算出する。
Icmax*Vmax ・・・(9)
ここで、Icmaxは充電許容電流、Vmaxは上限電圧である。
許容出力は、例えば以下の式(10)を用いて算出する。
Idmax*Vmin ・・・(10)
ここで、Idmaxは放電許容電流、Vminは下限電圧である。
次に、本実施形態の動作について説明する。
まず、電池の初期状態において、図5に示す正極データテーブル1206、負極データテーブル1207に、電池の初期状態における直流抵抗成分、分極抵抗成分、分極容量成分をそれぞれの温度と充放電量とOCVとの関係に対応付けて予め記憶する。
また、パラメータ保持部1208に、式(1)~(5)に用いるパラメータA_pos、B_pos、A_neg、B_neg、D_pos、D_neg、E_pos、E_neg、F_pos、F_negの初期値を予め記憶する。
電池の初期状態から電池の使用を継続し、例えばエンジン始動時、外部電源による電池充電時、定期点検時などの時点において、パラメータ計算部1203は、以下の処理を実行する。
まず、パラメータ計算部1203は、パラメータ保持部1208に保持していた初期値を、劣化状態推定部1201で推定した現在の電池の劣化状態に応じたパラメータに更新する。具体的には、パラメータ計算部1203は、指定した電池温度に対応する正極データテーブル1206、負極データテーブル1207の値を抽出する。
さらに、劣化状態推定部1201で推定した現在の電池の劣化状態に応じて、パラメータ保持部1208内のパラメータを更新する。例えば、電池の劣化状態を反映した容量減少量Q_degをB_negの初期値から差し引き、B_negを更新する。その他のパラメータは初期値を用いる。また例えば、容量減少量Q_degをB_negの初期値から差し引き、B_negを更新した後、式(1)~(5)を用いて仮の電池データテーブル1205を計算し、仮の電池データテーブル1205において所定のOCVに対応する電池の内部抵抗(Ro_cell+Ro_cell)を抽出し、抽出した電池の内部抵抗と初期の電池の内部抵抗の比をD_pos、D_neg、E_pos、E_negにそれぞれ乗じてD_pos、D_neg、E_pos、E_negを更新する。
そして、抽出した正極データテーブル1206もしくは負極データテーブル1207の値と更新したパラメータを参照して、式(1)~(5)を用いて充放電量Q_cell(Ah)、OCV_cell(V)、直流抵抗Ro_cell(Ω)、分極抵抗Rp_cell(Ω)、分極容量Cp_cell(F)を計算する。計算結果は電池データテーブル1205に記憶する。このように、電池が劣化した場合に応じた電池の等価回路パラメータを簡便に修正することができ、そのための計算負荷も少なくできる。
また、充電状態推定部1202は、等価回路モデルで電池のCCVを解析することによって求めた電池のOCVに基づいて、、電池の温度に対応する電池データテーブル1205を参照して電池の現在のSOCを演算する。具体的には、充電状態推定部1202は、センサ群14、15、17により検出された電池の温度、電流、電圧と、パラメータ計算部1203で計算された電池のデータを用いて電池の充電状態を推定する。あるいは、電流Iを積算した充放電電気量ΔQに基づいて、充放電電気量とSOCの関係に基づいてSOCを演算する。あるいは、両方式を組み合わせてSOCを演算する。
次に、許容電流演算部1204は、電池データテーブル1205に記憶された電池の直流抵抗、分極抵抗、分極容量に基づき、式(6)~(8)を用いて電池の充電許容電流、放電許容電流を演算する。また、式(9)~(10)を用いて許容入力Iin、許容出力Ioutを演算する。
図8(A)(B)は、電池の初期状態と劣化後における電池の分極抵抗の電池データテーブル1205の例を示す。図8(A)は、初期状態の電池の分極抵抗の電池データテーブル1205、図8(B)は、劣化後の電池の分極抵抗の電池データテーブル1205を示す。ここではA_pos、A_neg、B_pos、E_pos、E_negは劣化の前後で変化せず、電池の劣化状態を反映するプロセスでは、電池容量減少量Q_degを用いてB_negを初期値B_neg_0から劣化後の値B_neg_1=B_neg_0+Q_degに変更した場合を示した。
図8に示すように、正極と負極の放電量の対応関係が劣化によって変化し、それによって電池の分極抵抗の放電量依存性が変化する様子を電池データテーブル1205に反映させることができる。OCV、直流抵抗、分極容量についても同様に電池の劣化状態を反映して計算することができる。
なお、電池の充放電量を、満充電状態を100%、全放電状態を0%として定義するSOCに変換したい場合には、例えば満充電状態と全放電状態に対応するOCV_c、OCV_dをそれぞれ定めておき、電池の劣化状態を反映した充放電量とOCVのデータテーブルにおいて、OCV_cとOCV_dに相当する充放電量のQ_cとQ_dを抽出し、Q_cとQ_dの間を百分割すればよい。また、この百分割した充放電量のそれぞれに対応するOCVを抽出することによって、劣化状態を反映したSOCとOCVのデータテーブルを抽出することもできる。
以上説明した実施形態によれば、次の作用効果が得られる。
(1)電池制御装置1は、初期状態の電池の正極および負極のそれぞれについて、直流抵抗成分と充放電量の関係、分極抵抗成分と充放電量の関係を含む正極および負極データを記憶する正極データテーブル1206および負極データテーブル1207と、現在の電池の劣化状態を推定する劣化状態推定部1201と、正極データテーブル1206および負極データテーブル1207に記憶された正極および負極データを基に、劣化状態推定部1201で推定された現在の電池の劣化状態に応じて、直流抵抗成分と充放電量の関係、分極抵抗成分と充放電量の関係を含む電池の電池データ(電池データテーブル1205)を算出するパラメータ計算部1203とを備える。これにより、電池が劣化した場合に応じて、電池のデータを簡便に修正することができ、そのための計算負荷も少ない。
本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
1 電池制御装置
2 インバータ
3 負荷
4 上位コントローラ
11 電池モジュール
12 バッテリコントローラ
13 リレー
14 電流センサ
15 電圧センサ
16 漏電センサ
17 温度センサ
18 遮断器
100 電池システム
121 CPU
122 記憶部
1201 劣化状態推定部
1202 充電状態推定部
1203 パラメータ計算部
1204 許容電流演算部
1205 電池データテーブル
1206 正極データテーブル
1207 負極データテーブル
1208 パラメータ保持部

Claims (7)

  1. 初期状態の電池の正極および負極のそれぞれについて、直流抵抗成分と充放電量の関係、分極抵抗成分と充放電量の関係を含む正極データおよび負極データを記憶する記憶部と、
    現在の前記電池の劣化状態を推定する劣化状態推定部と、
    前記記憶部に記憶された前記正極データおよび前記負極データを基に、前記劣化状態推定部で推定された現在の前記電池の劣化状態に応じて、前記直流抵抗成分と充放電量の関係、前記分極抵抗成分と充放電量の関係を含む前記電池の電池データを算出するパラメータ計算部とを備える電池制御装置。
  2. 請求項1に記載の電池制御装置において、
    前記電池の温度、電流、電圧を検出する検出部と、
    前記電池の充電状態の推定を行う充電状態推定部とを備え、
    前記充電状態推定部は、前記検出部により検出された前記電池の温度、電流、電圧と、前記パラメータ計算部で計算された前記電池データを用いて前記電池の充電状態を推定する電池制御装置。
  3. 請求項1に記載の電池制御装置において、
    前記電池の温度、電流、電圧を検出する検出部と、
    前記電池の許容電流もしくは許容入出力の演算を行う許容電流演算部とを備え、
    前記許容電流演算部は、前記検出部により検出された前記電池の温度、電流、電圧と、前記パラメータ計算部で計算された前記電池データを用いて前記電池の許容電流もしくは許容入出力を演算する電池制御装置。
  4. 請求項1から請求項3までのいずれか一項に記載の電池制御装置において、
    前記記憶部に記憶されている前記正極データおよび前記負極データは、複数の温度における前記直流抵抗成分と充放電量の関係複数の温度における前記分極抵抗成分と充放電量の関係を示すデータであり、
    前記パラメータ計算部は、前記電池の温度に対応する前記記憶部に記憶された前記正極データおよび前記負極データを基に、前記劣化状態推定部で推定された現在の前記電池の劣化状態に応じて、前記直流抵抗成分と充放電量の関係、前記分極抵抗成分と充放電量の関係を含む前記電池データを算出する電池制御装置。
  5. 請求項4に記載の電池制御装置において、
    前記パラメータ計算部は、前記電池の所定の温度に対応する前記記憶部に記憶された前記正極データおよび前記負極データを基に、前記劣化状態推定部で推定された現在の前記電池の劣化状態に応じて、前記直流抵抗成分と充放電量と温度の関係、前記分極抵抗成分と充放電量と温度の関係を含む前記電池データを算出する電池制御装置。
  6. 請求項1から請求項3までのいずれか一項に記載の電池制御装置において、
    前記パラメータ計算部は、前記電池の充放電量とOCVの関係、前記電池の充放電量と直流抵抗成分の関係、前記電池の充放電量と分極抵抗成分の関係の少なくとも1つと、前記電池の正極および負極の充放電量とOCVの関係、前記電池の正極および負極の充放電量と直流抵抗成分の関係、前記電池の正極および負極の充放電量と分極抵抗成分の関係の少なくとも1つと、所定のモデルに基づいて、正極と負極と前記電池との充放電量の対応関係を決定する電池制御装置。
  7. 請求項1に記載の電池制御装置において、
    前記劣化状態推定部は、前記電池の容量減少量を推定し、
    前記パラメータ計算部は、前記記憶部に記憶された前記正極および前記負極データを前記電池の前記容量減少量を用いて修正して、前記電池データを算出する電池制御装置。
JP2019026947A 2019-02-18 2019-02-18 電池制御装置 Active JP7240893B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019026947A JP7240893B2 (ja) 2019-02-18 2019-02-18 電池制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019026947A JP7240893B2 (ja) 2019-02-18 2019-02-18 電池制御装置

Publications (2)

Publication Number Publication Date
JP2020134279A JP2020134279A (ja) 2020-08-31
JP7240893B2 true JP7240893B2 (ja) 2023-03-16

Family

ID=72262854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019026947A Active JP7240893B2 (ja) 2019-02-18 2019-02-18 電池制御装置

Country Status (1)

Country Link
JP (1) JP7240893B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7478684B2 (ja) 2021-02-19 2024-05-07 日立グローバルライフソリューションズ株式会社 電池状態推定装置および方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105068A1 (en) 2010-11-01 2012-05-03 Gm Global Technology Operations, Inc. Method and apparatus for assessing battery state of health
WO2013129273A1 (ja) 2012-02-29 2013-09-06 三洋電機株式会社 電源装置、電源装置を備える車両並びに蓄電装置、及び電池の残容量の検出方法
WO2016059869A1 (ja) 2014-10-17 2016-04-21 株式会社 東芝 二次電池の充電状態推定装置及びその充電状態推定方法
JP2017017907A (ja) 2015-07-02 2017-01-19 日立オートモティブシステムズ株式会社 電池制御装置
JP2017111860A (ja) 2015-12-14 2017-06-22 株式会社日立製作所 二次電池制御システム
JP2018009963A (ja) 2016-07-15 2018-01-18 日立化成株式会社 シミュレーション方法及びシミュレーション装置
US20190004120A1 (en) 2015-08-13 2019-01-03 Charged Engineering Inc. Methods and systems for determining battery charge or formation completeness

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070020322A (ko) * 2003-06-23 2007-02-20 야자키 소교 가부시키가이샤 배터리의 열화 판정 방법 및 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120105068A1 (en) 2010-11-01 2012-05-03 Gm Global Technology Operations, Inc. Method and apparatus for assessing battery state of health
WO2013129273A1 (ja) 2012-02-29 2013-09-06 三洋電機株式会社 電源装置、電源装置を備える車両並びに蓄電装置、及び電池の残容量の検出方法
WO2016059869A1 (ja) 2014-10-17 2016-04-21 株式会社 東芝 二次電池の充電状態推定装置及びその充電状態推定方法
JP2017017907A (ja) 2015-07-02 2017-01-19 日立オートモティブシステムズ株式会社 電池制御装置
US20190004120A1 (en) 2015-08-13 2019-01-03 Charged Engineering Inc. Methods and systems for determining battery charge or formation completeness
JP2017111860A (ja) 2015-12-14 2017-06-22 株式会社日立製作所 二次電池制御システム
JP2018009963A (ja) 2016-07-15 2018-01-18 日立化成株式会社 シミュレーション方法及びシミュレーション装置

Also Published As

Publication number Publication date
JP2020134279A (ja) 2020-08-31

Similar Documents

Publication Publication Date Title
JP7106362B2 (ja) 蓄電池の充放電曲線推定装置および充放電曲線推定方法
CN114389336B (zh) 一种锂电池储能系统的动态管控系统
US20200280204A1 (en) Battery control device
CN110914696B (zh) 用于在电池的操作期间估计电池开路池格电压、充电状态以及健康状态的方法和系统
JP7066390B2 (ja) 蓄電池の経済性推定装置および経済性推定方法
US11336104B2 (en) Method of performing a state of health estimation for a rechargeable battery energy storage system
JP6564647B2 (ja) 電池の劣化状態推定装置及び、その劣化状態推定方法
JP5743634B2 (ja) 劣化測定装置、二次電池パック、劣化測定方法、およびプログラム
CN102565716A (zh) 用于计算二次电池的残余容量的设备
WO2020246558A1 (ja) 電池制御装置
WO2020188284A1 (en) Device and method of estimating an amount of charge of a battery
JP2017156272A (ja) 電池の劣化状態推定装置及び、その劣化状態推定方法
JP2017220293A (ja) 電池の充放電曲線推定装置及び、その充放電曲線推定方法
KR20180006264A (ko) 배터리 모의 장치 및 배터리 모의 방법
JP7240893B2 (ja) 電池制御装置
US20240183912A1 (en) Battery management device, battery management method, and electric power storage system
TWI613455B (zh) 一種可擴充模組化電池容量估測系統
KR20170052340A (ko) 하이브리드 전기저장장치 관리 시스템
WO2023007872A1 (ja) 電池制御方法
CN112858913A (zh) 基于可变参数一阶rc模型计算电池剩余电量的方法
TW202409595A (zh) 使用蓄電池之充放電曲線的經濟效率推估裝置及經濟效率推估方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220816

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230306

R150 Certificate of patent or registration of utility model

Ref document number: 7240893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150