WO2019042100A1 - 控制方法以及控制系统 - Google Patents

控制方法以及控制系统 Download PDF

Info

Publication number
WO2019042100A1
WO2019042100A1 PCT/CN2018/099334 CN2018099334W WO2019042100A1 WO 2019042100 A1 WO2019042100 A1 WO 2019042100A1 CN 2018099334 W CN2018099334 W CN 2018099334W WO 2019042100 A1 WO2019042100 A1 WO 2019042100A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve closing
closing position
flow direction
electronic expansion
Prior art date
Application number
PCT/CN2018/099334
Other languages
English (en)
French (fr)
Inventor
张斌
谢金兰
Original Assignee
杭州三花研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州三花研究院有限公司 filed Critical 杭州三花研究院有限公司
Priority to EP18850096.1A priority Critical patent/EP3677859B1/en
Priority to US16/642,881 priority patent/US11313601B2/en
Publication of WO2019042100A1 publication Critical patent/WO2019042100A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/38Expansion means; Dispositions thereof specially adapted for reversible cycles, e.g. bidirectional expansion restrictors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/06Details of flow restrictors or expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of refrigeration control, and in particular to a control method and a control system.
  • valve device controls the flow or on/off of the working medium according to system commands. Under different working conditions, the valve device is in the valve closing phase. In order to ensure that all the closing valves meet the standard, the valve device will be operated to the mechanical limit point of the clearance, thus causing the wear of the valve needle and the valve port and the like. Valve unit life. Therefore, how to control the valve device to meet the valve closing index and reduce the wear when the valve is closed is a technical problem faced by those skilled in the art.
  • the present invention provides a control method and a control system capable of reducing the wear caused by the clearance of components such as the valve needle and the valve port while satisfying the valve closing index.
  • valve closing position is the first valve closing position when the system pressure acts on the valve needle of the valve device in the pressure direction of the valve device; and determining that the valve closing position is the second valve closing position when the valve pressure is inconsistent And, the first valve closing position is further away from the fully closed position than the second valve closing position.
  • Determining whether the pressure direction of the valve needle acting on the valve device of the valve device is consistent with the valve closing direction according to the pressure difference of the current working medium flowing to the inlet and outlet of the system, to determine the valve closing position of the valve device is Describe the first valve closing position or the second valve closing position;
  • control method is capable of controlling a valve device in the refrigeration system to operate to a valve closing position, and defining a stroke of the valve device from a fully open position to a fully closed position as a closed valve total stroke, the refrigeration system comprising at least two
  • the working mode is characterized in that the valve closing position includes at least a first valve closing position and a second valve closing position, and the first valve closing position and the second valve closing position are different, at least two different In the working mode, the working medium of the refrigeration system is different in flow direction through the valve device, and the control method comprises the following steps:
  • the valve device is controlled to operate to the closed valve position.
  • a control system capable of controlling a valve device to operate to a valve closing position, defining a stroke of the valve device from a fully open position to a fully closed position as a closed valve total stroke, wherein the system comprises: Module, receiving module and execution module;
  • the operation module is configured to determine whether the pressure direction of the valve needle of the valve device is consistent with the valve closing direction according to the system pressure, and determine that the valve closing position is the first valve closing position or the second valve closing position; The first valve closing position is further away from the fully closed position than the second valve closing position;
  • the receiving module can be configured to receive the determined first valve closing position or the second valve closing position
  • the execution module can be configured to control the valve device to operate to the first valve closing position or the second valve closing position determined by the computing module.
  • the operation module can be configured to determine that the valve closing position is a first valve closing position or a second valve closing position according to a pressure difference or a current working mode of the current working medium flow direction or the system inlet and outlet.
  • the control system and the control method of the present technical solution may determine whether the pressure direction of the valve needle of the valve device is consistent with the valve closing direction according to the system pressure, and determine whether the valve closing position is the first valve closing position or the second valve.
  • Valve position Specifically, the current working medium flow direction or the pressure difference of the system inlet or outlet or according to the working mode of the refrigeration system, the control valve device is operated to the corresponding valve closing position, the working medium flow direction is different or the pressure difference of the system inlet or outlet or the working mode of the refrigeration system is different
  • the corresponding valve closing position is different; because the working direction of the working medium is different under different working modes of the refrigeration system, the pressure of the corresponding system is different, and the corresponding valve position of the system is different, so that the valve device can be closed when the valve is closed.
  • the internal leakage value is up to standard, which can reduce the mechanical wear of the valve needle and valve port and other components generated every time the valve is closed, which is beneficial to improve the life of the valve device.
  • Figure 1 is a schematic block diagram of an electronic expansion valve and control system
  • Figure 2 is a schematic view showing the structure of an electronic expansion valve marked with a position in Figure 1;
  • Figure 3 is a schematic view of the position of Figure 2 in the total stroke of the valve
  • FIG. 4 is a schematic flow chart of an embodiment of a valve closing control method of an electronic expansion valve
  • FIG. 5 is a schematic flow chart of an embodiment of a valve opening control method of an electronic expansion valve
  • FIG. 6 is a schematic flow chart of another embodiment of a method of controlling an electronic expansion valve
  • Figure 7 is a schematic block diagram of a refrigeration system
  • Figure 8 is a schematic view showing an embodiment of a refrigerant flow path in a cooling mode
  • Figure 9 is a schematic view showing an embodiment of a refrigerant flow path in a heating mode
  • Figure 10 is a schematic view showing a second embodiment of a refrigerant flow path in a cooling mode
  • Figure 11 is a schematic view showing a second embodiment of a refrigerant flow path in a heating mode
  • Figure 12 is a schematic view showing an embodiment of a refrigerant flow path in a dehumidification mode
  • Figure 13 is a schematic view showing an embodiment of a method for controlling a valve closing of a refrigeration system
  • Figure 14 is a schematic view showing an embodiment of a valve opening control method of a refrigeration system
  • 15 is a schematic block diagram of one embodiment of an electronic expansion valve control system.
  • the control method and the control system provided by the embodiments of the present invention can control the operation of the valve device.
  • the valve device can be an electronic expansion valve, or a refrigerant valve or some shut-off valves including a stepping motor, which will not be enumerated here.
  • electronic expansion valves, refrigerant valves and shut-off valves using stepping motors can be used in vehicle air conditioning systems.
  • an electronic expansion valve used in a vehicle air-conditioning system will be described as a valve device. Since the embodiment is described as an electronic expansion valve, the working medium is a refrigerant.
  • Figure 1 is a schematic block diagram of an electronic expansion valve and control system.
  • the control system includes a main controller 10 and a motor controller 20, and the electronic expansion valve 1 includes a motor 30, a valve body 40, and a valve assembly 50.
  • the main controller 10 sends a control signal to the motor controller 20.
  • the motor controller 20 sends a pulse signal to the motor 30 according to the control signal of the main controller 10 to drive the motor 30 to operate.
  • the motor 30 operates to drive the valve assembly 50 connected thereto to the valve.
  • the body 40 is moved to adjust the position of the electronic expansion valve 1 to open and close the valve.
  • the control method and the control system provided by the embodiments of the present invention are applied to the motor controller 20 to control the operation of the motor 30 to reduce the energy consumed by the operation of the motor 30 and reduce the system energy consumption.
  • the operation of the motor 30 can also be directly controlled by the main controller 10, omitting the motor controller 20.
  • the stroke defining the electronic expansion valve 1 from the fully open position to the fully closed position is the total valve closing stroke, where the fully open position refers to the position where the opening of the electronic expansion valve 1 is 100%, and the fully closed position refers to the electronic expansion.
  • the total stroke of the closed valve is the stroke of the electronic expansion valve 1 from the fully open position to the fully closed position. 2 is a schematic view showing the structure of an electronic expansion valve indicated by a position point in FIG. 1.
  • the electronic expansion valve 1 includes a motor 30, a valve body 40, and a valve assembly 50.
  • the motor 30 includes a coil 2 and a rotor 3.
  • the valve assembly 50 includes a transmission element. 6 and the stop element 5, the buffer spring 7 and the valve needle 8, the electronic expansion valve 1 is formed with a valve port 9.
  • the valve port 9 is formed in the valve seat 4, and the valve seat 4 is fixedly coupled to the valve body 40.
  • the coil 2 is energized to generate an excitation magnetic field to drive the rotor 3 to rotate, and the rotor 3 converts the rotation into the up and down movement of the valve needle 8 through the transmission member 6; the stopper member 5 rotates together with the rotor 3, and functions as an upper and lower limit for the rotor 3.
  • the buffer spring 7 is disposed between the transmission member 6 and the valve needle 8, and the valve needle 8 cooperates with the valve port 9 to effect sealing or flow regulation of the refrigerant.
  • the electronic expansion valve further includes a first passage 11 that communicates with the refrigerant inlet P1 and a second passage 12 that communicates with the refrigerant outlet P2.
  • Figure 3 is a schematic illustration of the position of Figure 2 in the total stroke of the valve. Where point D is the fully open position, point A is the fully closed position, the flow rate of the electronic expansion valve 1 at point D reaches a maximum value; point E is the target position of the electronic expansion valve 1, according to the flow target command issued by the main controller 10 The position of the E point is adjusted to meet different flow targets.
  • the target point E is located between the fully open position D point and the fully closed position A point; the C point is the flow zero point, and the electronic expansion valve 1 is located at the C point, the flow path
  • the theoretical value of the flow or the flow rate is just zero; the point B is the first valve closing position of the electronic expansion valve 1, and the point B of the first valve closing position is between the point A of the full closing position and the point C of the flow rate, which is close to the full level.
  • the stroke between the first closed valve position B point and the fully open position D point is 90% to 99% of the total valve closing stroke, and when the electronic expansion valve 1 is operated to the first closed valve position B, The valve closing index is met, and the frictional force of the valve needle 8 and the valve port 9 is small; when the current refrigerant flow direction is reversed, that is, the refrigerant flows in from the refrigerant outlet P2, and the refrigerant inlet P1 flows out.
  • the refrigerant pressure of the first passage 11 communicating with the refrigerant inlet P1 is smaller than the refrigerant pressure of the second passage 12 communicating with the refrigerant outlet P2, and when the pressure difference between the inlet and outlet of the system is negative, the valve needle 8 is subjected to the valve opening action.
  • Force, control the electronic expansion valve 1 to the second closing valve position A the second closing valve position A is the fully closed position to ensure the sealing.
  • the second closing valve position A is the position of the electronic expansion valve 1 after the initialization is completed, and is also the fully closed mechanical limit point of the electronic expansion valve 1. When the electronic expansion valve 1 is operated to the second closing position A, the valve can be closed. index.
  • the point B of the first closing valve position is mainly affected by the spring constant of the buffer spring 7 of the electronic expansion valve 1, and the smaller the spring constant of the buffer spring 7, the point between the first closing position B and the fully open position D.
  • the selectable stroke range between the first closed valve position B point and the fully open position D point is 90% to 99% of the total valve closing stroke; the buffer spring 7
  • the selectable stroke range between the first closed valve position B point and the full open position D point is 92% to 99% of the total valve closing stroke; the spring constant of the buffer spring 7 is 5N/mm.
  • the selectable stroke range between the first closing valve position B and the full opening position D is 95% to 99% of the total valve closing stroke; when the spring constant of the buffer spring 7 is 3N/mm, the first closing valve
  • the range of travel selectable between position B and full-open position D is 96% to 99% of the total valve closing stroke.
  • This embodiment only selects one of the cases to describe the control method.
  • other spring-loaded buffer springs 7 can also be used to control the valve closing position, which will not be enumerated here.
  • FIG. 4 is a schematic flow chart of an embodiment of a valve closing control method of an electronic expansion valve; wherein the electronic expansion valve 1 includes a control unit and an action unit, the control unit includes a motor controller 20, and the action unit includes a valve body 40. And valve assembly 50.
  • the control unit receives the control signal of the main controller and controls the action unit to execute the corresponding control command.
  • the method for controlling the valve closing of the electronic expansion valve 1 provided by the embodiment includes:
  • the electronic expansion valve 1 In order to enable the electronic expansion valve 1 to operate normally, the electronic expansion valve 1 needs to be initialized when it is first opened, so that the working accuracy of the electronic expansion valve 1 can be ensured.
  • step S101 can be omitted, and the main controller 10 directly controls the valve device operation.
  • the refrigerant flow direction is positive, that is, the pressure of the refrigerant inlet P1 is greater than the pressure of the refrigerant outlet P2, the system inlet and outlet pressure difference is positive, the pressure of the refrigerant to the electronic expansion valve 1 and the closing direction of the electronic expansion valve 1 Consistently, the refrigerant pressure promotes the valve closing action of the electronic expansion valve 1; when the refrigerant flow direction is reversed, that is, the pressure of the refrigerant inlet P1 is smaller than the pressure of the refrigerant outlet P2, and the pressure difference between the inlet and outlet of the system is negative.
  • the pressure of the refrigerant to the electronic expansion valve 1 is opposite to the closing direction of the electronic expansion valve 1, and the refrigerant pressure hinders the closing operation of the electronic expansion valve 1.
  • S103 Determine, according to a current pressure difference of a refrigerant flow direction or a system inlet and outlet, a valve closing position of the electronic expansion valve as a first valve closing position or a second valve closing position;
  • the valve closing position of the electronic expansion valve 1 in this embodiment is mainly affected by the flow direction of the refrigerant. After the electronic expansion valve is formed, the spring constant of the buffer spring 7 is simultaneously determined, and the first valve closing position B and the full closing position A point. The location is also determined. Therefore, in the actual working condition, the valve closing position of the same electronic expansion valve 1 is mainly affected by the flow direction of the refrigerant, the flow direction of the refrigerant is different, and the valve closing position of the electronic expansion valve 1 is also different.
  • valve closing position of the valve 1 is the first valve closing position B, that is, the stroke from the fully open position D is 90% to 99% of the total valve closing stroke; when the current refrigerant flow is reverse, the refrigerant The pressure of the inlet P1 is lower than the pressure of the refrigerant outlet P2, the pressure difference between the inlet and outlet of the system is negative, and the refrigerant pressure hinders the closing of the electronic expansion valve 1.
  • the valve position is the second closing valve position A, that is, the fully closed position A point.
  • the valve closing position can be obtained in real time, which can ensure that the valve closing indicators can reach the standard every time the valve is closed, and at the same time reduce the wear on the valve needle and the valve port and the like due to the closing of the valve every time the valve is closed. It is beneficial to improve the life and control accuracy of the electronic expansion valve.
  • S104 controlling the electronic expansion valve 1 to operate to the first closed valve position or the second closed valve position determined by S103;
  • the electronic expansion valve 1 Since the electronic expansion valve 1 is normally operated, it is required to stop at the target position E of the corresponding flow target in accordance with the actual flow target, and therefore, the valve closing action of the electronic expansion valve 1 is also from the target position. E point begins.
  • the motor controller 20 controls the electronic expansion valve 1 to operate to the first valve closing position B to complete the valve closing action; when the electronic expansion valve 1 is connected
  • the motor controller 20 controls the electronic expansion valve 1 to operate to the second valve closing position A to complete the valve closing action.
  • the main controller 10 monitors the change of the refrigerant flow direction or the change of the system inlet and outlet pressure difference before the new valve opening command is received, if the refrigerant flow direction is constant or the system inlet and outlet pressure difference
  • the electronic expansion valve 1 remains in the original closed valve position; if the refrigerant flow direction changes from positive to negative, or the pressure difference between the inlet and outlet of the system changes from positive to negative, the electronic expansion valve 1 is from the first closed valve position B.
  • Adjust to the second closing valve position A if the refrigerant flow direction changes from reverse to positive, or the pressure difference between the inlet and outlet of the system changes from negative to negative, adjust the electronic expansion valve 1 from the second closing valve position A to the first One closed valve position B.
  • FIG. 5 is a schematic flow chart of an embodiment of a valve opening control method of an electronic expansion valve.
  • the method for controlling the valve opening of the electronic expansion valve 1 provided by the embodiment includes:
  • valve opening of the electronic expansion valve 1 referred to herein is not an initial valve opening operation, but a valve opening operation after closing the valve in accordance with the above-described valve closing operation.
  • step S201 can also be omitted, and the main controller 10 directly controls the valve device operation.
  • the valve closing position of the last electronic expansion valve 1 can be directly obtained according to the current refrigerant flow direction or the pressure difference between the system inlet and outlet, and the valve closing position is simultaneously It is also the valve opening start position of the electronic expansion valve 1; according to the flow target command sent by the main controller 10, the position of the target position E corresponding to the flow target is obtained, and the target position E is the valve opening end position of the electronic expansion valve 1.
  • the valve opening starting position of the electronic expansion valve 1 is the first valve closing position B; the current refrigerant flow direction is reverse or the system inlet and outlet pressure difference is When negative, the starting position of the valve opening of the electronic expansion valve 1 is the second closing position A; according to the actual flow target, the position of the target position E corresponding to the flow target is obtained, and the position of the target position E is the opening end position.
  • the main controller 10 After determining the valve opening start position and the valve opening end position of the electronic expansion valve 1, the main controller 10 sends a control command to the motor controller 20, and the control motor 30 drives the valve assembly 50 to move to complete the valve opening action.
  • FIG. 6 there is shown a flow chart of another embodiment of a method of controlling an electronic expansion valve.
  • the car air conditioning system starts to start
  • the initializing operation of the electronic expansion valve 1 is generally performed only during the start of the first expansion or failure of the electronic expansion valve 1, and the electronic expansion valve 1 is powered on and initialized to ensure the flow control accuracy of the electronic expansion valve 1. At this time, the electronic expansion valve is controlled to operate to the point A of the fully closed position.
  • the electronic expansion valve 1 receives the valve opening command to the target position E; the main controller 10 sends the valve opening command and the flow target to the electronic expansion valve 1, and the corresponding valve opening position and the valve opening end position The information is sent to the electronic expansion valve 1, where the starting position of the valve opening is the point A of the fully closed position, and the position of the opening position of the valve is the point E of the target position meeting the flow target;
  • the target position E is located between the fully open position D point and the fully closed position A point, which is a target position variable, which changes in real time according to the flow target command, and the target position E point can be the same each time the valve is opened. It can also be different and adjusted according to actual needs.
  • the electronic expansion valve 1 is controlled to run from the point A of the fully closed position to the point E of the target position, and the air conditioning system starts to operate stably.
  • the electronic expansion valve 1 receives the valve closing command and the refrigerant flow direction information
  • the main controller 10 After the air conditioner is operated for a period of time, the main controller 10 sends a valve closing command and current refrigerant flow direction information to the electronic expansion valve 1.
  • the current refrigerant flow direction is obtained by the main controller 10, and the valve closing position of the electronic expansion valve 1 is obtained based on the current refrigerant flow direction.
  • the valve closing position of the electronic expansion valve 1 is the first valve closing position B; when the current refrigerant flow direction is reverse, the valve closing position of the electronic expansion valve 1 is the second valve closing position A point.
  • the valve closing position of the electronic expansion valve 1 is the first valve closing position B point, and the stroke between the first valve closing position B point and the full opening position D point is 90 of the total valve closing stroke. % to 99%, the electronic expansion valve 1 is controlled to operate to the first closing position B.
  • valve closing position of the electronic expansion valve 1 is the second valve closing position A point, and the second closing valve position point A is the fully closed position in the closing valve total stroke, and the control electronic expansion valve 1 is operated. Go to point A of the second closing valve position.
  • the electronic expansion valve 1 is operated to the corresponding valve closing position to complete the valve closing action.
  • the motor controller 20 receives the valve opening command issued by the main controller 10 and the refrigerant flow direction information and controls the electronic expansion valve opening operation. If the main controller 10 monitors that the refrigerant flow direction has not changed before receiving the new valve opening command, after receiving the new valve opening command, it returns to step S302 to repeat the switching valve action; if it is received Before the valve opening command, the main controller 10 monitors that the refrigerant flow direction has changed, referring to step S310.
  • the main controller 10 monitors the change in the flow direction of the refrigerant and transmits the change to the motor controller 20, and controls the electronic expansion valve 1 to adjust the valve closing position.
  • the motor controller 20 controls the electronic expansion valve 1 to adjust the closed valve position, and adjusts the closed valve position from the second closed valve position A to the first closed valve. Position B.
  • the motor controller 20 controls the electronic expansion valve 1 to adjust the closed valve position, and adjusts the closed valve position from the first closed valve position B to the second closed valve. Position A.
  • the valve closing position is adjusted in real time, the valve closing action is completed, the valve opening command and the refrigerant flow direction change are continuously monitored, and the valve valve action of the electronic expansion valve 1 is controlled.
  • valve closing position can also be obtained according to the operating mode of the refrigeration system.
  • Figure 7 is a schematic block diagram of a refrigeration system.
  • the air conditioning refrigeration system mainly comprises four parts: a compressor A1, an outdoor heat exchanger A2, a valve device A3, and an indoor heat exchanger A4, where the valve device A3 is an electronic expansion valve.
  • FIG. 8 is a schematic diagram of an embodiment of a refrigerant flow path in a cooling mode.
  • the gas refrigerant is compressed by a compressor A1 from a low-temperature low-pressure gas to a high-temperature high-pressure gas, and enters the outdoor heat exchanger A2.
  • the outdoor heat exchanger A2 acts as a condenser at this time, and the refrigerant condenses and liquefies into a liquid in the outdoor heat exchanger A2, and the liquid is depressurized by the valve device A3 to enter the indoor heat exchanger A4, and the indoor heat exchanger A4 is used as In the evaporator, the refrigerant evaporates and vaporizes in the indoor heat exchanger A4 to become a low-temperature low-pressure gas, and returns to the compressor A1 for the next cycle.
  • the outdoor heat exchanger A2 releases heat to the outside, and the indoor heat exchanger A4 absorbs the heat of the indoor air, thereby achieving the purpose of reducing the indoor temperature.
  • the flow direction of the refrigerant flows from the outdoor heat exchanger A2 to the valve device A3, and the flow direction of the refrigerant is determined to be positive at this time.
  • the refrigeration system control valve device is operated to the first One valve position. Defining the stroke of the valve device A3 from the fully open position to the fully closed position is the total valve closing stroke, where the first closed valve position is between 90% and 99% of the total stroke of the closed valve with the full open position. .
  • FIG. 9 is a schematic diagram of an embodiment of a refrigerant flow path in a heating mode.
  • the gas refrigerant is compressed by a compressor A1 from a low-temperature low-pressure gas to a high-temperature high-pressure gas, and enters an indoor heat exchanger.
  • the indoor heat exchanger A4 is now used as a condenser, and the refrigerant is condensed and liquefied in the indoor heat exchanger A4 to become a liquid, and the liquid is depressurized by the valve device A3, and enters the outdoor heat exchanger A2, and the outdoor heat exchanger A2
  • the refrigerant evaporates in the outdoor heat exchanger A2 to absorb heat to become a low-temperature low-pressure gas, and returns to the compressor A1 for the next cycle.
  • the indoor heat exchanger A4 releases heat to the room, and the outdoor heat exchanger A2 absorbs the heat of the outdoor air, thereby achieving the purpose of increasing the indoor temperature.
  • valve position the second valve position mentioned here is the fully closed position of the total stroke of the valve.
  • the flow direction of the refrigerant in the cooling mode and the heating mode is different, and the corresponding valve closing position is also different.
  • a pressure sensor can be separately installed at the inlet and outlet of the refrigerant, and the corresponding pressure is determined according to the pressure difference between the inlet and outlet of the system.
  • the refrigerant flow direction is positive
  • the system inlet and outlet pressure difference is positive
  • the refrigerant flow direction is negative
  • the system inlet and outlet pressure difference is negative.
  • the refrigeration system further includes other working modes except the cooling mode and the heating mode, and the second embodiment of the present invention will be described below with reference to the accompanying drawings.
  • Fig. 10 is a schematic view showing a second embodiment of the refrigerant flow path in the cooling mode, wherein the solid line portion indicates the refrigerant flow path, and the arrow direction indicates the flow direction of the refrigerant.
  • the refrigerant flows out of the compressor A1 and enters the air-conditioning box A6, enters the outdoor heat exchanger A2 through the air-conditioning box A6 for heat exchange, and then enters the air-conditioning box A6 through the valve device A3.
  • the air-conditioning box A6 is equivalent to the evaporator.
  • the flow from the air-conditioning tank A6 to the compressor A1 via the gas-liquid separator A5 completes one duty cycle.
  • valve device A3 It is prescribed that the flow of the refrigerant flowing into the valve device A3 from the outdoor heat exchanger A2 is positive, and then, in the cooling mode, after the refrigeration system receives the valve closing command, the control valve device A3 is operated to the corresponding first valve closing position.
  • FIG. 11 there is shown a schematic view of a second embodiment of the refrigerant flow path in the heating mode, wherein the solid line portion indicates the refrigerant flow path, and the arrow direction indicates the flow direction of the refrigerant.
  • the refrigerant flows out of the compressor A1 and enters the air-conditioning box A6. After the entire heat exchange process of condensation and evaporation is completed, the refrigerant is directly returned to the compressor through the gas-liquid separator A5 via the valve device A3, and the working cycle is completed.
  • the flow direction of the refrigerant flows into the outdoor heat exchanger A2 by the valve device A3, and the refrigerant flows in the opposite direction to the refrigerant mode. Therefore, after the refrigeration system receives the valve closing command, the control valve device A3 runs to the first Two closed valve positions.
  • Fig. 12 is a view showing an embodiment of a refrigerant flow path in a dehumidification mode, in which a solid line portion indicates a refrigerant flow path, and an arrow direction indicates a flow direction of the refrigerant.
  • the flow direction of the refrigerant is similar to that of the refrigerant in the cooling mode, but after passing through the valve device A3, it can flow to the gas-liquid separator A5 via the outdoor heat exchanger A2, or directly to the gas-liquid separator A5 to complete the work. cycle.
  • the flow direction of the refrigerant also flows into the outdoor heat exchanger A2 by the valve device A3. Therefore, the valve closing position in the dehumidification mode is the same as the valve closing position in the cooling mode, and after the refrigeration system receives the valve closing command, The control valve device A3 is operated to the first valve closing position.
  • the refrigerant mode of the refrigeration system and the refrigerant flow direction of the dehumidification mode are the same.
  • the refrigerant flow in the cooling mode can also be designed as a reverse flow from the indoor heat exchanger A4 to the valve device A3 according to actual needs, so that the refrigerant flow direction in the cooling mode In the reverse direction, the flow direction of the refrigerant in the heating mode is positive, and the flow direction of the refrigerant in the dehumidification mode is reverse; when the flow direction of the refrigerant is positive, the valve closing position of the valve device is the first closed valve position; When the flow direction of the refrigerant is reversed, the valve closing position of the valve device is the second valve closing position.
  • the refrigeration system also includes other modes of operation, and the cooling mode, the heating mode, and the dehumidification mode also include several different mode conditions, such as the first cooling mode, the second cooling mode, the first heating mode, and the first
  • the two heating modes, the separate dehumidification mode, and the cooling and dehumidification mode are not listed here.
  • the flow direction of the refrigerant in different working modes is determined by the design of the refrigeration system itself. After the refrigeration system is designed and formed, the flow direction of the corresponding refrigerant in different working modes is determined, that is, for the same refrigeration system, the same working mode only corresponds to the same refrigerant flow direction, and the flow direction of the same refrigerant only corresponds to one closing valve.
  • the position, the working mode is determined, the refrigerant flow direction is determined, and the valve closing position is also determined.
  • the valve closing position can be obtained directly according to the current working mode of the refrigeration system, and the switching valve of the valve device is operated or the valve closing position is adjusted according to the switching of the working mode.
  • Figure 13 is a schematic diagram of an embodiment of a method of controlling a valve closing of a refrigeration system.
  • the working mode of the refrigeration system is different, the flow direction of the refrigerant is different, the pressure difference between the inlet and outlet of the system is different, and the working cycle direction of the system is different.
  • the working mode of the refrigeration system mainly includes the cooling mode, the heating mode, and the dehumidification mode. After the refrigeration system is designed and shaped, the refrigerant flow in the same working mode is the same, and the valve closing position is also the same.
  • the main controller 10 sends a command to close the valve to the valve device to control the activation of the electronic expansion valve.
  • the motor controller can also be omitted, and the main controller directly controls the valve device action, thereby eliminating step S401.
  • the main controller 10 monitors the working mode of the refrigeration system in real time, first obtaining the current working mode of the refrigeration system.
  • the working mode is different, the flow direction of the refrigerant is different, the pressure difference between the inlet and outlet of the system is different, and the position of the valve is also different.
  • the main controller 10 obtains the valve closing position in the corresponding operating mode according to the current operating mode of the refrigeration system.
  • valve closing action is completed.
  • the control method of the refrigeration system is similar to the control method of the electronic expansion valve, except that the determination of the flow direction of the refrigerant is changed to the determination of the operation mode of the refrigeration system, thereby obtaining the valve closing position.
  • the specific control method is similar to the previous one and will not be described here.
  • the present invention also provides a control system.
  • FIG. 14 is a schematic diagram of an embodiment of a method for controlling valve opening of a refrigeration system.
  • the main controller 10 After the refrigeration system is shut down or hibernated for a period of time, the main controller 10 sends a command to open the valve to the motor controller 20, which controls the electronic expansion valve 1 to start.
  • the main controller 10 obtains the working mode and the flow adjustment target of the refrigeration system according to the opening command. After the valve opening command is issued, the current working mode of the refrigeration system is first determined. The working mode is different, the flow direction of the refrigerant is different, the pressure difference between the refrigerant inlet and outlet is different, and the valve closing position is also different.
  • the main controller 10 obtains the valve opening starting position in the corresponding working mode according to the target working mode of the refrigeration system, and obtains the valve opening end position according to the flow target.
  • the control unit controls the action unit to run from a valve opening starting position to a valve opening end position
  • the valve device of the refrigeration system is controlled by the motor controller 20 to operate from the valve opening starting position to the corresponding valve opening end position to complete the valve opening action.
  • the control method of the refrigeration system is similar to the control method of the electronic expansion valve, except that the determination of the flow direction of the refrigerant is changed to the determination of the operation mode of the refrigeration system, thereby obtaining the valve closing position.
  • the specific control method is similar to the previous one and will not be described here.
  • the motor controller can also be omitted, and the main controller directly controls the valve device to operate, thereby eliminating step S401.
  • Figure 15 is a schematic block diagram of one embodiment of an electronic expansion valve control system.
  • the control system of the electronic expansion valve includes: a transmitting module 100, an arithmetic module 200, a receiving module 300 and an executing module 400;
  • the sending module 100 can be configured to send a control signal; the control signal includes a valve closing command and/or a valve opening command
  • the operation module 200 can be configured to obtain information such as a valve closing position, a valve opening starting position, or a valve opening end position according to a current refrigerant flow direction or a system inlet and outlet pressure difference or a working mode and a flow target of the refrigeration system;
  • the receiving module 300 can be configured to receive information such as a valve closing position, a valve opening starting position, and a valve opening end position;
  • the execution module 400 can be used to execute a control command to control the electronic expansion valve 1 to operate to a corresponding position.
  • the computing module 200 obtains information such as a corresponding valve closing position, a valve opening starting position or a valve opening end position, and the receiving module 300 receives the corresponding information.
  • the control command and the valve closing position, the valve opening start position and the valve opening end position information the execution module 400 controls the electronic expansion valve 1 to operate to the corresponding valve closing position according to the relevant information received by the receiving module 300, and opens the valve starting position. Or open the valve end position.
  • the travel of the electronic expansion valve from the fully open position D point to the fully closed position A point is the closed valve total stroke.
  • the valve closing command is received, the current refrigerant flow direction is obtained, and when the refrigerant flow direction is positive, the valve closing position of the electronic expansion valve is the first closing valve position B point, and the first closing valve position B point and the full opening position.
  • the stroke between the points D is 90% to 99% of the total stroke of the valve; when the flow direction of the refrigerant is reversed, the valve closing position of the electronic expansion valve is the second valve position A point, and the second valve position A point.
  • control electronic expansion valve runs to the corresponding valve closing position each time, which can ensure that the electronic expansion valve can meet the valve closing index and minimize the valve needle when the valve is closed.
  • the mechanical wear of components such as the valve port is beneficial to improve the flow control accuracy, working efficiency and life of the electronic expansion valve.
  • various parameters are used as a reference to determine whether the valve closing position is the first valve closing position or the second valve closing position, and the purpose is to determine the pressure direction of the valve needle acting on the valve device of the valve device and closing. Whether the valve direction is consistent or not, with the assistance of the system pressure, the valve needle closing position does not need to be too close to the fully closed position, so it is determined that the closed valve position is the first closed valve position; and the system pressure acts on the valve needle pressure When the direction is inconsistent with the valve closing direction, it is often reversed to the valve needle, which prevents the system pressure from affecting the valve closing effect. It can be determined that the valve closing position is the second valve closing position, that is, the valve closing force can be increased. Thereby ensuring the valve closing effect.
  • the above-mentioned judgment system pressure acts on whether the valve needle pressure and the valve closing direction are consistent, specifically by the system refrigerant flow direction, the system pressure difference positive and negative, the mode and other parameters, of course, other can reflect the system pressure acting on the valve needle direction and
  • the parameters of whether the valve closing direction is consistent can also be used as the basis for judgment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

一种控制方法以及控制系统,能够根据当前制冷剂的流向或工作模式控制阀装置(1)的关阀位置,定义阀装置(1)从全开位置到全关位置的行程为关阀总行程,制冷剂流向为正向时,控制阀装置(1)运行到第一关阀位置,制冷剂流向为反向时,控制阀装置(1)运行到第二关阀位置,第一关阀位置和第二关阀位置不同,这样可以降低关阀磨损。

Description

控制方法以及控制系统
本申请要求于2017年08月29日提交中国专利局、申请号为201710754411.3、发明名称为“控制方法以及控制系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
发明涉及制冷控制技术领域,具体涉及一种控制方法以及控制系统。
背景技术
热管理系统中,阀装置根据系统命令控制工作介质的流量或通断。不同工况条件下,阀装置在关阀阶段,为了能够保证各项关阀指标达标,均会将阀装置运行到过关的机械限位点,从而造成阀针和阀口等部件的磨损,降低阀装置使用寿命。因此,如何控制阀装置在关阀时既能够满足关阀指标又能够降低磨损,是本领域技术人员面临的一个技术问题。
发明内容
本发明提供了一种控制方法以及控制系统,能够在满足关阀指标的同时,降低阀针和阀口等部件因过关造成的磨损。
一种控制方法,所述控制方法能够控制阀装置运行到关阀位置,定义所述阀装置从全开位置到全关位置的行程为关阀总行程,其特征在于,所述关阀位置至少包括第一关阀位置和第二关阀位置,所述第一关阀位置和 所述第二关阀位置不同,所述控制方法包括以下步骤:
当系统压力作用于所述阀装置的阀针的压力方向与闭阀方向一致时,确定关阀位置为所述第一关阀位置;不一致时,确定关阀位置为所述第二关阀位置;且,相较于所述第二关阀位置,所述第一关阀位置更远离所述全关位置。
可选地,得到当前工作介质流向或系统进出口的压力差;
根据所述当前工作介质流向所述系统进出口的压力差,反映系统压力作用于所述阀装置的阀针的压力方向与闭阀方向是否一致,以确定所述阀装置的关阀位置为所述第一关阀位置或所述第二关阀位置;
控制所述阀装置运行到确定的所述第一关阀位置或所述第二关阀位置。
可选地,所述控制方法能够控制制冷系统中的阀装置运行到关阀位置,定义所述阀装置从全开位置到全关位置的行程为关阀总行程,所述制冷系统至少包括两种工作模式,其特征在于,所述关阀位置至少包括第一关阀位置和第二关阀位置,所述第一关阀位置和所述第二关阀位置不同,至少有两种不同的工作模式下,所述制冷系统的工作介质经过所述阀装置的流向不同,所述控制方法包括以下步骤:
得到所述制冷系统的工作模式;
根据所述工作模式,反映系统压力作用于所述阀装置的阀针的压力方向与闭阀方向是否一致,以得到所述阀装置的关阀位置;
控制所述阀装置运行到所述关阀位置。
一种控制系统,所述控制系统能够控制阀装置运行到关阀位置,定义 所述阀装置从全开位置到全关位置的行程为关阀总行程,其特征在于,所述系统包括:运算模块、接收模块和执行模块;
所述运算模块,能够根据系统压力作用于所述阀装置的阀针的压力方向与闭阀方向是否一致,确定关阀位置为所述第一关阀位置或所述第二关阀位置;且,相较于所述第二关阀位置,所述第一关阀位置更远离所述全关位置;
所述接收模块,能够用于接收确定的第一关阀位置或第二关阀位置;
所述执行模块,能够用于控制所述阀装置运行到所述运算模块确定的所述第一关阀位置或所述第二关阀位置。
可选地,所述运算模块,能够用于根据所述当前工作介质流向或系统进出口的压力差或当前工作模式,确定所述关阀位置为第一关阀位置或第二关阀位置。
本技术方案的控制系统以及控制方法可以根据系统压力作用于所述阀装置的阀针的压力方向与闭阀方向是否一致,确定关阀位置为所述第一关阀位置或所述第二关阀位置。具体,当前工作介质流向或系统进出口的压力差或者根据制冷系统的工作模式,控制阀装置运行到相应的关阀位置,工作介质流向不同或系统进出口的压力差或制冷系统工作模式不同时,对应的关阀位置不同;由于制冷系统在不同的工作模式下,工作介质流向不同,对应的系统的压力不同,系统压力不同对应的关阀位置不同,这样既能够保证阀装置在关阀时内漏值达标,又能够降低每次关阀时产生的阀针和阀口等部件的机械磨损,有利于提高阀装置的寿命。
附图说明
图1是电子膨胀阀和控制系统的示意框图;
图2是图1中标示有位置点的一种电子膨胀阀结构示意图;
图3是图2中位置点在关阀总行程中的示意图;
图4是电子膨胀阀的关阀控制方法的一种实施例的流程示意图;
图5是电子膨胀阀的开阀控制方法的一种实施例的流程示意图;
图6是电子膨胀阀的控制方法的另一种实施例的流程示意图;
图7是制冷系统的示意框图;
图8是制冷模式下制冷剂流动路径的一种实施例示意图;
图9是制热模式下制冷剂流动路径的一种实施例示意图;
图10是制冷模式下制冷剂流动路径的第二种实施例示意图;
图11是制热模式下制冷剂流动路径的第二种实施例示意图;
图12是除湿模式下制冷剂流动路径的一种实施例示意图;
图13是制冷系统关阀控制方法的一种实施例示意图;
图14是制冷系统开阀控制方法的一种实施例示意图
图15是电子膨胀阀控制系统的一种实施例的示意框图。
具体实施方式
本发明实施例提供的控制方法和控制系统,能够控制阀装置的运行, 阀装置可以为电子膨胀阀,也可以为冷媒阀或一些包括步进电机的截止阀,此处不再一一列举。其中电子膨胀阀、冷媒阀以及应用步进电机的截止阀可以应用于车载空调系统中。以下以应用于车载空调系统中的电子膨胀阀作为阀装置进行介绍,由于实施例中是以电子膨胀阀进行说明的,所述的工作介质为制冷剂。参见图1,图1是电子膨胀阀和控制系统的示意框图。该控制系统包括:主控制器10以及电机控制器20,电子膨胀阀1包括电机30、阀体40以及阀组件50。主控制器10发送控制信号给电机控制器20,电机控制器20根据主控制器10的控制信号发送脉冲信号给电机30以驱动电机30动作,电机30动作带动与之相连的阀组件50相对阀体40移动,从而调整电子膨胀阀1开关阀的位置。本发明实施例提供的控制方法以及控制系统,应用于上述电机控制器20来控制电机30动作,以减小电机30动作所消耗的能量,降低系统能耗。当然,也可以由主控制器10直接控制电机30的运行,省去电机控制器20。
定义电子膨胀阀1从全开位置到全关位置的行程为关阀总行程,这里的全开位置指的是电子膨胀阀1的开度为100%的位置,全关位置指的是电子膨胀阀1的全关机械限位点,即电子膨胀阀1的开度为0%的位置。首先结合图2和图3对电子膨胀阀1的关阀总行程及关阀总行程中涉及的位置点进行说明。关阀总行程为电子膨胀阀1从全开位置到全关位置的行程。图2是图1中标示有位置点的一种电子膨胀阀结构示意图,电子膨胀阀1包括电机30、阀体40以及阀组件50,电机30包括线圈2和转子3,阀组件50包括传动元件6以及止动元件5、缓冲弹簧7以及阀针8,电子膨胀阀1成型有阀口9。本实施例中,阀口9成形于阀座4,阀座4与阀体 40固定连接。线圈2通电产生激励磁场带动转子3转动,转子3通过传动元件6将转动转换为阀针8的上下移动;止动元件5随转子3一起转动,并对转子3起到上下限位的作用。缓冲弹簧7设置于传动元件6和阀针8之间,阀针8与阀口9配合以实现对制冷剂的密封或流量调节。电子膨胀阀还包括第一通道11和第二通道12,第一通道11与制冷剂进口P1连通,第二通道12与制冷剂出口P2连通。
图3是图2中位置点在关阀总行程中的示意图。其中D点为全开位置,A点为全关位置,电子膨胀阀1在D点的流量达到最大值;E点为电子膨胀阀1的目标位置,根据主控制器10发出的流量目标命令对E点的位置进行调整,以满足不同的流量目标,目标位置E点位于全开位置D点和全关位置A点之间;C点为流量零点,电子膨胀阀1位于C点时,流道刚刚开始导通或者流量的理论值为零;B点为电子膨胀阀1的第一关阀位置,第一关阀位置B点在全关位置A点和流量零点C点之间,接近全关位置A点但未达到全关位置A点,当前制冷剂流向为正向时,即制冷剂从制冷剂进口P1流入,制冷剂出口P2流出,此时与制冷剂进口P1连通的第一通道11的制冷剂的压力大于与制冷剂出口P2连通的第二通道12的制冷剂压力,系统进出口压力差为正时,此时阀针8受到关阀作用力,控制电子膨胀阀1运行到第一关阀位置B点。本实施例中,第一关阀位置B点与全开位置D点之间的行程为关阀总行程的90%~99%,电子膨胀阀1运行到第一关阀位置B点时,能够满足关阀指标,同时阀针8和阀口9等部件所受的摩擦力较小;当前制冷剂流向为反向时,即制冷剂从制冷剂出口P2流入,制冷剂进口P1流出,此时与制冷剂进口P1连通的第一通道11的制冷剂 压力小于与制冷剂出口P2连通的第二通道12的制冷剂压力,系统进出口压力差为负时,此时阀针8受到开阀作用力,控制电子膨胀阀1运行到第二关阀位置A点,第二关阀位置A点为全关位置,以保证密封性。第二关阀位置A点是初始化完成后电子膨胀阀1的位置,也是电子膨胀阀1的全关机械限位点,电子膨胀阀1运行到第二关阀位置A点时,能够满足关阀指标。
第一关阀位置B点主要受电子膨胀阀1的缓冲弹簧7的弹性系数的影响,缓冲弹簧7的弹性系数越小,第一关阀位置B点与全开位置D点之间可选择的行程范围越大。对于不同的电子膨胀阀,第一关阀位置B点与全开位置D点之间的行程是不同的。例如,缓冲弹簧7的弹性系数为10N/mm时,第一关阀位置B点与全开位置D点之间可选择的行程范围为关阀总行程的90%~99%;缓冲弹簧7的弹性系数为7N/mm时,第一关阀位置B点与全开位置D点之间可选择的行程范围为关阀总行程的92%~99%;缓冲弹簧7的弹性系数为5N/mm时,第一关阀位置B点与全开位置D点之间可选择的行程范围为关阀总行程的95%~99%;缓冲弹簧7的弹性系数为3N/mm时,第一关阀位置B点与全开位置D点之间可选择的行程范围为关阀总行程的96%~99%。本实施例只是选取了其中一种情况对控制方法进行描述,当然,也可以采用其它弹性系数的缓冲弹簧7来进行关阀位置的控制,此处不再一一列举。
电子膨胀阀的一种关阀控制方法实施例:
参见图4,图4是电子膨胀阀的关阀控制方法的一种实施例的流程示 意图;其中电子膨胀阀1包括控制单元和动作单元,控制单元包括电机控制器20,动作单元包括阀体40和阀组件50。控制单元接收主控制器的控制信号并控制动作单元执行相应的控制命令。
本实施例提供的电子膨胀阀1的关阀控制方法,包括:
S101、发送关阀命令给电子膨胀阀1;具体可以发送给电子膨胀阀的控制单元。
为了使电子膨胀阀1能够正常运行,初次开启时,需要对电子膨胀阀1进行初始化,这样可以保证电子膨胀阀1的工作精度。
这里需要说明的是,对电子膨胀阀1上电进行初始化的动作只需在电子膨胀阀1第一次启动的时候或故障排除之后进行,此时,电子膨胀阀1被强制运行到第二关阀位置A点。同时,电机控制器20与主控制器10一体,因此,也可以省去步骤S101,由主控制器10直接控制阀装置动作。
S102、得到当前制冷剂流向或系统进出口的压力差;
可以理解的是,汽车空调在工作时,制冷剂的流向是随时变化的。制冷剂的流向以及系统进出口的压力差直接影响到电子膨胀阀1受到的制冷剂压力的方向,从而影响到电子膨胀阀1的关阀位置。
当制冷剂流向为正向时,即制冷剂进口P1的压力大于制冷剂出口P2的压力,系统进出口压力差为正,制冷剂对电子膨胀阀1的压力与电子膨胀阀1的关阀方向一致,制冷剂压力对电子膨胀阀1的关阀动作起促进作用;当制冷剂流向为反向时,即制冷剂进口P1的压力小于制冷剂出口P2的压力,系统进出口的压力差为负,制冷剂对电子膨胀阀1的压力与电子 膨胀阀1的关阀方向相反,制冷剂压力对电子膨胀阀1的关阀动作起阻碍作用。
S103、根据当前制冷剂流向或系统进出口的压力差,确定所述电子膨胀阀的关阀位置为第一关阀位置或第二关阀位置;
本实施例中的电子膨胀阀1的关阀位置主要受制冷剂的流向影响,电子膨胀阀成型后,缓冲弹簧7的弹性系数同时被确定,第一关阀位置B点和全关位置A点的位置也被确定。因此,实际工况中,同一个电子膨胀阀1的关阀位置主要受制冷剂流向影响,制冷剂流向不同,电子膨胀阀1的关阀位置也不同。当前制冷剂流向为正向时,制冷剂进口P1的压力大于制冷剂出口P2的压力,系统进出口压力差为正,制冷剂压力对电子膨胀阀1的关阀起促进作用,此时电子膨胀阀1的关阀位置为第一关阀位置B点,即与全开位置D点之间行程为关阀总行程的90%~99%的位置;当前制冷剂流向为反向时,制冷剂进口P1的压力小于制冷剂出口P2的压力,系统进出口的压力差为负,制冷剂压力对电子膨胀阀1的关阀起阻碍作用,此时为了满足关阀指标,电子膨胀阀1的关阀位置为第二关阀位置A点,也就是全关位置A点。根据实际制冷剂流向实时得到关阀位置,可以保证在每次关阀时各项关阀指标都能达标,同时降低了每次关阀时因过关对阀针和阀口等部件产生的磨损,有利于提高电子膨胀阀的寿命和控制精度。
S104、控制所述电子膨胀阀1运行到S103确定的所述第一关阀位置或所述第二关阀位置;
由于电子膨胀阀1正常工作时,需要根据实际的流量目标,停在关阀 总行程中的某一满足相应流量目标的目标位置E点,因此,电子膨胀阀1的关阀动作也是从目标位置E点开始的。当电子膨胀阀1接到关阀命令且制冷剂流向为正向时,电机控制器20会控制电子膨胀阀1运行到第一关阀位置B点,完成关阀动作;当电子膨胀阀1接到关阀命令且制冷剂流向为反向时,电机控制器20会控制电子膨胀阀1运行到第二关阀位置A点,完成关阀动作。在关阀动作完成之后,未接到新的开阀命令之前,由主控制器10监控制冷剂流向的变化情况或系统进出口压力差的变化,如果制冷剂流向不变或系统进出口压力差不变,电子膨胀阀1保持在原关阀位置;如果制冷剂流向由正向变为反向,或系统进出口的压力差由正变负,将电子膨胀阀1从第一关阀位置B点调整到第二关阀位置A点;如果制冷剂流向由反向变为正向,或系统进出口的压力差由负变正,将电子膨胀阀1从第二关阀位置A点调整到第一关阀位置B点。
电子膨胀阀的一种开阀控制方法实施例:
参见图5,图5是电子膨胀阀的开阀控制方法的一种实施例的流程示意图。
本实施例提供的电子膨胀阀1开阀控制方法,包括:
S201、发送开阀命令给电子膨胀阀1;具体可以发送给电子膨胀发的控制单元;
可以理解的是,这里所说的电子膨胀阀1的开阀并非初始化开阀,而是与上文的关阀动作一致的关阀之后的开阀动作。当电机控制器20与主控制器10一体,因此,也可以省去步骤S201,由主控制器10直接控制阀装 置动作。
S202、得到当前制冷剂流向或系统进出口的压力差和流量目标;
这里需要说明的是,汽车空调系统运行时,在关阀动作完成之后,可以直接根据当前制冷剂流向或系统进出口的压力差得到上次电子膨胀阀1的关阀位置,这个关阀位置同时也是电子膨胀阀1的开阀起点位置;根据主控制器10发送的流量目标命令,得到流量目标对应的目标位置E点的位置,这个目标位置E点就是电子膨胀阀1的开阀终点位置。
S203、根据当前制冷剂流向或系统进出口的压力差和流量目标,得到电子膨胀阀1的开阀起点位置和开阀终点位置;
当前制冷剂流向为正向或系统进出口的压力差为正时,电子膨胀阀1的开阀起点位置为第一关阀位置B点;当前制冷剂流向为反向或系统进出口压力差为负时,电子膨胀阀1的开阀起点位置为第二关阀位置A点;根据实际流量目标,得到流量目标对应的目标位置E点的位置,目标位置E点的位置为开阀终点位置。
S204、控制电子膨胀阀1从开阀起点位置运行到开阀终点位置;可以理解为控制单元控制电子膨胀阀从开阀起点位置运行到开阀终点位置。
在确定电子膨胀阀1的开阀起点位置和开阀终点位置之后,由主控制器10发送控制命令给电机控制器20,控制电机30带动阀组件50运动,完成开阀动作。
电子膨胀阀控制方法的另一种实施例:
参见图6,图6是电子膨胀阀的控制方法的另一种实施例的流程示意 图。
首先,汽车空调系统开始启动;
S301、电子膨胀阀1上电并完成初始化;
这里电子膨胀阀1的初始化动作一般只在电子膨胀阀1第一次启动或故障排除之后的启动中进行,对电子膨胀阀1进行上电并完成初始化来保证电子膨胀阀1的流量控制精度。此时,控制电子膨胀阀运行到全关位置A点。
S302、电子膨胀阀1收到运行到目标位置E点的开阀命令;由主控制器10发送开阀命令及流量目标给电子膨胀阀1,并将相应的开阀起点位置和开阀终点位置信息发送给电子膨胀阀1,这里的开阀起点位置为全关位置A点,开阀终点位置为满足流量目标的目标位置E点;
这里需要说明的是,目标位置E点位于全开位置D点和全关位置A点之间,是一个目标位置变量,根据流量目标命令实时变化,每次开阀时的目标位置E点可以相同,也可以不同,根据实际需要进行调整。
S303、电子膨胀阀1运行到目标位置E点;
控制电子膨胀阀1从全关位置A点运行到目标位置E点,空调系统开始稳定运行。
S304、电子膨胀阀1收到关阀命令和制冷剂流向信息;
空调运行一段时间后,主控制器10发送关阀命令和当前制冷剂流向信息给电子膨胀阀1。
S305、得到当前制冷剂流向;
由主控制器10得到当前制冷剂流向,并根据当前制冷剂流向得到电子膨胀阀1的关阀位置。当前制冷剂流向为正向时,电子膨胀阀1的关阀位置为第一关阀位置B点;当前制冷剂流向为反向时,电子膨胀阀1的关阀位置为第二关阀位置A点。
S306、当制冷剂流向为正向时,电子膨胀阀1运行到第一关阀位置B点;
当前制冷剂流向为正向时,电子膨胀阀1的关阀位置为第一关阀位置B点,第一关阀位置B点与全开位置D点之间的行程为关阀总行程的90%~99%,控制电子膨胀阀1运行到第一关阀位置B点。
S307、当制冷剂流向为反向时,电子膨胀阀1运行到第二关阀位置A点;
当前制冷剂流向为反向时,电子膨胀阀1的关阀位置为第二关阀位置A点,第二关阀位置A点为关阀总行程中的全关位置,控制电子膨胀阀1运行到第二关阀位置A点。
S308、电子膨胀阀1关阀完成;
电子膨胀阀1运行到相应的关阀位置,完成关阀动作。
S309、监控开阀命令及制冷剂流向;
完成关阀动作后,由电机控制器20接收主控制器10发出的开阀命令以及制冷剂流向信息并控制电子膨胀阀开阀动作。如果在接到新的开阀命令前,主控制器10监控到制冷剂流向未发生变化,在接到新的开阀命令后,则回到步骤S302,依次重复开关阀动作;如果在接到开阀命令前,主控制 器10监控到制冷剂流向发生改变,参照步骤S310。
S310、监控到制冷剂流向发生改变;
主控制器10监控到制冷剂流向发生改变并将变化情况发送给电机控制器20,控制电子膨胀阀1调整关阀位置。
S311、制冷剂流向由反向变为正向,调整电子膨胀阀1运行到第一关阀位置B点;
当主控制器10监控到制冷剂流向由反向变为正向时,电机控制器20控制电子膨胀阀1调整关阀位置,将关阀位置从第二关阀位置A点调整到第一关阀位置B点。
S312、制冷剂流向由正向变为反向,调整电子膨胀阀1运行到第二关阀位置A点;
当主控制器10监控到制冷剂流向由正向变为反向时,电机控制器20控制电子膨胀阀1调整关阀位置,将关阀位置从第一关阀位置B点调整到第二关阀位置A点。
S308、电子膨胀阀1关阀完成;
根据制冷剂的流向变化实时调整关阀位置,完成关阀动作,继续监控开阀命令及制冷剂流向变化,如此重复,控制电子膨胀阀1的开关阀动作。
当然,也可以根据制冷系统的工作模式来得到关阀位置。
参见图7,图7是制冷系统的示意框图。以空调制冷系统为例,空调制冷系统主要包括四个部分:压缩机A1、室外换热器A2、阀装置A3以及室内换热器A4,这里的阀装置A3是电子膨胀阀。
参见图8,图8是制冷模式下制冷剂流动路径的一种实施例示意图,制冷模式时,气体制冷剂经压缩机A1压缩从低温低压气体变为高温高压气体,进入室外换热器A2,室外换热器A2此时作为冷凝器,制冷剂在室外换热器A2中冷凝液化放热成为液体,液体经阀装置A3减压,进入室内换热器A4,室内换热器A4此时作为蒸发器,制冷剂在室内换热器A4中蒸发气化吸热成为低温低压的气体,并回到压缩机A1进行下一轮循环。在这个过程中,室外换热器A2将热量向外界释放,室内换热器A4吸收室内空气的热量,从而达到降低室内温度的目的。此时,制冷剂的流向是从室外换热器A2流向阀装置A3,规定此时制冷剂的流向为正向,那么制冷模式下,收到关阀命令后,制冷系统控制阀装置运行到第一关阀位置。定义阀装置A3从全开位置到全关位置的行程为关阀总行程,这里所说的第一关阀位置为与全开位置之间行程为关阀总行程的90%~99%的位置。
参见图9,图9是制热模式下制冷剂流动路径的一种实施例示意图,制热模式时,气体制冷剂经压缩机A1压缩从低温低压气体变为高温高压气体,进入室内换热器A4,室内换热器A4此时作为冷凝器,制冷剂在室内换热器A4中冷凝液化放热成为液体,液体经阀装置A3减压,进入室外换热器A2,室外换热器A2此时作为蒸发器,制冷剂在室外换热器A2中蒸发气化吸热成为低温低压的气体,并回到压缩机A1进行下一轮循环。在这个过程中,室内换热器A4将热量向室内释放,室外换热器A2吸收室外空气的热量,从而达到提高室内温度的目的。此时,制冷剂的流向是从阀装置A3流向室外换热器A2,那么制热模式下,制冷剂的流向为反向,收到关阀命令后,制冷系统控制阀装置运行到第二关阀位置,这里所说的 第二关阀位置为关阀总行程的全关位置。
本实施例中,制冷模式和制热模式下制冷剂的流向不同,对应的关阀位置也不同,可在制冷剂的进出口处分别安装压力传感器,根据系统进出口的压力差来判断对应的关阀位置,制冷剂流向为正时,系统进出口压力差为正,制冷剂流向为负时,系统进出口压力差为负。在实际工况中,制冷系统还包括除制冷模式和制热模式以外的其他工作模式,下面结合附图对本发明的第二种实施例进行介绍。
参见图10,图10是制冷模式下制冷剂流动路径的第二种实施例示意图,其中实线部分表示制冷剂流动路径,箭头方向代表了制冷剂的流动方向。制冷模式下,制冷剂从压缩机A1流出后进入空调箱A6,通过空调箱A6进入室外换热器A2进行热交换,再通过阀装置A3进入空调箱A6,此时空调箱A6相当于蒸发器,从空调箱A6流出经由气液分离器A5回到压缩机A1,完成一个工作循环。规定从室外换热器A2流入阀装置A3的制冷剂流向为正向,那么制冷模式下,制冷系统接到关阀命令后,控制阀装置A3运行到相应的第一关阀位置。
参见图11,图11是制热模式下制冷剂流动路径的第二种实施例示意图,其中实线部分表示制冷剂流动路径,箭头方向代表了制冷剂的流动方向。制热模式下,制冷剂从压缩机A1流出后进入空调箱A6,完成冷凝与蒸发的全部热交换过程之后经由阀装置A3直接通过气液分离器A5回到压缩机,完成工作循环。在制热模式下,制冷剂的流向是由阀装置A3流入室外换热器A2的,与制冷模式下制冷剂流向相反,因此, 制冷系统接到关阀命令后,控制阀装置A3运行到第二关阀位置。
参见图12,图12是除湿模式下制冷剂流动路径的一种实施例示意图,其中实线部分表示制冷剂流动路径,箭头方向代表了制冷剂的流动方向。除湿模式下,制冷剂流向与制冷模式下制冷剂流向类似,只是在经过阀装置A3之后,可以经由室外换热器A2流向气液分离器A5,也可以直接流向气液分离器A5,完成工作循环。在除湿模式下,制冷剂的流向也是由阀装置A3流入室外换热器A2的,因此,除湿模式下的关阀位置与制冷模式下的关阀位置相同,制冷系统接到关阀命令后,控制阀装置A3运行到第一关阀位置。
实际工作条件下,制冷系统的制冷模式和除湿模式下的制冷剂流动方向是相同的。在制冷系统的设计阶段,还可以根据实际需要将制冷模式下的制冷剂流向设计为从室内换热器A4流向阀装置A3的反向流动过程,这样一来,制冷模式下的制冷剂流动方向为反向,制热模式下制冷剂的流动方向为正向,除湿模式下制冷剂流动方向为反向;制冷剂流动方向为正向时,阀装置的关阀位置为第一关阀位置;制冷剂的流向为反向时,阀装置的关阀位置为第二关阀位置。
当然,制冷系统还包括其他的工作模式,而且制冷模式、制热模式和除湿模式也分别包括几个等级不同的模式条件,如第一制冷模式、第二制冷模式、第一制热模式、第二制热模式、单独除湿模式以及制冷除湿模式等,此处不再一一列举。不同工作模式下制冷剂的流向由制冷系统本身的设计方案决定。制冷系统设计成型后,不同工作模式下对应制 冷剂的流向是确定的,也就是说,对于同一制冷系统,同一工作模式只对应同一种制冷剂流向,同一种制冷剂的流向只对应一个关阀位置,工作模式确定,制冷剂流向确定,关阀位置也确定。可以直接根据制冷系统的当前工作模式来得到关阀位置,并根据工作模式的切换,控制阀装置的开关阀动作或调整关阀位置。
参见图13,图13是制冷系统关阀控制方法的一种实施例示意图。一般情况下,制冷系统的工作模式不同,制冷剂的流向不同,系统进出口的压力差不同,系统的工作循环方向不同。制冷系统的工作模式主要包括制冷模式、制热模式以及除湿模式等。制冷系统设计定型以后,同一种工作模式下的制冷剂流向相同,关阀位置也相同。
S401、发送关阀命令给阀装置;
主控制器10发送关阀的命令给阀装置,控制电子膨胀阀启动。此控制方法中也可省去电机控制器,由主控制器直接控制阀装置动作,从而省去步骤S401
S402、得到制冷系统的工作模式;
主控制器10实时监控制冷系统的工作模式,首先得到制冷系统当前工作模式。工作模式不同,制冷剂的流向不同,系统进出口压力差不同,关阀位置也不同。
S403、根据制冷系统的工作模式,得到阀装置的关阀位置;
主控制器10根据制冷系统的当前工作模式得到对应工作模式下的关阀位置。
S404、控制阀装置运行到关阀位置;
控制制冷系统的阀装置运行到对应关阀位置后,完成关阀动作。
制冷系统的控制方法与电子膨胀阀的控制方法类似,只是将对制冷剂的流向的确定改为对制冷系统工作模式的确定,从而得到关阀位置。具体控制方法与前文类似,此处不再赘述。
基于上述实施例提供的控制方法,本发明还提供了一种控制系统。
参见图14,图14是制冷系统开阀控制方法的一种实施例示意图。
S501、发送开阀命令给控制单元;
制冷系统关闭或休眠一段时间后,主控制器10发送开阀的命令给电机控制器20,电机控制器20控制电子膨胀阀1启动。
S502、得到制冷系统的工作模式以及流量目标;
主控制器10根据开启命令得到制冷系统的工作模式和流量调节目标,开阀命令发出之后,首先确定制冷系统当前工作模式。工作模式不同,制冷剂的流向不同,制冷剂进出口压力差不同,关阀位置也不同。
S503、根据制冷系统的工作模式得到阀装置的开阀起点位置,同时根据流量目标得到开阀终点位置;
主控制器10根据制冷系统的目标工作模式得到对应工作模式下的开阀起点位置,并根据流量目标得到开阀终点位置。
S504、控制单元控制动作单元从开阀起点位置运行到开阀终点位置;
由电机控制器20控制制冷系统的阀装置从开阀起点位置运行到对 应开阀终点位置,完成开阀动作。
制冷系统的控制方法与电子膨胀阀的控制方法类似,只是将对制冷剂的流向的确定改为对制冷系统工作模式的确定,从而得到关阀位置。具体控制方法与前文类似,此处不再赘述。当然,此控制方法中也可省去电机控制器,由主控制器直接控制阀装置动作,从而省去步骤S401。
参见图15,图15是电子膨胀阀控制系统的一种实施例的示意框图。
本实施例提供的电子膨胀阀的控制系统,包括:发送模块100,运算模块200,接收模块300和执行模块400;
发送模块100,能够用于发送控制信号;控制信号包括关阀命令和/或开阀命令
运算模块200,能够用于根据当前制冷剂的流向或系统进出口压力差或制冷系统的工作模式及流量目标得到关阀位置、开阀起点位置或开阀终点位置等信息;
接收模块300,能够用于接收关阀位置、开阀起点位置和开阀终点位置等信息;
执行模块400,能够用于执行控制命令,控制电子膨胀阀1运行到相应的位置。本实施例提供的控制系统,在发送模块100发送控制信号给电子膨胀阀1后,运算模块200得到相对应的关阀位置,开阀起点位置或开阀终点位置等信息,接收模块300接收相应的控制命令和关阀位置,开阀起点位置和开阀终点位置等信息,执行模块400根据接收模块300接收到的相关信息,控制电子膨胀阀1运行到相应的关阀位置,开 阀起点位置或开阀终点位置。
本实施例提供的控制方法以及控制系统,在空调系统运行时,电子膨胀阀从全开位置D点到全关位置A点的行程为关阀总行程。当接到关阀命令时,得到当前的制冷剂流向,制冷剂流向为正向时,电子膨胀阀的关阀位置为第一关阀位置B点,第一关阀位置B点与全开位置D点之间的行程为关阀总行程的90%~99%;当制冷剂流向为反向时,电子膨胀阀的关阀位置为第二关阀位置A点,第二关阀位置A点为关阀总行程的全关位置,控制电子膨胀阀每次都运行到相应的关阀位置,可以保证电子膨胀阀在关阀时既能满足关阀指标,又能最大限度地降低阀针和阀口等部件的机械磨损,有利于提高电子膨胀阀的流量控制精度和工作效率以及寿命。
实施例中通过多种参数作为参考,以确定关阀位置为第一关阀位置还是第二关阀位置,其目的都是,判断系统压力作用于所述阀装置的阀针的压力方向与闭阀方向是否一致,一致时,有系统压力的协助,阀针闭阀位置不需要太靠近全关位置,所以确定关阀位置为所述第一关阀位置;而系统压力作用于阀针的压力方向与闭阀方向不一致时,往往是反向作用于阀针,则防止系统压力反向影响闭阀效果,可确定关阀位置为所述第二关阀位置,即关阀力度可以加大,从而保证闭阀效果。上述判断系统压力作用于阀针压力与闭阀方向是否一致时,具体是通过系统制冷剂流向、系统压差正负、所处模式等参数进行,当然其他能够反映系统压力作用于阀针方向与闭阀方向是否一致的参数,也可以作为判断的依据。
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式 上的限制。虽然本发明已以较佳实施例揭露如上,然而并非用以限定本发明。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案做出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。
Figure PCTCN2018099334-appb-000001

Claims (13)

  1. 胀阀,所述第一关阀位置与所述全开位置之间的行程为所述关阀总行程的90%~99%。
  2. 根据权利要求1至4任一项所述控制方法,其特征在于,所述当前工作介质流向为反向或所述系统进出口的压力差为负,所述控制方法能够控制所述阀装置运行到所述第二关阀位置,所述第二关阀位置为所述全关位置。
  3. 根据权利要求5所述控制方法,其特征在于,所述控制方法还包括以下步骤:
    得到流量目标;
    根据所述当前工作介质流向和所述流量目标,得到所述阀装置的开阀起点位置和开阀终点位置;或根据所述当前系统进出口的压力差和所述流量目标,得到所述阀装置的开阀起点位置和开阀终点位置;
    控制所述阀装置从所述开阀起点位置运行到所述开阀终点位置;
    所述阀装置的全开位置为所述阀装置流量最大的位置,所述阀装置的全关位置为所述阀装置的全关机械限位点,所述流量目标对应的目标位置为流量满足流量目标要求的位置。
  4. 根据权利要求6所述控制方法,其特征在于,所述当前工作介质流向为正向或系统进出口的压力差为正时,所述开阀起点位置为所述第一关阀位置;
    所述当前工作介质流向为反向或系统进出口的压力差为负时,所述开阀起点位置为所述第二关阀位置;
    所述开阀终点位置为与所述流量目标对应的目标位置。
  5. 根据权利要求1所述控制方法,其特征在于,所述阀装置为电子膨胀阀,所述电子膨胀阀包括电机、阀体以及阀组件,所述电机包括线圈和转子,所述阀组件包括传动元件、缓冲弹簧以及阀针,所述电子膨胀阀成形有阀口,所述转子通过传动元件将转动转换为阀针的上下移动;所述缓冲弹簧设置于所述传动元件和所述阀针之间,所述缓冲弹簧的弹性系数越大,所述第一关阀位置与所述全开位置之间可选择的行程范围越大。
  6. 根据权利要求8所述控制方法,其特征在于,所述电子膨胀阀包括控制单元,所述控制单元控制所述阀针运行至所述第一关阀位置或所述第二关阀位置。
  7. 根据权利要求1所述控制方法,其特征在于,所述制冷系统至少包括两种工作模式,至少有两种不同的工作模式下,所述制冷系统的工作介质经过所述阀装置的流向不同,所述控制方法包括以下步骤:
    得到所述制冷系统的工作模式;
    根据所述工作模式,反映系统压力作用于所述阀装置的阀针的压力方向与闭阀方向是否一致,以确定所述阀装置的关阀位置为所述第一关阀位置或所述第二关阀位置;
    控制所述阀装置运行到确定的所述第一关阀位置或所述第二关阀位置。
  8. 根据权利要求10所述控制方法,其特征在于,所述制冷系统包括制冷模式和制热模式,在所述制冷系统中,所述制冷模式下工作介质的流动方向与所述制热模式下工作介质的流动方向相反;
    所述制冷模式下的工作介质的流动方向为正向或系统进出口的压力差 为正时,所述制冷模式下的关阀位置为第一关阀位置;所述制热模式下的工作介质的流动方向为反向或系统进出口的压力差为负时,所述制热模式下的关阀位置为第二关阀位置;
    在所述制冷系统中,所述制冷模式下的工作介质的流动方向为反向或系统进出口的压力差为负时,所述制冷模式下的关阀位置为第二关阀位置;所述制热模式下的工作介质的流动方向为正向或系统进出口的压力差为正时,所述制热模式下的关阀位置为第一关阀位置;
    根据所述工作模式控制所述阀装置运行到相应的所述关阀位置,所述第一关阀位置未达到但接近所述全关位置,所述第一关阀位置与所述全开位置之间的行程为所述关阀总行程的90%~99%,所述第二关阀位置为所述全关位置。
  9. 根据权利要求11所述控制方法,其特征在于,所述制冷系统还包括除湿模式,在所述制冷系统中,所述除湿模式下工作介质的流动方向与所述制冷模式下工作介质的流动方向相同;
    所述除湿模式下的工作介质的流动方向为正向或系统进出口的压力差为正时,所述除湿模式下的关阀位置为第一关阀位置;
    所述除湿模式下的工作介质的流动方向为反向或系统进出口的压力差为负时,所述除湿模式下的关阀位置为第二关阀位置。
  10. 一种控制系统,所述控制系统能够控制阀装置运行到关阀位置,定义所述阀装置从全开位置到全关位置的行程为关阀总行程,其特征在于,所述系统包括:运算模块、接收模块和执行模块;
    所述运算模块,能够根据系统压力作用于所述阀装置的阀针的压力方 向与闭阀方向是否一致,确定关阀位置为所述第一关阀位置或所述第二关阀位置;且,相较于所述第二关阀位置,所述第一关阀位置更远离所述全关位置;
    所述接收模块,能够用于接收确定的第一关阀位置或第二关阀位置;
    所述执行模块,能够用于控制所述阀装置运行到所述运算模块确定的所述第一关阀位置或所述第二关阀位置。
  11. 根据权利要求13所述控制系统,其特征在于:所述运算模块,能够用于根据所述当前工作介质流向或系统进出口的压力差或当前工作模式,确定所述关阀位置为第一关阀位置或第二关阀位置。
  12. 根据权利要求14所述控制系统,其特征在于:所述关阀位置至少包括第一关阀位置和第二关阀位置,所述当前工作介质流向为正向或系统进出口的压力差为正时,所述控制方法能够控制所述阀装置运行到第一关阀位置,所述阀装置为电子膨胀阀,所述第一关阀位置与所述全开位置之间的行程为所述关阀总行程的90%~99%,所述当前工作介质流向为反向,所述控制方法能够控制所述阀装置运行到第二关阀位置,所述第二关阀位置为所述关阀总行程的全开位置。
  13. 根据权利要求12或15所述控制系统,其特征在于:
    所述控制系统还包括发送模块,所述发送模块,还能够用于发送开阀命令给所述阀装置;
    所述运算模块,还能够用于根据所述当前工作介质流向和流量目标得到开阀起点位置和开阀终点位置;
    所述接收模块,还能够用于接收所述开阀起点位置和所述开阀终点位 置的信息;
    所述执行模块,还能够用于控制所述阀装置从所述开阀起点位置运行到所述开阀终点位置。
PCT/CN2018/099334 2017-08-29 2018-08-08 控制方法以及控制系统 WO2019042100A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18850096.1A EP3677859B1 (en) 2017-08-29 2018-08-08 Control method and control system
US16/642,881 US11313601B2 (en) 2017-08-29 2018-08-08 System and method for controlling an expansion valve

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710754411.3 2017-08-29
CN201710754411.3A CN109425158B (zh) 2017-08-29 2017-08-29 控制方法以及控制系统

Publications (1)

Publication Number Publication Date
WO2019042100A1 true WO2019042100A1 (zh) 2019-03-07

Family

ID=65503399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099334 WO2019042100A1 (zh) 2017-08-29 2018-08-08 控制方法以及控制系统

Country Status (4)

Country Link
US (1) US11313601B2 (zh)
EP (1) EP3677859B1 (zh)
CN (1) CN109425158B (zh)
WO (1) WO2019042100A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3712472A4 (en) * 2017-11-13 2021-08-04 Emerson Climate Technologies (Suzhou) Co., Ltd. ELECTRONIC EXPANSION VALVE

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054019A (ja) * 2008-08-29 2010-03-11 Nippon Shokubai Co Ltd 調節弁
CN103388694A (zh) * 2012-05-11 2013-11-13 浙江三花股份有限公司 一种电子膨胀阀
CN103672131A (zh) * 2012-09-06 2014-03-26 艾默生环境优化技术(苏州)有限公司 电子膨胀阀

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021230A (ja) * 1999-07-12 2001-01-26 Tgk Co Ltd 容量可変圧縮機が用いられた冷凍サイクルの膨張弁
US6418741B1 (en) * 2000-05-03 2002-07-16 Parker Hannifin Corporation Expansion/check valve assembly including a reverse flow rate adjustment device
US8453678B2 (en) 2009-04-01 2013-06-04 Mac Valves, Inc. Piloted poppet valve
FR2948898B1 (fr) * 2009-08-07 2012-04-06 Renault Sa Systeme de regulation thermique globale pour vehicule automobile a propulsion electrique.
JP2014006651A (ja) 2012-06-22 2014-01-16 Design Barcode Kk バーコードを用いたマーケティング情報収集システムおよびマーケティング情報収集方法
CN103511636B (zh) * 2012-06-27 2016-04-06 浙江三花股份有限公司 一种电子膨胀阀
WO2014006651A1 (ja) 2012-07-03 2014-01-09 三菱電機株式会社 絞り装置、および空気調和装置
WO2014097439A1 (ja) * 2012-12-20 2014-06-26 三菱電機株式会社 空気調和装置
KR20170127059A (ko) * 2013-02-04 2017-11-20 쯔지앙 산후아 오토모티브 컴포넌츠 컴퍼니 리미티드 전자 팽창 밸브 및 이의 제어 방법
WO2015139647A1 (zh) * 2014-03-19 2015-09-24 浙江三花股份有限公司 电子膨胀阀
JP6504252B2 (ja) * 2015-08-03 2019-04-24 株式会社デンソー 統合弁
CN106545660B (zh) * 2015-09-23 2020-04-10 盾安环境技术有限公司 一种电子膨胀阀
CN106958966B (zh) * 2016-01-12 2021-05-14 浙江三花制冷集团有限公司 热力膨胀阀

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010054019A (ja) * 2008-08-29 2010-03-11 Nippon Shokubai Co Ltd 調節弁
CN103388694A (zh) * 2012-05-11 2013-11-13 浙江三花股份有限公司 一种电子膨胀阀
CN103672131A (zh) * 2012-09-06 2014-03-26 艾默生环境优化技术(苏州)有限公司 电子膨胀阀

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677859A4

Also Published As

Publication number Publication date
US11313601B2 (en) 2022-04-26
EP3677859A1 (en) 2020-07-08
EP3677859A4 (en) 2021-05-19
US20200208893A1 (en) 2020-07-02
CN109425158A (zh) 2019-03-05
EP3677859B1 (en) 2022-10-12
CN109425158B (zh) 2021-09-07

Similar Documents

Publication Publication Date Title
CN107421177B (zh) 三过热度调节电子膨胀阀的空调及其控制方法
EP2889553A1 (en) Flow control valve, use of the same, refrigerating system and method for controlling the same
US10391833B2 (en) Method for controlling degree of superheat of vehicle air-conditioning system, and vehicle air-conditioning system
EP1893928B1 (en) Method and control for preventing flooded starts in a heat pump
US20160200176A1 (en) Method for Controlling Vehicle Air-Conditioning System, and Vehicle Air-Conditioning System
WO2008018549A1 (fr) Dispositif et méthode de réglage d'un compresseur à cylindrée variable
JPWO2007083794A1 (ja) 空気調和装置
CN104883004B (zh) 电机散热结构、空调器和电机散热方法
CN101501412A (zh) 基于压缩机温度的吸入阀脉宽调制控制
CN111102678A (zh) 一种空调控制方法、空调系统及空调器
WO2018076934A1 (zh) 空调及其制冷系统
EP2572910A1 (en) Vehicle heating and cooling device
JP2005121333A (ja) 空気調和装置
WO2019042100A1 (zh) 控制方法以及控制系统
JP2009236447A (ja) 冷凍装置
JP5633335B2 (ja) 空気調和装置
CN110529993B (zh) 运行控制装置及方法、空调器、计算机可读存储介质
JP4898025B2 (ja) マルチ型ガスヒートポンプ式空気調和装置
CN104896699B (zh) 电机散热结构、空调器和电机散热方法
WO2013114461A1 (ja) 空気調和装置及び鉄道車両用空気調和装置
WO2023093002A1 (zh) 车辆的温度管理系统的控制方法及温度管理系统
JP2014119154A (ja) 空気調和機
US20220026126A1 (en) Air conditioning device
CN211926179U (zh) 一种基于蒸发压力调节阀的空调控制系统
JP2012107790A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850096

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018850096

Country of ref document: EP

Effective date: 20200330