US20190059978A1 - Non-invasive radio-frequency ablation system - Google Patents
Non-invasive radio-frequency ablation system Download PDFInfo
- Publication number
- US20190059978A1 US20190059978A1 US15/688,973 US201715688973A US2019059978A1 US 20190059978 A1 US20190059978 A1 US 20190059978A1 US 201715688973 A US201715688973 A US 201715688973A US 2019059978 A1 US2019059978 A1 US 2019059978A1
- Authority
- US
- United States
- Prior art keywords
- electrode
- radio
- ablation device
- sensing unit
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007674 radiofrequency ablation Methods 0.000 title claims abstract description 30
- 238000002679 ablation Methods 0.000 claims abstract description 43
- 238000000034 method Methods 0.000 claims abstract description 31
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 238000001816 cooling Methods 0.000 claims description 27
- 210000001519 tissue Anatomy 0.000 claims description 20
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 9
- 201000010099 disease Diseases 0.000 claims description 7
- 210000004872 soft tissue Anatomy 0.000 claims description 6
- 239000003507 refrigerant Substances 0.000 claims description 4
- 210000000621 bronchi Anatomy 0.000 claims description 2
- 210000003238 esophagus Anatomy 0.000 claims description 2
- 210000003800 pharynx Anatomy 0.000 claims description 2
- 210000000664 rectum Anatomy 0.000 claims description 2
- 210000001944 turbinate Anatomy 0.000 claims description 2
- 210000003708 urethra Anatomy 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 24
- 230000003685 thermal hair damage Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 4
- 230000003902 lesion Effects 0.000 description 4
- 208000032843 Hemorrhage Diseases 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000004400 mucous membrane Anatomy 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000001105 regulatory effect Effects 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000001225 therapeutic effect Effects 0.000 description 3
- 230000000740 bleeding effect Effects 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000001969 hypertrophic effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 201000007100 Pharyngitis Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 206010041235 Snoring Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 208000009453 Thyroid Nodule Diseases 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000002316 cosmetic surgery Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000008029 eradication Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 208000020816 lung neoplasm Diseases 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 206010039083 rhinitis Diseases 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1402—Probes for open surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1485—Probes or electrodes therefor having a short rigid shaft for accessing the inner body through natural openings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00047—Cooling or heating of the probe or tissue immediately surrounding the probe using Peltier effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00184—Moving parts
- A61B2018/00196—Moving parts reciprocating lengthwise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00321—Head or parts thereof
- A61B2018/00327—Ear, nose or throat
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00482—Digestive system
- A61B2018/00488—Esophagus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00482—Digestive system
- A61B2018/005—Rectum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00505—Urinary tract
- A61B2018/00517—Urinary bladder or urethra
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00642—Sensing and controlling the application of energy with feedback, i.e. closed loop control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00714—Temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00696—Controlled or regulated parameters
- A61B2018/00738—Depth, e.g. depth of ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00636—Sensing and controlling the application of energy
- A61B2018/00773—Sensed parameters
- A61B2018/00791—Temperature
- A61B2018/00815—Temperature measured by a thermistor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1497—Electrodes covering only part of the probe circumference
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/16—Indifferent or passive electrodes for grounding
- A61B2018/162—Indifferent or passive electrodes for grounding located on the probe body
Definitions
- the present disclosure relates to a non-invasive radio-frequency ablation (RFA) system and a method for treating mucosal or soft tissue related diseases and, more particularly, to a method for treating tubular soft tissue related diseases.
- RFID radio-frequency ablation
- Radio-frequency ablation is one of the most commonly used methods in surgical treatment. It can be applied in a variety of fields such as treatment of liver cancer, lung cancer and other tumors, thyroid nodules, and heart disease, in plastic surgery, and in otolaryngology for treatment of chronic hypertrophic rhinitis, chronic hypertrophic pharyngitis, and patients with sleep snoring . . . etc.
- an electrode on a metal probe or two probes with electrodes situated at a fixed-distance (so call bi-polar RFA) are inserted into a tissue, and used to heat up the tissue between the two electrodes by introducing a current at a specific frequency to achieve the purpose of ablating lesions.
- RFA is widely used nowadays, there are still many issues with this technique. For instance, prolonged treatment will cause thermal damage or necrosis to peripheral non-targeted tissue; and in the case of bi-polar. RFA, the depth of treatment is limited by the distance between the two-electrodes. In addition, most of the current RFA treatment techniques are invasive and accompanied with bleeding, treatment surface hemorrhage, thermal damage to peripheral non-targeted tissue and the risk of infection.
- the present invention provides a non-invasive radio-frequency ablation system that does not require insertion of electrodes into tissues, and thereby eliminating bleeding or perforation at the lesion position, which reduces the risk of treatment complications.
- the electrodes used in the non-invasive RFA system are adjustable rather than fixed, so that the treatment depth can be changed by regulating the distance between the electrodes.
- the present invention provides a method of performing non-invasive radio-frequency ablation that does not require insertion of electrodes into tissues, and which uses adjustable electrodes to change the treatment depth.
- the present invention may optionally comprise a tissue contact cooling unit that can lower the contact tissue surface temperature and increase the impedance of the contact tissue surface.
- the contact cooling unit will not only spare the contact tissue surface from thermal damage but also increase the RF flow and thermal ablation effect at a deeper layer during treatment.
- the device of the present disclosure may optionally have a temperature sensing unit and/or a treatment depth sensing unit to sense the temperature and/or treatment depth so as to enhance the therapeutic effect.
- the non-invasive radio-frequency ablation system includes an ablation device comprising: a substrate having a first surface; a first electrode disposed on the first surface; a second electrode disposed on the first surface and adjacent to the first electrode; a moving unit electrically connected to the second electrode, to regulate the distance between the second electrode and the first electrode by moving the second electrode; and a radio frequency generator connected to the ablation device for providing a radio frequency current to the first electrode and the second electrode.
- an non-invasive radio-frequency ablation method for treating soft or mucosal tissue related diseases comprises the following steps: (A) providing a non-invasive radio-frequency ablation system that includes an ablation device, the ablation device comprising: a substrate having a first surface; a first electrode disposed on the first surface; a second electrode disposed on the first surface and adjacent to the first electrode; a moving unit electrically connected to the second electrode and moving the second electrode to regulate the distance between the second electrode and the first electrode; and a radio frequency generator connected to the ablation device; (B) contacting the ablation device with a third surface of a subject in need; and (C) providing a radio frequency current to the first electrode and the second electrode by the radio frequency generator and producing thermal energy to ablate or electrically burn the soft or mucosal tissue under the third surface.
- step (B) or step (C) may be further followed by a step (D) of moving the second electrode to regulate the distance between the second electrode and the first electrode and thereby regulate the treatment depth at the area beneath the first electrode and the second electrode.
- the moving unit of the radio-frequency ablation system which regulates the distance between the second electrode and the first electrode may, by way of example and not limitation, be a ball screw.
- the moving unit can be driven in any manner, such as by a motor.
- An optional cooling unit may be disposed on the first surface and between the first electrode and second electrode to lower the temperature of the targeted tissue surface, and may, by way of example and not limitation, include a cooling chip and/or refrigerant.
- the substrate of the ablation device may further comprise a second surface opposite to the first surface, and the ablation device may optionally comprise a temperature sensing unit disposed at any position on the first surface or second surface.
- the temperature sensing unit may be disposed on the first surface and between the first electrode and the second electrode or, alternatively, the temperature sensing unit may be disposed on the second surface and opposite to the first electrode.
- the temperature sensing unit may be a thermistor or a resistance temperature detector (RTD).
- the ablation device having a substrate with a second surface opposite to the first surface may further comprise a treatment depth unit disposed at any position on the first surface or second surface such as, for instance, on the first surface and between the first electrode and the second electrode or, alternatively, on the second surface and opposite to the position that is between the first electrode and the second electrode.
- the treatment depth sensing unit may be an ultrasonic transducer.
- the teen “subject in need” is not to be limited to a particular subject to be treated, and may refer not only to human subjects but also to non-human mammalian and other subjects.
- the term “the third surface” used in the present disclosure is not limited to a particular surface, and may include surfaces of any inner tubular area such as the surface of a nasal concha, throat, bronchus, esophagus, urethra, or rectum.
- the terms “treat,” “treating,” or “treatment” refers to dealing with abnormal physical conditions such as symptoms, disorders, or diseases in human or animal (i.e., veterinary applications).
- the terms relate to treatment or therapy that achieves a desired effect such as suppressing an abnormal physical condition.
- the terms may refer to slowing a disease progress, halting the disease progress, ameliorating a physical abnormal condition, and/or eliminating or relieving at least one symptom related to or caused by the abnormal physical condition, including elimination of one or more symptoms, or complete eradication of a disorder.
- FIG. 1 is a schematic diagram of an ablation device according to a first preferred embodiment of the invention.
- FIG. 2 is a partial schematic diagram of an ablation device according to the first preferred embodiment.
- FIG. 3 is a schematic diagram showing partial enlargement of a moving unit according to the first preferred embodiment.
- FIG. 4 is a schematic diagram of an ablation device according to a second preferred embodiment.
- FIG. 5 is a schematic diagram of an ablation device according to a third preferred embodiment.
- FIG. 6 is a schematic diagram according to a fourth preferred embodiment.
- FIG. 7 is another schematic diagram according to a fourth preferred embodiment.
- FIG. 8 is a block diagram of a system operation of a preferred embodiment.
- FIG. 9 is a block diagram of a detection procedure for a protection circuit of a preferred embodiment.
- FIG. 10 is a block diagram of a regulation procedure of an electrode of a preferred embodiment.
- FIG. 11 is a circuit diagram of a temperature sensing unit of a preferred embodiment.
- FIG. 12 is a block diagram of a cooling system procedure for a cooling chip of a preferred embodiment.
- ordinal numbers such as “first”, “second”, “third” and the like used in the specification and claims for modifying elements of the claim do not mean and represent the claimed elements have any antecedent ordinal number, nor do they represent the order (or order of production) between a claimed element.
- the ordinal numbers are only used to clearly distinguish between certain claimed elements having the same name.
- FIG. 1 is a schematic diagram of an ablation device of a first preferred embodiment.
- FIG. 2 is a partial schematic diagram of the embodiment of FIG. 1 ;
- FIG. 3 is a schematic diagram showing a partial enlargement of the moving unit of FIG. 2 .
- This embodiment includes: an ablation device 1 comprising: a substrate 2 having a first surface 21 ; a first electrode 3 disposed on the first surface 21 ; a second electrode 4 disposed on the first surface 21 and adjacent to the first electrode 3 ; a moving unit 5 electrically connected to the second electrode 4 for moving the second electrode 4 to regulate the distance between the second electrode 4 and the first electrode 3 ; and a radio frequency generator (not shown) connected to the ablation device 1 for providing a radio frequency current to the first electrode 3 and the second electrode 4 .
- the moving unit 5 is a ball screw, as shown in the partial enlargement diagram of FIG. 3 .
- the ball screw 5 improves poor positioning and prevents damage by placing a steel bead 51 between nut 52 and screw rod 53 , replacing sliding friction with rolling friction. Furthermore, the ball screw 5 of the present embodiment is driven by a motor 6 to achieve the purpose of moving the second electrode 4 .
- the substrate 2 may be made of materials selected from any non-conductive materials known in the art such as, but not limited to, plastic, polymer, ceramic material and the like.
- the first electrode 3 and the second electrode 4 may be made of materials selected from conductive materials known in the art including, but not limited to, metals such as gold, silver, copper, and aluminum or alloys thereof, as well non-metallic conductive materials
- the shape of the first electrode and the second electrode is not particularly limited and may be circular, rectangular, oval and the like.
- FIG. 4 is a schematic diagram of an ablation device of another embodiment of the present invention.
- the ablation device of the non-invasive radio-frequency ablation system in the present embodiment is similar to that of Embodiment 1 except for the following differences.
- the ablation device in the present embodiment may optionally comprise a cooling unit 7 , a temperature sensing unit 8 , and a treatment depth sensing unit 9 .
- the cooling unit 7 may be disposed on the first surface 21 of the substrate 2 and between the first electrode 3 and the second electrode 4 .
- the ablation device is illustrated as including each of the cooling unit 7 , the temperature sensing unit 8 and treatment the depth sensing unit 9 .
- any one or more of the cooling unit 7 , the temperature sensing unit 8 and treatment depth sensing unit 9 may also be omitted.
- the cooling unit 7 may include a cooling chip and/or a refrigerant to lower the temperature of the targeted tissue surface and avoid thermal damage to the targeted tissue surface.
- the temperature sensing unit 8 may be disposed on the first surface 21 of the substrate 2 and between the first electrode 3 and the second electrode 4 .
- the temperature sensing unit 8 may be a thermistor or a resistance temperature detector (RTD) to detect the temperature of the treating target area during the treatment. The detected temperature may be used to control the cooling unit so as to enhance the treatment effect.
- RTD resistance temperature detector
- the treatment depth sensing unit 9 may be disposed on the first surface 21 of the substrate 2 and between the first electrode 3 and the second electrode 4 .
- the treatment depth sensing unit may be an ultrasonic transducer to detect the location of the lesion before, during, and/or after the treatment to increase the accuracy of the treatment by regulating the distance between the first electrode 3 and the second electrode 4 , and thus changing the treatment depth to enhance the therapeutic effect.
- FIG. 5 is a schematic diagram of an ablation device according to another embodiment of the present invention.
- the ablation device of the non-invasive radio-frequency ablation system in the present embodiment is similar to that of Embodiment 1 or 2 except for the following differences.
- the ablation device of the present embodiment may optionally comprise a cooling unit 7 , a temperature sensing unit 8 , and a treatment depth sensing unit 9 .
- the cooling unit 7 may be disposed on the first surface 21 of the substrate 2 and between the first electrode 3 and the second electrode 4 .
- the temperature sensing unit 8 may be disposed on the second surface 22 of the substrate 2 and opposite to the first electrode 3 , but the location of the temperature sensing unit may be varied without departing from the invention.
- the treatment depth sensing unit 9 may be disposed on the second surface 22 of the substrate 2 and opposite to the cooling unit 7 , but the location of the treatment depth sensing unit may also be varied.
- FIGS. 6 and 7 are schematic diagrams that illustrate a treatment method according to a preferred embodiment of the present invention.
- the first electrode 3 and the second electrode 4 of an ablation device according to the first embodiment are contacted with a third surface 11 of a subject in need 10 , and a radio frequency generator (not shown) provides a radio frequency current to the first electrode 3 and the second electrode 4 .
- the radio frequency generates thermal energy between the first electrode 3 and the second electrode 4 to ablate or electrically bum the target lesion tissue under the third surface 11 .
- the ablation device is illustrated in FIGS. 6 and 7 , it will be appreciated that the method may also use an ablation that optionally includes cooling unit 7 , temperature sensing unit 8 and/or treatment depth sensing unit 9 according to Embodiment 2 or 3.
- the penetration of the RF energy is relatively superficial, and the target tissue at the superficial layer will be treated.
- FIG. 7 when the distance between the first electrode 3 and the second electrode is relatively long, the penetration of the RF energy is relatively deeper, and the target tissue located in the deeper layer will be treated.
- the RF energy penetration depth is equal to the distance between the first electrode 3 and the second electrode 4 divided by 2.
- the ablation device of the present disclosure comprises the adjustable electrode, the treatment depth can be changed by regulating the distance of the two electrodes. Compared with the traditional techniques, the present system and method can be applied over a wider range and reduce complications in operation.
- FIG. 8 is a block diagram of the system operation of the preferred embodiments. As shown in FIG. 8 , the host and microprogram control unit (MCU) control the peripheral components and switches of the entire system.
- FIG. 9 is a block diagram of a detection procedure of the protection circuit.
- the control unit MCU When the host is turned on, the control unit MCU will start to detect the current of electrode and report it to the host. First, the MCU will determine whether the current setting of recipe current is greater than 0 mA. Thereafter, when the current setting is greater than 0 mA, it will immediately enable the current output switch of the electrode circuit and detect, in a few seconds, whether the current is greater than 0 mA. The time for detection of a current may, by way of example and not limitation, be 1 second. If no current is generated, the current output switch of the electrode circuit will be disabled; if a current is generated, it means that the electrode is in contact with the target tissue, and the treatment will be continued.
- FIG. 10 is a block diagram of a distance regulation procedure for the electrode of the preferred embodiments.
- the host when the host is turned on, the host will inform the MCU to initialize the electrode position and locate the electrode back to its original position. Thereafter, the MCU will detect whether the button 201 or the button 202 is pressed.
- the electrodes When the button 201 is pressed, the electrodes will move toward each other, i.e., the second electrode 4 will be moved toward a position close to the first electrode 3 . If the button 202 is pressed, the electrodes will move away from each other, i.e., the second electrode 4 will move in a direction away from the first electrode 3 .
- FIG. 11 is a circuit diagram of a temperature sensing unit that may be used in the preferred embodiments. Referring to FIGS. 4, 5, and 11 , the temperature of the third surface is detected by temperature sensing unit 8 , and a determination is made as to whether the cooling unit 7 needs to be activated to lower the temperature of the third surface 11 according to the detected temperature.
- FIG. 12 is a block diagram of a cooling system procedure of a cooling chip that may be used in the preferred embodiments.
- the MCU when the host is turned on, the MCU will start to detect the circuit voltage of the temperature sensing unit 8 and determine if the cooling unit 7 needs to be activated by the MCU's analog-to-digital converter (ADC) upon converting the detected parameter.
- ADC analog-to-digital converter
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Surgical Instruments (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/688,973 US20190059978A1 (en) | 2017-08-29 | 2017-08-29 | Non-invasive radio-frequency ablation system |
US16/007,187 US10813682B2 (en) | 2017-08-29 | 2018-06-13 | Non-invasive radio-frequency ablation system |
PCT/CN2018/099861 WO2019042111A1 (zh) | 2017-08-29 | 2018-08-10 | 非侵入性射频消融系统 |
CN201880055985.4A CN111093545A (zh) | 2017-08-29 | 2018-08-10 | 非侵入性射频消融系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/688,973 US20190059978A1 (en) | 2017-08-29 | 2017-08-29 | Non-invasive radio-frequency ablation system |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/007,187 Continuation US10813682B2 (en) | 2017-08-29 | 2018-06-13 | Non-invasive radio-frequency ablation system |
Publications (1)
Publication Number | Publication Date |
---|---|
US20190059978A1 true US20190059978A1 (en) | 2019-02-28 |
Family
ID=65434388
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/688,973 Abandoned US20190059978A1 (en) | 2017-08-29 | 2017-08-29 | Non-invasive radio-frequency ablation system |
US16/007,187 Active US10813682B2 (en) | 2017-08-29 | 2018-06-13 | Non-invasive radio-frequency ablation system |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/007,187 Active US10813682B2 (en) | 2017-08-29 | 2018-06-13 | Non-invasive radio-frequency ablation system |
Country Status (3)
Country | Link |
---|---|
US (2) | US20190059978A1 (zh) |
CN (1) | CN111093545A (zh) |
WO (1) | WO2019042111A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112494814A (zh) * | 2021-01-12 | 2021-03-16 | 王金震 | 一种射频美容仪 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113693713A (zh) * | 2021-09-08 | 2021-11-26 | 西安交通大学医学院第一附属医院 | 一种非侵入式组织消融电极电路 |
CN116269737A (zh) * | 2023-05-10 | 2023-06-23 | 杭州祺晟医疗器械有限公司 | 基于温控射频消融的鼻炎治疗电极组件、鼻炎治疗装置 |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004269A (en) * | 1993-07-01 | 1999-12-21 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US6081749A (en) * | 1997-08-13 | 2000-06-27 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
US6152925A (en) * | 1998-03-04 | 2000-11-28 | University Of Iowa Research Foundation | Method and apparatus for external fixation of an elbow |
US6152924A (en) * | 1999-09-24 | 2000-11-28 | Parins; David J. | Bipolar biopsy forceps |
US6178354B1 (en) * | 1998-12-02 | 2001-01-23 | C. R. Bard, Inc. | Internal mechanism for displacing a slidable electrode |
US6413255B1 (en) * | 1999-03-09 | 2002-07-02 | Thermage, Inc. | Apparatus and method for treatment of tissue |
US6464699B1 (en) * | 1997-10-10 | 2002-10-15 | Scimed Life Systems, Inc. | Method and apparatus for positioning a diagnostic or therapeutic element on body tissue and mask element for use with same |
US20030009164A1 (en) * | 1995-06-07 | 2003-01-09 | Arthrocare Corporation | Articulated electrosurgical probe |
US20080183251A1 (en) * | 2006-07-27 | 2008-07-31 | Zion Azar | Apparatus and method for non-invasive treatment of skin tissue |
US20080195090A1 (en) * | 2007-02-14 | 2008-08-14 | Tomoyuki Takashino | Curative treatment system, curative treatment device, and treatment method for living tissue using energy |
US20090299361A1 (en) * | 2007-12-05 | 2009-12-03 | Lion Flyash | Disposable electromagnetic energy applicator and method of using it |
US20100022999A1 (en) * | 2008-07-24 | 2010-01-28 | Gollnick David A | Symmetrical rf electrosurgical system and methods |
US20140039491A1 (en) * | 2012-08-02 | 2014-02-06 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6109268A (en) * | 1995-06-07 | 2000-08-29 | Arthrocare Corporation | Systems and methods for electrosurgical endoscopic sinus surgery |
WO1994028809A1 (en) * | 1993-06-10 | 1994-12-22 | Imran Mir A | Transurethral radio frequency ablation apparatus |
CN2446332Y (zh) * | 2000-09-26 | 2001-09-05 | 上银科技股份有限公司 | 滚珠螺帽 |
US7074218B2 (en) * | 2003-06-30 | 2006-07-11 | Ethicon, Inc. | Multi-modality ablation device |
US7407503B2 (en) * | 2004-12-21 | 2008-08-05 | Ethicon Endo-Surgey, Inc. | Medical-treatment electrode assembly having treatment-monitoring application |
US8034051B2 (en) * | 2005-07-15 | 2011-10-11 | Atricure, Inc. | Ablation device with sensor |
CN2875353Y (zh) * | 2006-03-23 | 2007-03-07 | 迈德医疗科技(上海)有限公司 | 一种射频消融系统 |
EP2588017B1 (en) * | 2010-06-30 | 2021-01-13 | Koninklijke Philips N.V. | Energy application apparatus for applying energy to an object |
CN202091452U (zh) * | 2011-06-03 | 2011-12-28 | 丽水市嘉龙轴承制造有限公司 | 一种滚珠丝杠双螺母 |
CN106236250A (zh) * | 2016-09-09 | 2016-12-21 | 深圳半岛医疗有限公司 | 可调节治疗深度的双极射频治疗装置 |
-
2017
- 2017-08-29 US US15/688,973 patent/US20190059978A1/en not_active Abandoned
-
2018
- 2018-06-13 US US16/007,187 patent/US10813682B2/en active Active
- 2018-08-10 WO PCT/CN2018/099861 patent/WO2019042111A1/zh active Application Filing
- 2018-08-10 CN CN201880055985.4A patent/CN111093545A/zh active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6004269A (en) * | 1993-07-01 | 1999-12-21 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
US20030009164A1 (en) * | 1995-06-07 | 2003-01-09 | Arthrocare Corporation | Articulated electrosurgical probe |
US6081749A (en) * | 1997-08-13 | 2000-06-27 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
US6464699B1 (en) * | 1997-10-10 | 2002-10-15 | Scimed Life Systems, Inc. | Method and apparatus for positioning a diagnostic or therapeutic element on body tissue and mask element for use with same |
US6152925A (en) * | 1998-03-04 | 2000-11-28 | University Of Iowa Research Foundation | Method and apparatus for external fixation of an elbow |
US6178354B1 (en) * | 1998-12-02 | 2001-01-23 | C. R. Bard, Inc. | Internal mechanism for displacing a slidable electrode |
US6413255B1 (en) * | 1999-03-09 | 2002-07-02 | Thermage, Inc. | Apparatus and method for treatment of tissue |
US6152924A (en) * | 1999-09-24 | 2000-11-28 | Parins; David J. | Bipolar biopsy forceps |
US20080183251A1 (en) * | 2006-07-27 | 2008-07-31 | Zion Azar | Apparatus and method for non-invasive treatment of skin tissue |
US20080195090A1 (en) * | 2007-02-14 | 2008-08-14 | Tomoyuki Takashino | Curative treatment system, curative treatment device, and treatment method for living tissue using energy |
US20090299361A1 (en) * | 2007-12-05 | 2009-12-03 | Lion Flyash | Disposable electromagnetic energy applicator and method of using it |
US20100022999A1 (en) * | 2008-07-24 | 2010-01-28 | Gollnick David A | Symmetrical rf electrosurgical system and methods |
US20140039491A1 (en) * | 2012-08-02 | 2014-02-06 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112494814A (zh) * | 2021-01-12 | 2021-03-16 | 王金震 | 一种射频美容仪 |
Also Published As
Publication number | Publication date |
---|---|
WO2019042111A1 (zh) | 2019-03-07 |
CN111093545A (zh) | 2020-05-01 |
US20190059981A1 (en) | 2019-02-28 |
US10813682B2 (en) | 2020-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190192209A1 (en) | Apparatus, System and Method for Excision of Soft Tissue | |
US10813682B2 (en) | Non-invasive radio-frequency ablation system | |
US9216050B2 (en) | Detection of microbubble formation during catheter ablation | |
US9333026B2 (en) | Radio frequency lasso | |
RU2499574C2 (ru) | Биполярный радиочастотный абляционный инструмент | |
AU2019217623B2 (en) | Methods and apparatus for controlled RF treatments and RF generator system | |
US9039687B2 (en) | Reactance changes to identify and evaluate cryo ablation lesions | |
JP4076019B2 (ja) | 生体組織処理用電極棒 | |
US9782213B2 (en) | Overlapping bipolar electrode for high-frequency heat treatment | |
US10888372B2 (en) | Radiofrequency ablation electrode needle | |
WO2017206266A1 (zh) | 一种网篮状消融导管及消融装置 | |
US20240198098A1 (en) | Internal bipolar radiofrequency probe | |
US20240277406A1 (en) | Internal bipolar radiofrequency probe | |
JPH08308853A (ja) | カテーテルアブレーション式治療装置 | |
Nath et al. | Update on the biophysics and thermodynamics of radiofrequency ablation | |
Ahmed et al. | Effect of Radio Frequency Irradiation on Hepatocarcinoma |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STPP | Information on status: patent application and granting procedure in general |
Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION |
|
STPP | Information on status: patent application and granting procedure in general |
Free format text: NON FINAL ACTION MAILED |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |