WO2019042111A1 - 非侵入性射频消融系统 - Google Patents

非侵入性射频消融系统 Download PDF

Info

Publication number
WO2019042111A1
WO2019042111A1 PCT/CN2018/099861 CN2018099861W WO2019042111A1 WO 2019042111 A1 WO2019042111 A1 WO 2019042111A1 CN 2018099861 W CN2018099861 W CN 2018099861W WO 2019042111 A1 WO2019042111 A1 WO 2019042111A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
radio frequency
ablation device
disposed
sensing unit
Prior art date
Application number
PCT/CN2018/099861
Other languages
English (en)
French (fr)
Inventor
苏世宽
Original Assignee
苏世宽
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏世宽 filed Critical 苏世宽
Priority to CN201880055985.4A priority Critical patent/CN111093545A/zh
Publication of WO2019042111A1 publication Critical patent/WO2019042111A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1402Probes for open surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1485Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00047Cooling or heating of the probe or tissue immediately surrounding the probe using Peltier effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00184Moving parts
    • A61B2018/00196Moving parts reciprocating lengthwise
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00321Head or parts thereof
    • A61B2018/00327Ear, nose or throat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/00488Esophagus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00482Digestive system
    • A61B2018/005Rectum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00505Urinary tract
    • A61B2018/00517Urinary bladder or urethra
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00714Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00738Depth, e.g. depth of ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00815Temperature measured by a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1497Electrodes covering only part of the probe circumference
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/16Indifferent or passive electrodes for grounding
    • A61B2018/162Indifferent or passive electrodes for grounding located on the probe body

Definitions

  • the present disclosure relates to non-invasive radio-frequency ablation (RFA) systems and methods for treating mucosal or soft tissue related diseases, and more particularly to methods for treating tubular soft tissue related diseases.
  • RFID radio-frequency ablation
  • Radiofrequency ablation is one of the most commonly used methods of surgical treatment. It can be used in various fields such as treating liver cancer, lung cancer and other tumors, thyroid nodules and heart disease, orthopedics and otolaryngology to treat chronic diseases. Hypertrophic rhinitis, chronic hypertrophic pharyngitis and patients with sleep snoring and so on.
  • an electrode on a metal probe (called a monopolar RFA) or two probes (called a bipolar RFA) with electrodes at a fixed distance are inserted into the tissue and used to heat by introducing a current at a specific frequency.
  • the tissue between the two electrodes is used to achieve the purpose of ablation of the lesion.
  • RFA is now widely used, there are still many problems with this technology. For example, prolonged treatment will cause thermal damage or necrosis of surrounding non-targeted tissue; in the case of bipolar RFA, the depth of treatment is limited by the distance between the two electrodes. In addition, most current RFA treatment techniques are invasive, with bleeding, treatment of surface bleeding, thermal damage to surrounding non-target tissues, and the risk of infection.
  • the present invention provides a non-invasive radiofrequency ablation system that does not require the insertion of electrodes into tissue, thereby eliminating bleeding or perforation at the location of the lesion, which reduces the risk of treating complications.
  • the electrodes used in non-invasive RFA systems are adjustable rather than fixed, so the depth of treatment can be varied by adjusting the distance between the electrodes.
  • the present invention provides a method of performing non-invasive radiofrequency ablation that does not require the insertion of an electrode into tissue and the use of a tunable electrode to alter the depth of treatment.
  • the present invention may optionally include a tissue contact cooling unit that may reduce the temperature of the surface contacting the tissue and increase the impedance of the surface contacting the tissue.
  • the contact cooling unit not only protects the contact tissue surface from thermal damage, but also increases deeper RF flow and thermal ablation during treatment.
  • the devices of the present disclosure may optionally have a temperature sensing unit and/or a treatment depth sensing unit to sense temperature and/or treatment depth to enhance the therapeutic effect.
  • the non-invasive radiofrequency ablation system includes an ablation device, the ablation device including: a substrate having a first surface; a first electrode disposed on the first surface; a second electrode on the first surface adjacent to the first electrode; a mobile unit electrically connected to the second electrode, the moving unit adjusting the second by moving the second electrode a distance between the electrode and the first electrode; and a radio frequency generator coupled to the ablation device for providing a radio frequency current to the first electrode and the second electrode.
  • the non-invasive radiofrequency ablation method for treating a soft tissue or mucosal tissue related disease comprises the steps of: (A) providing a non-invasive radiofrequency ablation system comprising an ablation device,
  • the ablation device includes: a substrate having a first surface; a first electrode disposed on the first surface; a second electrode disposed on the first surface and adjacent to the first electrode; electrical a mobile unit coupled to the second electrode, the second electrode being moved to adjust a distance between the second electrode and the first electrode; and a radio frequency generator coupled to the ablation device; Causing the ablation device to contact a third surface of the subject in need thereof; and (C) providing radio frequency current to the first electrode and the second electrode by the radio frequency generator and generating thermal energy for ablation Or electrocauterizing soft tissue or mucosal tissue under the third surface.
  • the step (D) of moving the second electrode may be further performed after the step (B) or the step (C) to adjust the distance between the second electrode and the first electrode, thereby adjusting The depth of treatment of the area under the first electrode and the second electrode.
  • the mobile unit of the radio frequency ablation system that adjusts the distance between the second electrode and the first electrode may be a ball screw. Additionally, the mobile unit can be driven in any manner, such as by an electric motor.
  • An optional cooling unit may be disposed on the first surface and between the first electrode and the second electrode to reduce the temperature of the target tissue surface, and for illustrative purposes and without limitation, the cooling unit may include a cooling chip and/or Or refrigerant.
  • the base of the ablation device can also include a second surface opposite the first surface, and the ablation device can optionally include a temperature sensing unit disposed anywhere on the first surface or the second surface.
  • the temperature sensing unit may be disposed on the first surface and between the first electrode and the second electrode, or the temperature sensing unit may be disposed on the second surface and opposed to the first electrode.
  • the temperature sensing unit can be a thermistor or a resistance temperature detector (RTD).
  • the base of the ablation device has a second surface opposite the first surface
  • the ablation device can further include a treatment depth sensing unit disposed at any location on the first surface or the second surface, such as on the first surface and Between an electrode and the second electrode, or on the second surface and opposite to the position between the first electrode and the second electrode.
  • the treatment depth sensing unit can be an ultrasound transducer.
  • subject in need is not limited to a particular subject to be treated, and may refer not only to a human subject, but also to a non-human mammal and other subjects.
  • third surface as used in the present disclosure is not limited to a particular surface, and may include the surface of any inner tubular region, such as the surface of a nasal concha, throat, bronchi, esophagus, urethra or rectum.
  • the terms “treat”, “treating” or “treatment” refer to treating an abnormal physical condition, such as a symptom or condition in a human or animal (ie, a veterinary application). Or disease. In general, these terms relate to treatments or therapies that achieve the desired effect, such as inhibiting abnormal physical conditions.
  • the term can refer to slowing disease progression, halting disease progression, improving physical abnormalities, and/or eliminating or alleviating at least one symptom associated with or caused by abnormal physical conditions, including eliminating one or more Symptoms or eradication of the condition.
  • FIG. 1 is a schematic view of an ablation device in accordance with a first embodiment of the present invention.
  • FIG. 2 is a partial schematic view of an ablation device in accordance with a first embodiment.
  • Fig. 3 is a partially enlarged schematic view showing a mobile unit according to the first embodiment.
  • FIG. 4 is a schematic illustration of an ablation device in accordance with a second embodiment.
  • Figure 5 is a schematic illustration of an ablation device in accordance with a third embodiment.
  • Figure 6 is a schematic illustration of a fourth embodiment.
  • Fig. 7 is another schematic view according to the fourth embodiment.
  • Figure 8 is a block diagram of the operation of the system of a particular embodiment.
  • FIG. 9 is a block diagram of a detection procedure of a protection circuit of a specific embodiment.
  • Figure 10 is a block diagram of an adjustment procedure for an electrode of a specific embodiment.
  • Figure 11 is a circuit diagram of a temperature sensing unit of a specific embodiment.
  • Figure 12 is a block diagram of a cooling system program for a cooling chip of a particular embodiment.
  • FIG. 1 is a schematic view of an ablation device of a first embodiment.
  • 2 is a partial schematic view of the embodiment of FIG. 1; and
  • FIG. 3 is a partially enlarged schematic view showing the mobile unit of FIG. 2.
  • This embodiment comprises: an ablation device 1 comprising: a substrate 2 having a first surface 21; a first electrode 3 disposed on the first surface 21; disposed on the first surface 21 and adjacent to the first electrode 3 a second electrode 4; a moving unit 5 electrically connected to the second electrode 4, the moving unit 5 is for moving the second electrode 4 to adjust a distance between the second electrode 4 and the first electrode 3; and being connected to the ablation device
  • a radio frequency generator (not shown) for supplying a radio frequency current to the first electrode 3 and the second electrode 4.
  • the moving unit 5 is a ball screw.
  • the ball screw 5 replaces the sliding friction by rolling friction by placing the steel ball 51 between the nut 52 and the screw 53, thereby improving positioning failure and preventing damage.
  • the ball screw 5 of the present embodiment is driven by the motor 6 to achieve the purpose of moving the second electrode 4.
  • Substrate 2 can be made of a material selected from any non-conductive material known in the art, such as, but not limited to, plastics, polymers, ceramic materials, and the like.
  • the first electrode 3 and the second electrode 4 may be made of a material selected from conductive materials known in the art including, but not limited to, metals such as gold, silver, copper, and aluminum or alloys thereof, and non-metal conductive materials. material.
  • the shape of the first electrode and the second electrode is not particularly limited and may be circular, rectangular, elliptical or the like.
  • FIG. 4 is a schematic view of an ablation device according to another embodiment of the present invention.
  • the ablation device of the non-invasive radio frequency ablation system of the present embodiment is similar to that of Embodiment 1, except for the following differences.
  • the ablation device of the present embodiment may optionally include a cooling unit 7, a temperature sensing unit 8, and a treatment depth sensing unit 9.
  • the cooling unit 7 may be disposed on the first surface 21 of the substrate 2 and between the first electrode 3 and the second electrode 4.
  • the ablation device 1 is illustrated as including each of the cooling unit 7, the temperature sensing unit 8, and the treatment depth sensing unit 9.
  • any one or more of the cooling unit 7, the temperature sensing unit 8, and the treatment depth sensing unit 9 may also be omitted.
  • the cooling unit 7 may include a cooling chip and/or a refrigerant to reduce the temperature of the target tissue surface and avoid thermal damage to the target tissue surface.
  • the temperature sensing unit 8 may be disposed on the first surface 21 of the substrate 2 and between the first electrode 3 and the second electrode 4.
  • the temperature sensing unit 8 can be a thermistor or a resistance temperature detector (RTD) to detect the temperature of the treatment target area during treatment. The detected temperature can be used to control the cooling unit to improve the treatment.
  • RTD resistance temperature detector
  • the treatment depth sensing unit 9 may be disposed on the first surface 21 of the substrate 2 and between the first electrode 3 and the second electrode 4.
  • the treatment depth sensing unit may be an ultrasonic transducer to detect the position of the lesion before, during, and/or after treatment, and to improve the accuracy of the treatment by adjusting the distance between the first electrode 3 and the second electrode 4, Therefore, the depth of treatment is changed to enhance the therapeutic effect.
  • FIG. 5 is a schematic illustration of an ablation device in accordance with another embodiment of the present invention.
  • the ablation device of the non-invasive radio frequency ablation system of the present embodiment is similar to the embodiment 1 or 2 except for the following differences.
  • the ablation device of the present embodiment may optionally include a cooling unit 7, a temperature sensing unit 8, and a treatment depth sensing unit 9.
  • the cooling unit 7 may be disposed on the first surface 21 of the substrate 2 and between the first electrode 3 and the second electrode 4.
  • the temperature sensing unit 8 may be disposed on the second surface 22 of the substrate 2 and opposed to the first electrode 3, but the position of the temperature sensing unit 8 may be changed as long as it does not deviate from the present invention.
  • the treatment depth sensing unit 9 may be disposed on the second surface 22 of the substrate 2 and opposed to the cooling unit 7, but the position of the treatment depth sensing unit 9 may also be changed.
  • FIGS. 6 and 7 are schematic diagrams illustrating a method of treatment in accordance with an embodiment of the present invention.
  • the first electrode 3 and the second electrode 4 of the ablation device 1 according to the first embodiment are in contact with the third surface 11 of the subject 10 in need thereof, and a radio frequency generator (not shown) is applied to the first electrode 3 and The two electrodes 4 provide a radio frequency current. Thereafter, the radio frequency generates thermal energy between the first electrode 3 and the second electrode 4 to ablate or electrocauterize the target lesion tissue under the third surface 11.
  • a radio frequency generator not shown
  • the method may also use ablation according to embodiment 2 or 3, optionally including a cooling unit 7, a temperature sensing unit 8 and / or treatment depth sensing unit 9.
  • the penetration of RF energy is relatively shallow and the target tissue at the surface layer will be treated.
  • the penetration of RF energy is relatively deep, and the target tissue located in the deeper layer will be treated.
  • the RF energy penetration depth is equal to the distance between the first electrode 3 and the second electrode 4 divided by two.
  • the ablation device of the present disclosure includes an adjustable electrode, the depth of treatment can be varied by adjusting the distance between the two electrodes. Compared to conventional techniques, the present system and method can be applied to a wider range of applications and reduce complications during surgery.
  • FIG 8 is a block diagram of the operation of the system of a particular embodiment.
  • the host and microprogram control unit control the peripheral components and switches of the entire system.
  • Figure 9 is a block diagram of the detection process of the protection circuit.
  • the control unit MCU When the host is turned on, the control unit MCU will start detecting the current of the electrodes and report it to the host. First, the MCU will determine if the current setting of the recipe current is greater than 0 mA. Thereafter, when the current setpoint is greater than 0 mA, the MCU will immediately start the current output switch of the electrode circuit and detect if the current is greater than 0 mA in a few seconds. For purposes of illustration and not limitation, the time to detect current may be 1 second. If no current is generated, the current output switch of the electrode circuit will be deactivated; if current is generated, it means that the electrode is in contact with the target tissue and the treatment will continue.
  • FIG 10 is a block diagram of a distance adjustment procedure for an electrode of a specific embodiment.
  • the host when the host is turned on, the host will notify the MCU to initialize the electrode position and return the electrode to its home position. Thereafter, the MCU will detect whether button 201 or button 202 is pressed.
  • the electrodes When the button 201 is pressed, the electrodes will move toward each other, that is, the second electrode 4 will move toward a position close to the first electrode 3. If the button 202 is pressed, the electrodes will move away from each other, ie the second electrode 4 will move in a direction away from the first electrode 3.
  • FIG. 11 is a circuit diagram of a temperature sensing unit that can be used in a particular embodiment. Referring to FIGS. 4, 5 and 11, the temperature of the third surface is detected by the temperature sensing unit 8, and it is determined whether the cooling unit 7 needs to be activated to lower the temperature of the third surface 11 based on the detected temperature.
  • FIG. 12 is a block diagram of a cooling system program for a cooling chip that can be used in a particular embodiment.
  • the MCU when the host is turned on, the MCU will start detecting the circuit voltage of the temperature sensing unit 8, and determine whether the cooling unit 7 needs to be converted by the MCU's analog-to-digital converter when converting the detected parameters ( Analog-to-digital converter, ADC) starts.
  • ADC Analog-to-digital converter

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Plasma & Fusion (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgical Instruments (AREA)

Abstract

一种非侵入性射频消融系统,包括消融装置(1),消融装置(1)包括:具有第一表面(21)的基底(2);设置在第一表面(21)上的第一电极(3);设置在第一表面(21)上并与第一电极(3)相邻的第二电极(4);电性连接到第二电极(4)的移动单元(5),移动单元(5)用于移动第二电极(4),以调节第二电极(4)和第一电极(3)之间的距离,非侵入性射频消融系统还包括连接到消融装置(1)的射频发生器,射频发生器用于向第一电极(3)和第二电极(4)提供射频电流。使用消融装置(1)的方法,使第一电极(3)和第二电极(4)与需要治疗的受试者(10)的第三表面(11)接触,并且对第一电极(3)和第二电极(4)施加射频电流以执行治疗过程。通过改变第一电极(3)和第二电极(4)之间的相对距离来调整治疗深度和面积。

Description

非侵入性射频消融系统 技术领域
本揭示内容涉及非侵入性射频消融(radio-frequency ablation,RFA)系统和用于治疗粘膜或软组织相关疾病的方法,并且更具体地涉及用于治疗管状软组织相关疾病的方法。
背景技术
射频消融(RFA)是手术治疗中最常使用的方法之一,它可应用于各种领域,如治疗肝癌、肺癌和其他肿瘤、甲状腺结节和心脏病、整形外科和耳鼻喉科以治疗慢性肥厚性鼻炎、慢性肥厚性咽炎和睡眠打鼾的患者等等。
在RFA中,将金属探针上的电极(称为单极RFA)或具有电极位于固定距离的两个探针(称为双极RFA)插入组织中,并用于通过以特定频率引入电流而加热两个电极之间的组织来实现消融病灶的目的。
虽然RFA如今已被广泛使用,这种技术仍然存在许多问题。例如,长时间的治疗将对周围的非靶向组织(non-targeted tissue)造成热损伤或坏死;而在双极RFA的情况下,治疗深度受到两电极之间的距离所限制。此外,目前大部分RFA治疗技术都是侵入性的,并伴有出血、治疗表面出血、对周围非目标组织的热损伤以及感染风险。
因此,有必要开发一种能够有效和精确地控制射频治疗区域、深度和温度,同时消除对周围组织的热损伤的非侵入性射频治疗。
发明内容
根据一个实施例,本发明提供了一种非侵入性射频消融系统,其不需要将电极插入组织中,从而消除了病灶位置处的出血或穿孔,这降低了治疗并发症的风险。用于非侵入性RFA系统的电极是可调整的而不是固定的,因此可以通过调节电极之间的距离来改变治疗深度。
根据另一实施例,本发明提供一种进行非侵入性射频消融的方法,其无需将电极插入组织中,并且使用可调式电极来改变治疗深度。
根据另一实施例,本发明可以任选地包括组织接触冷却单元,其可以降低接触组织表面的温度,并增加接触组织表面的阻抗。接触冷却单元不仅可以使接触组织表面免受热损伤,还可以在治疗期间增加更深层的RF流动和热消融作用。另外,为了增强治疗效果,本揭示的装置可以任选地具有温度感测单元和/或治疗深度感测单元,以感测温度和/或治疗深度,从而增强治疗效果。
根据本发明的例示性具体实施例,所述非侵入性射频消融系统包括消融装置,所述消融装置包括:具有第一表面的基底;设置在所述第一表面上的第一电极;设置在所述第一表面上并与所述第一电极相邻的第二电极;电性连接到所述第二电极的移动单元,所述移动单元通过移动所述第二电极来调节所述第二电极和所述第一电极之间的距离;以及连接到所述消融装置的射频发生器,用于对所述第一电极和所述第二电极提供射频电流。
根据本发明的另一例示性具体实施例,所述用于治疗软组织或粘膜组织相关疾病的非侵入性射频消融方法包括以下步骤:(A)提供非侵入性射频消融系统,其包括消融装置,所述消融装置包括:具有第一表面的基底;设置在所述第一表面上的第一电极;设置在所述第一表面上并与所述第一电极相邻的第二电极;电性连接到所述第二电极的移动单元,其移动所述第二电极以调节所述第二电极和所述第一电极之间的距离;以及连接到所述消融装置的射频发生器;(B)使所述消融装置与有需要的受试者的第三表面接触;及(C)通过所述射频发生器对所述第一电极和所述第二电极提供射频电流并产生热能,以消融或电灼所述第三表面下的软组织或粘膜组织。
在上述例示性具体实施例的方法中,步骤(B)或步骤(C)之后还可以进行移动第二电极的步骤(D),以调节第二电极与第一电极之间的距离,从而调节第一电极和第二电极下方区域的治疗深度。
另外的具体实施例可任选地包括以下特征中的一个或多个:
作为例示而非限制性目的,调节第二电极和第一电极之间的距离的射频消融系统的移动单元可以是滚珠螺钉。另外,移动单元可以任何方式驱动,例如通过电动机。
任选的冷却单元可以设置在第一表面上以及第一电极和第二电极 之间,以降低目标组织表面的温度,并且作为例示而非限制性目的,所述冷却单元可以包括冷却芯片和/或制冷剂。
所述消融装置的基底还可以包括与第一表面相对的第二表面,并且消融装置可任选地包括设置在第一表面或第二表面上的任何位置的温度感测单元。例如,温度感测单元可以设置在第一表面上以及第一电极和第二电极之间,或者,温度感测单元可以设置在第二表面上并且与第一电极相对。作为例示而非限制性目的,温度感测单元可以是热敏电阻器或电阻温度侦测器(resistance temperature detector,RTD)。
消融装置的基底具有与第一表面相对的第二表面,所述消融装置还可以包括设置在第一表面或第二表面上的任何位置的治疗深度感测单元,例如在第一表面上以及第一电极和第二电极之间,或者,在第二表面上且与第一电极和第二电极之间的位置相对。作为例示而非限制性目的,所述治疗深度感测单元可以是超声换能器。
术语“有需要的受试者”不限于欲治疗的特定受试者,并且可以不仅指人类受试者,而且还指非人类哺乳动物和其他受试者。本揭示内容中使用的术语“第三表面”不限于特定表面,并且可以包括任何内部管状区域的表面,例如鼻甲(nasal concha)、喉、支气管、食道、尿道或直肠的表面。
在本揭示内容中,术语“治疗(treat)”,“治疗(treating)”或“治疗(treatment)”是指处理异常的身体状况,例如人或动物(即,兽医应用)中的症状、病症或疾病。一般而言,这些术语涉及达到预期效果的治疗或疗法,例如抑制异常身体状况。例如,所述术语可以指减缓疾病进展、中止疾病进展、改善身体异常状况、和/或消除或缓解至少一种与异常身体状况有关或由异常身体状况引起的症状,包括消除一种或多种症状或彻底根除病症。
当结合附图时,本揭示内容的其它目的、优点和新颖特征将根据以下详细描述变得更加清楚。
附图说明
图1为根据本发明第一具体实施例的消融装置的示意图。
图2为根据第一具体实施例的消融装置的局部示意图。
图3为显示根据第一具体实施例的移动单元的局部放大的示意图。
图4为根据第二具体实施例的消融装置的示意图。
图5为根据第三具体实施例的消融装置的示意图。
图6为根据第四具体实施例的示意图。
图7为根据第四具体实施例的另一示意图。
图8为具体实施例的系统操作的框图。
图9为具体实施例的保护电路的侦测程序的框图。
图10为具体实施例的电极的调节程序的框图。
图11为具体实施例的温度感测单元的电路图。
图12为具体实施例的冷却芯片的冷却系统程序的框图。
具体实施方式
尽管已经结合具体实施例说明了本发明,应理解的是,在不脱离本发明的精神和范畴的情况下,可以做出许多其他可能的修改和变化。
另外,在说明书和权利要求中使用的用于修改权利要求的组件的诸如“第一”、“第二”、“第三”等序数,并不意味着并且表示要求保护的组件具有任何先前的序号,它们也不是表示请求保护的组件之间的顺序(或生产顺序)。序号仅用于明确区分具有相同名称的某些请求保护的组件。
实施例1
图1为第一具体实施例的消融装置的示意图。图2为图1的具体实施例的局部示意图;图3为显示图2的移动单元的局部放大的示意图。此实施例包括:消融装置1,其包括:具有第一表面21的基底2;设置在第一表面21上的第一电极3;设置在第一表面21上且与第一电极3相邻的第二电极4;电性连接到第二电极4的移动单元5,移动单元5用于移动第二电极4,以调节第二电极4和第一电极3之间的距离;以及连接到消融装置1的射频发生器(未显示),所述射频发生器用于对第一电极3和第二电极4提供射频电流。如图3的局部放大图所示,移动单元5是滚珠螺钉。滚珠螺钉5通过在螺母52和螺杆53之间放 置钢珠51来以滚动摩擦代替滑动摩擦,而改善定位不良和防止损坏。此外,本实施例的滚珠螺钉5通过电动机6驱动,而达到使第二电极4移动的目的。
基底2可由选自本领域已知的任何非导电材料的材料制成,例如,但不限于塑料、聚合物、陶瓷材料等。第一电极3和第二电极4可以由选自本领域已知的导电材料的材料制成,其包括,但不限于,诸如金、银、铜及铝的金属或其合金,以及非金属导电材料。第一电极和第二电极的形状没有特别限制,可以是圆形、矩形、椭圆形等。
实施例2
图4为本发明另一具体实施例的消融装置的示意图。本实施例的非侵入性射频消融系统的消融装置与实施例1相似,区别在于以下不同之处。
参考图4,本实施例的消融装置可以任选地包括冷却单元7、温度感测单元8及治疗深度感测单元9。冷却单元7可以设置在基底2的第一表面21上和第一电极3和第二电极4之间。在本实施例中,消融装置1被阐释为包括冷却单元7、温度感测单元8以及治疗深度感测单元9中的每一者。然而,冷却单元7、温度感测单元8以及治疗深度感测单元9中的任何一个或多个也可以被省略。
冷却单元7可包括冷却芯片和/或制冷剂,以降低目标组织表面的温度并避免对目标组织表面造成热损伤。
温度感测单元8可以设置在基底2的第一表面21上以及第一电极3和第二电极4之间。温度感测单元8可以是热敏电阻器或电阻温度侦测器(RTD),以侦测在治疗期间治疗目标区域的温度。侦测到的温度可用于控制冷却单元,以提高治疗效果。
治疗深度感测单元9可以设置在基底2的第一表面21上以及第一电极3和第二电极4之间。治疗深度感测单元可以是超声换能器,以在治疗之前、期间和/或之后侦测病灶的位置,通过调节第一电极3和第二电极4之间的距离来提高治疗的准确性,因此改变治疗深度以增强治疗效果。
实施例3
图5为根据本发明另一具体实施例的消融装置的示意图。本实施例的非侵入性射频消融系统的消融装置与实施例1或2类似,区别在于以下不同之处。
参考图5,本实施例的消融装置可以任选地包括冷却单元7、温度感测单元8及治疗深度感测单元9。冷却单元7可以设置在基底2的第一表面21上和第一电极3和第二电极4之间。
温度感测单元8可以设置在基底2的第二表面22上并且与第一电极3相对,但是所述温度感测单元8的位置只要不偏离本发明,是可以改变的。
治疗深度感测单元9可以设置在基底2的第二表面22上并且与冷却单元7相对,但是所述治疗深度感测单元9的位置也是可以改变的。
实施例4
图6和图7为阐释根据本发明具体实施例的治疗方法的示意图。根据第一具体实施例的消融装置1的第一电极3和第二电极4与有需要的受试者10的第三表面11接触,并且射频发生器(未显示)对第一电极3和第二电极4提供射频电流。之后,射频在第一电极3和第二电极4之间产生热能,以消融或电灼第三表面11下的目标病灶组织。尽管在图6和图7中仅示出了消融装置1,将理解的是,所述方法还可以使用根据实施例2或3的消融,任选地包括冷却单元7、温度感测单元8和/或治疗深度感测单元9。
如图6所示,当第一电极3和第二电极4之间的距离相对较短时,RF能量的穿透相对较浅,且将治疗表层处的目标组织。如图7所示,当第一电极3和第二电极4之间的距离相对较长时,RF能量的穿透相对较深,且位于较深层中的目标组织将被治疗。RF能量穿透深度等于第一电极3和第二电极4之间的距离除以2。
由于本揭示内容的消融装置包括可调式电极,可以通过调节两个电极的距离来改变治疗深度。与传统技术相比,本系统和方法可以在更广泛的范围内应用并减少手术中的并发症。
实施例5
图8为具体实施例的系统操作的框图。如图8所示,主机和微过程控制单元(microprogram control unit,MCU)控制整个系统的外围组件和开关。图9为保护电路的侦测过程的框图。当打开主机时,控制单元MCU将开始侦测电极的电流并将其报告给主机。首先,MCU将确定配方电流(recipe current)的电流设定值是否大于0mA。此后,当电流设定值大于0mA时,MCU将立即启动电极电路的电流输出开关,并在几秒钟内侦测电流是否大于0mA。作为例示而非限制性目的,侦测电流的时间可以是1秒。如果没有电流产生,则电极电路的电流输出开关将被停用;如果产生电流,则意味着电极与目标组织接触,并且治疗将继续。
图10为具体实施例的电极的距离调节程序的框图。参照图1、6、7以及10,在主机开启时,主机将通知MCU初始化电极位置,并将电极放回其原位。此后,MCU将侦测是否按压按钮201或按钮202。当按压按钮201时,电极将朝向彼此移动,即第二电极4将向靠近第一电极3的位置移动。如果按压按钮202,则电极将彼此远离,即第二电极4将沿远离第一电极3的方向移动。
图11为可以在具体实施例中使用的温度感测单元的电路图。参照图4、5及11,通过温度感测单元8侦测第三表面的温度,并且根据侦测到的温度确定是否需要启动冷却单元7以降低第三表面11的温度。
图12为可以在具体实施例中使用的冷却芯片的冷却系统程序的框图。参照图4、5及12,当主机开启时,MCU将开始侦测温度感测单元8的电路电压,并确定冷却单元7是否需要在转换侦测到的参数时由MCU的模数转换器(analog-to-digital converter,ADC)启动。当侦测到的温度过高时,有需要的受试者10的第三表面11将被冷却,以防止周围组织在治疗期间受到热损伤。
前述具体实施例应解释为仅具阐释性,而非限制性的。

Claims (19)

  1. 一种非侵入性射频消融系统,包括:
    消融装置,其包括:
    基底,其具有第一表面;
    第一电极,其设置在所述第一表面上;及
    第二电极,其设置在所述第一表面上并与所述第一电极相邻;及
    移动单元,其电性连接到所述第二电极并移动所述第二电极以调节所述第二电极和所述第一电极之间的距离;及
    射频发生器,其连接到所述消融装置,用于对所述第一电极和所述第二电极提供射频电流。
  2. 根据权利要求1所述的射频消融系统,其中,所述移动单元包括滚珠螺钉。
  3. 根据权利要求1所述的射频消融系统,其中,所述消融装置还包括冷却单元,所述冷却单元设置在所述第一表面上以及所述第一电极和所述第二电极之间。
  4. 根据权利要求3所述的射频消融系统,其中,所述冷却单元包括冷却芯片和/或制冷剂。
  5. 根据权利要求1所述的射频消融系统,其中,所述基底还包括与所述第一表面相对的第二表面,及所述消融装置还包括设置在所述第一表面或所述第二表面上的温度感测单元。
  6. 根据权利要求5所述的射频消融系统,其中,所述温度感测单元是热敏电阻器或电阻温度侦测器。
  7. 根据权利要求1所述的射频消融系统,其中,所述基底还包括 与所述第一表面相对的第二表面,及所述消融装置还包括设置在所述第一表面或所述第二表面上的治疗深度感测单元。
  8. 根据权利要求7所述的射频消融系统,其中,所述治疗深度感测单元是超声换能器。
  9. 一种用于治疗软组织相关疾病的方法,包括以下步骤:
    步骤A:提供非侵入性射频消融系统,其包括:
    消融装置,所述消融装置包括:
    基底,其具有第一表面;
    第一电极,其设置在所述第一表面上;
    第二电极,其设置在所述第一表面上并与所述第一电极相邻;
    移动单元,其电性连接到所述第二电极,并移动所述第二电极以调节所述第二电极和所述第一电极之间的距离;及
    射频电流发生器,其连接到所述消融装置;
    步骤B:使所述消融装置与有需要的受试者的第三表面接触;及
    步骤C:通过所述射频发生器对所述第一电极和所述第二电极提供射频并且产生热能,以通过所述射频消融或电灼在所述第三表面下的目标软组织。
  10. 根据权利要求9所述的方法,其中,所述步骤B或所述步骤C之后还进行移动所述第二电极的步骤D,以调节所述第二电极与所述第一电极之间的距离,从而调节所述第一电极和所述第二电极的治疗深度。
  11. 根据权利要求9所述的方法,其中,所述移动单元包括滚珠螺钉。
  12. 根据权利要求9所述的方法,其中,所述消融装置还包括冷却单元,所述冷却单元设置在所述第一表面上并且位于所述第一电极和 所述第二电极之间。
  13. 根据权利要求12所述的方法,其中,所述冷却单元包括冷却芯片和/或制冷剂。
  14. 根据权利要求9所述的方法,其中,所述基底还包括与所述第一表面相对的第二表面,并且所述消融装置还包括设置在所述第一表面或所述第二表面上的温度感测单元。
  15. 根据权利要求14所述的方法,其中,所述温度感测单元是热敏电阻器或电阻温度侦测器。
  16. 根据权利要求9所述的方法,其中,所述基底还包括与所述第一表面相对的第二表面,并且所述消融装置还包括设置在所述第一表面或所述第二表面上的治疗深度感测单元。
  17. 根据权利要求16所述的方法,其中,所述治疗深度感测单元是超声换能器。
  18. 根据权利要求9所述的方法,其中,所述第三表面是内部管状组织表面。
  19. 根据权利要求18所述的方法,其中,所述第三表面是鼻甲、喉、支气管、食道、尿道或直肠的表面。
PCT/CN2018/099861 2017-08-29 2018-08-10 非侵入性射频消融系统 WO2019042111A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880055985.4A CN111093545A (zh) 2017-08-29 2018-08-10 非侵入性射频消融系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15/688,973 US20190059978A1 (en) 2017-08-29 2017-08-29 Non-invasive radio-frequency ablation system
US15/688,973 2017-08-29

Publications (1)

Publication Number Publication Date
WO2019042111A1 true WO2019042111A1 (zh) 2019-03-07

Family

ID=65434388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099861 WO2019042111A1 (zh) 2017-08-29 2018-08-10 非侵入性射频消融系统

Country Status (3)

Country Link
US (2) US20190059978A1 (zh)
CN (1) CN111093545A (zh)
WO (1) WO2019042111A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113693713A (zh) * 2021-09-08 2021-11-26 西安交通大学医学院第一附属医院 一种非侵入式组织消融电极电路

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112494814A (zh) * 2021-01-12 2021-03-16 王金震 一种射频美容仪
CN116269737A (zh) * 2023-05-10 2023-06-23 杭州祺晟医疗器械有限公司 基于温控射频消融的鼻炎治疗电极组件、鼻炎治疗装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2446332Y (zh) * 2000-09-26 2001-09-05 上银科技股份有限公司 滚珠螺帽
CN1792341A (zh) * 2004-12-21 2006-06-28 伊西康内外科公司 具有治疗监视用途的医疗治疗电极组件
CN2875353Y (zh) * 2006-03-23 2007-03-07 迈德医疗科技(上海)有限公司 一种射频消融系统
EP1880687A1 (en) * 2006-07-17 2008-01-23 AtriCure Inc. Ablation device with sensor
CN101610736A (zh) * 2006-07-27 2009-12-23 波洛根有限公司 皮肤组织无创治疗的装置和方法
CN101969873A (zh) * 2007-12-05 2011-02-09 赛诺龙医疗公司 一次性电磁能施用器以及使用它的方法
CN202091452U (zh) * 2011-06-03 2011-12-28 丽水市嘉龙轴承制造有限公司 一种滚珠丝杠双螺母
CN106236250A (zh) * 2016-09-09 2016-12-21 深圳半岛医疗有限公司 可调节治疗深度的双极射频治疗装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6109268A (en) * 1995-06-07 2000-08-29 Arthrocare Corporation Systems and methods for electrosurgical endoscopic sinus surgery
ATE284650T1 (de) * 1993-06-10 2005-01-15 Mir A Imran Urethrales gerät zur ablation mittels hochfrequenz
JP3898754B2 (ja) * 1993-07-01 2007-03-28 ボストン サイエンティフィック リミテッド 像形成、電位検出型及び切除カテーテル
US6837887B2 (en) * 1995-06-07 2005-01-04 Arthrocare Corporation Articulated electrosurgical probe and methods
US6081749A (en) * 1997-08-13 2000-06-27 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US6464699B1 (en) * 1997-10-10 2002-10-15 Scimed Life Systems, Inc. Method and apparatus for positioning a diagnostic or therapeutic element on body tissue and mask element for use with same
US6152925A (en) * 1998-03-04 2000-11-28 University Of Iowa Research Foundation Method and apparatus for external fixation of an elbow
US6178354B1 (en) * 1998-12-02 2001-01-23 C. R. Bard, Inc. Internal mechanism for displacing a slidable electrode
JP4102031B2 (ja) * 1999-03-09 2008-06-18 サーメイジ インコーポレイテッド 組織を治療するのための装置および方法
US6152924A (en) * 1999-09-24 2000-11-28 Parins; David J. Bipolar biopsy forceps
US7074218B2 (en) * 2003-06-30 2006-07-11 Ethicon, Inc. Multi-modality ablation device
US7789883B2 (en) * 2007-02-14 2010-09-07 Olympus Medical Systems Corp. Curative treatment system, curative treatment device, and treatment method for living tissue using energy
US20100022999A1 (en) * 2008-07-24 2010-01-28 Gollnick David A Symmetrical rf electrosurgical system and methods
JP5841140B2 (ja) * 2010-06-30 2016-01-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. エネルギーを対象物に付与するためのエネルギー付与装置
US10314649B2 (en) * 2012-08-02 2019-06-11 Ethicon Endo-Surgery, Inc. Flexible expandable electrode and method of intraluminal delivery of pulsed power

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2446332Y (zh) * 2000-09-26 2001-09-05 上银科技股份有限公司 滚珠螺帽
CN1792341A (zh) * 2004-12-21 2006-06-28 伊西康内外科公司 具有治疗监视用途的医疗治疗电极组件
CN2875353Y (zh) * 2006-03-23 2007-03-07 迈德医疗科技(上海)有限公司 一种射频消融系统
EP1880687A1 (en) * 2006-07-17 2008-01-23 AtriCure Inc. Ablation device with sensor
CN101610736A (zh) * 2006-07-27 2009-12-23 波洛根有限公司 皮肤组织无创治疗的装置和方法
CN101969873A (zh) * 2007-12-05 2011-02-09 赛诺龙医疗公司 一次性电磁能施用器以及使用它的方法
CN202091452U (zh) * 2011-06-03 2011-12-28 丽水市嘉龙轴承制造有限公司 一种滚珠丝杠双螺母
CN106236250A (zh) * 2016-09-09 2016-12-21 深圳半岛医疗有限公司 可调节治疗深度的双极射频治疗装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113693713A (zh) * 2021-09-08 2021-11-26 西安交通大学医学院第一附属医院 一种非侵入式组织消融电极电路

Also Published As

Publication number Publication date
CN111093545A (zh) 2020-05-01
US10813682B2 (en) 2020-10-27
US20190059981A1 (en) 2019-02-28
US20190059978A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
US11291499B2 (en) Device and method for treatment of sleep disorders
US8568397B2 (en) Induction sealing
AU2019217623B2 (en) Methods and apparatus for controlled RF treatments and RF generator system
WO2019042111A1 (zh) 非侵入性射频消融系统
JP2005527306A (ja) 体組織をエレクトロサージェリィにより硬化(サーマルスクリローシス)させるための装置
US20140088588A1 (en) Systems and methods for controlling energy application
JP2009511097A (ja) 抵抗性加熱装置および抵抗性加熱方法
US20120029498A1 (en) Bipolar Radio Frequency Ablation Instrument
JP2008510507A (ja) 体組織の電気外科的硬化処置のための装置
JP6214940B2 (ja) 熱伝導を向上させた灌注式電極
JP6673598B2 (ja) ペーシングを伴う組織の高分解能マッピング
JP7296450B2 (ja) 高周波インピーダンス検知を伴うマイクロ波アブレーションプローブ
JP2017521121A (ja) 人体挿入電極位置感知装置および方法
US20160081741A1 (en) Ablation apparatus
US9782213B2 (en) Overlapping bipolar electrode for high-frequency heat treatment
US20210015552A1 (en) Patch electrode including temperature sensing circuit and methods of using same
WO2017206266A1 (zh) 一种网篮状消融导管及消融装置
JP6570813B2 (ja) 双極アブレーションのための適応電極
US10888372B2 (en) Radiofrequency ablation electrode needle
JPH07184919A (ja) アブレーションバルーンカテーテル
Sergeev et al. Coblation technology: a new method for high-frequency electrosurgery
CN114305673B (zh) 一种门静脉癌栓微波消融导管及装置
JPH08308853A (ja) カテーテルアブレーション式治療装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18852422

Country of ref document: EP

Kind code of ref document: A1