WO2019042247A1 - 一种cyp17抑制剂的药物组合物及其制备方法 - Google Patents

一种cyp17抑制剂的药物组合物及其制备方法 Download PDF

Info

Publication number
WO2019042247A1
WO2019042247A1 PCT/CN2018/102492 CN2018102492W WO2019042247A1 WO 2019042247 A1 WO2019042247 A1 WO 2019042247A1 CN 2018102492 W CN2018102492 W CN 2018102492W WO 2019042247 A1 WO2019042247 A1 WO 2019042247A1
Authority
WO
WIPO (PCT)
Prior art keywords
pharmaceutical composition
composition according
acid
cyclodextrin
active ingredient
Prior art date
Application number
PCT/CN2018/102492
Other languages
English (en)
French (fr)
Inventor
王捷
王伟
钱雯
张凤娥
Original Assignee
江苏恒瑞医药股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恒瑞医药股份有限公司 filed Critical 江苏恒瑞医药股份有限公司
Priority to CN201880032789.5A priority Critical patent/CN110636837B/zh
Publication of WO2019042247A1 publication Critical patent/WO2019042247A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/56Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids
    • A61K31/58Compounds containing cyclopenta[a]hydrophenanthrene ring systems; Derivatives thereof, e.g. steroids containing heterocyclic rings, e.g. danazol, stanozolol, pancuronium or digitogenin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the invention belongs to the field of pharmaceutical preparations, and in particular relates to a pharmaceutical composition of a CYP17 inhibitor and a preparation method thereof.
  • 17-(3-Pyridinyl)rost-5,16-diene-3 ⁇ -acetate is a CYP17 inhibitor that has been approved for marketing in the United States in 2011 and is indicated for the treatment of patients with prostate cancer.
  • 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate is poor in solubility and permeability and is a typical BCSIV class drug.
  • the drug is a prodrug that hydrolyzes to 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -ol under the action of lipase in the intestine, and the transformation forms a local, temporary high.
  • the infiltration process of 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate is passive transport, and the penetration rate of the drug is directly proportional to the local concentration of the drug in the intestine.
  • CN103813794A Dispersing 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate analog in a water-soluble polymer carrier material to form a solid dispersion to solve the dissolution rate after drug formation
  • CN103070828B discloses the preparation of a solid dispersion using povidone as a carrier material to solve similar problems.
  • CN102123697A by adding an absorption enhancer N-(8-(2-hydroxybenzoyl)amino)octanoate (SNAC) or N-(8-(2-hydroxybenzoyl)amino) sodium silicate (SNAD) Or a combination thereof enhances the absorption of proteins, protease inhibitors through the intestinal mucosal barrier to address the bioavailability of the GLP-1 analog in the composition.
  • an oral absorption enhancer N-(8-(2-hydroxybenzoyl)amino)octanoate
  • SNAD N-(8-(2-hydroxybenzoyl)amino) sodium silicate
  • absorption enhancers to address the bioavailability of small molecule compounds and the use of absorption enhancers to improve the individual differences exhibited by a drug in different patients has not been reported in the literature.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising the active ingredient 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -ol or a derivative thereof, and an absorption enhancer.
  • the absorption enhancer is a natural or synthetic auxiliary material capable of improving the different physical and chemical properties of the drug in the intestinal tract, including but not limited to bioadhesive polymers, fatty acids or pharmaceutically acceptable salts thereof, surfactants, etc. .
  • Bioadhesive polymers include, but are not limited to, chitosan and its derivatives, carbomers, etc.; fatty acids or pharmaceutically acceptable salts thereof may be medium chain fatty acids having a carbon chain length of 4 to 20 carbon atoms Or a pharmaceutically acceptable salt thereof.
  • the carbon chain is 8-14 carbon atoms in length.
  • the carbon chain is 6-20 carbon atoms in length.
  • the medium chain fatty acid having a carbon chain length of from 4 to 20 carbon atoms, or a pharmaceutically acceptable salt thereof is selected from the group consisting of, but not limited to, citric acid and citrates such as citric acid or a pharmaceutically acceptable salt thereof (not Limited to sodium or potassium salt), N-(10-[2-hydroxybenzoyl]amino)decanoic acid (SNAD) or a pharmaceutically acceptable salt thereof (not limited to sodium or potassium salt), octanoic acid and octanoic acid such as octanoic acid or a pharmaceutically acceptable salt thereof (not limited to sodium or potassium salt), N-(8-(2-hydroxybenzoyl)amino)octanoic acid (NAC) or a pharmaceutically acceptable salt thereof (not limited to sodium or potassium salts such as N-( Anhydrous, monohydrate, dihydrate, trihydrate or one-third hydrate of sodium 8-(2-hydroxybenzoyl)amino)octano
  • Surfactants are classified into nonionic surfactants such as Tween (Tween-20, Tween-80), poloxamer, polyoxyethylene castor oil, anionic surfactants such as sodium lauryl sulfate, and B.
  • nonionic surfactants such as Tween (Tween-20, Tween-80), poloxamer, polyoxyethylene castor oil, anionic surfactants such as sodium lauryl sulfate, and B.
  • lauroylcarnitine such as lauroylcarnitine-D-chloride, lauroyl carnitine- At least one of L-chloride (also referred to as L-lauroyl chloride carnitine), decanoylcarnitine such as L-nonanoyl chloride carnitine, and the like.
  • the absorption enhancer is selected from the group consisting of chitosan, carbomer, citric acid, sodium or potassium citrate, N-(10-[2-hydroxybenzoyl]amino)decanoic acid (SNAD), octanoic acid , sodium octanoate or potassium, N-(8-(2-hydroxybenzoyl)amino)octanoic acid (NAC), N-(5-chlorosalicyl)-8-aminooctanoic acid (5-CNAC), 8-( Salicylamino)sodium octanoate (SNAC), vitamin E polyethylene glycol 1000 succinate (sodium or potassium), lauroylcarnitine-D-chloride, lauroylcarnitine-L-chloride, L- ⁇ At least one of acyl chloride, Tween-20, and Tween-80.
  • SNAD N-(10-[2-hydroxybenzoyl]amino)de
  • the absorption enhancer is selected from the group consisting of N-(10-[2-hydroxybenzoyl]amino)decanoic acid (SNAD), N-(8-(2-hydroxybenzoyl)amino)octanoic acid (NAC) At least one of N-(5-chlorosalicyl)-8-aminooctanoic acid (5-CNAC), 8-(salicylamino)octanoic acid, 8-(salicylamido)octanoate (SNAC)kind.
  • the weight ratio of the absorption enhancer to the active ingredient is not less than 1:100.
  • the weight ratio of the active ingredient to the absorption enhancer is from about 1:100 to 100:1, and may be about 1:100, 1:99, 1:98, 1:97, 1: 96, 1:95, 1:94, 1:93, 1:92, 1:91, 1:90, 1:89, 1:88, 1:87, 1:86, 1:85, 1:84, 1:83, 1:82, 1:81, 1:80, 1:79, 1:78, 1:77, 1:76, 1:75, 1:74, 1:73, 1:72, 1: 71, 1:70, 1:69, 1:68, 1:67, 1:66, 1:65, 1:64, 1:63, 1:62, 1:61, 1:60, 1:59, 1:58, 1:57, 1:56, 1:55, 1:54, 1:53, 1:52, 1:51, 1:50, 1:49, 1:48, 1:47, 1: 46,
  • the active ingredient of the present invention is present in an amount of from about 0.5 to 80% by weight, based on the weight of the pharmaceutical composition, and may be 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8,
  • the active ingredient in the pharmaceutical composition is in a form that increases bioavailability.
  • a pharmaceutical formulation having a particle size ranging from 10 to 1000 nm in which the active substance is supported in cross-linking is described in US Pat. No. 4,107,288. On the macromolecular matrix. No.
  • 5,145,684 describes the production of a pharmaceutical preparation in which the active ingredient is ground into nanoparticles (average particle size of 400 nm) in the presence of a surface stabilizer, which is subsequently dispersed in a liquid medium to give a noticeably high Bioavailable pharmaceutical preparations;
  • Self-Emulsifying Drug Delivery Systems are mixtures of oils and surfactants that can also be used to increase bioavailability; increase bioavailability by using cyclodextrin to form inclusion complexes; Dispersion of the ingredients in the carrier material to form a solid dispersion increases bioavailability and the like.
  • composition of the present invention further contains at least one excipient.
  • the pharmaceutical composition of the present invention may be further prepared as an intermediate preparation as an injectable solution or a solid preparation selected from the group consisting of, but not limited to, tablets, pills, granules, lyophilized powder injections or Capsules.
  • excipients in the solid preparation are well known or determinable by those skilled in the art, and are selected from, but not limited to, at least one of a disintegrant, a filler, a binder, and a lubricant;
  • the liquid excipient is selected from, but not limited to, a non-toxic physiologically acceptable liquid carrier such as at least one of physiological saline, water for injection, 5% dextrose injection, glucose sodium chloride injection, pH adjuster or preservative. .
  • the filler provides volume, the tablet is made to the actual size of the processable treatment, and may also aid in processing to improve the physical properties of the solid formulation such as flowability, compressibility, and hardness of the solid formulation.
  • the filler of the present invention is known or determinable by those skilled in the art, and is selected from, but not limited to, dextrin, lactose, sucrose, calcium hydrogen phosphate, calcium sulfate, starch, anhydrous calcium hydrogen phosphate, calcium hydrogen phosphate, micro At least one of crystalline cellulose and mannitol; preferably, the filler is used in an amount of from 1 to 90% by weight based on the weight of the solid preparation, and may be 1, 2, 3, 4, 5, 6, 7 in the embodiment.
  • the disintegrants of the present invention are known or identifiable by those skilled in the art and are selected from, but not limited to, croscarmellose sodium, crospovidone, sodium carboxymethyl starch, carboxymethyl cellulose. At least one of calcium, low-substituted hydroxypropylcellulose, starch, pregelatinized starch, and alginic acid; preferably, the disintegrant is used in an amount of 0.5 to 20% by weight based on the weight of the solid preparation, and may be 0.5, 06, 0.7, 0.8, 0.9, 1.0, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3, 4.5, 4.7, 4.9, 5.1, 5.3, 5.5, 5.7, 5.9, 6.1, 6.3, 6.5, 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.3, 8.5, 8.7
  • binders of the present invention are known or identifiable by those skilled in the art and are selected from, but not limited to, polyvinylpyrrolidone, starch, methylcellulose, carboxycellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose.
  • the lubricants of the present invention are known or identifiable by those skilled in the art and are selected from, but not limited to, magnesium stearate, stearic acid, palmitic acid, calcium stearate, talc, colloidal silica, Brazil. At least one of palm wax and sodium stearyl fumarate; preferably, the lubricant of the present invention is used in an amount of 0.1 to 5% by weight based on the weight of the solid preparation, and may be 0.1, 0.2, 0.3, 0.4, 0.5 in the embodiment.
  • the solid preparation of the present invention may further be coated, if necessary, and is selected from the group consisting of, but not limited to, a water-soluble polymer, a water-insoluble polymer, a stomach-soluble polymer, and an enteric polymer.
  • Water-soluble polymers such as acacia powder, gelatin, amylopectin, dextrin, sodium carboxymethyl starch, sodium alginate, and other natural polymers or polysaccharides and their derivatives, carboxymethyl ether cellulose ( Carmellose), sodium carboxymethylcellulose, calcium carboxymethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, hydroxyethylcellulose, hydroxymethylcellulose, methylcellulose, carboxymethyl a cellulose derivative such as carboxymethylcellulose, a water-soluble vinyl derivative such as polyvinylpyrrolidone or polyvinyl alcohol; a water-insoluble polymer such as ethylcellulose (ethylcellulose aqueous dispersion (for example, trade name)
  • Enteric polymers such as cellulose acetate propionate, hydroxypropylmethylcellulose acetate succinate, hydroxypropylmethylcellulose phthalate Enteric cellulose esters such as ester (hypromellose phthalate), hydroxymethyl ethyl cellulose phthalate, carboxymethyl ethyl cellulose, cellulose acetate, phthalic acid ester, etc.
  • Methacrylic acid copolymer LD for example, trade name: EUDRAGITL30D-55, manufactured by EVONIC Co., Ltd.; trade name: POLYQUIDPA30, manufactured by Sanyo Chemical Co., Ltd.; trade name: Kollicoat MAE30DP, manufactured by BASF Corporation; trade name: Acryl-Eze (Jacques Yi, batch number) 93O18508
  • melamine copolymer L for example, trade name: EUDRAGITL, manufactured by EVONIC
  • methacrylic acid copolymer S for example, trade name: EUDRAGITS100, EUDRAGITFS30D, EVONIC Soluble acrylic copolymer Things.
  • the coating is an enteric coating selected from the group consisting of cellulose acetate propionate, hydroxypropylmethylcellulose acetate succinate, hydroxypropylmethylcellulose phthalate Ester (hypromellose phthalate), hydroxymethyl ethyl cellulose phthalate, carboxymethyl ethyl cellulose, cellulose acetate, methacrylic acid copolymer L, methacrylic acid copolymer LD , methacrylic acid copolymer S, Acryl-Eze.
  • enteric coating selected from the group consisting of cellulose acetate propionate, hydroxypropylmethylcellulose acetate succinate, hydroxypropylmethylcellulose phthalate Ester (hypromellose phthalate), hydroxymethyl ethyl cellulose phthalate, carboxymethyl ethyl cellulose, cellulose acetate, methacrylic acid copolymer L, methacrylic acid copolymer LD , methacrylic acid copolymer S, Acryl-E
  • the coating of the solid formulation of the invention is at least one layer and may be one, two, three or even four layers.
  • the present invention also provides a process for the preparation of the aforementioned pharmaceutical composition comprising the step of mixing the active ingredient with an absorption enhancer.
  • the pharmaceutical compositions of the present invention further comprise at least one carrier material dispersed in a carrier material to form a solid dispersion.
  • the carrier material is selected from, but not limited to, 3,4-dimethyl-benzylcarbamate (MPMC), hydroxypropylmethylcellulose succinate (HPMCAS), hydroxypropylmethyl phthalate (HPMCP), poloxamer 188, poloxamer 407, poly(meth) acrylate (Eudragit), homopolymer of N-vinyl-2-pyrrolidone, povidone, copovidone (Plasdone) ), carboxymethyl ethyl cellulose (CMEC), cellulose acetate phthalate (CAP), methacrylic acid copolymer LD (L30D55), methacrylic acid copolymer S (S-100), amino methacrylate Alkyl ester copolymer E (gastric coating base), poly(vinyl acetal) diethylaminoacetate
  • the carrier material is selected from the group consisting of hypromellose acetate succinate (HPMCAS), hydroxypropyl cellulose phthalate (HPMCP), polyvinylpyrrolidone vinyl acetate (PVP-VA), methacrylic acid. a copolymer with methyl methacrylate or a graft copolymer of polyethylene glycol, polyvinyl caprolactam and polyethyl acetate.
  • HPMCAS hypromellose acetate succinate
  • HPMCP hydroxypropyl cellulose phthalate
  • PVP-VA polyvinylpyrrolidone vinyl acetate
  • methacrylic acid a copolymer with methyl methacrylate or a graft copolymer of polyethylene glycol, polyvinyl caprolactam and polyethyl acetate.
  • the pharmaceutical composition of the present invention has a weight ratio of the carrier material to the active ingredient or its derivative, and may be at most 0.5:1.
  • the weight ratio of carrier material to active ingredient in the present invention may range from 0.5:1 to 5:1, preferably from 1:1 to 4:1, in some embodiments Can be 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, 2.0:1, 2.1:1 2.2:1, 2.3:1, 2.4:1, 2.5:1, 2.6:1, 2.7:1, 2.8:1, 2.9:1, 3.0:1,3.1:1, 3.2:1, 3.3:1, 3.4: 1, 3.5:1, 3.6:1, 3.7:1, 3.8:1, 3.9:1, 4.0:1.
  • the invention also provides a process for the preparation of the aforementioned solid dispersion comprising the step of dispersing the active ingredient in the carrier material required for the preparation of the solid dispersion. Further, the resulting solid dispersion is further mixed with an absorption enhancer.
  • the solid dispersion is prepared by a melt process, a solvent process, a solvent-melt process.
  • Others have used the principle of co-dissolution to form a eutectic mixture by grinding, and the drug is dissolved in an organic solvent to be dispersed and adsorbed on an inert material to form a solid surface adsorbate.
  • the solvent method (also referred to as a coprecipitation method) is an organic solvent in which a drug and a carrier are co-dissolved in an organic solvent or dissolved in a solvent, or uniformly mixed, or the carrier material is suspended and dispersed in an active ingredient or a pharmaceutically acceptable salt thereof. Medium, then remove the solvent.
  • the method for removing the solvent is known or determinable by those skilled in the art, and may be a method of adding a macropolar organic solvent to a low-polarity solvent to precipitate a solid; or a spray drying method or a vacuum drying method. the way.
  • the melting method is to mix the drug with the carrier, heating to melt, or heating and melting the carrier, then adding the drug to dissolve, and then rapidly cooling the melt to a solid or directly injecting the capsule and cooling after vigorous stirring. .
  • the solvent-melting method is obtained by dissolving a drug in a small amount of an organic solvent, uniformly mixing the melted carrier, evaporating the organic solvent, and cooling and solidifying.
  • the solid dispersion preparation can be prepared by a melt method, which is also called hot melt extrusion method, that is, the medicine is mixed with the carrier, heated to melt, or the carrier can be heated and melted, and then the drug is added. After stirring, the melt is rapidly cooled to a solid or directly poured into a capsule under vigorous stirring, and then cooled to obtain a solid dispersion.
  • a melt method which is also called hot melt extrusion method, that is, the medicine is mixed with the carrier, heated to melt, or the carrier can be heated and melted, and then the drug is added. After stirring, the melt is rapidly cooled to a solid or directly poured into a capsule under vigorous stirring, and then cooled to obtain a solid dispersion.
  • the solid dispersion is then further mixed with an absorption enhancer, an excipient and a disintegrating agent required for molding the solid preparation, and the like, and after wet granulation or dry granulation, a pellet or granule or tablet is prepared or Capsules; the granules or tablets obtained may be further coated or the like as needed.
  • the solid dispersion of the present invention may employ a solvent method (or coprecipitation method), that is, the carrier material is dissolved together with the active ingredient or a pharmaceutically acceptable salt thereof in an organic solvent, or the carrier material is used.
  • the solid dispersion is obtained by suspending the organic solvent dispersed in the active ingredient or a pharmaceutically acceptable salt thereof, and then removing the organic solvent.
  • the solid dispersion is further uniformly mixed with an excipient such as a filler and/or a disintegrator required for molding a solid preparation, wet granulation by adding a binder, or dry granulation, and the prepared granules are dried and sieved.
  • the mixture is uniformly mixed with a lubricant to prepare a pellet or granule or tablet or capsule; if necessary, the obtained granule or tablet or capsule may be further coated or the like.
  • pulverization reduces the particle size of the drug to increase the drug dissolution area is an effective method for improving the dissolution characteristics of poorly soluble drugs, which is commonly referred to as micronization technology.
  • the active ingredient of the pharmaceutical compositions of the present invention requires micronization prior to administration to achieve the desired particle size.
  • 90% of the micronized active ingredient has a particle size of no less than 10 [mu]m (which may be expressed as D90 or d (0.9)).
  • micronization can be achieved, but not limited to, by ball mill milling or jet milling.
  • the active ingredient of the pharmaceutical composition of the present invention is present in nanometer-sized particle size, the active ingredient having a particle size D90 value of less than about 10 ⁇ m, and may be selected from less than about 10 ⁇ m, less than about 9 ⁇ m, less than About 8 ⁇ m, less than about 7 ⁇ m, less than about 6 ⁇ m, less than about 5 ⁇ m, less than about 4 ⁇ m, less than about 3 ⁇ m, less than about 2 ⁇ m, less than about 1 ⁇ m, less than about 5000 nm, less than about 4800 nm, less than about 4500 nm, less than about 4200 nm, less than about 4000 nm.
  • the active ingredient in the pharmaceutical composition of the present invention has a particle size D50 value of less than about 1 ⁇ m, preferably from less than about 1 ⁇ m, less than about 900 nm, less than about 800 nm, less than about 700 nm, less than about 600 nm, less than about 500 nm, Less than about 450 nm, less than about 400 nm, less than about 350 nm, less than about 300 nm, less than about 250 nm, less than about 200 nm, less than about 150 nm, less than about 100 nm or less, preferably less than about 800 nm, more preferably less than about 700 nm, and most preferably less than about 600nm.
  • the active ingredient in the pharmaceutical compositions of the present invention has a particle size D10 value of less than about 300 nm, preferably from less than about 300 nm, less than about 280 nm, less than about 250 nm, less than about 220 nm, less than about 200 nm, less than about 180 nm. Less than about 150 nm, less than about 120 nm, less than about 100 nm, less than about 90 nm, less than about 80 nm, less than about 70 nm, less than about 60 nm, less than about 50 nm, less than about 40 nm, less than about 30 nm, less than about 20 nm, less than about 10 nm, less than about 10 nm. It is about 5 nm or less, preferably less than about 200 nm, and most preferably less than 100 nm.
  • composition of the present invention further contains at least one surface stabilizer.
  • the surface stabilizers of the present invention are those which are adsorbed on the surface of the active ingredient by physical action, but which do not form a chemical bond with the active ingredient.
  • Surface stabilizers include nonionic, anionic, cationic, ionic and zwitterionic surface stabilizers.
  • surface stabilizers include, but are not limited to, hydroxypropyl methylcellulose (now known as "hypromellose”), hydroxypropyl cellulose, polyvinylpyrrolidone, sodium lauryl sulfate, sulfonate.
  • Dioctyl succinate Dioctyl succinate, gelatin, casein, lecithin (phospholipid), dextran, gum arabic, sodium docusate, sodium cholate, sodium deoxycholate, cholesterol, tragacanth, stearic acid, benzene Benzalkonium chloride, calcium stearate, glyceryl monostearate, cetostearyl alcohol, polycetropitol emulsified wax, sorbitan ester, polyoxyethylene alkyl ether (eg, polyethyl b) Glycol ethers such as polycetitol 1000), polyoxyethylene castor oil derivatives, polyoxyethylene sorbitan fatty acid esters (eg, commercially available) E.g, with Polyethylene glycol (for example, Carbowaxes with Polyoxyethylene stearate, colloidal silica, phosphate/ester, calcium carboxymethylcellulose, sodium carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, hydroxy
  • cationic surface stabilizers include, but are not limited to, polymers, biopolymers, polysaccharides, cellulosics, alginates, phospholipids, and non-polymeric compounds such as zwitterionic stabilizers, poly-n -methylpyridinium, anthryulpltppyridinium chloride, cationic phospholipid, chitosan, polylysine, polyvinylimidazole, polybrene, brominated polymethyl methacrylate trimethylammonium bromide (PMMTMABr), Hexyldiphenethyl ketone trimethylammonium bromide (HDMAB) and polyvinylpyrrolidone-2-dimethylaminoethyl methacrylate dimethyl sulfate.
  • zwitterionic stabilizers poly-n -methylpyridinium, anthryulpltppyridinium chloride, cationic phospholipid, chitosan, polyly
  • cationic stabilizers include, but are not limited to, cationic lipids, guanidine, guanidine, and quaternary ammonium compounds such as stearyl trimethyl ammonium chloride, benzyl bis(2-chloroethyl) ethyl bromide.
  • Exemplary cationic surface stabilizers and other useful cationic surface stabilizers are described in J. Cross and E. Singer, Cationic Surfactants: Analytical and Biological Evaluation (Marcel Dekker, 1994); P. and D. Rubingh (ed.), Cationic Surfactants: Physical Chemistry (Marcel Dekker, 1991); and J. Richmond, Cationic Surfactants: Organic Chemistry, (Marcel Dekker, 1990).
  • the non-polymeric surface stabilizer is any non-polymeric compound such as benzalkonium chloride, carbonium compound, antimony compound, oxonium compound, halogen halide compound, cationic organometallic compound, quaternary phosphonium compound, pyridinium compound, aniline oxime A compound, an ammonium compound, a hydroxyammonium compound, a primary ammonium compound, a secondary ammonium compound, a tertiary ammonium compound, and a quaternary ammonium compound of the formula NR 1 R 2 R 3 R 4 (+).
  • benzalkonium chloride carbonium compound, antimony compound, oxonium compound, halogen halide compound, cationic organometallic compound, quaternary phosphonium compound, pyridinium compound, aniline oxime A compound, an ammonium compound, a hydroxyammonium compound, a primary ammonium compound, a secondary ammonium compound, a tert
  • non-polymeric compounds include, but are not limited to, behenyl benzyl dimethyl ammonium chloride, chlorinated benzethonium, cetylpyridinium chloride, behenyl trimethyl ammonium chloride, ten Dialkylbenzyldimethylammonium chloride, cetylbenzyldimethylammonium chloride, cetyltrimethylammonium bromide, cetyltrimethylammonium chloride, hexadecane Hydrofluoroamine, chloroallyl hexamethylenetetramine (Quaternium-15), distearyldimethylammonium chloride (Quaternium-5), dodecyldimethylethyl benzyl Ammonium chloride (Quaternium-14), Quaternium-22, Quaternium-26, Quaternium-18 hectorite, dimethyl chloride ethyl chloride hydrochloride, hemi-proline hydrochloride, diethanol ammonium
  • the surface stabilizer is selected from the group consisting of polyvinylpyrrolidone, hydroxypropylmethylcellulose, hydroxypropylcellulose, sodium docusate, sodium cholate, sodium deoxycholate, poloxamer, Tween, ten Sodium dialkyl sulfate, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), methyl cellulose, tocopheryl tocopheryl D-succinic acid (TPGS), hypromellose acetate At least one of succinate (HPMCAS), Soluplus (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer), and hydroxyethyl cellulose.
  • the pharmaceutical composition of the present invention may comprise from 1 to 10 surface stabilizers, preferably from 2 to 5 surface stabilizers. In an alternative embodiment, the pharmaceutical compositions of the present invention contain at least two or three surfaces.
  • the pharmaceutical compositions of the present invention comprise a surface stabilizer combination including, but not limited to, sodium lauryl sulfate and hydroxypropylmethylcellulose, sodium lauryl sulfate and hydroxypropyl cellulose.
  • sodium lauryl sulfate and polyvinyl alcohol PVA
  • sodium lauryl sulfate and polyvinylpyrrolidone PVP
  • Plasdone sodium lauryl sulfate and polyvinylpyrrolidone
  • HPMC hydroxypropylmethylcellulose
  • TPGS tocopheryl tocopheryl D-succinic acid
  • TPGS tocopheryl tocopheryl D-succinic acid
  • TPGS hydroxypropyl Methylcellulose
  • the surface stabilizer is present in the pharmaceutical composition of the invention in an amount of from about 0.1 to 99.9 wt%, preferably from about 1.0 to 75.0 wt%, based on the total dry weight of the active ingredient and the surface stabilizer. About 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12, 12.5, 13.
  • the invention also provides a method of making the aforementioned nanoformulation comprising the step of contacting the active ingredient with at least one surface stabilizer, the contacting comprising grinding, wet milling, homogenization, precipitation or supercritical fluid particle formation techniques. Further, it is mixed with an absorption enhancer.
  • the nano-formulation is obtained by wet-grinding, and then the obtained nano-particles are further mixed with an absorption enhancer, a filler required for molding a solid preparation, and the like, followed by wet granulation or dry process. After the granules, pellets or granules are prepared or compressed or encapsulated; if necessary, the obtained granules or tablets may be further coated or the like.
  • the particle diameter of the active ingredient drug substance used in the present invention is preferably (but not necessarily) less than about 100 ⁇ m as measured by a screening method. If the particle size of the active ingredient drug substance is larger than about 100 ⁇ m, it is preferably a conventional grinding method such as air jetting. The grinding or crushing mill reduces its particle size to below 100 ⁇ m.
  • the active ingredient of the active ingredient may then be added to a liquid medium which is substantially insoluble, preferably such as water, to form an initial mixture.
  • concentration of the active ingredient in the liquid medium is from 0.1 to 60% (W/W), preferably from 5 to 30% (W/W), and may be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30% (W/W).
  • the surface modifier is present in the primary blend, but this need not be the case.
  • the apparent viscosity of the initial mixed suspension is preferably less than about 2000 centipoise.
  • the primary mixture can be directly reduced by mechanical means to a particle size of less than 5000 nrn in the dispersed phase. It is best to apply the primary mixture directly when grinding with a ball mill.
  • the active ingredient and any surface stabilizer may be dispersed in a liquid medium by a suitable method, such as by a roller mill or a Cowles type mixer until formation, and macroscopic uniformity is not observed by the naked eye. Disperse the system so far.
  • the primary mixture is subjected to this pre-grinding dispersion step if it is ground with a circulating medium mill.
  • the mechanical means for preparing the nano-sized particle size of the active ingredient may be a dispersion-type suitable dispersion mill including a ball mill, a grater, a vibration mill, a planetary mill, a media mill (such as a sand mill and a bead mill).
  • the grinding media used in the step of grinding the particles may be selected from rigid media, preferably spherical or granular, having an average particle size of less than about 3 mm, more preferably less than about 1 mm. Such media have shorter processing times and less wear on the grinding equipment while providing the particles of the present invention.
  • the choice of raw materials for the grinding media is not critical.
  • zirconia, magnesium stabilized 95% ZrO, zirconium silicate, glass grinding media can provide particles within the range of impurity levels allowed for the preparation of pharmaceutical compositions.
  • other media such as stainless steel, titanium dioxide, and aluminum oxide can also be used.
  • the ratio of the medium is greater than 2.5 g/cm 3 .
  • the time of grinding varies widely, depending on the particular mechanical method and processing conditions.
  • the processing time can take up to 1 day or longer.
  • grinding with less than one day of processing with high shear media has provided the desired results.
  • the process of comminuting the granules must be carried out at a temperature which does not significantly degrade the active ingredient. It is generally preferred to process at temperatures below 50 °C. If desired, the processing equipment can be cooled using conventional cooling equipment.
  • These particle generation techniques are well known to those skilled in the art, and detailed grinding, wet milling, homogenization, precipitation or supercritical fluid particle generation techniques can be found in CN 1063630C, CN101175481A or CN1515244A, and the relevant content is specifically incorporated herein. In the application.
  • the pharmaceutical compositions of the present invention comprise a cyclodextrin, the active ingredient being encapsulated in a cyclodextrin.
  • the cyclodextrin is selected from hydroxypropyl-beta cyclodextrin, sulfobutyl-beta cyclodextrin, methylated-beta cyclodextrin, hydroxyethyl-beta cyclodextrin, glucosyl-beta cyclodextrin , one or more of diglucosyl- ⁇ cyclodextrin, maltosyl- ⁇ cyclodextrin, dimaltosyl- ⁇ cyclodextrin, carboxymethyl- ⁇ cyclodextrin, preferably hydroxypropyl- ⁇ One or more of cyclodextrin, sulfobutyl- ⁇ -cyclodextrin, diglucosyl- ⁇ cyclodextrin.
  • the mass ratio of active ingredient to cyclodextrin in the pharmaceutical composition is from 1:20 to 1:3000, and may be 1:20, 1:30, 1:40, 1:50, 1:60, 1:70, 1:80, 1:90, 1:100, 1:150, 1:170, 1:190, 1:210, 1:230, 1:250, 1:270, 1:290, 1: 310, 1:330, 1:350, 1:370, 1:390, 1:410, 1:430, 1:450, 1:470, 1:490, 1:510, 1:530, 1:550, 1:570, 1:590, 1:610, 1:630, 1:650, 1:670, 1:690, 1:710, 1:730, 1:750, 1:770, 1:790, 1: 810, 1:830, 1:850, 1:870, 1:890, 1:910, 1:930, 1:950, 1:970, 1:990, 1:10
  • the daily dose of the active ingredient of the present invention is 50 to 800 mg, and may be 50 mg, 60 mg, 70 mg, 80 mg, 90 mg, 100 mg, 110 mg, 120 mg, 130 mg, 140 mg, 150 mg, 160 mg, 170 mg, 180 mg, 190 mg, 200 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, 650 mg, 700 mg, 750 mg, 800 mg, preferably 300 to 600 mg, more preferably 400 to 550 mg, most preferably 500 mg.
  • the present invention also provides a process for the preparation of the aforementioned clathrate comprising the step of mixing the active ingredient with an absorption enhancer. Further, it is necessary to encapsulate the active ingredient in the cyclodextrin to obtain a cyclodextrin inclusion compound of the active ingredient before the active ingredient is mixed with the absorption enhancer.
  • the preparation method further comprises mixing the cyclodextrin inclusion compound with an absorption enhancer and a pharmaceutically acceptable excipient, granulating, tableting or filling the capsule, directly compressing the tablet or directly filling the capsule.
  • the step; the obtained granule or the plain tablet may be further coated or the like as needed.
  • the granulation method of the present invention may be wet granulation or dry granulation, and when a wet granulation scheme is selected, fluidized bed granulation or high shear granulation may be employed.
  • the preparation of the granules obtained as described above can be compressed.
  • the compressible pressure is determined within the appropriate range.
  • the shape of the tablet is not particularly limited, and is preferably a lenticular shape, a disc shape, a circular shape, an elliptical shape (such as a caplet sheet), a teardrop shape or a polygonal shape (such as a triangle or a diamond shape).
  • compositions of the present invention further comprise an emulsifier to prepare the pharmaceutical compositions of the present invention as emulsions or (sub)emulsions.
  • the emulsifier of the present invention is selected from the group consisting of 1,2-dioleoyl-sn-glycero-3-phosphocholine, 1,2-dilauroyl-sn-glycero-3-phosphocholine, 1,2-di meat Myristoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-distearoyl-sn-glycero-3-phosphocholine 1,2-diarachiyl-sn-glycero-3-phosphocholine, 1,2-dibehenyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycerol Choline choline phosphate, 1,2-bis(ecexenoyl)-sn-glycero-3-phosphocholine, 1,2-di-erucyl-sn-glycero-3-phosphocholine, 1,2 -dipalmito
  • oil denotes a broad class of physiologically acceptable substances which may be mineral oils, vegetable oils, animal oils, essential oils, synthetic oils, or mixtures thereof.
  • oil is used herein to refer to a wide range of materials having very different chemical properties.
  • oils by type or function, such as mineral oils derived from petroleum and containing fat or wax based hydrocarbons, aromatic hydrocarbons or mixed fats and aromatic hydrocarbons. Petroleum derived oils such as refined paraffin oils and the like are also included in the mineral oil category.
  • the oil is mainly derived from seeds or nuts and contains dry oils such as linseed and tung oil; semi-drying oils such as safflower oil and soybean oil; non-drying oils such as castor oil, cottonseed oil, coconut oil and Palm oil.
  • the oil is usually derived from beef and sheep fat and lard.
  • Liquid animal oils include fish oil, cetyl oil, and the like. It is preferably at least one of medium chain triglyceride, ethyl oleate, fat, long chain fatty acid glyceride, medium chain fatty acid glyceride, and a mixture thereof.
  • the present invention also provides a process for the preparation of the aforementioned emulsion or subemulsion comprising the steps of uniformly dispersing the active ingredient in an oil phase and/or a surfactant to form a uniformly dispersed suspension. Further, the suspension is then mixed with an absorption enhancer.
  • the present invention also provides the use of the aforementioned pharmaceutical composition for the preparation of a medicament for improving the individual variability of a patient taking the drug, which is improved relative to the commercially available 17-(3-pyridyl)androst-5,16-diene- 3 ⁇ -acetate common tablets.
  • the present invention also provides a method of improving the individual variability of a patient taking a drug, comprising administering to the patient in need of treatment the aforementioned pharmaceutical composition, which is improved relative to commercially available 17-(3-pyridyl)androsine-5. 16-diene-3 ⁇ -acetate common tablets (Ze, ).
  • the 50-800 mg dose of 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate unit dosage form of the present invention is in dosage form with a 1000 mg dose of Zeolite
  • the formulation is bioequivalent in the subject.
  • the 50-800 mg dose of 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate unit dosage form of the present invention is in dosage form with a 1000 mg dose of Zeolite
  • the formulation is bioequivalent in a healthy male subject in a fasting state.
  • the 250 mg dose of 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate unit dosage form of the present invention is in dosage form with a 1000 mg dose of Zeolite
  • the formulation is bioequivalent in a healthy male subject in a fasting state.
  • the 250 mg dose of 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate unit dosage form of the invention is in a dosage form of 1000 mg with a dose of 1000 mg.
  • the formulation is bioequivalent in a healthy male subject in a fasting state, while having the effect of reducing the inter-individual differences in the subject.
  • the present invention also provides a unit dosage form wherein a 250 mg dose of 17-(3-pyridyl)androst-5,16-dien-3 ⁇ -ol or a derivative thereof is in unit dosage form with a 1000 mg dose of Zeolite Bioequivalence in the subject.
  • the subject is a healthy male, preferably in a fasting state.
  • the 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -ol or derivative thereof has a particle size D90 of less than about 10 um, preferably less than about 1 um, more preferably less than 500nm.
  • a 250 mg dose of 17-(3-pyridyl)androst-5,16-dien-3 ⁇ -ol or a derivative thereof may be in one unit dosage form or in multiple unit dosage forms.
  • the "D10” in the present invention means a particle diameter corresponding to a cumulative particle size distribution percentage of a sample of 10%.
  • “D50” refers to the particle size corresponding to a cumulative particle size distribution percentage of a sample of 50%.
  • D90 refers to the particle size corresponding to a sample having a cumulative particle size distribution percentage of 90%.
  • D[4,3] represents the "fourth moment/volume” average diameter, also called the volume (or weight) average diameter.
  • the "by weight of the solid preparation" of the present invention is a range of values for the amount of the active ingredient or other kind of excipient used to calculate the weight of the core without the coating.
  • the reference preparation R of the present invention is a commercially available 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate common tablet (trade name: ⁇ , ).
  • the derivative of the present invention is an ester or ether structural compound formed from a group of 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -ol with an acyl group, an alkyl group, etc., and the derivative is metabolizable in vivo.
  • the pharmaceutical excipients or reagents of the present invention may be derived from commercial sources, such as hydroxypropylmethylcellulose succinate acetate, which may be purchased from Shin-Etsu Co., Ltd.; 17-(3-pyridyl)androsine-5,16-di
  • the ene-3 ⁇ -acetate can be prepared by the method described in the examples of CN101528308.
  • Figure 1 Control of Compound A, hydroxypropylmethylcellulose (HMPC) AS LF, physical mixture of Compound A with hydroxypropyl methylcellulose (HMPC) AS LF, and XRPD pattern of Experimental Example 3 solid dispersion.
  • HMPC hydroxypropylmethylcellulose
  • HMPC hydroxypropylmethylcellulose
  • Figure 2 Dissolution profile of Formulation A, Formulation B and reference formulation R (250 mg).
  • Figure 3 Time course curve for Formulation A, Formulation B and reference formulation R (250 mg).
  • Figure 4 Dissolution profiles for Formulation C, Formulation D, Formulation E, and Formulation F.
  • Figure 5 Time course curves for Formulation C, Formulation D, Formulation E, and Formulation F.
  • FIG. 6 Time course of Formulation G, Formulation H, Formulation I.
  • Figure 8 Time course of formulation J and reference formulation R (1000 mg).
  • the 17-(3-pyridyl)androst-5,16-diene-3 ⁇ -acetate (Compound A) bulk drug was weighed in a weight ratio of 1:3 with Soluplus and thoroughly mixed in a Turbula T2F blender at 80 rpm. homogenized, hot-melt extrusion is set at conditions suitable die zone temperature, screw speed, and an appropriate size, mechanically pulverizing the extrudate SCALABLE LAB SYSTEM TM (SLS) mill, to give an amorphous solid dispersion powder.
  • SLS LAB SYSTEM TM
  • the compound A drug substance and HPMC AS MG were weighed in a weight ratio of 1:3, and thoroughly mixed at 80 rpm in a Turbula T2F mixer, and the conditions were set to an appropriate zone temperature, screw rotation speed, and a suitable size. hot melt extrusion, the extrudate was pulverized mechanically SCALABLE LAB SYSTEM TM (SLS) mill, to give an amorphous solid dispersion powder.
  • SLS SCALABLE LAB SYSTEM TM
  • the dissolution rate of the preparation A, the preparation B and the reference preparation R 250 mg were measured.
  • the specific dissolution data is shown in Table 1, and the dissolution profile is shown in Figure 2.
  • the solid dispersion technique can significantly improve the in vitro dissolution of the active ingredient in the drug relative to the reference formulation R (250 mg), especially the solid dispersion with HPMCAS MG as the carrier.
  • Formulation A (Example 1) 125 mg ⁇ 2 tablets;
  • Formulation B (Example 2) 125 mg ⁇ 2 tablets;
  • the data results are summarized in Table 2.
  • the drug time curve is shown in Figure 3.
  • the DAS software is used to calculate the pharmacokinetic parameters of Compound A in vivo.
  • the parameter list is shown in Table 3.
  • SD refers to standard deviation
  • RSD relative standard deviation Mean average
  • Solid Dispersion Tablets A and B although having a better in vitro drug release than the Reference Formulation R, especially the in vitro release of Tablet B can maintain a higher concentration for a longer period of time than the Reference Formula R, but The actual PK performance of the amorphous solid dispersion preparations was not as good as the commercial reference R preparation.
  • the solid dispersion 3, mannitol, PVPP XL (crosslinked polyvinylpyrrolidone), silica, and magnesium stearate were weighed and compressed in a powder form according to the designed formulation amount to obtain Formulation C.
  • the solid dispersion 3 and SNAC were weighed according to the designed dosage, and the materials were directly physically mixed and filled in 5 capsules.
  • the solid dispersion 3 and sodium citrate were weighed according to the designed dosage, and the materials were directly physically mixed and filled in 4 capsules.
  • Solid dispersion 3 and lauroylcarnitine-L-chloride were weighed according to the designed dosage, and the materials were directly physically mixed and filled in 4 capsules.
  • the dissolution rate of Formulation C, Formulation D, Formulation E, and Formulation F was determined according to the second method of the dissolution of the Chinese Pharmacopoeia 2015 (paddle method).
  • the specific dissolution data is shown in Table 4, and the dissolution profile is shown in Figure 4.
  • the release rate, the release degree, and the maintenance time of the high drug concentration of the preparation C without the absorption enhancer were superior to those of the preparations D, E, and F to which the absorption enhancer was added.
  • Protocol Set four groups A, B, C and D to give preparations C, D, E and F respectively:
  • the AUC 0-48h values of the preparations C to F can be equal to or better than the same dose of the reference preparation R, wherein the AUC 0-48h of the preparation D is 2.3 times that of the reference preparation R. , indicating that the bioavailability of the preparation D to which the absorption enhancer SNAC is added is significantly improved;
  • the coefficient of variation of Cmax of the reference preparation R was 74.6%.
  • the solid dispersion preparation C without the absorption enhancer had a higher bioavailability, but the coefficient of variation of Cmax was higher (97.4%).
  • the addition of the absorption enhancer preparations D to F not only increased the bioavailability, but also decreased the coefficient of variation to 34.1%, 29.6%, and 54.5%, respectively.
  • the addition of the absorption enhancer not only helps to improve the bioavailability of the active ingredient such as the compound A in the pharmaceutical composition, but also effectively reduces the difference in the individual components of the active ingredient such as the compound A, and increases the therapeutic safety of the active ingredient such as the compound A. Sexuality and effectiveness have an unexpected improvement.
  • Solid dispersion 3 and SNAC were weighed according to the designed dosage, and the materials were directly physically mixed and filled in 4 capsules.
  • Solid dispersion 3 and SNAC were weighed according to the designed dosage, and the materials were directly physically mixed and filled in 4 capsules.
  • micronized raw material drug and SNAC were weighed according to the designed prescription amount, and the materials were directly physically mixed and filled in 4 capsules.
  • Formulation G (Example 8) 62.5 mg ⁇ 4 tablets;
  • the preparations D, G and H have better in vivo absorption; at the same time, the coefficient of variation (RSD) of the Cmax of each preparation added with the absorption enhancer is small, which can improve the individual difference of the patients who use the medicine. .
  • compound A nanoparticles, sodium 8-(salicylamido)octanoate (SNAC), sodium hydrogencarbonate, MCC, PVPP XL are mixed, and then dry granulation by pulverization, pulverization, sieving, and MCC, PVPP XL mixing;
  • the dissolution rate of the preparation J was determined according to the second method of the dissolution of the Chinese Pharmacopoeia 2015 (paddle method). 900ml pH6.5 containing 1.0% SDS solution was used as the dissolution medium. The specific dissolution release data is shown in Table 9 below, and the dissolution curve is shown in Figure 7.
  • the dissolution rate of the preparation J was determined according to the second method of the dissolution test of the Chinese Pharmacopoeia 2015 (paddle method).
  • the tablets were first tested for acid resistance in 300 ml of FaSSGF solution at pH 1.6 for 45 min, and the tablets were transferred to a small cup of 20 ml of pH 6.5 FaSSIF solution for dissolution experiments.
  • the specific dissolution data are shown in Table 10.
  • the preparation J is 65% released in 5 minutes and the reference preparation is less than 10%.
  • the nano-preparation J has a significant advantage in the release rate; at the same time, the nano-preparation J is not only resistant to acid, but also simulates intestinal juice in the intestine. The coating can break quickly and the drug is released quickly.
  • Protocol Set two groups, respectively give reference preparation R (1000mg), preparation J:

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种CYP17抑制剂的药物组合物及其制备方法。所述组合物含有17-(3-吡啶基)雄甾-5,16-二烯-3b-醇或其衍生物,和吸收促进剂,如N-(8-(2-羟基苯甲酰基)氨基)辛酸(NAC)盐。所述组合物具有提高的生物利用度,并能改善给药患者个体差异性。

Description

一种CYP17抑制剂的药物组合物及其制备方法
本申请要求申请日为2017年8月28日的中国专利申请CN201710750827.8的优先权。本申请要求申请日为2017年8月29日的中国专利申请CN201710758825.3的优先权。本申请要求申请日为2018年3月13日的中国专利申请CN201810205415.0的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明属于药物制剂领域,具体涉及一种CYP17抑制剂的药物组合物及其制备方法。
背景技术
前列腺癌是一种常见的恶性致死性癌症,是排在肺癌之后的与癌症相关的男性死亡的第二致病因,近些年市场需求快速增长。17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯是一种CYP17抑制剂,已于2011年美国批准上市,适用于前列腺癌患者的治疗。
而市场上销售的17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯普通片剂(商品名泽珂,
Figure PCTCN2018102492-appb-000001
)在实际的临床疗效上展现较差的生物利用度和较大程度的个体间差异。据报告,餐后生物利用度可比空腹高8倍以上;即使在空腹给药的情况下,个体差异也非常高。因此为了降低市售制剂高剂量和高个体差异带来的临床风险,药物制剂研究人员急需开发更高生物利用度和更低个体差异的药物制剂。
17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯的溶解性和透过性都很差,属于典型的BCSIV类药物。该药物是前体药物,在肠道中脂酶的作用下会水解为17-(3-吡啶基)雄甾-5,16-二烯-3β-醇,该转化会形成局部的、暂时的高于17-(3-吡啶基)雄甾-5,16-二烯-3β-醇溶解度的浓度。而17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯的渗透过程为被动转运,药物的渗透速率与药物在肠道中的局部浓度呈现正比关系。
目前,提高药物口服生物利用度的途径主要有两个,一是改变药物物理化学性质,提高其透膜能力或改善其溶解特性,如微粉化技术、固体分散体技术、包合技术等,例如CN103813794A将17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯类似物分散于水溶性聚合物载体材料中,制成固体分散体,以解决成药后的溶出度问题;CN103070828B则公开以聚维酮为载体材料制备固体分散体,解决相似问题。另一途径是改善膜的特性以提高药物的膜透过性,或外排泵的抑制,以阻止机体对吸收药物的外排,即口服吸收促进剂的使用。例如,CN102123697A通过添加吸收促进剂N-(8-(2-羟基苯甲酰基)氨基)辛酸钠 (SNAC)或N-(8-(2-羟基苯甲酰基)氨基)葵酸钠(SNAD)或其组合增强蛋白质、蛋白酶抑制剂通过肠粘膜屏障的被吸收,以解决组合物中GLP-1类似物生物利用率问题。
另外,利用吸收促进剂解决小分子化合物生物利用度和使用吸收促进剂来改善一种药物在不同患者中表现出的个体差异性尚无文献报导。
发明内容
本发明提供了一种药物组合物,该药物组合物含有活性成分17-(3-吡啶基)雄甾-5,16-二烯-3β-醇或其衍生物,和吸收促进剂。
所述的吸收促进剂为一类能够提高药物在肠道的吸收的不同理化性质的天然或合成的辅料,包括但不限于生物黏附性高分子、脂肪酸或其可药用盐、表面活性剂等。生物粘附性高分子包括但不限于壳聚糖(chitosan)及其衍生物、卡波姆等;脂肪酸或其可药用盐可以为具有4-20个碳原子的碳链长度的中链脂肪酸或其可药用盐。在一些实施方案中,碳链长度是8-14个碳原子。在一些实施方案中,碳链长度是6-20个碳原子。在一些实施方案中,具有4-20个碳原子的碳链长度的中链脂肪酸或其可药用盐选自但不限于癸酸及癸酸盐类如癸酸或其可药用盐(不限于钠或钾盐)、N-(10-[2-羟基苯甲酰基]氨基)癸酸(SNAD)或其可药用盐(不限于钠或钾盐)、辛酸及辛酸盐类如辛酸或其可药用盐(不限于钠或钾盐)、N-(8-(2-羟基苯甲酰基)氨基)辛酸(NAC)或其可药用盐(不限于钠或钾盐如N-(8-(2-羟基苯甲酰基)氨基)辛酸钠的无水物、一水合物、二水合物、三水合物或三分之一水合物以及它们的组合),N-(5-氯水杨酰基)-8-氨基辛酸(5-CNAC)或其可药用盐(不限于钠或钾盐)、8-(水杨酰氨基)辛酸或其可药用盐(不限于钠或钾盐,如8-(水杨酰氨基)辛酸钠以及它们的单钠和二钠盐、其盐的溶剂(如乙醇)化物或水合物及它们的任意组合)。表面活性剂类分为非离子表面活性剂如吐温(吐温-20、吐温-80)、泊洛沙姆、聚氧乙烯蓖麻油,阴离子表面活性剂如十二烷基硫酸钠、乙二胺四乙酸钠、维生素E聚乙二醇1000琥珀酸或其可药用盐(不限于钠或钾盐)、月桂酰肉碱如月桂酰肉碱-D-氯化物、月桂酰肉碱-L-氯化物(又称为L-月桂酰基氯化肉碱)、癸酰肉碱如L-癸酰氯化肉碱等中的至少一种。
在一些实施方案中,吸收促进剂选自壳聚糖、卡波姆、癸酸、癸酸钠或钾、N-(10-[2-羟基苯甲酰基]氨基)癸酸(SNAD)、辛酸、辛酸钠或钾、N-(8-(2-羟基苯甲酰基)氨基)辛酸(NAC)、N-(5-氯水杨酰基)-8-氨基辛酸(5-CNAC)、8-(水杨酰氨基)辛酸钠(SNAC)、维生素E聚乙二醇1000琥珀酸盐(钠或钾)、月桂酰肉碱-D-氯化物、月桂酰肉碱-L-氯化物、L-癸酰氯化肉碱、吐温-20、吐温-80中的至少一种。在优选实施方案中,吸收促进剂选 自N-(10-[2-羟基苯甲酰基]氨基)癸酸(SNAD)、N-(8-(2-羟基苯甲酰基)氨基)辛酸(NAC)、N-(5-氯水杨酰基)-8-氨基辛酸(5-CNAC)、8-(水杨酰氨基)辛酸、8-(水杨酰氨基)辛酸钠(SNAC)中的至少一种。
进一步地,所述吸收促进剂与活性成分的重量比不小于1:100。
在非限制性实施例中,所述活性成分与吸收促进剂的重量比约为1:100至100:1,可以约为1:100、1:99、1:98、1:97、1:96、1:95、1:94、1:93、1:92、1:91、1:90、1:89、1:88、1:87、1:86、1:85、1:84、1:83、1:82、1:81、1:80、1:79、1:78、1:77、1:76、1:75、1:74、1:73、1:72、1:71、1:70、1:69、1:68、1:67、1:66、1:65、1:64、1:63、1:62、1:61、1:60、1:59、1:58、1:57、1:56、1:55、1:54、1:53、1:52、1:51、1:50、1:49、1:48、1:47、1:46、1:45、1:44、1:43、1:42、1:41、1:40、1:39、1:38、1:37、1:36、1:35、1:34、1:33、1:32、1:31、1:30、1:29、1:28、1:27、1:26、1:25、1:24、1:23、1:22、1:21、1:20、1:19、1:18、1:17、1:16、1:15、1:14、1:13、1:12、1:11、1:10、1:9、1:8、1:7、1:6、1:5、1:4、1:3、1:2、1:1、2:1、3:1、4:1、5:1、6:1、7:1、8:1、9:1、10:1、11:1、12:1、13:1、14:1、15:1、16:1、17:1、18:1、19:1、20:1、21:1、22:1、23:1、24:1、25:1、26:1、27:1、28:1、29:1、30:1、31:1、32:1、33:1、34:1、35:1、36:1、37:1、38:1、39:1、40:1、41:1、42:1、43:1、44:1、45:1、46:1、47:1、48:1、49:1、50:1、51:1、52:1、53:1、54:1、55:1、56:1、57:1、58:1、59:1、60:1、61:1、62:1、63:1、64:1、65:1、66:1、67:1、68:1、69:1、70:1、71:1、72:1、73:1、74:1、75:1、76:1、77:1、78:1、79:1、80:1、81:1、82:1、83:1、84:1、85:1、86:1、87:1、88:1、89:1、90:1、91:1、92:1、93:1、94:1、95:1、96:1、97:1、98:1、99:1、100:1,进一步地,优选为1:10至20:1,更优选为1:10至10:1。
在可选实施方案中,基于药物组合物重量计,本发明所述活性成分的含量约0.5至80wt%,可以为0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5.0、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6.0、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7.0、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、8.0、8.1、8.2、8.3、8.4、8.5、8.6、8.7、8.8、8.9、9.0、9.1、9.2、9.3、9.4、9.5、9.6、9.7、9.8、9.9、10.0、10.1、10.2、10.3、10.4、10.5、10.6、10.7、10.8、10.9、11.0、11.1、11.2、11.3、11.4、11.5、11.6、11.7、11.8、11.9、12.0、12.1、12.2、12.3、12.4、12.5、12.6、12.7、12.8、12.9、13.0、13.1、13.2、13.3、13.4、13.5、13.6、13.7、13.8、13.9、14.0、14.1、14.2、14.3、14.4、14.5、14.6、14.7、14.8、14.9、15.0、15.1、15.2、15.3、15.4、15.5、15.6、15.7、15.8、15.9、 16.0、16.1、16.2、16.3、16.4、16.5、16.6、16.7、16.8、16.9、17.0、17.1、17.2、17.3、17.4、17.5、17.6、17.7、17.8、17.9、18.0、18.1、18.2、18.3、18.4、18.5、18.6、18.7、18.8、18.9、19.0、19.1、19.2、19.3、19.4、19.5、19.6、19.7、19.8、19.9、20.0、20.1、20.2、20.3、20.4、20.5、20.6、20.7、20.8、20.9、21.0、21.1、21.2、21.3、21.4、21.5、21.6、21.7、21.8、21.9、22.0、22.1、22.2、22.3、22.4、22.5、22.6、22.7、22.8、22.9、23.0、23.1、23.2、23.3、23.4、23.5、23.6、23.7、23.8、23.9、24.0、24.1、24.2、24.3、24.4、24.5、24.6、24.7、24.8、24.9、25.0、25.1、25.2、25.3、25.4、25.5、25.6、25.7、25.8、25.9、26.0、26.1、26.2、26.3、26.4、26.5、26.6、26.7、26.8、26.9、27.0、27.1、27.2、27.3、27.4、27.5、27.6、27.7、27.8、27.9、28.0、28.1、28.2、28.3、28.4、28.5、28.6、28.7、28.8、28.9、29.0、29.1、29.2、29.3、29.4、29.5、29.6、29.7、29.8、29.9、30.0、30.1、30.2、30.3、30.4、30.5、30.6、30.7、30.8、30.9、31.0、31.1、31.2、31.3、31.4、31.5、31.6、31.7、31.8、31.9、32.0、32.1、32.2、32.3、32.4、32.5、32.6、32.7、32.8、32.9、33.0、33.1、33.2、33.3、33.4、33.5、33.6、33.7、33.8、33.9、34.0、34.1、34.2、34.3、34.4、34.5、34.6、34.7、34.8、34.9、35.0、35.1、35.2、35.3、35.4、35.5、35.6、35.7、35.8、35.9、36.0、36.1、36.2、36.3、36.4、36.5、36.6、36.7、36.8、36.9、37.0、37.1、37.2、37.3、37.4、37.5、37.6、37.7、37.8、37.9、38.0、38.1、38.2、38.3、38.4、38.5、38.6、38.7、38.8、38.9、39.0、39.1、39.2、39.3、39.4、39.5、39.6、39.7、39.8、39.9、40.0、40.1、40.2、40.3、40.4、40.5、40.6、40.7、40.8、40.9、41.0、41.1、41.2、41.3、41.4、41.5、41.6、41.7、41.8、41.9、42.0、42.1、42.2、42.3、42.4、42.5、42.6、42.7、42.8、42.9、43.0、43.1、43.2、43.3、43.4、43.5、43.6、43.7、43.8、43.9、44.0、44.1、44.2、44.3、44.4、44.5、44.6、44.7、44.8、44.9、45.0、45.1、45.2、45.3、45.4、45.5、45.6、45.7、45.8、45.9、46.0、46.1、46.2、46.3、46.4、46.5、46.6、46.7、46.8、46.9、47.0、47.1、47.2、47.3、47.4、47.5、47.6、47.7、47.8、47.9、48.0、48.1、48.2、48.3、48.4、48.5、48.6、48.7、48.8、48.9、49.0、49.1、49.2、49.3、49.4、49.5、49.6、49.7、49.8、49.9、50.0、50.1、50.2、50.3、50.4、50.5、50.6、50.7、50.8、50.9、51.0、51.1、51.2、51.3、51.4、51.5、51.6、51.7、51.8、51.9、52.0、52.1、52.2、52.3、52.4、52.5、52.6、52.7、52.8、52.9、53.0、53.1、53.2、53.3、53.4、53.5、53.6、53.7、53.8、53.9、54.0、54.1、54.2、54.3、54.4、54.5、54.6、54.7、54.8、54.9、55.0、55.1、55.2、55.3、55.4、55.5、55.6、55.7、55.8、55.9、56.0、56.1、56.2、56.3、56.4、56.5、56.6、56.7、56.8、56.9、57.0、57.1、57.2、57.3、57.4、57.5、57.6、57.7、57.8、57.9、58.0、58.1、58.2、58.3、58.4、58.5、58.6、58.7、58.8、58.9、59.0、59.1、59.2、59.3、 59.4、59.5、59.6、59.7、59.8、59.9、60.0、60.1、60.2、60.3、60.4、60.5、60.6、60.7、60.8、60.9、61.0、61.1、61.2、61.3、61.4、61.5、61.6、61.7、61.8、61.9、62.0、62.1、62.2、62.3、62.4、62.5、62.6、62.7、62.8、62.9、63.0、63.1、63.2、63.3、63.4、63.5、63.6、63.7、63.8、63.9、64.0、64.1、64.2、64.3、64.4、64.5、64.6、64.7、64.8、64.9、65.0、65.1、65.2、65.3、65.4、65.5、65.6、65.7、65.8、65.9、66.0、66.1、66.2、66.3、66.4、66.5、66.6、66.7、66.8、66.9、67.0、67.1、67.2、67.3、67.4、67.5、67.6、67.7、67.8、67.9、68.0、68.1、68.2、68.3、68.4、68.5、68.6、68.7、68.8、68.9、69.0、69.1、69.2、69.3、69.4、69.5、69.6、69.7、69.8、69.9、70.0、70.1、70.2、70.3、70.4、70.5、70.6、70.7、70.8、70.9、71.0、71.1、71.2、71.3、71.4、71.5、71.6、71.7、71.8、71.9、72.0、72.1、72.2、72.3、72.4、72.5、72.6、72.7、72.8、72.9、73.0、73.1、73.2、73.3、73.4、73.5、73.6、73.7、73.8、73.9、74.0、74.1、74.2、74.3、74.4、74.5、74.6、74.7、74.8、74.9、75.0、75.1、75.2、75.3、75.4、75.5、75.6、75.7、75.8、75.9、76.0、76.1、76.2、76.3、76.4、76.5、76.6、76.7、76.8、76.9、77.0、77.1、77.2、77.3、77.4、77.5、77.6、77.7、77.8、77.9、78.0、78.1、78.2、78.3、78.4、78.5、78.6、78.7、78.8、78.9、79.0、79.1、79.2、79.3、79.4、79.5、79.6、79.7、79.8、79.9、80.0wt%,优选约为10.0至40.0wt%,更优选约为15.0至25.0wt%。
在一些实施方案中,药物组合物中活性成分以增加生物利用度的形式存在。如通过增加表面积以增加生物利用度(即,降低颗粒大小),如US4107288中描述了一种药物制剂,该制剂所具有的颗粒大小范围为10-1000nm,其中的活性物质被支撑在交联的大分子基质上。US5145684中描述了一种药物制剂的生产,在表面稳定剂的存在下,将其中活性成分研磨成纳米颗粒(平均颗粒大小为400nm),随后将其分散在液体介质中以得到显示出明显高的生物利用度的药物制剂;自乳化药物递送系统(SEDDS)为油和表面活性剂的混合物,也可以用于增加生物利用度;通过使用环糊精制成包合物增加生物利用度;将活性成分分散于载体材料中形成固体分散体增加生物利用度等等。
进一步地,本发明所述药物组合物还含有至少一种赋形剂。
在非限制实施例中,本发明所述的药物组合物可作为中间制剂进一步制备成注射液或固体制剂,所述固体制剂选自但不限于片剂、丸剂、颗粒剂、冻干粉针剂或胶囊剂。
进一步地,所述固体制剂中赋形剂为本领域技术人员所熟知或可以确定的,选自但不限于崩解剂、填充剂、粘合剂、润滑剂中的至少一种;所述注射液赋形剂选自但不限于无毒性的生理学可接受的液体载体,如生理盐水、注射用水、5%葡萄糖注射液、葡萄糖氯化钠注射液,pH调节剂或防腐剂中的至少一种。
填充剂提供体积,将片剂制成可加工处理的实际大小,也可能有助于加工处理,改善固体制剂的物理性质如流动性、可压缩性和固体制剂的硬度。本发明所述填充剂为本领域技术人员所知或可确定的,选自但不限于糊精、乳糖、蔗糖、磷酸氢钙、硫酸钙、淀粉、无水磷酸氢钙、磷酸氢钙、微晶纤维素、甘露醇中至少一种;优选地,所述填充剂的用量占固体制剂重量的1至90%,在实施例方案中可以为1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、90%,更优选为25至75%,以固体制剂重量计。
本发明所述崩解剂为本领域技术人员所知或可以确认的,选自但不限于交联羧甲基纤维素钠、交联聚维酮、羧甲基淀粉钠、羧甲基纤维素钙、低取代羟丙基纤维素、淀粉、预胶化淀粉、海藻酸中的至少一种;优选地,所述崩解剂的用量占固体制剂重量的0.5至20%,实施方案中可以为0.5、06、0.7、0.8、0.9、1.0、1.1、1.3、1.5、1.7、1.9、2.1、2.3、2.5、2.7、2.9、3.1、3.3、3.5、3.7、3.9、4.1、4.3、4.5、4.7、4.9、5.1、5.3、5.5、5.7、5.9、6.1、6.3、6.5、6.7、6.9、7.1、7.3、7.5、7.7、7.9、8.1、8.3、8.5、8.7、8.9、9.1、9.3、9.5、9.7、9.9、10.1、10.3、10.5、10.7、10.9、11.1、11.3、11.5、11.7、11.9、12.1、12.3、12.5、12.7、12.9、13.1、13.3、13.5、13.7、13.9、14.1、14.3、14.5、14.7、14.9、15.1、15.3、15.5、15.7、15.9、16.1、16.3、16.5、16.7、16.9、17.1、17.3、17.5、17.7、17.9、18.1、18.3、18.5、18.7、18.9、19.1、19.3、19.5、19.7、19.9、20%,优选为2至10%,以固体制剂重量计。
本发明所述粘合剂为本领域技术人员所知或可以确认的,选自但不限于聚乙烯吡咯烷酮、淀粉、甲基纤维素、羧基纤维素、羟丙基纤维素、羟丙甲基纤维素、海藻酸盐中的至少一种,优选自聚乙烯吡咯烷酮、羟丙基纤维素中的至少一种,更优选所述粘合剂的用量占固体制剂重量的0.5至10%,实施方案中可以为0.5、0.6、0.7、0.8、0.9、1、1.1、1.3、1.5、1.7、1.9、2.1、2.3、2.5、2.7、2.9、3.1、3.3、3.5、3.7、3.9、4.1、4.3、4.5、4.7、4.9、5.1、5.3、5.5、5.7、5.9、6.1、6.3、6.5、6.7、6.9、7.1、7.3、7.5、7.7、7.9、8.1、8.3、8.5、8.7、8.9、9.1、9.3、9.5、9.7、9.9、10.0%,以固体制剂重量计。
本发明所述润滑剂为本领域技术人员所知或可以确认的,选自但不限于硬脂酸镁、硬脂酸、棕榈酸、硬脂酸钙、滑石粉、胶态二氧化硅、巴西棕榈蜡、硬脂富马酸钠中的至少一种;优选地,本发明所述润滑剂的用量占固体制剂重量的0.1至5%,实施方案中 可以为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、1.1、1.3、1.5、1.7、1.9、2.1、2.3、2.5、2.7、2.9、3.1、3.3、3.5、3.7、3.9、4.1、4.3、4.5、4.7、4.9、5.0%,优选为0.1至2.0%,以固体制剂重量计。
根据需要,本发明所述固体制剂还可以进一步包衣,选自但不限于水溶性高分子、水不溶性高分子、胃溶性高分子、肠溶性高分子。水溶性高分子,如,阿拉伯胶粉末、明胶、支链淀粉、糊精、羧甲基淀粉钠、藻酸钠等天然高分子类或多糖类及它们的衍生物,羧甲醚纤维素(carmellose)、羧甲基纤维素钠、羧甲基纤维素钙、羟丙基纤维素、羟丙甲基纤维素、羟乙基纤维素、羟甲基纤维素、甲基纤维素、羧甲基纤维素(carboxymethylcellulose)等纤维素衍生物,聚乙烯吡咯烷酮、聚乙烯醇等水溶性乙烯基衍生物;水不溶性高分子,如,乙基纤维素(乙基纤维素水分散液(例如,商品名:AQUACOAT、FMC公司制))、乙酸乙烯酯聚合物(例如,商品名:Kollicoat SR30D、BASF公司制)、甲基丙烯酸氨基烷基酯共聚物(特别是其水分散液(AmmonioMethacrylateCopolymerDispersion)(例如,商品名:EUDRAGITRL30D、EUDRAGITRS30D、EVONIC社制)、丙烯酸乙酯-甲基丙烯酸甲酯共聚物分散液(例如,商品名:EUDRAGITNE30D、EVONIC社制);胃溶性高分子,如聚乙烯醇缩醛-二乙基氨基乙酸酯(例如,商品名:AEA、Mitsubishi-KagakuFoods Corporation制)等氨基缩醛类化合物,甲基丙烯酸氨基烷基酯共聚物E(例如,商品名:EUDRAGITE、EVONIC社制),它们的混合物。肠溶性高分子,如,纤维素乙酸酯丙酸酯、羟丙甲基纤维素乙酸酯琥珀酸酯、羟丙甲基纤维素苯二甲酸酯(hypromellose苯二甲酸酯)、羟甲基乙基纤维素苯二甲酸酯、羧甲基乙基纤维素、纤维素乙酸酯、苯二甲酸酯等肠溶性纤维素酯类,甲基丙烯酸共聚物LD(例如,商品名:EUDRAGITL30D-55、EVONIC社制;商品名:POLYQUIDPA30、三洋化成社制;商品名:KollicoatMAE30DP、BASF公司制;商品名:Acryl-Eze(雅克宜,批号93O18508),卡乐康公司)、甲基丙烯酸共聚物L(例如,商品名:EUDRAGITL、EVONIC社制)、甲基丙烯酸共聚物S(例如,商品名:EUDRAGITS100、EUDRAGITFS30D、EVONIC社制)等肠溶性丙烯酸类共聚物。
在一些实施方案中,所述包衣为肠溶包衣,选自纤维素乙酸酯丙酸酯、羟丙甲基纤维素乙酸酯琥珀酸酯、羟丙甲基纤维素苯二甲酸酯(hypromellose苯二甲酸酯)、羟甲基乙基纤维素苯二甲酸酯、羧甲基乙基纤维素、纤维素乙酸酯、甲基丙烯酸共聚物L、甲基丙烯酸共聚物LD、甲基丙烯酸共聚物S、Acryl-Eze。
在优选实施方案中,本发明固体制剂中包衣层为至少一层,可以为一层、两层、三层,甚至四层包衣。
本发明还提供制备前述药物组合物的方法,包括:将活性成分与吸收促进剂相混合的步骤。
在非限制实施例中,本发明所述药物组合物还含有至少一种载体材料,所述活性成分分散于载体材料中形成固体分散体。所述载体材料选自但不限于3,4-二甲基-苯甲基氨基甲酸酯(MPMC)、琥珀酸醋酸羟丙基甲基纤维素(HPMCAS)、邻苯二甲酸羟丙甲纤维素(HPMCP)、泊洛沙姆188、泊洛沙姆407、聚(甲基)丙烯酸酯(Eudragit)、N-乙烯基-2-吡咯烷酮的均聚物、聚维酮、共聚维酮(Plasdone)、羧甲基乙基纤维素(CMEC)、邻苯二甲酸乙酸纤维素(CAP)、甲基丙烯酸共聚物LD(L30D55)、甲基丙烯酸共聚物S(S-100)、甲基丙烯酸氨基烷基酯共聚物E(胃包衣基料)、聚(乙烯基乙缩醛)二乙基氨基乙酸酯(AEA)、聚乙烯吡咯烷酮(K-25、5030、90;PVP)、聚乙烯吡咯烷酮乙酸乙烯酯(PVP-VA)、乙基纤维素(EC)、甲基丙烯酸共聚物RS(RS30D)、聚乙烯醇(PVA)、甲基纤维素(MC)、羟丙基纤维素(HPC)、羟丙基甲基纤维素(HPMC)、HPMC2208(Metolose90SH)、HPMC2906(Metolose65SH)、HPMC(Metolose60SH)、羧甲基纤维素钠(羟乙酸纤维素钠)、糊精、支链淀粉、阿拉伯胶、黄蓍胶、藻酸钠、藻酸丙二醇酯、琼脂粉、明胶、淀粉、加工淀粉、磷脂、卵磷脂、葡甘露聚糖、环氧乙烷与环氧丙烷的嵌段共聚物(PEO/PPO)、聚乙二醇(PEG)偏苯三酸醋酸纤维素(CAT)、偏苯三酸醋酸羟丙甲基纤维素(HPMCAT)和醋酸丁酸羧甲基纤维素(CMCAB)或N-乙烯基-2-吡咯烷酮与乙酸乙烯酯的无规共聚物、甲基丙烯酸和甲基丙烯酸甲酯的共聚物或聚乙二醇、聚乙烯基已内酰胺和聚乙酸乙酯的接枝共聚物如Soluplus。
进一步地,所述载体材料选自醋酸羟丙甲纤维素琥珀酸酯(HPMCAS)、邻苯二甲酸羟丙基纤维素(HPMCP)、聚乙烯吡咯烷酮乙酸乙烯酯(PVP-VA)、甲基丙烯酸和甲基丙烯酸甲酯的共聚物或聚乙二醇、聚乙烯基已内酰胺和聚乙酸乙酯的接枝共聚物。
本发明所述药物组合物,所含载体材料与活性成分或其衍生物的重量比范围较大,最低可为0.5:1。本发明中载体材料的含量越高,相应的固体分散体的生物利用度也越高。考虑到载药量与生物利用度之间的平衡,本发明中载体材料与活性成分的重量比可以为0.5:1至5:1,优选为1:1至4:1,在一些实施方案中可以为1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1、2.0:1、2.1:1、2.2:1、2.3:1、2.4:1、2.5:1、2.6:1、2.7:1、2.8:1、2.9:1、3.0:1、3.1:1、3.2:1、3.3:1、3.4:1、3.5:1、3.6:1、3.7:1、3.8:1、3.9:1、4.0:1。
本发明还提供制备前述固体分散体的方法,包括将活性成分分散于制备固体分散体所需的载体材料中的步骤。进一步地,所得固体分散体再与吸收促进剂相混合。
在非限制性实施例中,制备该固体分散体的方式有如熔融法、溶剂法、溶剂-熔融法。 其它尚有利用共溶原理,用研磨法形成低共熔混合物,以及药物溶于有机溶剂分散吸附于惰性材料形成固体表面吸附物。
所述溶剂法(也称共沉淀法)为将药物和载体共同溶于有机溶剂中或溶于溶剂中后混合均匀,或将载体材料混悬分散在活性成分或其可药用盐的有机溶剂中,而后除去溶剂。所述除去溶剂的方法为本领域技术人员所知或可以确定的,可以为将大极性有机溶剂滴加至低极性溶剂析出固体的方式;也可以为喷雾干燥的方式或减压干燥的方式。
所述熔融法是将药物与载体混匀,加热至熔融,也可将载体加热熔融后,再加入药物搅溶,然后将熔融物在剧烈搅拌下,迅速冷却成固体或直接灌注胶囊中后冷却。
所述溶剂-熔融法为将药物用少量有机溶剂溶解后与融化了的载体混合均匀,蒸去有机溶剂,冷却固化而得。
在可选实施方案中,所述固体分散体制剂可采用熔融法制得,又称为热熔挤出法,即将药物与载体混匀,加热至熔融,也可将载体加热熔融后,再加入药物搅溶,然后将熔融物在剧烈搅拌下,迅速冷却成固体或直接灌注胶囊中后冷却得固体分散体。
随后固体分散体进一步地与吸收促进剂、固体制剂成型所需的填充剂和/或崩解剂等赋形剂混合均匀,湿法制粒或干法制粒后,制备丸剂或颗粒剂或压片或装胶囊;根据需要,所得颗粒剂或素片还可以进一步包衣等。
在可选实施方案中,本发明所述固体分散体可采用溶剂法(或称为共沉淀法),即将载体材料与活性成分或其可药用盐共同溶解于有机溶剂中,或将载体材料混悬分散在活性成分或其可药用盐的有机溶剂中,而后除去有机溶剂后制得固体分散体。
随后固体分散体进一步地与固体制剂成型所需的填充剂和/或崩解剂等赋形剂混合均匀,加入粘合剂湿法制粒,或干法制粒,制备的颗粒干燥过筛整粒后与润滑剂混合均匀,制备丸剂或颗粒剂或压片或装胶囊;根据需要,所得颗粒剂或素片或胶囊还可以进一步包衣等。
根据药剂学Noyes-Whitney方程,粉碎减小药物的粒径来增加药物溶出面积是改善难溶性药物溶出特性的有效方法,即通常所称的微粉化技术。在一些可选实施方案中,本发明所述的药物组合物中活性成分在成药前需要经过微粉化,以达到期待颗粒粒径。
在非限制实施例中,经微粉化的活性成分中90%颗粒的粒径不小于10μm(可表述为D90或d(0.9))。
依据物料性质,达到微粉化的目的可以但不限于通过球磨机研磨或气流粉碎予以实现。
另一可选实施方案中,本发明所述药物组合物中活性成分以纳米级粒径存在,所述 活性成分粒径D90值小于于约10μm,可选自小于约10μm,小于约9μm,小于约8μm,小于约7μm,小于约6μm,小于约5μm,小于约4μm,小于约3μm,小于约2μm,小于约1μm,小于约5000nm,小于约4800nm,小于约4500nm,小于约4200nm,小于约4000nm,小于约3800nm,小于约3500nm,小于约3200nm,小于约3000nm,小于约2800nm,小于约2500nm,小于约2200nm,小于约2000nm,小于约1900nm,小于约1800nm,小于约1700nm,小于约1600nm,小于约1500nm,小于约1400nm,小于约1300nm,小于约1200nm,小于约1100nm,小于约1000nm,小于约900nm,小于约800nm,小于约700nm,小于约600nm,小于约500nm,小于约400nm,小于约300nm,小于约200nm,小于约100nm,小于约50nm或更小,优选小于约5000nm,更优选小于约3000nm,最优选小于约2000nm。
进一步地,本发明药物组合物中活性成分的粒径D50值小于约1μm,所述D50值优选自小于约1μm,小于约900nm、小于约800nm,小于约700nm,小于约600nm,小于约500nm,小于约450nm,小于约400nm,小于约350nm,小于约300nm,小于约250nm,小于约200nm,小于约150nm,小于约100nm或更小,优选小于约800nm,更优选小于约700nm,最优选小于约600nm。
更进一步地,本发明药物组合物中活性成分的粒径D10值小于约300nm,所述D50值优选自小于约300nm,小于约280nm,小于约250nm,小于约220nm,小于约200nm,小于约180nm,小于约150nm,小于约120nm,小于约100nm,小于约90nm,小于约80nm,小于约70nm,小于约60nm,小于约50nm,小于约40nm,小于约30nm,小于约20nm,小于约10nm,小于约5nm或更小,优选小于约200nm,最优选小于100nm。
进一步地,本发明所述药物组合物还含有至少一种表面稳定剂。
本发明所述表面稳定剂是那些通过物理作用吸附在活性成分的表面,但不与活性成分形成化学键结合的物质。表面稳定剂包括非离子型、阴离子型、阳离子型、离子型和两性离子型表面稳定剂。
表面稳定剂的代表性实例包括但是不局限于羟丙基甲基纤维素(现称为"羟丙甲纤维素”)、羟丙基纤维素、聚乙烯吡咯烷酮、十二烷基硫酸钠、磺基琥珀酸二辛酯、明胶、酪蛋白、卵磷脂(磷脂)、葡聚糖、阿拉伯树胶、多库脂钠、胆酸钠、脱氧胆酸钠、胆固醇、黄蓍胶、硬脂酸、苯扎氯铵、硬脂酸钙、单硬脂酸甘油酯、十六醇十八醇混合物、聚西托醇乳化蜡、失水山梨糖醇酯、聚氧乙稀烷基醚(例如,聚乙二醇醚如聚西托醇1000)、聚氧乙烯蓖麻油衍生物、聚氧乙稀失水山梨糖醇脂肪酸酯(例如,市售可得的
Figure PCTCN2018102492-appb-000002
例如,
Figure PCTCN2018102492-appb-000003
Figure PCTCN2018102492-appb-000004
聚乙二醇(例如,Carbowaxes
Figure PCTCN2018102492-appb-000005
Figure PCTCN2018102492-appb-000006
聚氧乙稀硬脂 酸酯、胶体二氧化硅、磷酸盐/酯、羧甲基纤维素钙、羧甲基纤维素钠、甲基纤维素、羟乙基纤维素、邻苯二甲酸羟丙甲纤维素、D-Α琥珀酸生育酚聚乙二醇酯(TPGS)、非晶纤维素、硅酸铝镁、三乙醇胺、聚乙烯醇(PVA)、4-(1,1,3,3-四甲基丁基)苯酚与环氧乙烷和甲醛的聚合物(亦称泰洛沙泊、四丁纷醛和triton)、泊洛沙姆(例如,
Figure PCTCN2018102492-appb-000007
Figure PCTCN2018102492-appb-000008
其是环氧乙烷和环氧丙烷的嵌段共聚物);poloxamines(例如,Tetromc
Figure PCTCN2018102492-appb-000009
亦称
Figure PCTCN2018102492-appb-000010
它是由环氧丙烷和环氧乙烷顺序加成到乙二胺而衍生形成的四官能嵌段共聚物(BASF Wyandotte Corporation,Parsippany,N.J.));Tetronic
Figure PCTCN2018102492-appb-000011
(T-l508)(BASF Wyandotte Corporation),
Figure PCTCN2018102492-appb-000012
(一种烷基芳基聚酸磺酸酯,Rohn and Haas);Crodestas
Figure PCTCN2018102492-appb-000013
(蔗糖硬脂酸酯和蔗糖二硬脂酸酯的混合物,Croda Inc.);对异壬基苯氧基聚(缩水甘油),也称作
Figure PCTCN2018102492-appb-000014
或Surfactant
Figure PCTCN2018102492-appb-000015
(Olin Chemicals,Stamford,CT);Crodestas
Figure PCTCN2018102492-appb-000016
(Croda,Inc.);和SA9OHCO(C 18H 37CH 2(CON(CH 3)-CH 2(CHOH) 4(CH 2OH) 2,Eastman Kodak Co.);癸酰-N-甲基葡糖酰胺(glucamide);正癸基(-D_吡喃葡糖苷;正癸基(-D-吡喃麦芽糖苷;正十二烷基(-D-吡喃葡糖苷;正十二烷基(-D-麦芽糖苷;庚酰-N-甲基葡糖酰胺;正庚基-(-D-吡喃葡糖苷;正庚基(-D-硫代葡糖苷;正己基(-D-吡喃葡糖苷;壬酰-N-甲基葡糖酰胺;正壬酰(-D-吡喃葡糖苷;辛酰-N-甲基葡糖酰胺;正辛基-(-D-吡喃葡糖苷;辛基(-D-硫代吡喃葡糖苷;PEG-磷脂,PEG-胆固醇,PEG-胆固醇衍生物、醋酸羟丙甲纤维素琥珀酸酯(HPMCAS);PEG-维生素A,PEG-维生素E,溶菌酶,Soluplus(聚乙烯己内酰胺-聚乙酸乙烯酯-聚乙二醇接枝共聚物),乙稀基吡咯烷酮和乙酸乙烯酯的无规共聚物等。
有用的阳离子型表面稳定剂的实例包括但不局限于聚合物、生物聚合物、多糖、纤维素质(cellulosics)、藻酸盐、磷脂和非聚合的化合物,诸如两性离子型稳定剂、聚-n-甲基吡啶鎓、氯化anthryulpltp吡啶鎓、阳离子型磷脂、壳聚糖、聚赖氨酸、聚乙烯基咪唑、polybrene、溴化聚甲基丙烯酸甲酯三甲基溴化铵(PMMTMABr)、己基二苯乙酮基三甲基溴化铵(HDMAB)和聚乙烯吡咯烷酮-2-二甲氨基乙基异丁烯酸酯硫酸二甲酯。其他有用的阳离子型稳定剂包括但不局限于,阳离子型脂质、锍、鏻和季铵化合物,诸如硬脂基三甲基氯化铵、苄基二(2-氯乙基)乙基溴化铵、椰油三甲基氯化铵或溴化铵、椰油甲基二羟乙基氯化铵或溴化铵、癸基三乙基氯化铵、癸基二甲基羟乙基氯化铵或溴化铵、C 12-15二甲基羟乙基氯化铵或溴化铵、椰油二甲基羟乙基氯化铵或溴化铵、十四烷基三甲基甲硫酸铵、月桂基二甲基苄基氯化铵或溴化铵、月桂基二甲基(氧乙烯基)4氯化铵或溴化铵、N-烷基(C 12-18)二甲基苄基氯化铵、N-烷基(C 14-18)二甲基苄基氯化铵、N-十四烷基二甲基苄基氯化铵一水合物、二甲基二癸基氯化铵、N-烷基和(C 12-14)二甲基1-萘基甲基氯化铵、 三甲基卤化铵、烷基三甲基铵盐和二烷基二甲基铵盐、月桂基三甲基氯化铵、乙氧基化烷酰氨基烷基二烷基铵盐和/或乙氧基化三烷基铵盐、二烷基苯二烷基氯化铵、N-二癸基二甲基氯化铵、N-十四烷基二甲基苄基氯化铵一水合物、N-烷基(C 12-14)二甲基1-萘基甲基氯化铵和十二烷基二甲基苄基氯化铵、二烷基苯烷基氯化铵、月桂基三甲基氯化铵、烷基千基甲基氯化铵、烷基苄基二甲基溴化铵、C 12,C 15,C 17-三甲基溴化铵、十二烷基苄基三乙基氯化铵、聚二烯丙基二甲基氯化铵(DADMAC)、二甲基氯化铵、烷基二甲基卤化铵、三(十六烷基)甲基氯化铵、癸基三甲基溴化铵、十二烷基三乙基溴化铵、十四烷基三甲基溴化铵、甲基三辛基氯化铵(ALIQUAT 336)、POLYQUAT、四丁基溴化铵、苄基三甲基溴化铵、胆碱酯(诸如脂肪酸的胆碱酯)、苯扎氯铵、司拉氯铵(stearalkonium chloride)类化合物(诸如硬脂基三甲基氯化铵和二硬脂基二甲基氯化铵)、十六烷基溴化吡啶鎓或氯化吡啶鎓、季铵化的聚氧乙基烷基胺的卤化物盐、MIRAPOL和ALKAQUAT(Alkaril Chemical Company)、烷基吡啶鎓盐;胺,诸如烷基胺、二烷基胺、链烷醇胺、聚乙烯多胺、N,N-二烷基氨基烷基丙烯酸酯和乙烯基吡啶,胺盐,诸如十二烷基胺乙酸盐、十八烷基胺乙酸盐、烷基吡啶鎓盐和烷基咪唑鎓盐,和氧化胺;酰亚胺p比咯鎓(imideazolinium)盐;质子化的季型丙烯酰胺;甲基化的季型聚合物如聚[二烯丙基二甲基氯化铵]和聚[N-甲基乙烯基氯化吡啶鎓];和阳离子型瓜尔胶。示例性的阳离子型表面稳定剂和其它有用的阳离子型表面稳定剂描述于以下文献中:J.Cross和E.Singer,Cationic Surfactants:Analytical and Biological Evaluation(Marcel Dekker,1994);P·和D.Rubingh(编者),Cationic Surfactants:Physical Chemistry(Marcel Dekker,1991);和J.Richmond,Cationic Surfactants:Organic Chemistry,(Marcel Dekker,1990)。
非聚合的表面稳定剂是任何非聚合的化合物,如苯扎氯铵、碳鎓化合物、锜化合物、氧鎓化合物、卤鎓化合物、阳离子型有机金属化合物、季磷化合物、吡啶鎓化合物、苯胺鎓化合物、铵化合物、羟基铵化合物、伯铵化合物、仲铵化合物、叔铵化合物和通式NR 1R 2R 3R 4(+)的季铵化合物。
这些非聚合的化合物包括但不限于:二十二烷基千基二甲基氯化铵、氯化benzethonium、十六烷基氯化吡啶鎓、二十二烷基三甲基氯化铵、十二烷基苄基二甲基氯化铵、十六烷基苄基二甲基氯化铵、十六烷基三甲基溴化铵、十六烷基三甲基氯化铵、十六烷基氢氟胺、氯化氯烯丙基六亚甲基四胺(Quaternium-15)、二硬脂基二甲基氯化铵(Quaternium-5)、十二烷基二甲基乙基千基氯化铵(Quaternium-14)、Quaternium-22、Quaternium-26、Quaternium-18锂蒙脱石、二甲氯乙基氯盐酸盐、半耽氨酸盐酸盐、二乙醇铵POE(10)油基醚磷酸盐、二乙醇铵POE(3)油基醚磷酸盐、牛脂基苄基二甲基氯化铵、 二甲基—(十八烷基)铵衫润土、司拉氯铵、溴化杜灭芬、地那铵苯甲酸盐、十四烷基苄基二甲基氯化铵、十二烷基三甲基氯化铵、乙二胺二盐酸盐、盐酸胍、盐酸吡哆醇、盐酸碘非他胺、盐酸葡甲胺、甲苄索氯铵、十四烷基三甲基溴化铵、油基三甲基氯化铵、Polyquaternium-l、盐酸普鲁卡因、椰油基甜菜碱、硬脂基苄基二甲基铵膨润土、硬脂基苄基二甲基铵锂蒙脱石、十八烷基三羟基乙基丙二胺二氢氟酸盐、牛脂基三甲基氯化铵和十六烷基三甲基溴化铵。这些表面稳定剂的大多数是已知的药物赋形剂,在The American Pharmaceutical Association和The Pharmaceutical Society of Great Britain联合出版的Handbook of Pharmaceutical Excipients(The Pharmaceutical Press,2000)中有详细说明,特别引入本文作为参考。
进一步地,所述表面稳定剂选自聚乙烯吡咯烷酮、羟丙甲基纤维素、羟丙基纤维素、多库脂钠、胆酸钠、脱氧胆酸钠、泊洛沙姆、吐温、十二烷基硫酸钠、聚乙烯醇(PVA)、聚乙烯吡洛烷酮(PVP)、甲基纤维素、D-Α琥珀酸生育酚聚乙二醇酯(TPGS)、醋酸羟丙甲纤维素琥珀酸酯(HPMCAS)、Soluplus(聚乙烯己内酰胺-聚乙酸乙烯酯-聚乙二醇接枝共聚物)、羟乙基纤维素中至少一种。本发明所述的药物组合物可以同时包含1至10种表面稳定剂,优选2至5种表面稳定。在可选实施例中,本发明所述的药物组合物含有至少两种或三种表面。
在非限制实施例中,本发明所述的药物组合物含有表面稳定剂组合包括但不限于十二烷基硫酸钠与羟丙甲基纤维素,十二烷基硫酸钠与羟丙基纤维素,十二烷基硫酸钠与聚乙烯醇(PVA),十二烷基硫酸钠与聚乙烯吡洛烷酮(PVP,Plasdone),羟丙甲基纤维素(HPMC)与多库脂钠,泊洛沙姆与共聚维酮,聚乙烯吡洛烷酮(PVP)与多库脂钠,共聚维酮与多库脂钠,D-Α琥珀酸生育酚聚乙二醇酯(TPGS)与羟丙甲基纤维素,泊洛沙姆与吐温-80(Tween80),吐温-20与十二烷基硫酸钠(SDS)、羟丙基纤维素(HPC)等。
在可选实施例中,基于活性成分和表面稳定剂的总干重,本发明药物组合物中所述表面稳定剂的含量约为0.1至99.9wt%,优选约为1.0至75.0wt%,可以约为1、1.5、2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12、12.5、13、13.5、14、14.5、15、15.5、16、16.5、17、17.5、18、18.5、19.5、20.5、21、21.5、22、22.5、23、23.5、24、24.5、25、25.5、26、26.5、27、27.5、28、28.5、29、29.5、30、30.5、31、31.5、32、32.5、33、33.5、34、34.5、35、35.5、36、36.5、37、37.5、38、38.5、39、39.5、40、40.5、41、41.5、42、42.5、43.4、44、44.5、45、45.5、46、46.5、47、47.5、48、48.5、49.5、50、50.5、51、51.5、52、52.5、53.4、54、54.5、55、55.5、56、56.5、57、57.5、58、58.5、59.5、60、60.5、61、61.5、62、62.5、 63.6、66、66.5、65、65.5、66、66.5、67、67.5、68、68.5、69.5、70、70.5、71、71.5、72、72.5、73.5、74、74.5、75wt%,更优选为2.5至35.0wt%。
本发明还提供制备前述纳米制剂的方法,包括将活性成分与至少一种表面稳定剂接触的步骤,所述接触包括研磨、湿磨、均化、沉淀或超临界流体颗粒生成技术。进一步地,再与吸收促进剂相混合。
在可选实施方案中,所述纳米制剂采用湿磨方式获得,随后所得纳米颗粒进一步的与吸收促进剂、固体制剂成型所需的填充剂等赋形剂混合均匀后,湿法制粒或干法制粒后,制备丸剂或颗粒剂或压片或装胶囊;根据需要,所得颗粒剂或素片还可以进一步包衣等。
本发明所用活性成分原料药颗粒粒径用筛检法测量,最好(但不是必须〉小于约100μm。如果活性成分原料药颗粒粒径大于约100μm,那么最好用常规的研磨方法如空气喷射磨或破碎磨将其粒径减小至以下100μm以下。
然后,可以把所选用活性成分原料药加入对它基本上不溶解的液体介质中,优选如水,形成初混物。活性成分在液体介质中的浓度为0.1至60%(W/W),优选5至30%(W/W),可以为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30%(W/W)。最好表面改良剂存在于初混物中,但非必须如此。初混物混悬液的表观粘度最好小于约2000厘泊。
初混物可以直接用机械手段将其平均粒径在分散相中减小至5000nrn以下。当用球磨机研磨时最好直接应用初混物。另一种方法,将活性成分和任意的表面稳定剂,用适当的方法分散在液体介质中,如用辊筒式磨或Cowles型混合器,直到形成,肉眼观察不到大团块的均匀的分散体系为止。如果用循环式介质磨研磨时最好将初混物经过此预磨分散步骤。
用于制备活性成分纳米级粒径惯用的机械手段可以采用分散磨形适宜的分散磨包括球磨机、擦碎机、振动磨、行星磨、介质磨(如砂磨机和珠磨机)。
用于研磨颗粒步骤的研磨介质可以选自刚性介质,优选球形或颗粒状,其平均粒径小于约3mm,更好的小于约1mm。这种介质具有较短的加工时间和对研磨设备的磨损较轻,同时能提供本发明的颗粒。研磨介质的原料选择并不重要。如氧化锆,以镁稳定的95%ZrO、硅酸锆、玻璃研磨介质能提供在制备药用组合物所允许的杂质含量范围内的颗粒。再者,其它介质如不锈钢、二氧化钛、氧化铝也能应用。优选介质的比重要大于2.5g/cm 3
研磨的时间变化很大,主要取决于特定的机械方法和加工条件。对于球磨机,加工 时间可以需要1天或更长。另一方面,用高剪切介质磨小于一天的加工时间(保留时间从一分钟至几个小时)已提供了期望的结果。
粉碎颗粒的过程必须在对活性成分无明显降解的溫度下进行。通常优选在低于50℃的溫度下加工。如果需要,加工设备可以用常规冷却设备冷却。这些颗粒生成技术为本领域技术人员所熟知,详细地研磨、湿磨、均化、沉淀或超临界流体颗粒生成技术等内容可参见CN1063630C、CN101175481A或CN1515244A中所述,并特别将相关内容引入本申请中。
在非限制实例中,本发明所述药物组合物含有环糊精,所述活性成分包合于环糊精中。所述环糊精选自羟丙基-β环糊精、磺丁基-β环糊精、甲基化-β环糊精、羟乙基-β环糊精、葡萄糖基-β环糊精、二葡糖基-β环糊精、麦芽糖基-β环糊精、二麦芽糖基-β环糊精、羧甲基-β环糊精中的一种或几种,优选羟丙基-β环糊精、磺丁基-β环糊精、二葡糖基-β环糊精、二麦芽糖基-β环糊精、羧甲基-β环糊精中的一种或几种。
在非限制实施例中,药物组合物中活性成分和环糊精质量比为1:20~1:3000,可以为1:20、1:30、1:40、1:50、1:60、1:70、1:80、1:90、1:100、1:150、1:170、1:190、1:210、1:230、1:250、1:270、1:290、1:310、1:330、1:350、1:370、1:390、1:410、1:430、1:450、1:470、1:490、1:510、1:530、1:550、1:570、1:590、1:610、1:630、1:650、1:670、1:690、1:710、1:730、1:750、1:770、1:790、1:810、1:830、1:850、1:870、1:890、1:910、1:930、1:950、1:970、1:990、1:1010、1:1030、1:1050、1:1070、1:1090、1:1110、1:1130、1:1150、1:1170、1:1190、1:1210、1:1230、1:1250、1:1270、1:1290、1:1310、1:1330、1:1350、1:1370、1:1390、1:1410、1:1430、1:1450、1:1470、1:1490、1:1510、1:1530、1:1550、1:1570、1:1590、1:1610、1:1630、1:1650、1:1670、1:1690、1:1710、1:1730、1:1750、1:1770、1:1790、1:1810、1:1830、1:1850、1:1870、1:1890、1:1910、1:1930、1:1950、1:1970、1:1990、1:2010、1:2030、1:2050、1:2070、1:2090、1:2110、1:2130、1:2150、1:2170、1:2190、1:2210、1:2230、1:2250、1:2270、1:2290、1:2310、1:2330、1:2350、1:2370、1:2390、1:2410、1:2430、1:2450、1:2470、1:2490、1:2510、1:2530、1:2550、1:2570、1:2590、1:2610、1:2630、1:2650、1:2670、1:2690、1:2710、1:2730、1:2750、1:2770、1:2790、1:2810、1:2830、1:2850、1:2870、1:2890、1:2910、1:2930、1:2950、1:2970、1:2990、1:3000,优选1:20~1:1500,更优选1:20~1:1200。
本发明所述活性成分的日剂量为50至800mg,可以为50mg、60mg、70mg、80mg、90mg、100mg、110mg、120mg、130mg、140mg、150mg、160mg、170mg、180mg、190mg、200mg、250mg、300mg、350mg、400mg、450mg、500mg、550mg、600mg、650mg、 700mg、750mg、800mg,优选300至600mg,更优选400至550mg,最优选500mg。
本发明还提供制备前述包合物的方法,包括将活性成分与吸收促进剂相混合的步骤。进一步地,需要在活性成分与吸收促进剂相混合之前,将活性成分包合于环糊精以得活性成分的环糊精包合物。
进一步地,所述制备方法还包括环糊精包合物与吸收促进剂、药学上可接受赋形剂相混合后,制粒、压片或灌装胶囊、直接压片或直接灌装胶囊的步骤;根据需要,所得颗粒剂或素片还可以进一步包衣等。
本发明所述的制粒方式可为湿法制粒或干法制粒,当选用湿法制粒方案时,可以采用流化床制粒或高剪切制粒。
当本发明所述的药物组合物采用片剂时,可压缩如上所述获得的颗粒制备。可压缩的压力在适当范围内确定。而且,片剂形状无特殊限制,优选扁豆形、圆盘形、圆形、椭圆形(如囊片)、泪滴形或多角形(如三角形或菱形)。
在可选实施例中,本发明所述药物组合物还含有乳化剂,以便将本发明药物组合物制备成乳剂或(亚)乳剂。
进一步地,所述乳剂或(亚)乳剂中还有油或/和表面稳定剂。
本发明所述乳化剂选自1,2-二油酰基-sn-甘油-3-磷酸胆碱、1,2-二月桂酰基-sn-甘油-3-磷酸胆碱、1,2-二肉豆蘧酰基-sn-甘油-3-磷酸胆碱、1,2-二棕榈酰基-sn-甘油-3-磷酸胆碱、1,2-二硬脂酰基-sn-甘油-3-磷酸胆碱、1,2-二花生酰基-sn-甘油-3-磷酸胆碱、1,2-二山嵛酰基-sn-甘油-3-磷酸胆碱、1,2-二棕榈油酰基-sn-甘油-3-磷酸胆碱、1,2-二(二十烯酰基)-sn-甘油-3-磷酸胆碱、1,2-二芥酰-sn-甘油-3-磷酸胆碱、1,2-二棕榈酰基-sn-甘油-3-磷酸甘油、以及1,2-二油酰基-sn-甘油-3-磷酸甘油、甘油酯、乙二醇酯、生育酚酯、固醇酯、碳氢化合物、鲨烯、中链甘油三酸酯、油酸乙酯、油酸、单亚油酸甘油酯、丙二醇二辛酸癸酸酯、辛酸癸酸聚乙二醇甘油酯、月癸酸聚乙二醇甘油酯、油酸聚乙二醇甘油酯、亚油酸聚乙二醇甘油酯、单油酸甘油酯、硬脂酸聚乙二醇甘油酯中的至少一种。
本发明中使用术语“油”指示一大类生理可接受性物质,可以是矿物油,植物油,动物油,精油,合成油,或其混合物。因此,此处使用术语“油”用以指一个宽范围的具有十分不同化学性质的物质。在以类型或功能分类油时,如矿物油源自石油并包含脂肪或蜡基烃、芳香烃或混合的脂肪与芳香基烃。在矿物油类别中也包含石油衍生的油如精制石蜡油等。在植物油类别中,油主要来源于种子或坚果,并包含干性油如亚麻子和桐油;半干性油如红花油和大豆油;不干性油如蓖麻油、棉籽油、椰子油和棕榈油。在动物油 类别中,油通常来自牛羊脂、猪油。液状动物油包含鱼油、鲸蜡油等。优选为中链甘油三酸酯、油酸乙酯、油脂、长链脂肪酸甘油酯、中链脂肪酸甘油酯,及其混合物中的至少一种。
本发明还提供制备前述乳剂或亚乳剂的方法,包括:将活性成分均匀分散在油相和/或表面活性剂,形成均匀分散的混悬液的步骤。进一步地,所述混悬液再与吸收促进剂相混合。
本发明还提供前述药物组合物在制备改善服用药物的患者个体差异性的药物中的用途,其所改善是相对于市售17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯普通片剂。
本发明还提供了一种改善服用药物的患者个体差异性的方法,包括给予需要治疗的患者前述药物组合物,其所改善是相对于市售17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯普通片剂(泽珂,
Figure PCTCN2018102492-appb-000017
)。
在一些实施方案中,本发明所述50-800mg剂量的17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯单位剂型与1000mg剂量的泽珂
Figure PCTCN2018102492-appb-000018
制剂在受试者中生物等效。
在一些实施方案中,本发明所述50-800mg剂量的17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯单位剂型与1000mg剂量的泽珂
Figure PCTCN2018102492-appb-000019
制剂在空腹状态的健康男性受试者中生物等效。
在一些实施方案中,本发明所述250mg剂量的17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯单位剂型与1000mg剂量的泽珂
Figure PCTCN2018102492-appb-000020
制剂在空腹状态的健康男性受试者中生物等效。
进一步地,在可选实施方案中,本发明所述250mg剂量的17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯单位剂型与1000mg剂量的泽珂
Figure PCTCN2018102492-appb-000021
制剂在空腹状态的健康男性受试者中生物等效,同时具有减少受试患者的个体间差异的效果。
本发明还提供了一种单位剂型,其中250mg剂量的17-(3-吡啶基)雄甾-5,16-二烯-3β-醇或其衍生物单位剂型与1000mg剂量的泽珂
Figure PCTCN2018102492-appb-000022
在受试者中生物等效。
进一步地,在一些实施方案中,所述受试者为健康男性,优选为空腹状态的。
在一些实施方案中个,所述17-(3-吡啶基)雄甾-5,16-二烯-3β-醇或其衍生物的粒径D90小于约10um,优选小于约1um,更优选小于500nm。
在一些实施方案中,250mg剂量的17-(3-吡啶基)雄甾-5,16-二烯-3β-醇或其衍生物可以是一个单位剂型,也可以是多个单位剂型。
本发明所述的“D10”是指一个样品的累计粒度分布百分数达到10%时所对应的粒径。“D50”是指一个样品的累计粒度分布百分数达到50%时所对应的粒径。“D90”是指一个样 品的累计粒度分布百分数达到90%时所对应的粒径。D[4,3]表示“四次矩/体积”平均直径,也叫体积(或重量)平均直径。
本发明所述的“以固体制剂的重量计”为不包含包衣的片芯重量计算活性成分或其他种类药用辅料的使用量数值范围。
如本文中使用的,“约”应该被本领域普通技术人员理解,并将随其所用之处的上下文而有一定程度的变化。如果根据术语应用的上下文,对于本领域技术人员而言,其使用不是清楚的,那么“约”意思是不超过所述特定术语的正负10%。
本发明所述参比制剂R为市售17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯普通片剂(商品名泽珂,
Figure PCTCN2018102492-appb-000023
)。
本发明衍生物是由17-(3-吡啶基)雄甾-5,16-二烯-3β-醇与酰基、烷基等基团成酯或醚结构化合物,同时该衍生物在体内可代谢为17-(3-吡啶基)雄甾-5,16-二烯-3β-醇,选自但不限于17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯。
本发明所述药物辅料或试剂均可来自商业途径,如醋酸羟丙甲基纤维素琥珀酸酯可外购于Shin-Etsu公司;17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯可以参照CN101528308实施例所述方法制备获得。
附图说明
图1:化合物A、羟丙基甲基纤维素(HMPC)AS LF、化合物A与羟丙基甲基纤维素(HMPC)AS LF物理混合物及实验例3固体分散体的XRPD图的对照。
图2:制剂A、制剂B及参比制剂R(250mg)的溶出曲线。
图3:制剂A、制剂B及参比制剂R(250mg)的药时曲线。
图4:制剂C、制剂D、制剂E及制剂F的溶出曲线。
图5:制剂C、制剂D、制剂E及制剂F的药时曲线。
图6:制剂G、制剂H、制剂I的药时曲线。
图7:制剂J及参比制剂R(1000mg)的溶出曲线。
图8:制剂J及参比制剂R(1000mg)的药时曲线。
具体实施方式
通过以下实施例和实验例进一步详细说明本发明。这些实验例仅用于说明性目的,并不用于限制本发明的范围。
实验例1:固体分散体制剂(制剂A)
Figure PCTCN2018102492-appb-000024
固体分散体1制备
以1:3重量比例称取17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯(化合物A)原料药与Soluplus,在Turbula T2F混料机中80rpm充分混匀,在已设定适当的区域温度、螺杆转速以及合适大小的口模条件下进行热熔挤出,挤出物经SCALABLE LAB SYSTEM TM(SLS)粉碎机进行机械粉碎,得到无定形固体分散体粉末。
制备制剂A的工艺
按照设计的处方量称取500g固体分散体1、MCC(微晶纤维素)、PVPP(交联聚乙烯吡咯烷酮)经湿法整粒及干燥处理,然后进行干整粒,加入硬脂酸镁,混合均匀,压制成制剂A。
实验例2:固体分散体制剂(制剂B)
Figure PCTCN2018102492-appb-000025
固体分散体2制备
以1:3重量比例称取化合物A原料药与HPMC AS MG,在Turbula T2F混料机中80rpm充分混匀,在已设定适当的区域温度为、螺杆转速以及合适大小的口模条件下进行热熔挤出,挤出物经SCALABLE LAB SYSTEM TM(SLS)粉碎机进行机械粉碎,得到无定形固体分散体粉末。
制备制剂B的工艺
按照设计的处方量称取500g固体分散体2、MCC(微晶纤维素)、PVPP(交联聚乙烯吡咯烷酮)经湿法整粒及干燥处理,然后进行干整粒,加入硬脂酸镁,混合均匀,压制成制剂B。
体外溶出实验
根据中国药典2015版溶出度测定第二法(桨法),对制剂A、制剂B及参比制剂R(250mg)进行溶出度测定。在pH=1.6,300mL FaSSGF(模拟空腹胃液的介质)溶液中对本发明所述的药物组合物进行溶出15min,再加入FaSSIF(模拟空腹肠液的介质)溶液至900mL(调节pH=6.5)进行,并在37±0.5℃下以50rpm的桨速进行溶出试验,具体溶出数据见表1,溶出曲线见附图2。
表1
时间(min) 参比制剂R(%) 制剂A(%) 制剂B(%)
5 4.3 15.8 1.2
10 5.6 18.9 1.8
15 7.4 20.4 1.9
20 4.8 16.4 4.8
25 5.6 18.7 6
30 5.7 19.7 7.9
45 5.4 19.4 13.3
60 5.6 19.3 19.5
90 6.4 20.0 29.2
120 5.7 20.1 37.9
180 5.8 19.9 50.1
240 7.9 21 56.4
结论:
从体外溶出数据来看,相对参比制剂R(250mg),固体分散体技术可以明显提高药物中活性成分的体外溶出度,尤其以HPMCAS MG为载体的固体分散体最优。
体内药物代谢动力学(PK)实验
方案:设三组,分别给予制剂A、B及参比制剂(市售,商品名泽珂):
R:参比制剂R(市售,商品名泽珂)250mg
A:制剂A(实施例1)125mg×2片;
B:制剂B(实施例2)125mg×2片;
数据结果汇总见表2,药时曲线见附图3,利用DAS软件计算化合物A在体内的药代动力学参数,参数列表见表3。
表2
Figure PCTCN2018102492-appb-000026
表3
Figure PCTCN2018102492-appb-000027
Figure PCTCN2018102492-appb-000028
注:SD指标准差,RSD相对标准偏差,Mean平均数
结论:
固体分散体片剂A和片剂B,虽然较参比制剂R具有更好的体外药物释放度,尤其片剂B体外释放比参比制剂R能够维持较高的浓度相当长的时间,但是两种无定型固体分散制剂的实际PK表现均不及市售参比R制剂。
实验例3:固体分散体3制备
以1:3重量比例称取17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯(化合物A)原料药与HPMC AS LF,随后溶于等质量比的二氯甲烷/甲醇的混合溶液中(固含量为6%),设置喷雾干燥设备适当的出口温度、进风温度、风量及喷雾压力,进行喷雾干燥得到样品,再经减压真空干燥即得无定形固分散粉末,其XRPD图见附图1。
实验例4:制备制剂C
Figure PCTCN2018102492-appb-000029
Figure PCTCN2018102492-appb-000030
制备工艺:
按照设计的处方量称取固体分散体3、甘露醇、PVPP XL(交联聚乙烯吡咯烷酮)、二氧化硅及硬脂酸镁以粉末直压的方式进行压片得制剂C。
实验例5:制备制剂D
Figure PCTCN2018102492-appb-000031
制备工艺:
按照设计的处方量称取固体分散体3和SNAC,将物料直接物理混合均匀,灌装在5粒胶囊中。
实验例6:制备制剂E
Figure PCTCN2018102492-appb-000032
制备工艺:
按照设计的处方量称取固体分散体3和癸酸钠,将物料直接物理混合均匀,灌装在4粒胶囊中。
实验例7:制备制剂F
Figure PCTCN2018102492-appb-000033
制备工艺:
按照设计的处方量称取固体分散体3和月桂酰肉碱-L-氯化物,将物料直接物理混合 均匀,灌装在4粒胶囊中。
体外溶出实验
根据中国药典2015版溶出度测定第二法(桨法),对制剂C、制剂D、制剂E及制剂F进行溶出度测定。在pH=1.6,300mL FaSSGF(模拟空腹胃液的介质)溶液中对本发明所述的药物组合物进行溶出15min,再加入FaSSIF(模拟空腹肠液的介质)溶液至900mL(调节pH=6.5)进行,并在37±0.5℃下以50rpm的桨速进行溶出试验,具体溶出数据见表4,溶出曲线见附图4。
表4
时间(min) 制剂C(%) 制剂D(%) 制剂E(%) 制剂F(%)
5 15.4 1.2 0.6 43.8
10 18.8 1.3 0.7 48.8
15 21.0 1.2 0.6 53.0
20 76.9 32.9 37.5 58.9
25 68.4 33.9 33.8 50.7
30 70.0 41.6 39.5 51.0
45 64.8 52.0 44.1 54.0
60 59.9 53.1 39.7 38.7
90 24.9 43.0 31.5 10.2
120 30.1 50.1 22.7 9.9
180 13.0 14.3 8.3 18.1
结论:
从体外溶出数据来看,未添加吸收促进剂的制剂C的释放速率、释放程度、以及高药物浓度的维持时间,均优于添加吸收促进剂的制剂D、E、F。
体内药物代谢动力学(PK)实验
方案:设A、B、C及D四组,分别给予制剂C、D、E和F:
A:制剂C(实施例4)125mg×2片;
B:制剂D(实施例5)50mg×5粒;
C:制剂E(实施例6)62.5mg×4粒;
D:制剂F(实施例7)62.5mg×4粒。
数据结果汇总见表5,药时曲线见附图5,利用DAS软件计算化合物A在体内的药代动力学参数,参数列表见表6。
表5
Figure PCTCN2018102492-appb-000034
表6
Figure PCTCN2018102492-appb-000035
Figure PCTCN2018102492-appb-000036
结论:
从体内数据可以看出,制剂C至F的AUC 0-48h数值均能与相同剂量的参比制剂R达到等量或者更好,其中制剂D的AUC 0-48h是参比制剂R的2.3倍,说明添加有吸收促进剂SNAC的制剂D的生物利用度有显著的提高;
参比制剂R的Cmax的变异系数为74.6%,相比而言,未添加吸收促进剂的固体分散体制剂C虽然生物利用度有所提高,但是Cmax的变异系数却较高(97.4%),另一方面,添加吸收促进剂的制剂D至F不仅生物利用度有所增加,而且变异系数分别下降为34.1%、29.6%、54.5%。为此,添加吸收促进剂不仅利于提高药物组合物中活性成分如化合物A的生物利用度,而且能有效降低活性成分如化合物A的在给药患者个体差异,增加活性成分如化合物A的治疗安全性和有效性,具有意想不到的改善作用。
实验例8:制备制剂G
Figure PCTCN2018102492-appb-000037
制备工艺:
按照设计的处方量称取固体分散体3和SNAC,将物料直接物理混合均匀,灌装在4粒胶囊中。
实验例9:制备制剂H
Figure PCTCN2018102492-appb-000038
制备工艺:
按照设计的处方量称取固体分散体3和SNAC,将物料直接物理混合均匀,灌装在4粒胶囊中。
实验例10:制备制剂I
Figure PCTCN2018102492-appb-000039
制备工艺:
按照设计的处方量称取微粉化原料药和SNAC,将物料直接物理混合均匀,灌装在4粒胶囊中。
体内药物代谢动力学(PK)实验
方案:设三组,分别给予制剂G、H、I:
A:制剂G(实施例8)62.5mg×4粒;
B:制剂H(实施例9)62.5mg×4粒;
C:制剂I(实施例10)62.5mg×4粒。
数据结果汇总见表7,药时曲线见附图6,利用DAS软件计算化合物A在体内的药代动力学参数,参数列表见表8。
表7
Figure PCTCN2018102492-appb-000040
Figure PCTCN2018102492-appb-000041
表8
Figure PCTCN2018102492-appb-000042
结论:
相比于参比制剂R,制剂D、G及H都有较好的体内吸收度;同时,添加吸收促进剂的各制剂的Cmax的变异系数(RSD)较小,能改善用药患者的个体差异。
实验例11:制备制剂J
1)纳米颗粒制备
称取15g原料药17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯(化合物A),1.5g HPMC E5 LV,0.15g十二烷基硫酸钠(SDS),分散在150ml纯化水中以备用;
采用500ml研磨罐,加入150ml上述溶液,300ml研磨珠,以450rpm转速,研磨60s停歇30s,研磨得化合物A纳米混悬液(D90约为500nm);
控制喷雾干燥器(GB210,YAMATO)进口温度130℃,进料速度为3ml/min,压缩空气压力为0.05MPa,风量0.05m 3/min,将化合物A纳米混悬液喷雾干燥得粉末;
2)制剂J的制备
Figure PCTCN2018102492-appb-000043
先将化合物A纳米颗粒、8-(水杨酰氨基)辛酸钠(SNAC)、碳酸氢钠、MCC、PVPP XL混合后,采用压大片法进行干法制粒,粉碎,过筛,再与MCC、PVPP XL混合;
将制粒颗粒与MCC、PVPP XL充分混合后,加入硬脂酸镁(MS)总混,压片,通过盘式包衣机(pan coater)喷洒9wt%含量的雅克宜(批号93O92038)水分散体进行包衣,干燥得制剂J。
体外溶出实验
根据中国药典2015版溶出度测定第二法(桨法),对制剂J(未包衣的素片)进行溶 出度测定。采用900ml pH6.5含1.0%SDS溶液作为溶出介质,具体溶出释放度数据见下表9,溶出曲线见图7
表9
时间(min) 参比制剂(%) 制剂J(%)
5 5.2 67.7
10 14.4 82.3
15 27.3 89.5
20 42.9 90.8
25 48.3 92.8
30 62.7 96.2
45 77.4 95.5
60 82 94.3
90 87.9 96.2
120 90.7 95.5
180 92.2 96.4
根据中国药典2015版溶出度测定第二法(桨法),对制剂J进行溶出度测定。先将片剂在300ml pH1.6的FaSSGF溶液中耐酸实验45min,再将片剂转入20ml pH6.5FaSSIF溶液的小杯中进行溶出实验,具体溶出数据见表10。
表10
时间(min) SNAC(mg/ml) 化合物A(ug/ml)
5 6.89 22.41
15 13.40 33.84
30 15.31 33.64
45 15.64 23.55
60 15.49 17.36
90 15.72 16.34
120 15.52 13.36
结论:
从体外溶出数据可以看出,制剂J在5min释放65%,参比制剂不到10%,纳米制剂J在释放速率上拥有明显优势;同时,纳米制剂J不仅可以耐酸,且在模拟肠液中肠溶衣 可以快速破裂,药物快速释放。
体内药物代谢动力学(PK)实验
方案:设二组,分别给予参比制剂R(1000mg)、制剂J:
A:参比制剂R 250mg×4片;
B:制剂J(实施例11)250mg×1片。
数据结果汇总见表11,药时曲线见附图8,利用DAS软件计算化合物A在体内的药代动力学参数,参数列表见表12。
表11
Figure PCTCN2018102492-appb-000044
表12
Figure PCTCN2018102492-appb-000045
Figure PCTCN2018102492-appb-000046
结论:
从体内药物代谢动力学数据来看,250mg的制剂J与1000mg的参比制剂R在AUC 0-48、AUC 0-∞上基本相同,具有相等体内生物利用度,同时,制剂J的Cmax变异系数(RSD)为35.48%,优于参比制剂R(1000mg),能改善用药患者的个体差异。

Claims (30)

  1. 一种药物组合物,其含有活性成分17-(3-吡啶基)雄甾-5,16-二烯-3β-醇或其衍生物,和吸收促进剂。
  2. 如权利要求1所述的药物组合物,其特征在于:所述的吸收促进剂选自生物黏附性高分子、脂肪酸或其可药用盐、表面活性剂,优选自壳聚糖(chitosan)及其衍生物、卡波姆、具有4到20个碳原子的碳链长度的中链脂肪酸或其可药用盐、吐温、泊洛沙姆、聚氧乙烯蓖麻油、十二烷基硫酸钠、乙二胺四乙酸钠、维生素E聚乙二醇1000琥珀酸或其可药用盐、月桂酰肉碱、癸酰肉碱中的至少一种,更优选自壳聚糖、卡波姆、癸酸或其可药用盐、N-(10-[2-羟基苯甲酰基]氨基)癸酸(SNAD)或其可药用盐、辛酸或其可药用盐、N-(8-(2-羟基苯甲酰基)氨基)辛酸(NAC)或其可药用盐、N-(5-氯水杨酰基)-8-氨基辛酸(5-CNAC)或其可药用盐、8-(水杨酰氨基)辛酸或其可药用盐维生素E聚乙二醇1000琥珀酸盐(钠或钾)、月桂酰肉碱-D-氯化物、月桂酰肉碱-L-氯化物、L-癸酰氯化肉碱、吐温-20、吐温-80中的至少一种,最优选自癸酸、癸酸钠或钾、N-(10-[2-羟基苯甲酰基]氨基)癸酸(SNAD)、辛酸、辛酸钠或钾、N-(8-(2-羟基苯甲酰基)氨基)辛酸(NAC)、N-(5-氯水杨酰基)-8-氨基辛酸(5-CNAC)、8-(水杨酰氨基)辛酸钠(SNAC)。
  3. 如权利要求1或2所述的药物组合物,其特征在于:所述的吸收促进剂与活性成分的重量比不小于1:100。
  4. 如权利要求1-3中任意一项所述的药物组合物,其特征在于:所述的吸收促进剂与活性成分的重量比为1:100至100:1,优选为1:10至20:1,更优选为1:10至10:1。
  5. 如权利要求1-4中任意一项所述的药物组合物,其特征在于:所述的衍生物为17-(3-吡啶基)雄甾-5,16-二烯-3β-乙酸酯。
  6. 如权利要求1-5中任意一项所述的药物组合物,其特征在于:其还含有赋形剂。
  7. 如权利要求1-6中任意一项所述的药物组合物,其特征在于:所述的药物组合物选自固体制剂或注射液,所述的固体制剂优选自片剂、丸剂、颗粒剂或胶囊剂。
  8. 如权利要求7所述的药物组合物,其特征在于:所述的固体制剂中赋形剂选自崩解剂、填充剂、粘合剂、润滑剂中至少一种。
  9. 如权利要求8所述的药物组合物,其特征在于:所述的崩解剂选自交联羧甲基纤维素钠、交联聚维酮、羧甲基淀粉钠、羧甲基纤维素钙、低取代羟丙基纤维素、淀粉、预胶化淀粉、海藻酸中的至少一种,优选所述的崩解剂的用量占固体制剂重量的0.5至20%。
  10. 如权利要求8所述的药物组合物,其特征在于:所述的填充剂选自糊精、乳糖、 蔗糖、磷酸氢钙、淀粉、无水磷酸氢钙、硫酸钙、微晶纤维素、甘露醇中至少一种,优选所述的填充剂的用量占固体制剂重量的1至90%,更优选为25至75%。
  11. 如权利要求8所述的药物组合物,其特征在于:所述的粘合剂选自聚乙烯吡咯烷酮、淀粉、甲基纤维素、羧基纤维素、羟丙基纤维素、羟丙甲基纤维素、海藻酸盐中的至少一种,优选所述的粘合剂的用量占固体制剂重量的0.5至10%。
  12. 如权利要求8所述的药物组合物,其特征在于:所述的润滑剂选自硬脂酸镁、硬脂酸、棕榈酸、硬脂酸钙、滑石粉、胶态二氧化硅、巴西棕榈蜡、硬脂富马酸钠中的至少一种,优选所述的润滑剂的用量占固体制剂重量的0.1至5%。
  13. 如权利要求1-12中任意一项所述的药物组合物,其特征在于:活性成分以增加生物利用度的形式存在。
  14. 如权利要求1-13中任意一项所述的药物组合物,其特征在于:其还含有载体材料,所述的活性成分分散于载体材料中形成固体分散体。
  15. 如权利要求14所述的药物组合物,其特征在于:所述的载体材料选自3,4-二甲基-苯甲基氨基甲酸酯(MPMC)、琥珀酸醋酸羟丙基甲基纤维素(HPMCAS)、邻苯二甲酸羟丙甲纤维素(HPMCP)、泊洛沙姆188、泊洛沙姆407、聚(甲基)丙烯酸酯(Eudragit)、N-乙烯基-2-吡咯烷酮的均聚物、聚维酮、共聚维酮(Plasdone)、羧甲基乙基纤维素(CMEC)、邻苯二甲酸乙酸纤维素(CAP)、甲基丙烯酸共聚物LD(L30D55)、甲基丙烯酸共聚物S(S-100)、甲基丙烯酸氨基烷基酯共聚物E(胃包衣基料)、聚(乙烯基乙缩醛)二乙基氨基乙酸酯(AEA)、聚乙烯吡咯烷酮(K-25、5030、90;PVP)、聚乙烯吡咯烷酮乙酸乙烯酯(PVP-VA)、乙基纤维素(EC)、甲基丙烯酸共聚物RS(RS30D)、聚乙烯醇(PVA)、甲基纤维素(MC)、羟丙基纤维素(HPC)、羟丙基甲基纤维素(HPMC)、HPMC2208(Metolose90SH)、HPMC2906(Metolose65SH)、HPMC(Metolose60SH)、羧甲基纤维素钠(羟乙酸纤维素钠)、糊精、支链淀粉、阿拉伯胶、黄蓍胶、藻酸钠、藻酸丙二醇酯、琼脂粉、明胶、淀粉、加工淀粉、磷脂、卵磷脂、葡甘露聚糖、环氧乙烷与环氧丙烷的嵌段共聚物(PEO/PPO)、聚乙二醇(PEG)偏苯三酸醋酸纤维素(CAT)、偏苯三酸醋酸羟丙甲基纤维素(HPMCAT)和醋酸丁酸羧甲基纤维素(CMCAB)或N-乙烯基-2-吡咯烷酮与乙酸乙烯酯的无规共聚物、甲基丙烯酸和甲基丙烯酸甲酯的共聚物或聚乙二醇、聚乙烯基已内酰胺和聚乙酸乙酯的接枝共聚物。
  16. 如权利要求14或15所述的药物组合物,其特征在于:载体材料与活性成分的重量比不小于0.5:1。
  17. 如权利要求14-16中任意一项所述的药物组合物,其特征在于:所述的载体材 料和活性成分的重量比为0.5:1至5:1,优选为0.8:1至4:1,更优选为1:1至2:1。
  18. 如权利要求1-13中任意一项所述的药物组合物,其特征在于:所述的活性成分经微粉化。
  19. 如权利要求1-13中任意一项所述的药物组合物,其特征在于:所述的活性成分粒径D90值小于约10μm。
  20. 如权利要求19所述的药物组合物,其特征在于:其还含有至少一种表面稳定剂,所述的表面稳定剂选自阴离子型表面稳定剂、阳离子型表面稳定剂、两性表面稳定剂、非离子表面稳定剂。
  21. 如权利要求1-13中任意一项所述的药物组合物,其特征在于:其还含有环糊精,所述的活性成分包合于环糊精中。
  22. 如权利要求21所述的药物组合物,其特征在于:所述的环糊精选自羟丙基-β环糊精、磺丁基-β环糊精、甲基化-β环糊精、羟乙基-β环糊精、葡萄糖基-β环糊精、二葡糖基-β环糊精、麦芽糖基-β环糊精、二麦芽糖基-β环糊精、羧甲基-β环糊精中的一种或几种,优选羟丙基-β环糊精、磺丁基-β环糊精、二葡糖基-β环糊精、二麦芽糖基-β环糊精、羧甲基-β环糊精中的一种或几种。
  23. 如权利要求1-7中任意一项所述的药物组合物,其特征在于:其还含有乳化剂。
  24. 如权利要求23所述的药物组合物,其特征在于:其还含有油和/或表面稳定剂。
  25. 一种制备如权利要求1-24中任意一项所述的药物组合物的方法,其包括:将活性成分与吸收促进剂相混合的步骤。
  26. 一种制备如权利要求14-17中任意一项所述的药物组合物的方法,其选自融熔法、溶剂法或溶剂-熔融法。
  27. 一种如权利要求1-24中任意一项所述的药物组合物在制备改善服用药物的患者个体差异性的药物中的用途。
  28. 一种改善服用药物的患者个体差异性的方法,其包括给予需要治疗的患者如权利要求1-24中任意一项所述的药物组合物。
  29. 如权利要求8-22中任意一项所述的药物组合物,其特征在于:其还含有包衣,优选为肠溶包衣。
  30. 一种单位剂型,其中250mg剂量的17-(3-吡啶基)雄甾-5,16-二烯-3β-醇或其衍生物单位剂型与1000mg剂量的泽珂
    Figure PCTCN2018102492-appb-100001
    在受试者中生物等效。
PCT/CN2018/102492 2017-08-28 2018-08-27 一种cyp17抑制剂的药物组合物及其制备方法 WO2019042247A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880032789.5A CN110636837B (zh) 2017-08-28 2018-08-27 一种cyp17抑制剂的药物组合物及其制备方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201710750827.8 2017-08-28
CN201710750827 2017-08-28
CN201710758825.3 2017-08-29
CN201710758825 2017-08-29
CN201810205415.0 2018-03-13
CN201810205415 2018-03-13

Publications (1)

Publication Number Publication Date
WO2019042247A1 true WO2019042247A1 (zh) 2019-03-07

Family

ID=65524928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102492 WO2019042247A1 (zh) 2017-08-28 2018-08-27 一种cyp17抑制剂的药物组合物及其制备方法

Country Status (3)

Country Link
CN (1) CN110636837B (zh)
TW (1) TWI717629B (zh)
WO (1) WO2019042247A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113384542A (zh) * 2020-03-14 2021-09-14 鲁南制药集团股份有限公司 一种甾体cyp17抑制剂固体分散体的片剂及其制备方法
WO2021185265A1 (zh) * 2020-03-18 2021-09-23 四川海思科制药有限公司 口服药物组合物
CN113750032A (zh) * 2020-06-01 2021-12-07 成都海博为药业有限公司 一种口服的阿比特龙药物组合物及其制备方法及用途
CN114099499A (zh) * 2020-08-26 2022-03-01 上海博志研新药物技术有限公司 依达拉奉口服持续释放组合物、制备方法及应用
EP3941478A4 (en) * 2019-03-18 2022-12-28 Dispersol Technologies, LLC ABIRATERONE AND CYCLIC OLIGOMER PHARMACEUTICAL FORMULATIONS AND METHODS OF FORMING AND ADMINISTRING SAME
CN115684514A (zh) * 2022-11-24 2023-02-03 则正(济南)生物科技有限公司 评价仿制药和原研药生物利用度的方法及其应用
WO2023098777A1 (zh) * 2021-12-01 2023-06-08 江苏恒瑞医药股份有限公司 Glp-1和gip受体双重激动剂的药物组合物及其用途
US11672761B2 (en) 2020-11-16 2023-06-13 Orcosa Inc. Rapidly infusing platform and compositions for therapeutic treatment in humans

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111617258A (zh) * 2019-02-28 2020-09-04 江苏恒瑞医药股份有限公司 一种制备阿比特龙或其衍生物药物组合物的方法及其应用
CN111617257A (zh) * 2019-02-28 2020-09-04 江苏恒瑞医药股份有限公司 一种阿比特龙或其衍生物药物组合物及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103070828A (zh) * 2011-10-26 2013-05-01 山东新时代药业有限公司 一种含醋酸阿比特龙的固体分散体、片剂及其制备方法
CN103446069A (zh) * 2012-05-29 2013-12-18 重庆医药工业研究院有限责任公司 一种阿比特龙的口服固体组合物及其制备方法
CN103813794A (zh) * 2011-07-18 2014-05-21 拓凯制药公司 用于治疗前列腺癌的新型组合物及方法
CN104546745A (zh) * 2013-10-14 2015-04-29 深圳海王药业有限公司 醋酸阿比特龙的片剂组合物及其制备工艺
CN104884065A (zh) * 2012-09-21 2015-09-02 强烈治疗剂公司 治疗癌症的方法
CN105267224A (zh) * 2014-07-06 2016-01-27 天津金耀集团有限公司 一种醋酸阿比特龙的药物组合物
CN105535979A (zh) * 2015-11-22 2016-05-04 李素华 一种提高难溶药物生物利用度的自微乳化载药系统及其应用
WO2017037647A1 (en) * 2015-09-02 2017-03-09 Leiutis Pharmaceuticals Pvt Ltd Stable pharmaceutical compositions of abiraterone
CN106539765A (zh) * 2015-09-18 2017-03-29 天津市汉康医药生物技术有限公司 一种醋酸阿比特龙片及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9186412B2 (en) * 2008-08-18 2015-11-17 Entera Bio Ltd. Methods and compositions for oral administration of insulin
JP2015503508A (ja) * 2011-12-22 2015-02-02 トーカイ ファーマシューティカルズ,インク. PI3K/mTOR阻害剤を使用する併用療法のための方法および組成物
GB201207886D0 (en) * 2012-05-04 2012-06-20 Jagotec Ag Improvements in or relating to organic compounds
MX356097B (es) * 2012-09-17 2018-05-14 Pfizer Inc Star Proceso para la preparacion de nanoparticulas terapeuticas.
CN102961358B (zh) * 2012-11-29 2017-08-04 重庆医药工业研究院有限责任公司 一种醋酸阿比特龙液体胶囊

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813794A (zh) * 2011-07-18 2014-05-21 拓凯制药公司 用于治疗前列腺癌的新型组合物及方法
CN103070828A (zh) * 2011-10-26 2013-05-01 山东新时代药业有限公司 一种含醋酸阿比特龙的固体分散体、片剂及其制备方法
CN103446069A (zh) * 2012-05-29 2013-12-18 重庆医药工业研究院有限责任公司 一种阿比特龙的口服固体组合物及其制备方法
CN104884065A (zh) * 2012-09-21 2015-09-02 强烈治疗剂公司 治疗癌症的方法
CN104546745A (zh) * 2013-10-14 2015-04-29 深圳海王药业有限公司 醋酸阿比特龙的片剂组合物及其制备工艺
CN105267224A (zh) * 2014-07-06 2016-01-27 天津金耀集团有限公司 一种醋酸阿比特龙的药物组合物
WO2017037647A1 (en) * 2015-09-02 2017-03-09 Leiutis Pharmaceuticals Pvt Ltd Stable pharmaceutical compositions of abiraterone
CN106539765A (zh) * 2015-09-18 2017-03-29 天津市汉康医药生物技术有限公司 一种醋酸阿比特龙片及其制备方法
CN105535979A (zh) * 2015-11-22 2016-05-04 李素华 一种提高难溶药物生物利用度的自微乳化载药系统及其应用

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3941478A4 (en) * 2019-03-18 2022-12-28 Dispersol Technologies, LLC ABIRATERONE AND CYCLIC OLIGOMER PHARMACEUTICAL FORMULATIONS AND METHODS OF FORMING AND ADMINISTRING SAME
CN113384542A (zh) * 2020-03-14 2021-09-14 鲁南制药集团股份有限公司 一种甾体cyp17抑制剂固体分散体的片剂及其制备方法
WO2021184611A1 (zh) * 2020-03-14 2021-09-23 山东新时代药业有限公司 一种甾体cyp17抑制剂固体分散体的片剂及其制备方法
CN113384542B (zh) * 2020-03-14 2024-03-29 鲁南制药集团股份有限公司 一种甾体cyp17抑制剂固体分散体的片剂及其制备方法
WO2021185265A1 (zh) * 2020-03-18 2021-09-23 四川海思科制药有限公司 口服药物组合物
CN115209910A (zh) * 2020-03-18 2022-10-18 四川海思科制药有限公司 口服药物组合物
CN113750032A (zh) * 2020-06-01 2021-12-07 成都海博为药业有限公司 一种口服的阿比特龙药物组合物及其制备方法及用途
CN114099499A (zh) * 2020-08-26 2022-03-01 上海博志研新药物技术有限公司 依达拉奉口服持续释放组合物、制备方法及应用
US11672761B2 (en) 2020-11-16 2023-06-13 Orcosa Inc. Rapidly infusing platform and compositions for therapeutic treatment in humans
WO2023098777A1 (zh) * 2021-12-01 2023-06-08 江苏恒瑞医药股份有限公司 Glp-1和gip受体双重激动剂的药物组合物及其用途
CN115684514A (zh) * 2022-11-24 2023-02-03 则正(济南)生物科技有限公司 评价仿制药和原研药生物利用度的方法及其应用
CN115684514B (zh) * 2022-11-24 2024-04-26 则正(济南)生物科技有限公司 评价仿制药和原研药生物利用度的方法及其应用

Also Published As

Publication number Publication date
TW201912162A (zh) 2019-04-01
TWI717629B (zh) 2021-02-01
CN110636837B (zh) 2022-05-24
CN110636837A (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2019042247A1 (zh) 一种cyp17抑制剂的药物组合物及其制备方法
US8119163B2 (en) Nanoparticulate and controlled release compositions comprising cefditoren
US20080102121A1 (en) Compositions comprising nanoparticulate meloxicam and controlled release hydrocodone
JP2006514688A5 (zh)
MX2008015275A (es) Formulaciones de posaconazol en nanoparticulas.
JP2010047599A (ja) 即時放出および徐放特性を組み合わせて有する組成物
JP2009541360A (ja) ナノ粒子状メロキシカムおよび制御放出ヒドロコドンを含む組成物
JP2009541359A (ja) ナノ粒子状ナプロキセンおよび制御放出ヒドロコドンを含む組成物
WO2018108160A1 (zh) 一种尼拉帕尼缓控释药物组合物及其用途
BRPI0515815B1 (pt) forma medicamentosa de multipartículas contendo substâncias ativas de ácido nucléico formuladas mucoadesivas, bem como seu processo de preparação
US20090297596A1 (en) Nanoparticulate and Controlled Release Compositions Comprising a Platelet Aggregation Inhibitor
WO2018108157A1 (zh) 一种瑞卡帕布口服缓控释药物组合物及其用途
US20080317843A1 (en) Nanoparticulate formulations of modafinil
JP2008540691A (ja) セファロスポリンを含むナノ粒子および放出制御組成物
CN109394685B (zh) 一种vegfr抑制剂的药物组合物及其制备方法
US20110064803A1 (en) Nanoparticulate and controlled release compositions comprising vitamin k2
EP1901722A1 (en) Nanoparticulate and controlled release compositions comprising aryl-heterocyclic compounds
JP2008536856A (ja) プロスタグランジン誘導体を含んでなるナノ粒子状且つ徐放性の組成物
EP1954253A1 (en) Nanoparticulate and controlled release compositions comprising cefditoren
WO2007070082A1 (en) Nanoparticulate and controlled release compositions comprising teprenone
JP2008546781A (ja) アリール−複素環式化合物を含んでなるナノ粒状及び制御放出の組成物
US20100247636A1 (en) Nanoparticulate and controlled release compositions comprising nilvadipine
WO2007106111A2 (en) Nanoparticulate and controlled release compositions comprising nilvadipine
MX2007014764A (en) Nanoparticulate and controlled release compositions comprising a platelet aggregation inhibitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852618

Country of ref document: EP

Kind code of ref document: A1