WO2019043934A1 - 基板処理装置、基板処理装置の異常監視方法、及びプログラム - Google Patents

基板処理装置、基板処理装置の異常監視方法、及びプログラム Download PDF

Info

Publication number
WO2019043934A1
WO2019043934A1 PCT/JP2017/031719 JP2017031719W WO2019043934A1 WO 2019043934 A1 WO2019043934 A1 WO 2019043934A1 JP 2017031719 W JP2017031719 W JP 2017031719W WO 2019043934 A1 WO2019043934 A1 WO 2019043934A1
Authority
WO
WIPO (PCT)
Prior art keywords
recipe
data
sub
unit
device data
Prior art date
Application number
PCT/JP2017/031719
Other languages
English (en)
French (fr)
Inventor
一良 山本
一秀 浅井
秀元 林原
満 福田
佳代子 屋敷
隆之 川岸
岩倉 裕幸
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to KR1020207006145A priority Critical patent/KR102389689B1/ko
Priority to PCT/JP2017/031719 priority patent/WO2019043934A1/ja
Priority to SG11202001932UA priority patent/SG11202001932UA/en
Priority to JP2019538899A priority patent/JP6833048B2/ja
Priority to KR1020227013031A priority patent/KR102519802B1/ko
Publication of WO2019043934A1 publication Critical patent/WO2019043934A1/ja
Priority to US16/807,601 priority patent/US11782425B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4184Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by fault tolerance, reliability of production system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0218Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterised by the fault detection method dealing with either existing or incipient faults
    • G05B23/0224Process history based detection method, e.g. whereby history implies the availability of large amounts of data
    • G05B23/0227Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions
    • G05B23/0235Qualitative history assessment, whereby the type of data acted upon, e.g. waveforms, images or patterns, is not relevant, e.g. rule based assessment; if-then decisions based on a comparison with predetermined threshold or range, e.g. "classical methods", carried out during normal operation; threshold adaptation or choice; when or how to compare with the threshold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31443Keep track of nc program, recipe program
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32368Quality control
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45031Manufacturing semiconductor wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to grasping the operating state of a substrate processing apparatus for processing a substrate, for example, a semiconductor manufacturing apparatus for film formation on a substrate.
  • Patent Document 1 describes a method of managing the soundness of data using SPC.
  • Patent Document 2 describes that various monitor data according to a process recipe are stored in a memory and subjected to statistical processing, and then average, minimum, and maximum values are stored in a statistical table. Techniques for detecting anomalous time points from data are described.
  • the dry vacuum pump used in the semiconductor manufacturing apparatus is a vacuum pump which does not use oil or liquid in a vacuum chamber.
  • the pump has a rotor in a casing and is rotated in the same cycle in opposite directions to each other by a pair of gears.
  • the casing of the rotor transfers and compresses the gas while rotating while maintaining a slight clearance without contact.
  • the semiconductor manufacturing apparatus used for the film-forming process utilizes a vacuum pump for exhausting the inside of the reaction tube. For this reason, the pump current during the film forming step may cause a spike-like current rise due to the reason. Therefore, it is possible to monitor pump stoppage by thresholding the maximum of the current value of the pump.
  • An object of the present invention is to provide a configuration that predicts an abnormal event by monitoring a change in the value of the current of the pump.
  • the main controller that controls the process control unit to execute the predetermined process a predetermined number of times to execute the sub-recipe, and an apparatus that is executing the process recipe
  • a device management controller that collects data and stores it in a storage unit;
  • the device management controller searches the storage unit in which the device data is stored, acquires the device data in the designated step among the steps constituting the sub recipe for the number of times of execution of the sub recipe, and acquires the number of times of execution
  • a first standard deviation is calculated from the acquired device data value and the number of times the sub recipe is executed, the calculated first standard deviation value is compared with a threshold, and an alarm is generated when the threshold is exceeded. Be done.
  • FIG. 1 and FIG. 2 a substrate processing apparatus (hereinafter simply referred to as an apparatus) 1 in which the present invention is implemented will be described.
  • the substrate processing apparatus 1 is provided with a housing 2, and an opening (front maintenance port) 4 provided in the lower part of the front wall 3 of the housing 2 for maintenance is opened.
  • the opening 4 is a front maintenance
  • the door 5 opens and closes.
  • a pod loading / unloading port 6 is opened on the front wall 3 of the housing 2 so as to connect the inside and outside of the housing 2, and the pod loading / unloading port 6 is opened and closed by the front shutter 7.
  • a load port 8 is installed on the front side, and the load port 8 is configured to align the placed pod 9.
  • the pod 9 is a closed type substrate transfer container, which is carried onto the load port 8 by an in-process transfer device (not shown) and carried out of the load port 8.
  • a rotatable pod shelf 11 is installed at an upper portion in a substantially central portion in the front-rear direction in the housing 2, and the rotatable pod shelf 11 is configured to store a plurality of pods 9. .
  • the rotatable pod shelf 11 comprises a column 12 standing vertically and intermittently rotating, and a plurality of shelf plates 13 radially supported at the upper, middle, and lower positions on the column 12, The shelf board 13 is configured to be stored in a state where a plurality of the pods 9 are placed.
  • a pod opener 14 is provided below the rotatable pod shelf 11, a pod opener 14 is provided below the rotatable pod shelf 11, a pod opener 14 is provided below the rotatable pod shelf 11, a pod opener 14 is provided below the rotatable pod shelf 11, a pod opener 14 is provided below the rotatable pod shelf 11, a pod opener 14 is provided below the rotatable pod shelf 11, a pod opener 14 is provided below the rotatable pod shelf 11, a pod opener 14 is provided below the rot
  • a pod transfer mechanism 15 is installed between the load port 8 and the rotatable pod shelf 11 and the pod opener 14.
  • the pod transfer mechanism 15 can move up and down in the horizontal direction by holding the pod 9 and moving it up and down.
  • the pod 9 is configured to be transported between the load port 8, the rotatable pod shelf 11 and the pod opener 14.
  • a sub housing 16 is provided across the rear end.
  • a pair of wafer loading and unloading ports 19 for loading and unloading wafers (hereinafter also referred to as a substrate) 18 into and from the sub-casing 16 on the front wall 17 of the sub-casing 16 are vertically arranged in two stages.
  • the pod openers 14 are provided for the upper and lower wafer loading / unloading ports 19 respectively.
  • the pod opener 14 includes a mounting table 21 on which the pod 9 is mounted, and an opening / closing mechanism 22 for opening and closing a lid of the pod 9.
  • the pod opener 14 is configured to open and close the wafer entrance of the pod 9 by opening and closing the lid of the pod 9 placed on the mounting table 21 by the opening and closing mechanism 22.
  • the sub case 16 constitutes a transfer chamber 23 which is airtight from the space (pod transfer space) in which the pod transfer mechanism 15 and the rotatable pod shelf 11 are disposed.
  • a wafer transfer mechanism (substrate transfer mechanism) 24 is installed in the front area of the transfer chamber 23, and the substrate transfer mechanism 24 has a required number (five in the figure) of the substrates 18 to be mounted.
  • a wafer mounting plate 25 is provided. The wafer mounting plate 25 can be linearly moved in the horizontal direction, can be rotated in the horizontal direction, and can be moved up and down.
  • the substrate transfer mechanism 24 is configured to load and unload the substrate 18 from the boat (substrate holder) 26.
  • a standby unit 27 for accommodating and holding the boat 26 is configured, and a vertical processing furnace 28 is provided above the standby unit 27.
  • the processing furnace 28 has a processing chamber (reaction chamber) 29 formed therein, and the lower end of the processing chamber 29 is a furnace port, and the furnace port is opened and closed by a furnace port shutter 31. ing.
  • a boat elevator 32 as an elevating mechanism for raising and lowering the boat 26 is installed between the right end of the housing 2 and the right end of the standby portion 27 of the sub housing 16.
  • a seal cap 34 as a lid is horizontally attached to an arm 33 connected to a lifting platform of the boat elevator 32.
  • the lid 34 vertically supports the boat 26 and the boat 26 is disposed in a processing chamber 29.
  • the furnace opening can be airtightly closed in the state of being inserted into the chamber.
  • the boat 26 is configured such that a plurality of (for example, about 50 to 125) substrates 18 are aligned at the center and held horizontally in a multistage manner.
  • a clean unit 35 is disposed at a position facing the boat elevator 32.
  • the clean unit 35 includes a supply fan and a dustproof filter to supply clean air 36 which is a clean atmosphere or inert gas. There is. Between the substrate transfer mechanism 24 and the clean unit 35, a notch alignment device (not shown) as a substrate alignment device for aligning the circumferential position of the substrate 18 is installed.
  • the clean air 36 blown out of the clean unit 35 is circulated by the notch aligning device (not shown), the substrate transfer mechanism 24 and the boat 26, and then sucked by a duct (not shown) and exhausted to the outside of the housing 2. Or, the cleaning unit 35 blows the gas into the transfer chamber 23.
  • the pod loading / unloading port 6 is opened by the front shutter 7.
  • the pods 9 on the load port 8 are carried into the interior of the housing 2 by the pod carrier 15 through the pod loading / unloading port 6 and placed on the designated shelf 13 of the rotatable pod shelf 11.
  • the pods 9 are temporarily stored in the rotary pod shelf 11 and then transported from the shelf board 13 to any one of the pod openers 14 by the pod transport device 15 and transferred onto the mounting table 21 or a load port. 8 are directly transferred to the mounting table 21.
  • the wafer loading / unloading port 19 is closed by the opening / closing mechanism 22, and the transfer chamber 23 is filled with clean air 36 flowing. Since the transfer chamber 23 is filled with nitrogen gas as the clean air 36, the oxygen concentration in the transfer chamber 23 is lower than the oxygen concentration in the housing 2.
  • the opening side end face of the pod 9 mounted on the mounting table 21 is pressed against the opening edge of the wafer loading / unloading port 19 in the front wall 17 of the sub housing 16 and the lid is removed by the opening / closing mechanism 22 , The wafer entrance is opened.
  • the substrate 18 is taken out of the pod 9 by the substrate transfer mechanism 24, transferred to a notch alignment device (not shown), and the substrate alignment is performed by the notch alignment device. After that, the substrate transfer mechanism 24 carries the substrate 18 into the standby unit 27 at the rear of the transfer chamber 23 and loads it into the boat 26 (charging).
  • the substrate transfer mechanism 24 which has delivered the substrate 18 to the boat 26 returns to the pod 9 and loads the next substrate 18 into the boat 26.
  • the substrate transfer mechanism 24 in one (upper or lower) pod opener 14 the other (lower or upper) pod opener 14 is separated from the rotatable pod shelf 11.
  • the pod 9 is transported by the pod transport device 15 and transferred, and the opening operation of the pod 9 by the other pod opener 14 is simultaneously advanced.
  • the furnace port of the processing furnace 28 closed by the furnace port shutter 31 is opened by the furnace port shutter 31. Subsequently, the boat 26 is lifted by the boat elevator 32 and loaded into the processing chamber 29 (loading).
  • a purge step is performed in which the processing chamber 29 is replaced with an inert gas at this timing (after loading).
  • the process chamber 29 is evacuated to a desired pressure (degree of vacuum) by a gas exhaust mechanism (not shown) such as a vacuum pump. Further, the heater driving unit (not shown) heats the processing chamber 29 to a predetermined temperature so as to obtain a desired temperature distribution. Further, a processing gas controlled to a predetermined flow rate is supplied by a gas supply mechanism (not shown), and the processing gas contacts the surface of the substrate 18 in the process of flowing through the processing chamber 29. The predetermined process is carried out. Furthermore, the processing gas after reaction is exhausted from the processing chamber 29 by the gas exhaust mechanism.
  • an inert gas is supplied from an inert gas supply source (not shown) by the gas supply mechanism, and the processing chamber 29 is replaced with the inert gas. Is returned to normal pressure (after purge step). Then, the boat 26 is lowered by the boat elevator 32 through the seal cap 34.
  • the substrate 18 and the pod 9 are dispensed to the outside of the housing 2 in the reverse procedure to the above description. Untreated substrates 18 are further loaded into the boat 26, and the processing of the substrates 18 is repeated.
  • the control system 200 includes a main controller 201, a transfer system controller 211 as a transfer control unit, a process system controller 212 as a process control unit, and an apparatus management controller 215 as a data monitoring unit. Is equipped.
  • the device management controller 215 functions as a data collection controller, collects device data inside and outside the device 1, and monitors the soundness of the device data DD in the device 1.
  • the control system 200 is housed in the device 1.
  • the apparatus data DD refers to data related to substrate processing such as processing temperature, processing pressure, flow rate of processing gas when the apparatus 1 processes the substrate 18 (hereinafter also referred to as control parameter), and quality of manufactured product substrate Data on the film thickness (for example, the film thickness formed and the accumulated value of the film thickness) and data on components of the apparatus 1 (quartz reaction tube, heater, valve, MFC, etc.) (for example, set value, actual value) are data generated by operating the respective components when the substrate processing apparatus 1 processes the substrate 18.
  • the data collected during recipe execution may be referred to as process data.
  • the apparatus data DD also includes process data such as raw waveform data as specific interval (for example, 1 second) data from the start of the recipe to the end, and statistical data of each step in the recipe.
  • the statistic data includes maximum value, minimum value, average value and the like.
  • event data for example, data indicating a maintenance history
  • various device events when a recipe is not executed for example, at idle time when a substrate is not loaded into the device
  • the main controller 201 is electrically connected to the transport system controller 211 and the process system controller 212 by the LAN line LAN 1 such as 100BASE-T, for example, so that transmission and reception of each device data DD, downloading and uploading of each file, etc. It is possible configuration.
  • the operation unit 201 is provided with a port as a mounting unit into which a recording medium (for example, a USB key or the like) as an external storage device is inserted and removed.
  • a recording medium for example, a USB key or the like
  • an OS corresponding to this port is installed.
  • an external host computer 300 and a management apparatus 310 are connected to the operation unit 201 via the communication network LAN 2 such as 100BASE-T, for example. Therefore, even when the substrate processing apparatus 1 is installed in a clean room, the host computer 300 and the management apparatus 310 can be installed in an office or the like outside the clean room.
  • the device management controller 215 is connected to the operation unit 201 via a LAN line, and is configured to collect device data DD from the operation unit 201, quantify the operation state of the device, and display the quantified condition on the screen.
  • the device management controller 215 will be described in detail later.
  • the transfer system controller 211 is mainly connected to a substrate transfer system 211A composed of the rotary pod shelf 11, the boat elevator 32, the pod transfer device 15, the substrate transfer mechanism 24, the boat 26 and a rotation mechanism (not shown). ing.
  • the transfer system controller 211 is configured to control transfer operations of the rotary pod shelf 11, the boat elevator 32, the pod transfer device 15, the substrate transfer mechanism 24, the boat 26, and the rotation mechanism (not shown). .
  • the transfer system controller 211 is configured to control the transfer operations of the boat elevator 32, the pod transfer device 15, and the substrate transfer mechanism 24 via the motion controller 211a.
  • the process controller 212 includes a temperature controller 212a, a pressure controller 212b, a gas flow controller 212c, and a sequencer 212d.
  • the temperature controller 212a, the pressure controller 212b, the gas flow rate controller 212c, and the sequencer 212d constitute a sub controller and are electrically connected to the process controller 212, so that transmission and reception of each device data DD, downloading of each file, Uploading is possible.
  • the process controller 212 and the sub controller are illustrated separately, they may be integrated.
  • the temperature controller 212a is connected to a heating mechanism 212A mainly composed of a heater, a temperature sensor, and the like.
  • the temperature controller 212 a is configured to adjust the temperature in the processing furnace 28 by controlling the temperature of the heater of the processing furnace 28.
  • the temperature controller 212a is configured to perform switching (on / off) control of the thyristor and to control the power supplied to the heater wire.
  • a gas exhaust mechanism 212 B mainly composed of a pressure sensor, an APC valve as a pressure valve, and a vacuum pump.
  • the pressure controller 212 b switches the opening degree of the APC valve and switching of the vacuum pump (on / off) so that the pressure in the processing chamber 29 becomes a desired pressure at a desired timing based on the pressure value detected by the pressure sensor. Is configured to control.
  • the gas flow rate controller 212 c is configured by an MFC.
  • the sequencer 212 d is configured to control supply and stop of the gas from the processing gas supply pipe and the purge gas supply pipe by opening and closing the valve 212 D. Further, the process system controller 212 is configured to control the MFC 212 c and the valve 212 D such that the flow rate of the gas supplied into the processing chamber 29 becomes a desired flow rate at a desired timing.
  • the main controller 201, the transport controller 211, the process controller 212, and the device management controller 215 can be realized using a normal computer system without using a dedicated system. For example, by installing the program in a general-purpose computer from a recording medium (such as a USB key) storing a program for executing the above-described process, each controller that executes a predetermined process can be configured.
  • a recording medium such as a USB key
  • supply may be via a communication line, communication network, communication system, and the like.
  • the program may be posted on a bulletin board of a communication network, and the program may be provided superimposed on a carrier wave via the network. Then, a predetermined process can be executed by starting the program provided as described above and executing the program in the same manner as other application programs under the control of the OS.
  • the main controller 201 includes an operation display unit 227 including a main control unit 220, a hard disk 222 as a main control storage unit, a display unit for displaying various information, and an input unit for receiving various instructions from the operator. It is comprised so that the transmission / reception module 228 as a main control communication part which communicates inside and outside may be included.
  • the main control unit 220 includes a CPU (central processing unit) 224 as a processing unit and a memory (RAM, ROM, etc.) 226 as a temporary storage unit, and is configured as a computer having a clock function (not shown). ing.
  • the hard disk 222 includes recipe files such as a recipe in which substrate processing conditions and processing procedures are defined, a control program file for executing each recipe file, a parameter file in which parameters for executing the recipe are defined, Further, in addition to the error processing program file and the parameter file for error processing, various screen files including an input screen for inputting process parameters, various icon files, and the like (all not shown) are stored.
  • an input for inputting operation instructions to the substrate transfer system 211A and the substrate processing system (the heating mechanism 212A, the gas exhaust mechanism 212B and the gas supply system 212C) shown in FIG. It is also possible to provide each operation button as a part.
  • the operation display unit 227 is configured to display an operation screen for operating the device 1.
  • the operation display unit 227 displays information based on the device data DD generated in the substrate processing apparatus 100 via the operation screen on the operation screen.
  • the operation screen of the operation display unit 227 is, for example, a touch panel using liquid crystal.
  • the operation display unit 227 receives input data (input instruction) of the worker from the operation screen, and transmits the input data to the main controller 201.
  • the operation display unit 227 executes a recipe developed in the memory (RAM) 226 or the like, or an arbitrary substrate processing recipe (hereinafter, also referred to as a process recipe) among a plurality of recipes stored in the main control storage unit 222. It receives an instruction (control instruction) to be sent, and transmits it to the main control unit 220.
  • various screen files and data tables stored are expanded by executing various programs and the like, and the device operating status is read by reading the device data DD. Are displayed on the operation display unit 227.
  • a switching hub or the like is connected to the main control communication unit 228, and the main controller 201 transmits data via the network to the external computer 300 and other controllers (211, 212, 215) in the apparatus 1, and the like. Transmission and reception.
  • the main controller 201 transmits apparatus data DD such as the state of the apparatus 1 to an external host computer 300, for example, a host computer, via a network (not shown).
  • apparatus data DD such as the state of the apparatus 1
  • an external host computer 300 for example, a host computer
  • the substrate processing operation of the apparatus 1 is controlled by the control system 200 based on each recipe file, each parameter file, etc. stored in the main control storage unit 222.
  • a substrate processing method having a predetermined processing step to be performed using the apparatus 1 according to the present embodiment will be described.
  • a substrate processing process here, a film forming process
  • a substrate processing recipe corresponding to the substrate processing to be performed is developed in a memory such as a RAM in the process system controller 212, for example.
  • an operation instruction is given from the main controller 201 to the process controller 212 and the transport controller 211 as necessary.
  • the substrate processing process performed in this manner includes at least a loading process, a film forming process, and a unloading process.
  • the main controller 201 issues a drive instruction of the substrate transfer mechanism 24 to the transfer system controller 211. Then, in accordance with an instruction from the transfer system controller 211, the substrate transfer mechanism 24 starts transfer processing of the substrate 18 from the pod 9 on the transfer stage 21 as the mounting table to the boat 26. This transfer process is performed until the planned loading (wafer charging) of all the substrates 18 into the boat 26 is completed.
  • Loading process When a predetermined number of substrates 18 are loaded into the boat 26, the boat 26 is lifted by the boat elevator 32 operating according to the instruction from the transfer system controller 211, and is loaded into the processing chamber 29 formed in the processing furnace 28. (Boat loading).
  • the seal cap 34 of the boat elevator 32 airtightly closes the lower end of the manifold of the processing furnace 28.
  • the inside of the processing chamber 29 is evacuated to a predetermined deposition pressure (degree of vacuum) by an evacuation apparatus such as a vacuum pump while following an instruction from the pressure control unit 212 b. Further, the inside of the processing chamber 29 is heated by the heater so as to be a predetermined temperature while following the instruction from the temperature control unit 212a. Subsequently, while following the instruction from the transfer system controller 211, the rotation of the boat 26 and the substrate 18 by the rotation mechanism is started.
  • a predetermined gas (processing gas) is supplied to the plurality of substrates 18 held in the boat 26 in a state of being maintained at a predetermined pressure and a predetermined temperature, and a predetermined process (for example, film formation) is performed on the substrates 18. Processing is done. The temperature may be lowered from the processing temperature (predetermined temperature) before the next unloading step. (Exporting process)
  • the film forming process for the substrate 18 mounted on the boat 26 is completed, the rotation of the boat 26 and the substrate 18 by the rotation mechanism is stopped while following the instruction from the transfer system controller 211, and the seal cap 34 is Is lowered to open the lower end of the manifold, and the boat 26 holding the processed substrate 18 is unloaded out of the processing furnace 28 (boat unloading).
  • the boat 26 holding the processed substrate 18 is extremely effectively cooled by the clean air 36 blown out from the clean unit 35. Then, for example, when the substrate 18 is cooled to 150 ° C. or lower, the processed substrate 18 is dismounted (wafer discharge) from the boat 26 and transferred to the pod 9, and then a new unprocessed substrate 18 is transferred to the boat 26. Is done.
  • the device management controller 215 communicates with the screen display unit 215a, the screen display control unit 215b, the device state monitoring unit 215e, the abnormality analysis support unit 215f, and the main controller control unit 201.
  • a communication unit 215g that transmits and receives device data DD of the substrate processing apparatus 1 and a storage unit 215h that stores various data are provided.
  • the screen display unit 215 a is configured to display the function of the device management controller 215. Further, instead of the screen display unit 215a, display may be performed using the operation display unit 227 of the main controller control unit 201, or may be replaced by an operation terminal or the like.
  • the screen display control unit 215b processes the collected device data DD into data for screen display by executing the screen display program to create and update the screen display data, and the screen display unit 215a or the operation display unit It controls to make it display on 227. In the present embodiment, not the screen display unit 215a but the operation display unit 227 is displayed.
  • the device state monitoring unit 215e has a device state monitoring program in a memory (for example, the storage unit 215h), and executes a device state monitoring function. As shown in FIG. 6, the device state monitoring unit 215e includes a diagnosis condition setting unit 311, an accumulation control unit 313, a search unit 314, and a diagnosis unit 315.
  • the pump current abnormality monitoring program in the present embodiment which is one of the device state monitoring programs, executed by the device state monitoring control unit 215e will be described later.
  • the diagnostic condition definition unit 311 relates to, for example, the device data DD to be monitored or diagnosed specified by the input (input of operation command, etc.) from the screen display unit 215a or the operation display unit 227, and the device data DD.
  • Abnormality diagnosis rules such as upper limit designated value (UCL) and lower limit designated value are set as monitoring content or diagnostic condition definition data.
  • the storage unit 313 performs control to store any device data DD supplied from the operation unit 201 via the communication unit 215g in the storage unit 215h.
  • the accumulation unit 313 also performs control to accumulate primary statistic data generated by the diagnosis unit 315 in the storage unit 215 h.
  • the storage unit 313 also holds the maximum value of the device data DD on the memory cleared at the start of the step, the minimum value of the device data DD, and the integrated value of the device data DD, and the maximum value each time the device data DD is received. , Minimum value, update integrated value.
  • An average value obtained by dividing the calculated maximum value / minimum value / integrated value of the primary statistic data by the elapsed time in response to the event of step termination stores the statistical data of the storage unit 215 h via the storage unit 313 It is stored in the area.
  • the search unit 314 searches the various device data DD stored in the storage unit 215 h for the device data DD to be diagnosed based on an instruction from the diagnosis unit 315, and performs control to supply the device data DD to the diagnosis unit 315.
  • the search unit 314 also searches primary statistic data of the device data DD to be diagnosed based on an instruction from the diagnosis unit 315, and performs control to supply the data to the diagnosis unit 315.
  • the diagnosis unit 315 performs abnormality determination, generation of a diagnosis result, and the like.
  • the diagnosis unit 315 starts diagnosis when notified of the diagnosis start timing from the event monitor included in the communication unit 215g.
  • the event monitor included in the communication unit 215g notifies, for example, the diagnosis start timing in response to the reception of the end event of the process recipe.
  • the diagnosis unit 315 instructs the search unit 314 to search the primary statistic data specified by the diagnostic condition definition data, thereby searching the statistical data storage area of the storage unit 215 h, and performs statistical data
  • a plurality of desired primary statistic data is acquired from the storage area by the acquisition unit.
  • the calculation unit of the diagnosis unit 315 calculates the value of the standard deviation S (hereinafter also referred to as a first standard deviation) of the plurality of acquired primary statistic data (maximum values) as secondary statistic data.
  • the comparison unit of the diagnosis unit 315 compares the abnormality diagnosis rule designated by the diagnosis condition definition data with the calculated secondary statistic data (first standard deviation).
  • the abnormality diagnosis rule can be, for example, an upper limit value (UCL) of the standard deviation S of the maximum value of the device data DD.
  • the diagnosis unit 315 determines that the device data DD is abnormal as a result of comparison, for example, the diagnosis unit 315 generates a diagnosis result that displays the fact that an abnormality is detected on the operation display unit 227 and creates the abnormality analysis data 315D. And stored so as to be referable from the abnormality analysis support unit 215f.
  • the abnormality analysis data 315D can be stored, for example, in the storage unit 215h.
  • the accumulation unit 313 based on the device data DD set by the diagnosis condition definition unit 311, the accumulation unit 313 generates primary statistics data (for example, the temporal waveform of the temperature of the processing chamber (reaction chamber) 29, processing time, maximum value, minimum value). Value, average value, etc. are generated, and the diagnosis unit 315 calculates secondary statistic data (first standard deviation) from the primary statistic data, and uses the calculated secondary statistic data. Then, monitoring / diagnosis of the device data DD of the substrate processing apparatus 1 is performed.
  • primary statistics data for example, the temporal waveform of the temperature of the processing chamber (reaction chamber) 29, processing time, maximum value, minimum value.
  • Value, average value, etc. are generated
  • the diagnosis unit 315 calculates secondary statistic data (first standard deviation) from the primary statistic data, and uses the calculated secondary statistic data. Then, monitoring / diagnosis of the device data DD of the substrate processing apparatus 1 is performed.
  • the diagnosis unit 315 diagnoses the device data DD or the statistic data using a predetermined abnormality diagnosis rule. In addition, when it is diagnosed as an abnormality, for example, it is configured to display that the abnormality is detected on the operation display unit 227.
  • the apparatus state monitoring control unit 215e is configured to store start / end information of start / end of various recipes including the process recipe and start / end of steps constituting the recipe in the storage unit 215h as production history information for each batch process. ing.
  • the apparatus state monitoring unit 215e in the present embodiment is further configured to store, in the storage unit 215h, event data including maintenance information while the process recipe is not executed. According to this configuration, since the association between the statistic of the device data DD and the maintenance work can be displayed on the operation display unit 227 or the like, an event (for example, event data related to an event such as maintenance) can not be displayed. Can efficiently identify the causes of fluctuation of process data.
  • abnormality analysis support unit 215f executes a data analysis program, and when a fault event (for example, a film thickness fault of a substrate which is a product) occurs, fault analysis data for maintenance personnel to analyze the cause of the fault event. Is displayed on the operation display unit 227. This contributes to shortening of analysis time and reduction of analysis error due to variation in maintenance staff's skill.
  • a fault event for example, a film thickness fault of a substrate which is a product
  • the device management controller 215 is connected to the main controller control unit 201 via the LAN line, collects the device data DD from the main controller control unit 201, processes the stored device data DD, and converts it into a graph to display the operation display unit. It is possible to display at 227.
  • the apparatus management controller 215 also has an apparatus state monitoring function, and is configured to display the operation state of the apparatus on the operation display unit 227 using the apparatus data DD collected from inside and outside the substrate processing apparatus 1. .
  • the hardware configuration of the device management controller 215 is the same as that of the main controller control unit 201 described above. Further, the device management controller 215 can be realized by using a normal computer system, not by a dedicated system as the main controller control unit 201. Further, as with the main controller control unit 201, means for supplying various programs are arbitrary.
  • the storage unit 215 h stores all device data DD from the operation unit 201 while the process recipe is being executed, and stores device data DD such as event data even while the process recipe is not being executed. Act as a database of Also, various programs executed by the device management controller 215 are stored in the storage unit 215 h, and, for example, the device status monitoring program, data analysis program, etc. are executed at the same time as the device management controller 215 is activated. Incidentally, a pump current abnormality monitoring program and primary statistic data in an embodiment described later are also stored in the storage unit 215 h. The monitoring content or diagnostic condition definition data used for the program may also be stored in the storage unit 215 h.
  • FIG. 7 is a diagram conceptually showing the relationship between the current value of the vacuum pump and the sub recipe.
  • the vacuum pump is provided in the gas exhaust mechanism 212B.
  • the current value Ip of the vacuum pump can be measured, for example, by attaching an alternating current sensor, for example, to a power supply cable or power supply line that supplies power to the vacuum pump.
  • the current value of the vacuum pump is, for example, the consumption current or drive current of the vacuum pump.
  • the sub-recipe shown in FIG. 7 is executed at a specific step in the process recipe.
  • the steps in the film forming process of the process recipe are shown in FIG. 7.
  • Purge step (step B), step of supplying reaction gas to processing chamber 29 (step C), and second step of purging reaction gas from processing chamber 29 (step D) It is possible.
  • this step AD is taken as one cycle, and the desired film is formed on the wafer 18 by executing this one cycle a plurality of times.
  • FIG. 7 exemplarily shows the case where the film forming process has four cycles.
  • FIG. 7 shows the change of the current value Ip of the vacuum pump in relation to the film forming process of 4 cycles, and the current value Ip of the vacuum pump has the second and third spiked current rise (Isp). And the state occurring in step A of the fourth cycle.
  • the upper limit (UCL) as a threshold for failure determination of a vacuum pump is set as shown by a dotted line, a large load (step A of the first cycle) is generated even at one time regardless of the frequency of spiked current increase. If it takes only), it will be judged as abnormal.
  • the spike-like current rise (Isp) is an abnormal phenomenon of the vacuum pump and is called foreign matter biting abnormality.
  • the foreign matter biting error occurs when the by-product accumulates between the rotor of the vacuum pump and the casing of the vacuum pump, and a load is applied due to the biting.
  • the occurrence of the foreign matter biting abnormality appears as a spike-like current rise (Isp) at the current value Ip of the vacuum pump.
  • FIG. 8 is a view for explaining statistical data of device data in the device state monitoring unit according to the embodiment.
  • the device state monitoring unit 215 e executes the device state monitoring program to accumulate the device data DD from the start to the end of the process recipe at a specific interval, and as the statistic data (primary statistic data), step At the end of the process, the statistics of the section (for example, the maximum value of the device data DD, the minimum value of the device data DD, and the average value of the device data DD) are calculated and stored in the storage unit 215h.
  • the process recipe comprises step 1, step 2, step 3, step 4 and step 5.
  • Step 3 is a specific step of executing the sub recipe, and is configured to include n times of one cycle with the sub recipe including four steps of step A, step B, step C and step D as one cycle.
  • FIG. 8 describes two sub recipes of the first sub recipe and the n sub recipe, and the second to n-1 sub recipes are described It is omitted.
  • Step 1 is, for example, a transfer step
  • step 2 is, for example, a loading step
  • step 3 is, for example, a film forming step
  • step 4 is, for example, an unloading step
  • step 5 is, for example, a recovery step.
  • Steps A, B, C and D of the sub recipe are steps of supplying the source gas to the processing chamber 29 (Step A) as described in FIG. 7, and purging the source gas from the processing chamber 29
  • the first purge step (step B), the step of supplying the reaction gas to the processing chamber 29 (step C), and the second purge step of purging the reaction gas from the processing chamber 29 (step D) can be used.
  • the current value Ip of the vacuum pump changes from the start to the end of the process recipe as exemplarily shown in FIG.
  • the apparatus status monitoring unit 215e uses the primary statistics data of the current value Ip of the vacuum pump in each step of step 1, step 2, step A to step D, step 4, and step 5 from the start to the end of the process recipe.
  • Step execution time (sec), maximum value, minimum value and average value are calculated and accumulated in the statistical data storage area.
  • the statistical data storage area can be set, for example, in the storage unit 215 h.
  • Step 3 of the process recipe and the sub recipe (first to n times) Steps A-D will be present.
  • Primary statistics data maximum value / minimum value / average value
  • primary recipe statistics data of sub recipe monitoring of pump current
  • Maximum value of step 3 maximum value during execution period of sub recipe.
  • Minimum value in step 3 minimum value during execution period of sub recipe.
  • Average value of step 3 (sum of (average of sub recipe ⁇ step time)) / step time.
  • FIG. 9 is a diagram for explaining the flow of the pump current abnormality monitoring program according to the embodiment.
  • FIG. 10 is a formula for calculating the standard deviation used in the pump current abnormality monitoring program according to the embodiment.
  • the pump current abnormality monitoring program is stored in the storage unit 215h, is executed by the device state monitoring control unit 215e, and operates according to the flow shown in FIG.
  • the pump current abnormality monitoring program is started by execution of step S0.
  • step S1 When the monitoring task of the pump current abnormality monitoring program receives the process recipe end event in step S1, the process transitions to step S2.
  • step S2 it is checked whether the monitoring target designation step is set in the diagnostic condition setting unit 311 as monitoring content or diagnostic condition definition data.
  • the designation step may be, for example, any one of step A, step B, step C, and step D of the sub recipe.
  • the designation step may be one step in the step 1-5 of the process recipe, or the designation step may be a plurality of steps.
  • step S1 If the designation step is not registered (N), the process proceeds to step S1. If the designation step is registered (Y), the process proceeds to step S3. In this embodiment, the case where the designation step is registered as step A will be described. It is assumed that the device data DD to be monitored is the maximum value of the pump current Ip.
  • step S3 the search unit 314 searches the statistical data storage area in which the primary statistic data is accumulated. Then, the diagnosis unit 315 causes the acquisition unit to acquire the maximum values (ymax1, ymax2,..., Ymaxn) of the pump current in step A from the statistical data storage area.
  • step S4 the calculation unit of the diagnosis unit 315 uses the maximum values (ymax1, ymax2, ..., ymaxn) of the n pump currents acquired in step S3 as a sample, and calculates the standard deviation S as secondary statistic data. Calculate (first standard deviation).
  • the value of the standard deviation S is a characteristic amount that is the variation of n repetitions, and can be used as an index that takes into consideration the biting load frequency of the vacuum pump.
  • the standard deviation S can be determined by the equation shown in FIG.
  • step S5 the comparison unit of the diagnosis unit 315 compares the value of the standard deviation S calculated in step S4 with the upper limit value (UCL). If the value of the standard deviation S does not exceed the upper limit value (UCL) (N), the process proceeds to step S1. On the other hand, if the value of the standard deviation S exceeds the upper limit value (UCL) (Y), the process proceeds to step S6, the apparatus state monitoring unit 215e generates an alarm, and notifies the main controller 201 of an abnormality.
  • UCL upper limit value
  • the calculation unit of the diagnosis unit 315 calculates the value of the standard deviation S (second standard deviation) based on the equation shown in FIG.
  • the diagnosis unit 315 is the same as the standard deviation S calculated in step S4 at the time of the process recipe execution this time based on the number of times of execution of the process recipe (corresponding to the number of data in FIG. 10) preset to calculate the threshold.
  • the acquisition unit acquires the standard deviation S (corresponding to the value of each data in FIG. 10) for the number of times of execution calculated until the last process recipe execution. Then, the calculation unit of the diagnosis unit 315 calculates the standard deviation S (second standard deviation) by applying the acquired data to the equation of FIG.
  • a threshold is calculated by multiplying the standard deviation S (second standard deviation) by a predetermined number. As described above, by using the standard deviation S (first standard deviation) of the device data of the designated step, it is possible to monitor the variation of the device data up to the current process recipe execution.
  • the main controller 201 shifts to maintenance work such as replacement of vacuum pump parts and execution of a maintenance recipe of the apparatus 1, and so forth. Suppress the execution of the process recipe that was supposed to be. That is, the apparatus state monitoring unit 215e is configured to perform control so as not to cause the main controller 201 to execute the process recipe to be executed next. Then, maintenance of the device 1 is performed. After the end of maintenance, the main controller 201 is configured to start the execution of the process recipe which has been suppressed and which has been scheduled to be executed next.
  • the abnormality analysis support unit 215 f is configured to analyze the cause of the abnormal event generated in the device 1. If the first standard deviation S exceeds the threshold, the comparison unit of the diagnosis unit 315 notifies the abnormality analysis support unit 215 f of the occurrence of an abnormality.
  • the abnormality analysis support unit 215f refers to the abnormality analysis data and displays a failure information screen for analyzing the cause of the abnormal event on the operation screen of the operation display unit 227. It is configured to The abnormality analysis support unit 215 f also displays the standard deviation S of the maximum value of the pump current at the designated step (step A) in the process recipe executed for the process recipe in which the abnormality has occurred and the process recipe in which the abnormality has occurred. It is configured to be displayed on the operation screen of the unit 227.
  • the upper limit value (UCL) for example, a value (three sigma) three times the standard deviation S (second standard deviation) obtained by execution of the last 20 process recipes can be adopted. The number of executions and the constant can be set arbitrarily.
  • the calculated upper limit value UCL is stored as monitoring content in the storage unit 215 h and used for trend monitoring by SPC.
  • the monitoring content (diagnosis condition definition data) for monitoring the pump current abnormality is as follows.
  • Device data the value of pump current Ip.
  • -Specified step information of the monitoring target One of the steps (step A, step B, step C, step D) of the sub recipe.
  • Statistics Standard deviation S of maximum value of each sub recipe.
  • Anomaly diagnosis rule The upper limit value (UCL) is set to 3 times (3 sigma) the second standard deviation S.
  • step S2 whether or not to calculate the standard deviation S is determined based on the presence or absence of the designation step as shown in step S2, it is not limited thereto.
  • the standard deviation S the first value of the statistic (for example, the maximum value of the pump current Ip) of each step (step A, step B, step C, step D) of the sub recipe. It is also possible to calculate the standard deviation) and store the calculated first standard deviation S of each step in the storage unit 215 h.
  • the statistics of each step (step A, step B, step C, step D) of the sub recipe for example, the standard deviation S for the minimum value of the pump current Ip and the standard deviation S for the average value of the pump current Ip
  • the standard deviation S of each of the calculated and calculated steps may be stored in the storage unit 215 h.
  • FIG. 11 is an explanatory diagram of the case where the maximum value of the pump current according to the comparative example is monitored.
  • FIG. 12 is an explanatory view in the case of monitoring the standard deviation of the maximum value of the pump current according to the embodiment.
  • the threshold values in FIG. 11 and FIG. 12 are both displayed as straight lines (constants), there is no need to perform accurate display in describing the present invention.
  • the threshold in FIG. 12 is calculated from the number of times the process recipe executed in the past is executed under the same processing conditions as the process recipe in which the abnormality occurred and the first standard deviation S calculated for each process recipe execution. 2 Standard deviation S is calculated by multiplying the constant (3 in this case).
  • step A (designation step) of the sub recipe is executed a plurality of times. It is FIG. 11 managed by the maximum value of step A in a sub recipe.
  • the vertical axis represents the value of the pump current Ip
  • the horizontal axis represents the number of batches, which is the number of times of execution of the process recipe.
  • the straight line indicating the threshold is, for example, the pump current determined by the pump specifications. It is the upper limit value.
  • the maximum value alone can detect that the pump has stopped, it has been difficult to catch a sign of the pump stopping (in FIG. 11, the occurrence of pump down).
  • FIG. 12 managed using the standard deviation S of the maximum value of the pump current Ip of each step A of a sub recipe.
  • the vertical axis represents the standard deviation S of the pump current Ip
  • the horizontal axis represents the number of batches which is the number of times of execution of the process recipe.
  • the straight line indicating the threshold is three times the second standard deviation S (3 Sigma).
  • the spike-like current rise is more often generated, the variation of the maximum value of the pump current Ip repetitively becomes larger as the frequency of occurrence increases.
  • the variation in the maximum value of the pump current Ip is large at two points between the batch number 20-25 and the batch number 30-32. Therefore, detection taking account of the frequency of occurrence becomes possible, and it becomes possible to catch a sign of pump stop before the pump stop (in FIG. 12, the occurrence of pump down).
  • the present invention is not limited to the above-mentioned embodiment and an example, and it can not be overemphasized that it can change variously .
  • the present invention is not limited to the semiconductor manufacturing apparatus and the semiconductor device manufacturing method, and, for example, a liquid crystal display (LCD).
  • LCD liquid crystal display
  • the present invention is also applicable to a manufacturing apparatus for processing a glass substrate such as an apparatus and a manufacturing method thereof.
  • the film formation process includes, for example, chemical vapor deposition (CVD), physical vapor deposition (PVD), a process of forming an oxide film and a nitride film, and a process of forming a film containing metal.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • a process of forming an oxide film and a nitride film and a process of forming a film containing metal.
  • the present invention can be applied to a processing apparatus that processes an object by causing a computer to execute a process recipe including a specific step of executing a sub-recipe.
  • Substrate processing apparatus 18 Substrate 200: Control system 201: Main controller 215: Device management controller 215e: Device status monitoring unit 215f: Abnormality analysis support unit 215h: Storage unit DD: Device data UCL: Upper limit related to device data DD Specified value of, threshold

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • General Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

ポンプの電流の値の変化を監視することにより、異常事象を予知する構成を提供することにある。サブレシピを実行する特定ステップを含むプロセスレシピを実行させる際に、サブレシピを処理制御部に所定回数実行させて、基板に所定の処理を施すよう制御する主コントローラと、プロセスレシピ実行中の装置データを収集し、記憶部に蓄積する装置管理コントローラと、を含む構成であって、装置管理コントローラは、装置データが蓄積された記憶部を検索し、サブレシピを構成する各ステップのうち指定ステップにおける装置データを、サブレシピの実行回数分取得し、前記実行回数分取得された前記装置データの第1標準偏差を算出し、算出した第1標準偏差を閾値と比較し、閾値を超えるとアラームを発生させるよう構成される。

Description

基板処理装置、基板処理装置の異常監視方法、及びプログラム
 本発明は、基板を処理する基板処理装置、例えば、基板に成膜処理する半導体製造装置の稼働状態の把握に関するものである。
 半導体製造分野では、装置の稼働率や生産効率の向上を図るため、装置の情報を蓄積し、その情報を使い装置の異常の解析や装置の状態監視を行っている。例えば、監視対象物から報告される実測値情報をもとにSPC(Statistical Process Control:統計的手法)等が用いられ、装置に異常が発生していないか管理されている。特許文献1には、SPCを利用したデータの健全性を管理する手法が記載されている。
 また、特許文献2には、プロセスレシピによる各種モニタデータがメモリに格納されて統計処理後、統計テーブルに平均・最小・最大値が格納されることが記載され、バッチごとの成膜時温度のデータから異常時点を検出する技術が記載されている。
 半導体製造装置で使用されているドライ真空ポンプは、油や液体を真空室内に使用しない真空ポンプである。このポンプはケーシングの中にロータが入っており、一対のギアによってお互いに反対方向に同じ周期で回転している。ロータのケーシングは本来接触することなくわずかな隙間を保って回転しながら気体を移送圧縮する。副生成物がロータとケーシングの間に溜まると噛み込みにより負荷がかかるようになる。この負荷は、ポンプの電流において、スパイク状の電流の上昇を発生させ、やがて、ポンプの停止につながることが知られている。
 成膜処理に用いられる半導体製造装置は、反応管内の排気のために、真空ポンプを利用している。このため、成膜ステップ中におけるポンプの電流は、理由により、スパイク状の電流上昇が発生することがある。したがって、ポンプの電流値の最大を閾値管理することで、ポンプ停止の監視が可能である。
 しかしながら、ポンプ電流の最大値だけで監視すると、スパイク状の電流上昇の頻度に関わらず、1回でも大きな負荷がかかっただけで、異常と判断してしまうという課題がある。また、実際のポンプ電流の値を見ながら閾値の調整が必要であり、最適値をみつけるのが難しいという課題がある。
特許第5855841号公報 特開2012-186213号公報
 本発明の目的は、ポンプの電流の値の変化を監視することにより、異常事象を予知する構成を提供することにある。
 本発明の一態様によれば、
  サブレシピを実行する特定ステップを含むプロセスレシピを実行させる際に、サブレシピを処理制御部に所定回数実行させて、基板に所定の処理を施すよう制御する主コントローラと、プロセスレシピ実行中の装置データを収集し、記憶部に蓄積する装置管理コントローラと、を含む構成であって、
  装置管理コントローラは、装置データが蓄積された記憶部を検索し、サブレシピを構成する各ステップのうち指定ステップにおける装置データを、サブレシピの実行回数分取得し、前記実行回数分取得された前記装置データの取得した前記装置データの値と前記サブレシピを実行した回数から第1標準偏差を算出し、算出した第1標準偏差値を閾値と比較し、閾値を超えるとアラームを発生させるよう構成される。
 本発明によれば、ポンプの電流の変化を監視することにより、ポンプが停止する予兆を捉えることができる。
本発明の一実施形態に好適に用いられる基板処理装置を示す斜視図である。 本発明の一実施形態に好適に用いられる基板処理装置を示す側断面図である。 本発明の一実施形態に好適に用いられる制御システムの機能構成を示す図である。 本発明の一実施形態に好適に用いられる主コントローラの機能構成を示す図である。 本発明の一実施形態に好適に用いられる装置管理コントローラの機能構成を説明する図である。 本発明の一実施形態に好適に用いられる装置状態監視部の機能構成を説明する図である。 真空ポンプの電流値とサブレシピとの関係を概念的に示す図である。 実施例に係る装置状態監視部における装置データの1次統計データを説明する図である。 実施例に係るポンプ電流異常監視プログラムのフローを説明する図である。 実施例に係るポンプ電流異常監視プログラムで利用される標準偏差の算出式である。 比較例に係るポンプ電流の最大値を監視した場合の説明図である。 実施例に係るポンプ電流の最大値の標準偏差を監視した場合の説明図である。
 (1)基板処理装置の構成
  以下、実施形態について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。なお、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。
 (基板処理装置の概要)
  以下、図面を参照しつつ本発明の一実施形態について説明する。先ず、図1、図2に於いて、本発明が実施される基板処理装置(以後、単に装置ともいう)1について説明する。
 基板処理装置1は筐体2を備え、該筐体2の正面壁3の下部にはメンテナンス可能な様に設けられた開口部(正面メンテナンス口)4が開設され、該開口部4は正面メンテナンス扉5によって開閉される。
 筐体2の正面壁3にはポッド搬入搬出口6が筐体2の内外を連通する様に開設されており、ポッド搬入搬出口6はフロントシャッタ7によって開閉され、ポッド搬入搬出口6の正面前方側にはロードポート8が設置されており、該ロードポート8は載置されたポッド9を位置合せする様に構成されている。該ポッド9は密閉式の基板搬送容器であり、図示しない工程内搬送装置によってロードポート8上に搬入され、又、該ロードポート8上から搬出される様になっている。
 筐体2内の前後方向の略中央部に於ける上部には、回転式ポッド棚11が設置されており、該回転式ポッド棚11は複数個のポッド9を格納する様に構成されている。回転式ポッド棚11は垂直に立設されて間欠回転される支柱12と、該支柱12に上中下段の各位置に於いて放射状に支持された複数段の棚板13とを備えており、該棚板13は前記ポッド9を複数個宛載置した状態で格納する様に構成されている。回転式ポッド棚11の下方には、ポッドオープナ14が設けられ、該ポッドオープナ14はポッド9を載置し、又該ポッド9の蓋を開閉可能な構成を有している。
 ロードポート8と回転式ポッド棚11、ポッドオープナ14との間には、ポッド搬送機構15が設置されており、該ポッド搬送機構15は、ポッド9を保持して昇降可能、水平方向に進退可能となっており、ロードポート8、回転式ポッド棚11、ポッドオープナ14との間でポッド9を搬送する様に構成されている。
 筐体2内の前後方向の略中央部に於ける下部には、サブ筐体16が後端に亘って設けられている。該サブ筐体16の正面壁17にはウェーハ(以後、基板ともいう)18をサブ筐体16内に対して搬入搬出する為のウェーハ搬入搬出口19が一対、垂直方向に上下2段に並べられて開設されており、上下段のウェーハ搬入搬出口19に対してポッドオープナ14がそれぞれ設けられている。
 ポッドオープナ14はポッド9を載置する載置台21と、ポッド9の蓋を開閉する開閉機構22とを備えている。ポッドオープナ14は載置台21に載置されたポッド9の蓋を開閉機構22によって開閉することにより、ポッド9のウェーハ出入口を開閉する様に構成されている。
 サブ筐体16はポッド搬送機構15や回転式ポッド棚11が配設されている空間(ポッド搬送空間)から気密となっている移載室23を構成している。該移載室23の前側領域にはウェーハ移載機構(基板移載機構)24が設置されており、該基板移載機構24は、基板18を載置する所要枚数(図示では5枚)のウェーハ載置プレート25を具備し、該ウェーハ載置プレート25は水平方向に直動可能、水平方向に回転可能、又昇降可能となっている。基板移載機構24はボート(基板保持体)26に対して基板18を装填及び払出しする様に構成されている。
 移載室23の後側領域には、ボート26を収容して待機させる待機部27が構成され、該待機部27の上方には縦型の処理炉28が設けられている。該処理炉28は内部に処理室(反応室)29を形成し、該処理室29の下端部は炉口部となっており、該炉口部は炉口シャッタ31により開閉される様になっている。
 筐体2の右側端部とサブ筐体16の待機部27の右側端部との間にはボート26を昇降させる為の昇降機構としてのボートエレベータ32が設置されている。該ボートエレベータ32の昇降台に連結されたアーム33には蓋体としてのシールキャップ34が水平に取付けられており、該蓋体34はボート26を垂直に支持し、該ボート26を処理室29に装入した状態で炉口部を気密に閉塞可能となっている。
 ボート26は、複数枚(例えば、50枚~125枚程度)の基板18をその中心に揃えて水平姿勢で多段に保持する様に構成されている。
 ボートエレベータ32側と対向した位置にはクリーンユニット35が配設され、該クリーンユニット35は、清浄化した雰囲気若しくは不活性ガスであるクリーンエア36を供給する様供給ファン及び防塵フィルタで構成されている。基板移載機構24とクリーンユニット35との間には、基板18の円周方向の位置を整合させる基板整合装置としてのノッチ合せ装置(図示せず)が設置されている。
 クリーンユニット35から吹出されたクリーンエア36は、ノッチ合せ装置(図示せず)及び基板移載機構24、ボート26に流通された後に、図示しないダクトにより吸込まれて、筐体2の外部に排気がなされるか、若しくはクリーンユニット35によって移載室23内に吹出されるように構成されている。
 次に、基板処理装置1の作動について説明する。
  ポッド9がロードポート8に供給されると、ポッド搬入搬出口6がフロントシャッタ7によって開放される。ロードポート8上のポッド9はポッド搬送装置15によって筐体2の内部へポッド搬入搬出口6を通して搬入され、回転式ポッド棚11の指定された棚板13へ載置される。ポッド9は回転式ポッド棚11で一時的に保管された後、ポッド搬送装置15により棚板13からいずれか一方のポッドオープナ14に搬送されて載置台21に移載されるか、若しくはロードポート8から直接載置台21に移載される。
 この際、ウェーハ搬入搬出口19は開閉機構22によって閉じられ、移載室23はクリーンエア36が流通され、充満している。移載室23にはクリーンエア36として窒素ガスが充満されるため、移載室23の酸素濃度は、筐体2の内部の酸素濃度よりも低い。
 載置台21に載置されたポッド9はその開口側端面がサブ筐体16の正面壁17に於けるウェーハ搬入搬出口19の開口縁辺部に押付けられると共に、蓋が開閉機構22によって取外され、ウェーハ出入口が開放される。
 ポッド9が前記ポッドオープナ14によって開放されると、基板18はポッド9から基板移載機構24によって取出され、ノッチ合せ装置(図示せず)に移送され、該ノッチ合せ装置にて基板18を整合した後、基板移載機構24は基板18を移載室23の後方にある待機部27へ搬入し、ボート26に装填(チャージング)する。
 ボート26に基板18を受渡した基板移載機構24はポッド9に戻り、次の基板18をボート26に装填する。一方(上端又は下段)のポッドオープナ14に於ける基板移載機構24により基板18のボート26への装填作業中に、他方(下段又は上段)のポッドオープナ14には回転式ポッド棚11から別のポッド9がポッド搬送装置15によって搬送されて移載され、他方のポッドオープナ14によるポッド9の開放作業が同時進行される。
 予め指定された枚数の基板18がボート26に装填されると炉口シャッタ31によって閉じられていた処理炉28の炉口部が炉口シャッタ31によって開放される。続いて、ボート26はボートエレベータ32によって上昇され、処理室29に搬入(ローディング)される。
 ローディング後は、シールキャップ34によって炉口部が気密に閉塞される。なお、本実施の形態において、このタイミングで(ローディング後)、処理室29が不活性ガスに置換されるパージ工程(プリパージ工程)を有する。
 処理室29が所望の圧力(真空度)となる様に、真空ポンプなどのガス排気機構(図示せず)によって真空排気される。又、処理室29が所望の温度分布となる様にヒータ駆動部(図示せず)によって所定温度迄加熱される。又、ガス供給機構(図示せず)により、所定の流量に制御された処理ガスが供給され、処理ガスが処理室29を流通する過程で、基板18の表面と接触し、基板18の表面上に所定の処理が実施される。更に、反応後の処理ガスは、ガス排気機構により処理室29から排気される。
 予め設定された処理時間が経過すると、ガス供給機構により不活性ガス供給源(図示せず)から不活性ガスが供給され、処理室29が不活性ガスに置換されると共に、処理室29の圧力が常圧に復帰される(アフターパージ工程)。そして、ボートエレベータ32によりシールキャップ34を介してボート26が降下される。
 処理後の基板18の搬出については、上記説明と逆の手順で、基板18及びポッド9は前記筐体2の外部へ払出される。未処理の基板18が、更に前記ボート26に装填され、基板18の処理が繰返される。
 (制御システム200の機能構成)
  次に、図3を参照して、操作部としての主コントローラ201を中心とした制御システム200の機能構成について説明する。図3に示すように、制御システム200は、主コントローラ201と、搬送制御部としての搬送系コントローラ211と、処理制御部としてのプロセス系コントローラ212と、データ監視部としての装置管理コントローラ215と、を備えている。装置管理コントローラ215は、データ収集コントローラとして機能して、装置1内外の装置データを収集し、装置1内の装置データDDの健全性を監視する。本実施形態では、制御システム200は、装置1内に収容されている。
 ここで、装置データDDとは、装置1が基板18を処理するときの処理温度、処理圧力、処理ガスの流量など基板処理に関するデータ(以後、制御パラメータともいう)や、製造した製品基板の品質(例えば、成膜した膜厚、及び該膜厚の累積値など)に関するデータや、装置1の構成部品(石英反応管、ヒータ、バルブ、MFC等)に関するデータ(例えば、設定値、実測値)など、基板処理装置1が基板18を処理する際に各構成部品を動作させることにより発生するデータである。
 尚、レシピ実行中に収集されるデータは、プロセスデータと称することがある。例えば、レシピ開始から終了までの特定間隔(例えば、1秒など)データとしての生波形データやレシピ内の各ステップの統計量データ等のプロセスデータも装置データDDに含む。尚、統計量データには、最大値、最小値、平均値等が含まれる。また、レシピが実行されていない時(例えば、装置に基板が投入されていないアイドル時)の色々な装置イベントを示すイベントデータ(例えば、メンテナンス履歴を示すデータ)も装置データDDに含まれる。
 主コントローラ201は、例えば100BASE-T等のLAN回線LAN1により、搬送系コントローラ211及びプロセス系コントローラ212と電気的に接続されているため、各装置データDDの送受信や各ファイルのダウンロード及びアップロード等が可能な構成となっている。
 操作部201には、外部記憶装置としての記録媒体(例えばUSBキー等)が挿脱される装着部としてのポートが設けられている。操作部201には、このポートに対応するOSがインストールされている。また、操作部201には、外部の上位コンピュータ300や管理装置310が、例えば100BASE-T等の通信ネットワークLAN2を介して接続される。このため、基板処理装置1がクリーンルーム内に設置されている場合であっても、上位コンピュータ300や管理装置310がクリーンルーム外の事務所等に配置されることが可能である。
 装置管理コントローラ215は、操作部201とLAN回線で接続され、操作部201から装置データDDを収集し、装置の稼働状態を定量化して画面に表示するように構成されている。尚、装置管理コントローラ215については、後で詳しく説明する。
 搬送系コントローラ211は、主に回転式ポッド棚11、ボートエレベータ32、ポッド搬送装置15、基板移載機構24、ボート26及び回転機構(図示せず)により構成される基板搬送系211Aに接続されている。搬送系コントローラ211は、回転式ポッド棚11,ボートエレベータ32、ポッド搬送装置15、基板移載機構24、ボート26及び回転機構(図示せず)の搬送動作をそれぞれ制御するように構成されている。特に、搬送系コントローラ211は、モーションコントローラ211aを介してボートエレベータ32、ポッド搬送装置15、基板移載機構24の搬送動作をそれぞれ制御するように構成されている。
 プロセス系コントローラ212は、温度コントローラ212a、圧力コントローラ212b、ガス流量コントローラ212c、シーケンサ212dを備えている。これら温度コントローラ212a、圧力コントローラ212b、ガス流量コントローラ212c、シーケンサ212dは、サブコントローラを構成し、プロセス系コントローラ212と電気的に接続されているため、各装置データDDの送受信や各ファイルのダウンロード及びアップロード等が可能となっている。なお、プロセス系コントローラ212とサブコントローラは、別体で図示されているが、一体構成でも構わない。
 温度コントローラ212aには、主にヒータ及び温度センサ等により構成される加熱機構212Aが接続されている。温度コントローラ212aは、処理炉28のヒータの温度を制御することで処理炉28内の温度を調節するように構成されている。なお、温度コントローラ212aは、サイリスタのスイッチング(オンオフ)制御を行い、ヒータ素線に供給する電力を制御するように構成されている。
 圧力コントローラ212bには、主に圧力センサ、圧力バルブとしてのAPCバルブ及び真空ポンプにより構成されるガス排気機構212Bが接続されている。圧力コントローラ212bは、圧力センサにより検知された圧力値に基づいて、処理室29内の圧力が所望のタイミングにて所望の圧力となるように、APCバルブの開度及び真空ポンプのスイッチング(オンオフ)を制御するように構成されている。
 ガス流量コントローラ212cは、MFCにより構成される。シーケンサ212dは、処理ガス供給管やパージガス供給管からのガスの供給や停止を、バルブ212Dを開閉させることにより制御するように構成されている。また、プロセス系コントローラ212は、処理室29内に供給するガスの流量が所望のタイミングにて所望の流量となるように、MFC212c、バルブ212Dを制御するように構成されている。
 なお、本実施形態にかかる主コントローラ201、搬送系コントローラ211、プロセス系コントローラ212、装置管理コントローラ215は、専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。例えば、汎用コンピュータに、上述の処理を実行するためのプログラムを格納した記録媒体(USBキーなど)から当該プログラムをインストールすることにより、所定の処理を実行する各コントローラを構成することができる。
 そして、これらのプログラムを供給するための手段は任意である。上述のように所定の記録媒体を介して供給できる他、例えば、通信回線、通信ネットワーク、通信システムなどを介して供給してもよい。この場合、例えば、通信ネットワークの掲示板に当該プログラムを掲示し、このプログラムをネットワークを介して搬送波に重畳して提供してもよい。そして、このように提供されたプログラムを起動し、OSの制御下で、他のアプリケーションプログラムと同様に実行することにより、所定の処理を実行することができる。
 (主コントローラ201の構成)
  次に、主コントローラ201の構成を、図4を参照しながら説明する。
  主コントローラ201は、主コント制御部220、主コント記憶部としてのハードディスク222、各種情報を表示する表示部と、操作者からの各種指示を受け付ける入力部と、を含む操作表示部227、装置1内外と通信する主コント通信部としての送受信モジュール228とを含むように構成される。主コント制御部220は、処理部としてのCPU(中央処理装置)224や、一時記憶部としてのメモリ(RAM、ROM等)226を含み、時計機能(図示せず)を備えたコンピュータとして構成されている。
 ハードディスク222には、基板の処理条件及び処理手順が定義されたレシピ等の各レシピファイル、これら各レシピファイルを実行させるための制御プログラムファイル、レシピを実行するためのパラメータが定義されたパラメータファイル、また、エラー処理プログラムファイル及びエラー処理のパラメータファイルの他、プロセスパラメータを入力する入力画面を含む各種画面ファイル、各種アイコンファイル等(いずれも図示せず)が格納されている。
 また、操作表示部227の操作画面には、図3に示す、基板搬送系211Aや基板処理系(加熱機構212A、ガス排気機構212B及びガス供給系212C)への動作指示を入力したりする入力部としての各操作ボタンを設けることも可能である。
 操作表示部227には、装置1を操作するための操作画面が表示されるように構成されている。操作表示部227は、操作画面を介して基板処理装置100内で生成される装置データDDに基づいた情報を操作画面に表示する。操作表示部227の操作画面は、例えば液晶を用いたタッチパネルである。操作表示部227は、操作画面からの作業者の入力データ(入力指示)を受け付け、入力データを主コントローラ201に送信する。また、操作表示部227は、メモリ(RAM)226等に展開されたレシピ、若しくは主コント記憶部222に格納された複数のレシピのうち任意の基板処理レシピ(以後、プロセスレシピともいう)を実行させる指示(制御指示)を受け付け、主コント制御部220に送信する。
 なお、本実施形態においては、装置管理コントローラ215が起動時に、各種プログラム等を実行することにより、格納された各画面ファイル及びデータテーブルを展開し、装置データDDを読み込むことにより、装置の稼働状態が示される各画面が、操作表示部227に表示されるよう構成される。
 主コント通信部228には、スイッチングハブ等が接続されており、主コントローラ201が、ネットワークを介して、外部のコンピュータ300や装置1内の他のコントローラ(211、212、215)等と、データの送信及び受信を行うように構成されている。
 また、主コントローラ201は、図示しないネットワークを介して外部の上位コンピュータ300、例えば、ホストコンピュータに対して装置1の状態など装置データDDを送信する。なお、装置1の基板処理動作は、主コント記憶部222に記憶されている各レシピファイル、各パラメータファイル等に基づいて、制御システム200により制御される。
 (基板処理方法)
  次に、本実施形態に係る装置1を用いて実施する、所定の処理工程を有する基板処理方法について説明する。ここで、所定の処理工程は、半導体デバイスの製造工程の一工程である基板処理工程(ここでは成膜工程)を実施する場合を例に挙げる。
  基板処理工程の実施にあたって、実施すべき基板処理に対応する基板処理レシピ(プロセスレシピ)が、例えば、プロセス系コントローラ212内のRAM等のメモリに展開される。そして、必要に応じて、主コントローラ201からプロセス系コントローラ212や搬送系コントローラ211へ動作指示が与えられる。このようにして実施される基板処理工程は、搬入工程と、成膜工程と、搬出工程と、を少なくとも有する。
 (移載工程)
  主コントローラ201からは、搬送系コントローラ211に対して、基板移載機構24の駆動指示が発せられる。そして、搬送系コントローラ211からの指示に従いつつ、基板移載機構24は載置台としての授受ステージ21上のポッド9からボート26への基板18の移載処理を開始する。この移載処理は、予定された全ての基板18のボート26への装填(ウエハチャージ)が完了するまで行われる。
  (搬入工程)
  所定枚数の基板18がボート26に装填されると、ボート26は、搬送系コントローラ211からの指示に従って動作するボートエレベータ32によって上昇されて、処理炉28内に形成される処理室29に装入(ボートロード)される。ボート26が完全に装入されると、ボートエレベータ32のシールキャップ34は、処理炉28のマニホールドの下端を気密に閉塞する。
  (成膜工程)
  次に、処理室29内は、圧力制御部212bからの指示に従いつつ、所定の成膜圧力(真空度)となるように、真空ポンプなどの真空排気装置によって真空排気される。また処理室29内は、温度制御部212aからの指示に従いつつ、所定の温度となるようにヒータによって加熱される。続いて、搬送系コントローラ211からの指示に従いつつ、回転機構によるボート26及び基板18の回転を開始する。そして、所定の圧力、所定の温度に維持された状態で、ボート26に保持された複数枚の基板18に所定のガス(処理ガス)を供給して、基板18に所定の処理(例えば成膜処理)がなされる。尚、次の搬出工程前に、処理温度(所定の温度)から温度を降下させる場合がある。
  (搬出工程)
  ボート26に載置された基板18に対する成膜工程が完了すると、搬送系コントローラ211からの指示に従いつつ、その後、回転機構によるボート26及び基板18の回転を停止させ、ボートエレベータ32によりシールキャップ34を下降させてマニホールドの下端を開口させるとともに、処理済の基板18を保持したボート26を処理炉28の外部に搬出(ボートアンロード)する。
  (回収工程)
  そして、処理済の基板18を保持したボート26は、クリーンユニット35から吹出されるクリーンエア36によって極めて効果的に冷却される。そして、例えば150℃以下に冷却されると、ボート26から処理済の基板18を脱装(ウエハディスチャージ)してポッド9に移載した後に、新たな未処理基板18のボート26への移載が行われる。
 (装置管理コントローラ215の機能構成)
  次に、図5に示すように、装置管理コントローラ215は、画面表示部215a、画面表示制御部215b、装置状態監視部215e、異常解析支援部215f、主コントローラ制御部201との間で、当該基板処理装置1の装置データDDの送受信を行う通信部215g、各種データを記憶する記憶部215hを備える。
 (画面表示部215a)
  画面表示部215aは、装置管理コントローラ215の機能を表示するように構成されている。また、画面表示部215aの代わりに、主コントローラ制御部201の操作表示部227を用いて表示するよう構成してもよく、あるいは、操作端末等で代替してもよい。
 (画面表示制御部215b)
  画面表示制御部215bは、画面表示プログラムを実行することにより、収集された装置データDDを画面表示用のデータに加工して画面表示データを作成し更新して、画面表示部215aまたは操作表示部227に表示させるよう制御する。尚、本実施の形態では、画面表示部215aではなく、操作表示部227に表示させるよう構成されている。
 (装置状態監視部215e)
  装置状態監視部215eは、装置状態監視プログラムをメモリ(例えば記憶部215h)内に有し、装置状態監視機能を実行する。装置状態監視部215eは、図6に示すように、診断条件設定部311、蓄積制御部313、検索部314及び診断部315、を備える。尚、装置状態監視制御部215eで実行される、装置状態監視プログラムの一つである本実施形態におけるポンプ電流異常監視プログラムについては、後述する。
 診断条件定義部311は、例えば、画面表示部215aまたは操作表示部227からの入力(操作コマンドの入力等)等により指定された監視対象または診断対象の装置データDD、該装置データDDに関連する上限の指定値(UCL)及び下限の指定値等の異常診断ルール等が監視コンテンツないし診断条件定義データとして設定される。
 蓄積部313は、操作部201から通信部215gを介して供給されるあらゆる装置データDDを、記憶部215hへ蓄積する制御を行う。蓄積部313は、また、診断部315が生成する1次統計量データを、記憶部215hへ蓄積する制御を行う。蓄積部313は、また、ステップ開始時点にクリアしたメモリ上の装置データDDの最大値、装置データDDの最小値、装置データDDの積算値を保持し、装置データDDを受信するたびに最大値、最小値、積算値を更新する。ステップ終了のイベントに応答して、算出された1次統計量データの最大値/最小値/積算値を経過時間で除した平均値は、蓄積部313を介して、記憶部215hの統計データ格納領域へ格納される。
 検索部314は、記憶部215hに格納された種々の装置データDDの内、診断部315からの指示に基づき診断対象の装置データDDを検索し、診断部315へ供給する制御を行う。検索部314は、また、診断部315からの指示に基づき診断対象となる装置データDDの1次統計量データを検索し、診断部315へ供給する制御を行う。
 診断部315は、異常判定、診断結果の生成などを実施する。診断部315は、通信部215gに含まれるイベントモニタから診断開始タイミングが通知されることにより、診断を開始する。なお、通信部215gに含まれるイベントモニタは、例えば、プロセスレシピの終了イベントの受信に応答して、診断開始タイミングを通知する。
 診断部315は、異常判定を行う際、診断条件定義データにより指定された1次統計量データの検索を検索部314へ指示することにより、記憶部215hの統計データ格納領域を検索し、統計データ格納領域から所望の複数の1次統計量データを取得部により取得する。診断部315の算出部は、取得した複数の1次統計量データ(最大値)の標準偏差S(以後、第1標準偏差ともいう)の値を2次統計量データとして算出する。診断部315の比較部は、診断条件定義データにより指定された異常診断ルールと、算出された2次統計量データ(第1標準偏差)とを比較する。異常診断ルールは、例えば、装置データDDの最大値の標準偏差Sの上限値(UCL)とすることが出来る。
 診断部315は、比較の結果、装置データDDを異常と判断した場合、例えば、操作表示部227に異常を検知した旨を表示するような、診断結果を生成するとともに、異常解析データ315Dを作成し、異常解析支援部215fから参照可能に格納する。異常解析データ315Dは、例えば、記憶部215hに格納することが出来る。
 すなわち、蓄積部313は、診断条件定義部311で設定された装置データDDに基づき、1次統計量データ(例えば、処理室(反応室)29の温度の経時波形、処理時間、最大値、最小値、平均値等を含む)を生成し、診断部315はこの1次統計量データから、2次統計量データ(第1標準偏差)を算出し、この算出された2次統計量データを用いて基板処理装置1の装置データDDの監視・診断を行う。つまり、基板処理装置1から刻々と転送されてくる装置データDDの2次統計量データと異常診断ルールとを比較し、装置データDDの2次統計量データが予め定められた所定の範囲(異常診断ルール)から外れると装置データDDが異常であると判断する。さらに診断部315は、予め定められた異常診断ルールを用いて、装置データDD若しくは統計量データの診断を行なう。また、異常と診断した場合には、例えば、操作表示部227に異常を検知した旨を表示するように構成されている。
 装置状態監視制御部215eは、プロセスレシピを含む各種レシピの開始・終了の情報及びレシピを構成するステップの開始・終了を1バッチ処理毎に生産履歴情報として記憶部215hに格納するように構成されている。
 尚、本実施形態における装置状態監視部215eは、更に、プロセスレシピが実行されていない間のメンテナンス情報を含むイベントデータも記憶部215hに蓄積するように構成されている。この構成によると、装置データDDの統計量とメンテナンス作業との関連を操作表示部227等に表示することができるので、数値では表せない事象(例えば、メンテナンス等のイベントに関するイベントデータ)を表示することができ、プロセスデータの変動要因を効率よく確認できる。
 (異常解析支援部215f)
  異常解析支援部215fは、データ解析プログラムを実行し、異常事象(例えば、製造物である基板の膜厚異常)が発生したときに、保守員が異常事象の要因を解析するための異常解析データを、操作表示部227に表示するように構成されている。これにより、解析時間短縮及び保守員の技量のバラつきによる解析ミスの軽減に寄与している。
 このように、装置管理コントローラ215は、主コントローラ制御部201とLAN回線で接続され、主コントローラ制御部201から装置データDDを収集し、蓄積した装置データDDを加工しグラフ化して、操作表示部227に表示することが可能である。また、装置管理コントローラ215は、装置状態監視機能を有し、基板処理装置1内外から収集した装置データDDを利用して、装置の稼働状態を操作表示部227に表示するように構成されている。
 尚、装置管理コントローラ215のハードウエア構成は、上述の主コントローラ制御部201と同様な構成である。また、装置管理コントローラ215は、主コントローラ制御部201と同様に専用のシステムによらず、通常のコンピュータシステムを用いて実現可能である。また、主コントローラ制御部201と同様に、各種プログラムを供給するための手段は任意である。
 (記憶部215h)
  記憶部215hは、プロセスレシピが実行されている間、操作部201からあらゆる装置データDDが蓄積され、且つ、プロセスレシピが実行されていない間もイベントデータ等の装置データDDが蓄積され、装置1のデータベースとして機能する。また、装置管理コントローラ215で実行される各種プログラムが記憶部215hに格納されており、例えば、装置管理コントローラ215の起動と共に装置状態監視プログラムやデータ解析プログラム等が実行される。尚、後述する実施例におけるポンプ電流異常監視プログラムや1次統計量データも記憶部215hに格納されている。該プログラムに利用される監視コンテンツないし診断条件定義データも、記憶部215hに格納してもよい。
 以下、図面を参照しつつ本発明の実施例について説明する。
  図7は、真空ポンプの電流値とサブレシピとの関係を概念的に示す図である。真空ポンプはガス排気機構212Bに設けられている。真空ポンプの電流値Ipは、例えば、真空ポンプに電源を供給する電源ケーブルまたは電源配線に、例えば、交流電流センサを取り付けることにより、計測することが可能である。真空ポンプの電流値は、例えば、真空ポンプの消費電流ないし駆動電流である。
 図7に示されるサブレシピは、プロセスレシピ内のある特定ステップで実行される。例えば、本実施形態では、プロセスレシピの成膜工程におけるステップを図7に示しており、例えば、原料ガスを処理室29へ供給する工程(ステップA)、原料ガスを処理室29からパージする第1パージ工程(ステップB)、反応ガスを処理室29へ供給する工程(ステップC)及び反応ガスを処理室29からパージする第2パージ工程(ステップD)の様な、4つのステップにより構成することが可能である。また、成膜工程では、このステップA-Dを1サイクルとし、この1サイクルを複数回実行することにより、所望の膜をウェーハ18上に成膜する。なお、図7では、成膜工程が4サイクルの場合が例示的に示される。
 図7は、真空ポンプの電流値Ipの変化が4サイクルの成膜工程との関係で示されており、真空ポンプの電流値Ipは、スパイク状の電流上昇(Isp)が第2、第3及び第4サイクルのステップAにおいて発生している状態を示している。例えば、真空ポンプの故障判定の閾値としての上限値(UCL)を点線で示されるように設定した場合、スパイク状の電流上昇の頻度に関わらず、1回でも大きな負荷(第1サイクルのステップA)がかかっただけで、異常と判断してしまうという事になる。
 なお、スパイク状の電流上昇(Isp)は、真空ポンプの異常現象であり、異物噛み込み異常と呼ばれる。異物噛み込み異常は、前述の様に、副生成物が真空ポンプのロータと真空ポンプのケーシングの間に溜まると、噛み込みにより負荷がかかり、発生する。異物噛み込み異常の発生は、真空ポンプの電流値Ipにスパイク状の電流上昇(Isp)として現れる。
 図8は、実施例に係る装置状態監視部における装置データの統計量データを説明する図である。装置状態監視部215eは、装置状態監視プログラムを実行することにより、プロセスレシピの開始から終了までの装置データDDを特定間隔で蓄積し、また、統計量データ(1次統計量データ)として、ステップ終了時にその区間の統計量(例えば、装置データDDの最大値、装置データDDの最小値、装置データDDの平均値)を算出し、記憶部215hに蓄積する。
 プロセスレシピは、ステップ1、ステップ2、ステップ3、ステップ4、及びステップ5から構成される。ステップ3は、サブレシピを実行させる特定ステップであり、ステップA,ステップB、ステップCおよびステップDの4つのステップを含むサブレシピを1サイクルとして、この1サイクルをn回含む構成とされている。なお、図8には、図面の簡素化の為、1回目のサブレシピと、n回目のサブレシピの2つのサブレシピを記載しており、2回目からn-1回目のサブレシピの記載は省略されている。
 ステップ1は例えば移載工程であり、ステップ2は例えば搬入工程であり、ステップ3は例えば成膜工程である。また、ステップ4は例えば搬出工程であり、ステップ5は例えば回収工程である。サブレシピのステップA,ステップB、ステップCおよびステップDは、図7で説明されたような、原料ガスを処理室29へ供給する工程(ステップA)、原料ガスを処理室29からパージする第1パージ工程(ステップB)、反応ガスを処理室29へ供給する工程(ステップC)及び反応ガスを処理室29からパージする第2パージ工程(ステップD)とすることできる。
 真空ポンプの電流値Ipは、プロセスレシピの開始から終了までにおいて、図8に例示的に示されるような変化をするものとする。装置状態監視部215eは、プロセスレシピの開始から終了までにおいて、ステップ1、ステップ2、ステップA-ステップD、ステップ4、ステップ5の各ステップにおける真空ポンプの電流値Ipの1次統計量データとして、ステップの実行時間(sec)、最大値、最小値および平均値を算出し、統計データ格納領域へ蓄積する。統計データ格納領域は、例えば、記憶部215hに設定することが可能である。
 ここで、プロセスレシピのステップ2からサブレシピ(一回目)に遷移し、サブレシピのステップA-Dが実行されるとき、同時に、プロセスレシピのステップ3とサブレシピ(一回目からn回目)のステップA-Dが存在することになる。1次統計量データ(最大値/最小値/平均値)は、プロセスレシピのステップ(1、2、3、4、5)単位に蓄積すると、サブレシピの1次統計量データ(ポンプ電流の監視の場合は最大値)がわからない。その回避策として、サブレシピの実行中は、サブレシピの各ステップ(A-D)の1次統計量データのみ算出・蓄積する。1次統計量データの検索時おいて、統計データ格納領域の蓄積データを検索し、以下のように計算することにより、プロセスレシピのステップ3の統計量(最大値/最小値/平均値)も算出することが可能である。
 ・ステップ3の最大値=サブレシピの実行期間中の最大値。
  ・ステップ3の最小値=サブレシピの実行期間中の最小値。
  ・ステップ3の平均値=((サブレシピの平均×ステップ時間)の総和)/ステップ時間。
 図9は、実施例に係るポンプ電流異常監視プログラムのフローを説明する図である。図10は、実施例に係るポンプ電流異常監視プログラムで利用される標準偏差の算出式である。
 次に、図9を用いて、ポンプ電流異常監視プログラムの動作を説明する。ポンプ電流異常監視プログラムは、記憶部215hに格納されており、装置状態監視制御部215eによって実行され、図9に示されるフローに従って動作する。
 図9に示されるように、ポンプ電流異常監視プログラムは、ステップS0の実行によりスタートされる。
 ステップS1において、ポンプ電流異常監視プログラムの監視タスクがプロセスレシピの終了イベントを受信すると、ステップS2へ遷移する。
 ステップS2では、監視対象の指定ステップが監視コンテンツないし診断条件定義データとして診断条件設定部311に設定されているか否かを確認する。指定ステップは、例えば、サブレシピのステップA、ステップB、ステップC、ステップDの内のいずれか1のステップとすることが可能である。なお、指定ステップは、プロセスレシピのステップ1―5内の1つのステップとしても良いし、指定ステップは、複数のステップとしても良い。
 指定ステップが登録されていない場合(N)は、ステップS1へ遷移し、指定ステップが登録されている場合(Y)、ステップS3へ遷移する。なお、この実施例では、指定ステップがステップAをとして登録されている場合を説明する。監視対象の装置データDDは、ポンプ電流Ipの最大値であるものとする。
 ステップS3では、検索部314により、1次統計量データの蓄積された統計データ格納領域を検索する。そして、診断部315は、取得部により、n回のステップAにおけるポンプ電流の最大値(ymax1、ymax2、・・、ymaxn)を、統計データ格納領域から取得する。
 ステップS4では、診断部315の算出部は、ステップS3で取得したn個のポンプ電流の最大値(ymax1、ymax2、・・、ymaxn)をサンプルとして、2次統計量データとされる標準偏差S(第1標準偏差)を算出する。この標準偏差Sの値は、n回の繰返しのばらつきを特徴量としたものであり、真空ポンプの噛み込み負荷の頻度を加味した指標として利用することが可能である。標準偏差Sは、図10に示される式により求めることが出来る。
 ステップS5では、ステップS4で算出された標準偏差Sの値と上限値(UCL)とを診断部315の比較部により比較する。標準偏差Sの値が上限値(UCL)を超えていない場合(N)、ステップS1へ遷移する。一方、標準偏差Sの値が上限値(UCL)を超えている場合(Y)、ステップS6へ遷移し、装置状態監視部215eはアラームを発生させ、異常を主コントローラ201へ通知する。
 ここで、閾値としての上限値(UCL)の算出について説明する。診断部315の算出部は、図10に示す式に基づいて標準偏差S(第2標準偏差)の値を算出する。診断部315は、閾値を算出するために予め設定されるプロセスレシピの実行回数(図10のデータの数に該当)に基づき、今回のプロセスレシピ実行時にステップS4で算出された標準偏差Sと同様に前回のプロセスレシピ実行時までに算出された該実行回数分の標準偏差S(図10の各データの値に該当)を取得部により取得する。そして、診断部315の算出部は、取得したこれらのデータを図10の式に当てはめて標準偏差S(第2標準偏差)を算出する。該標準偏差S(第2標準偏差)に所定数をかけることで閾値が算出される。このように、指定ステップの装置データの標準偏差S(第1標準偏差)を用いることで、装置データの今回のプロセスレシピ実行までのバラツキを示す監視することができる。
 異常の通知が装置状態監視部215eから主コントローラ201へ通知されると、主コントローラ201は、真空ポンプの部品交換や装置1の保守レシピの実行等のメンテナンス作業へ遷移するため、次に実行予定とされていたプロセスレシピの実行を抑止する。すなわち、装置状態監視部215eは、次に実行予定のプロセスレシピを主コントローラ201に実行させないように制御するよう構成されている。そして、装置1のメンテナンスが行われる。メンテナンス終了後、主コントローラ201は、実行を抑止していた、次に実行予定とされていたプロセスレシピの実行を開始するように構成されている。
 異常解析支援部215fは、装置1に発生した異常事象の要因を解析するよう構成されている。診断部315の比較部は、第1標準偏差Sが閾値を超えていたら、前記異常解析支援部215fに、異常の発生を通知する。異常解析支援部215fは、異常(例えば、ポンプ電流異常)が発生したときに、異常解析データを参照し、異常事象の要因を解析するための障害情報画面を操作表示部227の操作画面に表示させるよう構成されている。異常解析支援部215fは、また、異常が発生したプロセスレシピ、及び異常が発生したプロセスレシピ迄に実行されたプロセスレシピにおける指定ステップ(ステップA)のポンプ電流の最大値の標準偏差Sを操作表示部227の操作画面に表示させるよう構成されている。
 上限値(UCL)は、例えば、過去20回のプロセスレシピの実行によって得られた標準偏差S(第2標準偏差)の3倍(3シグマ)の値を採用することが出来る。尚、適宜実行回数や定数を任意に設定可能である。算出された上限値UCLの値は、監視コンテンツとして記憶部215hへ格納し、SPCによる傾向監視に用いられる。
 この実施例では、ポンプ電流異常監視用の監視コンテンツ(診断条件定義データ)は、以下である。
・異常現象:ポンプ異物噛み込み異常。
・装置データ:ポンプ電流Ipの値。
・監視対象の指定ステップ情報:サブレシピの各ステップ(ステップA、ステップB、ステップC、ステップD)のうち一つのステップ。
・統計量:サブレシピそれぞれの最大値の標準偏差S。
・異常診断ルール:第2標準偏差Sの3倍(3シグマ)を上限値(UCL)の値とする。
 図9では、ステップS2に示されるように指定ステップの有無により、標準偏差Sの算出を行うか否かを決定したが、それに限定されない。例えば、指定ステップの有無とは無関係に、サブレシピの各ステップ(ステップA、ステップB、ステップC、ステップD)の統計量(例えば、ポンプ電流Ipの最大値)についての標準偏差S(第1標準偏差)を算出し、算出された各ステップの第1標準偏差Sを記憶部215hへ格納するように構成することも可能である。また、サブレシピの各ステップ(ステップA、ステップB、ステップC、ステップD)の統計量、例えば、ポンプ電流Ipの最小値についての標準偏差Sやポンプ電流Ipの平均値についての標準偏差Sを算出し、算出された各ステップのそれぞれの標準偏差Sを記憶部215hへ格納するように構成することも可能である。
 図11は、比較例に係るポンプ電流の最大値を監視した場合の説明図である。図12は、実施例に係るポンプ電流の最大値の標準偏差を監視した場合の説明図である。また、図11、図12における閾値は、いずれも直線(定数)で表示しているが、本発明を説明するにあたり正確な表示をする必要が無いためである。特に、図12の閾値は、異常の発生したプロセスレシピと同じ処理条件で過去に実行されたプロセスレシピを実行した回数と該プロセスレシピ実行毎に算出された第1標準偏差Sから算出された第2標準偏差Sに定数(この場合は3)を掛けた値で算出される。
 本実施形態において、サブレシピのステップA(指定ステップ)を複数回実行することになる。サブレシピ内のステップAの最大値で管理したものが図11である。なお、図11において、縦軸はポンプ電流Ipの値であり、横軸はプロセスレシピの実行回数であるバッチ回数であり、閾値を示す直線は、例えば、ポンプの仕様で決定されるポンプ電流の上限値である。この場合、サブレシピ内のステップの実行時間が短いため、ポンプ電流Ipの値の電流上昇がそのピークまで達する前に、次の処理(ステップB)に変化してしまうため、ポンプの電流Ipの最大値だけでは、ポンプが停止したことは検知できても、ポンプの停止(図11では、ポンプダウン発生)の予兆を捉えること困難だった。
 一方、サブレシピのステップAそれぞれのポンプ電流Ipの最大値の標準偏差Sを使用して管理したものが図12である。なお、図12において、縦軸はポンプ電流Ipの標準偏差Sであり、横軸はプロセスレシピの実行回数であるバッチ回数であり、閾値を示す直線は、第2標準偏差Sの3倍(3シグマ)である。この場合、スパイク状の電流上昇が多く発生すると、発生頻度が多いほど、繰り返しn回のポンプ電流Ipの最大値のバラツキが大きくなる。図12においては、バッチ回数20-25の間、及び、バッチ回数30-32の間の2カ所において、ポンプ電流Ipの最大値のバラツキが大きくなっている。従って、発生頻度を加味した検知が可能となり、ポンプの停止(図12では、ポンプダウン発生)の以前に、ポンプの停止の予兆を捉えることが可能になる。
 以上、本発明者によってなされた発明を実施例に基づき具体的に説明したが、本発明は、上記実施形態および実施例に限定されるものではなく、種々変更可能であることはいうまでもない。
 上述の実施形態および実施例では、半導体製造装置及び半導体装置の製造方法に関して説明されたが、本発明は半導体製造装置及び半導体装置の製造方法に限定されるものではなく、例えば、液晶表示(LCD)装置のようなガラス基板を処理する製造装置及びその製造方法にも適用可能である。
 また、成膜処理には、例えば、CVD(chemical vapor deposition)、PVD(Physical Vapor Deposition)、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理等を含む。
 また、上述の実施形態および実施例では、成膜処理を行う半導体製造装置について説明されたが、他の基板処理装置(露光装置、リソグラフィ装置、塗布装置、プラズマを利用したCVD装置など)にも適用できる。
 サブレシピを実行する特定ステップを含むプロセスレシピをコンピュータに実行させて、被処理体を処理する処理装置に適用できる。
1:基板処理装置
18:基板
200:制御システム
201:主コントローラ
215:装置管理コントローラ
215e:装置状態監視部
215f:異常解析支援部
215h:記憶部
DD:装置データ
UCL:装置データDDに関連する上限の指定値、閾値

Claims (14)

  1.  サブレシピを実行する特定ステップを含むプロセスレシピを実行させる際に、前記サブレシピを処理制御部に所定回数実行させて、基板に所定の処理を施すよう制御する主コントローラと、
     前記プロセスレシピの実行中の装置データを収集し、記憶部に蓄積する装置管理コントローラと、を含む基板処理装置であって、
     前記装置管理コントローラは、
      前記装置データが蓄積された前記記憶部を検索し、
      前記サブレシピを構成する各ステップのうち指定ステップにおける装置データを、前記サブレシピの実行回数分取得し、
      前記実行回数分取得された前記装置データの第1標準偏差を算出し、
      算出した前記第1標準偏差を閾値と比較し、前記閾値を超えるとアラームを発生させるよう構成される、基板処理装置。
  2.  前記閾値は、前記プロセスレシピと同じ処理条件で過去に実行されたプロセスレシピを実行した回数と該プロセスレシピ実行毎に算出された前記第1標準偏差から算出された第2標準偏差に定数を掛けた値である請求項1記載の基板処理装置。
  3.  前記装置管理コントローラは、前記サブレシピを構成する各ステップで個別に標準偏差を算出するよう構成されている、請求項1記載の基板処理装置。
  4.  前記装置管理コントローラは、前記装置データの統計量データを算出する算出部を有し、前記プロセスレシピ実行中に、前記特定ステップを含む各ステップの前記装置データの統計量データをそれぞれ前記記憶部に蓄積するように構成されている、請求項1記載の基板処理装置。
  5.  前記装置管理コントローラは、前記装置データの統計量データを算出する算出部を有し、前記サブレシピ実行中に、前記指定ステップの前記装置データの統計量データをそれぞれ前記記憶部に蓄積するように構成されている、請求項1記載の基板処理装置。
  6.  前記算出部は、取得した前記装置データのうち少なくとも一つの統計量データの標準偏差値を算出するよう構成されている、請求項4または請求項5記載の基板処理装置。
  7.  前記サブレシピは、少なくとも第1ステップ及び第2ステップを含み、
     前記主コントローラは、少なくとも前記第1ステップ及び前記第2ステップを複数回実行しつつ、前記装置データを前記装置管理コントローラに出力し、
     前記装置管理コントローラは、前記第1ステップ及び前記第2ステップにおける前記装置データをそれぞれ前記記憶部に蓄積するように構成されている、請求項1記載の基板処理装置。
  8.  前記第1ステップは原料ガスを処理室に供給するステップであり、
     前記第2ステップは反応ガスを前記処理室に供給するステップであり、
     前記サブレシピは、さらに、前記原料ガスをパージする第3ステップまたは前記反応ガスをパージする第4ステップを含むよう構成されている、請求項7記載の基板処理装置。
  9.  前記装置管理コントローラは、前記指定ステップを実行した回数分の前記装置データの統計量データを取得する取得部と、前記第1標準偏差を前記閾値と比較する比較部と、を更に有するよう構成されている、請求項1記載の基板処理装置。
  10.  更に、装置に発生した異常の解析を支援するよう構成されている異常解析支援部を有し、
     前記比較部は、前記第1標準偏差が前記閾値を超えていたら前記異常解析支援部に異常を通知し、
     前記異常解析支援部は、前記異常の要因を解析するための障害情報画面を操作画面に表示させるよう構成されている、請求項9記載の基板処理装置。
  11.  前記異常解析支援部は、異常が発生したプロセスレシピ、及び該異常が発生したプロセスレシピ迄に実行されたプロセスレシピにおける前記第1標準偏差を前記操作画面に表示させるよう構成されている、請求項10記載の基板処理装置。
  12.  前記装置管理コントローラは、前記アラームを発生させると共に次に実行予定のプロセスレシピを前記主コントローラに実行させないように制御するよう構成されている、請求項1記載の基板処理装置。
  13.  サブレシピを実行する特定ステップを含むプロセスレシピを実行する際に、前記サブレシピを処理制御部に実行させて、基板に所定の処理を施すよう制御する操作部と、前記プロセスレシピの実行中の装置データを収集し、記憶部に蓄積するデータ監視部と、を含む基板処理装置の異常監視方法であって、
     前記装置データが蓄積された前記記憶部を検索する工程と、
     前記サブレシピのうち指定ステップにおける前記装置データを、前記サブレシピの実行回数分取得する工程と、
     前記実行回数分取得された前記装置データの第1標準偏差を算出する工程と、
     算出した前記第1標準偏差を閾値と比較する工程と、
     前記閾値を超えるとアラームを発生させる工程と、を有する、
     基板処理装置の異常監視方法。
  14.  サブレシピを実行する特定ステップを含むプロセスレシピを実行させる際に、前記サブレシピを処理制御部に所定回数実行させて、基板に所定の処理を施すよう制御する主コントローラと、
     前記プロセスレシピの実行中の装置データを収集し、記憶部に蓄積する装置管理コントローラと、
    を含む基板処理装置を制御するためのコンピュータにおいて実行される基板処理装置のプログラムであって、
     前記装置データが蓄積された前記記憶部を検索する手順と、
     前記サブレシピを構成する各ステップのうち指定ステップにおける前記装置データを、前記サブレシピの実行回数分取得する手順と、
     前記実行回数分取得された前記装置データの第1標準偏差を算出する手順と、
     算出した前記第1標準偏差を閾値と比較し、前記閾値を超えるとアラームを発生させる手順と、
    をコンピュータに実行させるプログラム。
PCT/JP2017/031719 2017-09-04 2017-09-04 基板処理装置、基板処理装置の異常監視方法、及びプログラム WO2019043934A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207006145A KR102389689B1 (ko) 2017-09-04 2017-09-04 기판 처리 장치, 기판 처리 장치의 이상 감시 방법, 및 기록 매체에 저장된 프로그램
PCT/JP2017/031719 WO2019043934A1 (ja) 2017-09-04 2017-09-04 基板処理装置、基板処理装置の異常監視方法、及びプログラム
SG11202001932UA SG11202001932UA (en) 2017-09-04 2017-09-04 Substrate processing apparatus, method of monitoring abnormality of substrate processing apparatus, and program
JP2019538899A JP6833048B2 (ja) 2017-09-04 2017-09-04 基板処理装置、基板処理装置の異常監視方法、及びプログラム
KR1020227013031A KR102519802B1 (ko) 2017-09-04 2017-09-04 기판 처리 장치, 기판 처리 장치의 이상 감시 방법, 및 기록 매체에 저장된 프로그램
US16/807,601 US11782425B2 (en) 2017-09-04 2020-03-03 Substrate processing apparatus, method of monitoring abnormality of substrate processing apparatus, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/031719 WO2019043934A1 (ja) 2017-09-04 2017-09-04 基板処理装置、基板処理装置の異常監視方法、及びプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/807,601 Continuation US11782425B2 (en) 2017-09-04 2020-03-03 Substrate processing apparatus, method of monitoring abnormality of substrate processing apparatus, and recording medium

Publications (1)

Publication Number Publication Date
WO2019043934A1 true WO2019043934A1 (ja) 2019-03-07

Family

ID=65527238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/031719 WO2019043934A1 (ja) 2017-09-04 2017-09-04 基板処理装置、基板処理装置の異常監視方法、及びプログラム

Country Status (5)

Country Link
US (1) US11782425B2 (ja)
JP (1) JP6833048B2 (ja)
KR (2) KR102519802B1 (ja)
SG (1) SG11202001932UA (ja)
WO (1) WO2019043934A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631817A (zh) * 2019-03-27 2021-11-09 株式会社岛津制作所 泵监视装置、真空泵以及生成物堆积诊断用数据处理程序
WO2022004419A1 (ja) * 2020-07-02 2022-01-06 東京エレクトロン株式会社 情報処理方法および情報処理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7304692B2 (ja) * 2018-12-13 2023-07-07 東京エレクトロン株式会社 基板処理方法および基板処理装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283056A (ja) * 1999-03-26 2000-10-10 Hitachi Ltd 真空ポンプ異常監視システム
JP2008033856A (ja) * 2006-08-01 2008-02-14 Tokyo Electron Ltd サーバ装置およびプログラム
JP2016134585A (ja) * 2015-01-22 2016-07-25 ルネサスエレクトロニクス株式会社 半導体製造装置、半導体製造装置の診断システムおよび半導体装置の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855841B2 (ja) 1978-06-19 1983-12-12 チエルヤビンスキ− ポリテクニチエスキ− インスチテユ−ト イメニ レニンスコゴ コムソモラ 金属棒圧延方法とそのための圧延ロ−ル
US5719796A (en) * 1995-12-04 1998-02-17 Advanced Micro Devices, Inc. System for monitoring and analyzing manufacturing processes using statistical simulation with single step feedback
US7477960B2 (en) * 2005-02-16 2009-01-13 Tokyo Electron Limited Fault detection and classification (FDC) using a run-to-run controller
JP4712462B2 (ja) * 2005-07-11 2011-06-29 東京エレクトロン株式会社 基板処理監視装置、基板処理監視システム、基板処理監視プログラム及び記録媒体
WO2007086458A1 (ja) * 2006-01-27 2007-08-02 Hitachi Kokusai Electric Inc. 基板処理装置
CN101359965B (zh) * 2008-09-18 2011-04-20 中兴通讯股份有限公司 一种优化光接收机判决电平的方法及装置
US8618807B2 (en) * 2009-06-30 2013-12-31 Lam Research Corporation Arrangement for identifying uncontrolled events at the process module level and methods thereof
JP5490462B2 (ja) * 2009-08-17 2014-05-14 横河電機株式会社 膜厚測定装置
JP5774331B2 (ja) * 2011-03-03 2015-09-09 株式会社日立国際電気 基板処理システム、管理装置、データ解析方法、及びデータ解析プログラム
JP5855841B2 (ja) 2011-04-01 2016-02-09 株式会社日立国際電気 管理装置
US9255578B2 (en) * 2012-07-31 2016-02-09 Fisher-Rosemount Systems, Inc. Systems and methods to monitor pump cavitation
JP6403577B2 (ja) * 2013-02-05 2018-10-10 株式会社Kokusai Electric クリーニング方法、半導体装置の製造方法、基板処理装置及びプログラム並びにクリーニング終了判定方法
JP2015115540A (ja) * 2013-12-13 2015-06-22 株式会社日立国際電気 管理装置、基板処理装置の管理方法および基板処理システム並びに記録媒体
JP6454611B2 (ja) * 2015-06-19 2019-01-16 株式会社ジェイ・イー・ティ 基板処理システム及び基板処理方法
US20200333777A1 (en) * 2016-09-27 2020-10-22 Tokyo Electron Limited Abnormality detection method and abnormality detection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000283056A (ja) * 1999-03-26 2000-10-10 Hitachi Ltd 真空ポンプ異常監視システム
JP2008033856A (ja) * 2006-08-01 2008-02-14 Tokyo Electron Ltd サーバ装置およびプログラム
JP2016134585A (ja) * 2015-01-22 2016-07-25 ルネサスエレクトロニクス株式会社 半導体製造装置、半導体製造装置の診断システムおよび半導体装置の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113631817A (zh) * 2019-03-27 2021-11-09 株式会社岛津制作所 泵监视装置、真空泵以及生成物堆积诊断用数据处理程序
US20220220969A1 (en) * 2019-03-27 2022-07-14 Shimadzu Corporation Pump monitoring device, vacuum pump, and product-accumulation diagnosis data processing program
EP3951183A4 (en) * 2019-03-27 2022-12-14 Shimadzu Corporation PUMP MONITOR, VACUUM PUMP AND PROCESSING PROGRAM FOR PRODUCT ACCUMULATION DIAGNOSTIC DATA
CN113631817B (zh) * 2019-03-27 2024-03-08 株式会社岛津制作所 泵监视装置、真空泵以及记录介质
WO2022004419A1 (ja) * 2020-07-02 2022-01-06 東京エレクトロン株式会社 情報処理方法および情報処理装置
JPWO2022004419A1 (ja) * 2020-07-02 2022-01-06
JP7246576B2 (ja) 2020-07-02 2023-03-27 東京エレクトロン株式会社 情報処理方法、モデルの生成方法および情報処理装置

Also Published As

Publication number Publication date
KR102389689B1 (ko) 2022-04-22
KR20200029598A (ko) 2020-03-18
SG11202001932UA (en) 2020-04-29
KR102519802B1 (ko) 2023-04-10
JP6833048B2 (ja) 2021-02-24
US20200201305A1 (en) 2020-06-25
US11782425B2 (en) 2023-10-10
JPWO2019043934A1 (ja) 2020-03-26
KR20220051437A (ko) 2022-04-26

Similar Documents

Publication Publication Date Title
KR102493368B1 (ko) 기판 처리 장치, 장치 관리 컨트롤러 및 프로그램
US11782425B2 (en) Substrate processing apparatus, method of monitoring abnormality of substrate processing apparatus, and recording medium
CN107240564B (zh) 处理装置、装置管理控制器、以及装置管理方法
US10937676B2 (en) Substrate processing apparatus and device management controller
KR102243476B1 (ko) 기판 처리 장치, 장치 관리 컨트롤러, 프로그램 및 반도체 장치의 제조 방법
US20220375331A1 (en) Processing Apparatus, Display Method, Method of Manufacturing Semiconductor Device and Non-transitory Computer-readable Recording Medium
JP7186236B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
CN107305855B (zh) 衬底处理装置、装置管理控制器及装置管理方法
JP7227351B2 (ja) 半導体装置の製造方法、予兆検知プログラム、及び基板処理装置
WO2021059333A1 (ja) 基板処理装置、半導体装置の製造方法、及び予兆検知プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923748

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019538899

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207006145

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923748

Country of ref document: EP

Kind code of ref document: A1