WO2023093002A1 - 车辆的温度管理系统的控制方法及温度管理系统 - Google Patents

车辆的温度管理系统的控制方法及温度管理系统 Download PDF

Info

Publication number
WO2023093002A1
WO2023093002A1 PCT/CN2022/099206 CN2022099206W WO2023093002A1 WO 2023093002 A1 WO2023093002 A1 WO 2023093002A1 CN 2022099206 W CN2022099206 W CN 2022099206W WO 2023093002 A1 WO2023093002 A1 WO 2023093002A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
heat exchanger
auxiliary heat
temperature
electric control
Prior art date
Application number
PCT/CN2022/099206
Other languages
English (en)
French (fr)
Inventor
罗荣邦
崔俊
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023093002A1 publication Critical patent/WO2023093002A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00492Heating, cooling or ventilating [HVAC] devices comprising regenerative heating or cooling means, e.g. heat accumulators
    • B60H1/00499Heat or cold storage without phase change including solid bodies, e.g. batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/022Compressor control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the invention relates to the technical field of temperature management, and specifically provides a control method and the temperature management system of a vehicle temperature management system.
  • the present invention aims to solve the above-mentioned technical problem, that is, to solve the problem that the cooling effect of the existing vehicle temperature management system on the battery is not ideal.
  • the present invention provides a method for controlling a temperature management system of a vehicle.
  • the temperature management system includes an air conditioner, an auxiliary heat exchanger, a fan, and a battery, and the battery is electrically connected to the electric device of the vehicle.
  • the air conditioner includes a compressor, a four-way reversing valve, a condenser and an evaporator, the evaporator is set in the cab of the vehicle, and the auxiliary heat exchanger is set close to the battery so as to
  • the battery is cooled, the fan is arranged between the auxiliary heat exchanger and the battery, the exhaust port of the compressor communicates with the first port of the four-way reversing valve, and the return port of the compressor
  • the gas port communicates with the second port of the four-way reversing valve, one end of the condenser communicates with the third port of the four-way reversing valve, and the other end of the condenser communicates with the auxiliary heat exchanger.
  • the other end of the auxiliary heat exchanger communicates with one end of the evaporator through the first refrigerant pipeline, and the other end of the evaporator communicates with the four-way reversing valve through the second refrigerant pipeline.
  • the fourth port is connected, and the control method includes: obtaining the current operation mode of the air conditioner; according to the current operation mode, selectively controlling the fan to blow air toward the battery or toward the auxiliary heat exchanger.
  • the step of "selectively controlling the fan to blow air toward the battery or toward the auxiliary heat exchanger according to the current operating mode” specifically includes: If the current operation mode is a heating mode, the fan is controlled to blow air toward the auxiliary heat exchanger.
  • the step of "selectively controlling the fan to blow air toward the battery or toward the auxiliary heat exchanger according to the current operating mode" further includes: If the current operation mode is a cooling mode, the fan is controlled to blow air toward the battery.
  • the temperature management system further includes a third refrigerant pipeline, a first electric control valve and a second electric control valve, and the third refrigerant pipeline
  • One end of the third refrigerant pipeline communicates with the other end of the auxiliary heat exchanger
  • the other end of the third refrigerant pipeline communicates with the second refrigerant pipeline
  • the first electric control valve is set on the first refrigerant pipeline.
  • the control method further includes: judging whether it is necessary to cool down the driver's cab under the condition that the temperature of the battery needs to be cooled by the auxiliary heat exchanger; according to the judgment result, selectively turning on the first battery. control valve or the second electrically controlled valve.
  • the step of "selectively opening the first electric control valve or the second electric control valve according to the judgment result" specifically includes: To cool down the cab, open the second electric control valve.
  • the step of "selectively opening the first electric control valve or the second electric control valve according to the judgment result" further includes: When the temperature of the cab is lowered, the first electric control valve is opened.
  • the first electric control valve and the second electric control valve are solenoid valves or electronic expansion valves.
  • control method of the temperature management system of the vehicle in the process of cooling the battery through the auxiliary heat exchanger, the control method further includes: acquiring the temperature of the battery; The frequency of the compressor is adjusted according to the temperature and the set target temperature.
  • the step of "adjusting the frequency of the compressor according to the temperature and the set target temperature” specifically includes: calculating the temperature and the set target temperature The difference between the target temperatures; PID adjustment is performed on the frequency of the compressor according to the difference.
  • the present invention also provides a temperature management system, including a controller configured to execute the above-mentioned control method.
  • the temperature management system of the present invention includes an air conditioner, an auxiliary heat exchanger, a fan, and a battery
  • the battery is electrically connected to the electrical components of the vehicle
  • the air conditioner includes a compressor, a four-way reversing valve, a condensing evaporator and evaporator
  • the evaporator is set in the cab of the vehicle
  • the auxiliary heat exchanger is set close to the battery to cool the battery
  • the fan is set between the auxiliary heat exchanger and the battery
  • the exhaust port of the compressor is commutated with the four-way
  • the first port of the valve is connected
  • the air return port of the compressor is connected with the second port of the four-way reversing valve
  • one end of the condenser is connected with the third port of the four-way reversing valve
  • the other end of the condenser is connected with the auxiliary heat exchanger
  • One end of the auxiliary heat exchanger communicates with one end of the evapor
  • the method includes: obtaining the current operating mode of the air conditioner; and selectively controlling the fan to blow air toward the battery or toward the auxiliary heat exchanger according to the current operating mode.
  • the low-temperature air is blown to the battery through the fan, which is more conducive to reducing the temperature of the battery; in addition, it can also be used during the operation of the air conditioner.
  • it is judged whether to make the fan blow toward the battery or to make the fan blow toward the auxiliary heat exchanger.
  • the low-temperature air near the heat exchanger is blown to the battery to reduce the temperature of the battery.
  • the air conditioner is running in heating mode, the fan is controlled to rotate in reverse, and the heat emitted by the battery is blown to the auxiliary heat exchanger for heat recovery, which can Increase the temperature of the refrigerant entering the condenser, reduce the frequency of the compressor, and save energy and electricity.
  • the vehicle temperature management system of the present invention further includes a third refrigerant pipeline, a first electric control valve and a second electric control valve, one end of the third refrigerant pipeline communicates with the bottom end of the auxiliary heat exchanger, The other end of the third refrigerant pipeline communicates with the second refrigerant pipeline.
  • the first electric control valve is arranged on the first refrigerant pipeline to control the on-off state of the first refrigerant pipeline.
  • the second electric control valve It is arranged on the third refrigerant pipeline, and the second electric control valve is used to control the on-off state of the third refrigerant pipeline.
  • the control method of the present invention also includes: in the case of cooling the battery through the auxiliary heat exchanger , judging whether the cab needs to be cooled; according to the judging result, selectively opening the first electric control valve or the second electric control valve.
  • the step of "adjusting the frequency of the compressor according to the temperature and the set target temperature” specifically includes: calculating the difference between the temperature and the set temperature; and performing PID adjustment on the frequency of the compressor according to the difference.
  • the temperature management system further provided by the present invention on the basis of the above-mentioned technical solution adopts the above-mentioned control method, and further possesses the technical effects of the above-mentioned control method.
  • the vehicle of the present invention can more effectively reduce the temperature of the battery, prolong the service life of the battery, and improve the user experience.
  • FIG. 1 is a schematic structural view of Embodiment 1 of the vehicle temperature management system of the present invention.
  • Fig. 2 is a schematic structural diagram of Embodiment 2 of the vehicle temperature management system of the present invention.
  • Fig. 3 is a flow chart of the control method of the temperature management system of the vehicle of the present invention.
  • FIG. 4 is a flow chart of an embodiment of the control method of the vehicle temperature management system of the present invention.
  • the present invention provides a control method of a temperature management system of a vehicle and the temperature management system, aiming at cooling the battery through the air conditioner of the vehicle, so as to improve the cooling effect on the battery.
  • Fig. 1 is a schematic structural diagram of Embodiment 1 of the vehicle temperature management system of the present invention
  • Fig. 2 is a structural schematic diagram of Embodiment 2 of the vehicle temperature management system of the present invention.
  • the temperature management system of the vehicle of the present invention includes an air conditioner, an auxiliary heat exchanger 4, a battery 5 and a fan 6, wherein the air conditioner includes a connected compressor 1, a condenser 2, an evaporator 3 and four-way reversing valve 7, the evaporator 3 is set in the cab of the vehicle; the battery 5 is electrically connected to the electrical components of the vehicle; the auxiliary heat exchanger 4 is set close to the battery 5 to cool the battery 5; the fan 6 is located in the auxiliary Between the heat exchanger 4 and the battery 5 , the exhaust port of the compressor 1 communicates with the first port 71 of the four-way reversing valve 7 , and the return air port of the compressor 1 communicates with the second port 72 of the four-way reversing valve 7 , one end of the condenser 2 communicates with the third port 73 of the four-way reversing valve 7, the other end of the condenser 2 communicates with one end of the auxiliary heat
  • auxiliary heat exchanger 4 By adding an auxiliary heat exchanger 4 near the battery 5, and connecting the auxiliary heat exchanger 4 with the air conditioner of the vehicle, and connecting it in series between the condenser 2 and the evaporator 3, when the air conditioner operates in cooling mode, from The high-temperature and high-pressure refrigerant discharged from the compressor 1 first flows through the condenser 2, and after the refrigerant is throttled from the condenser 2, it becomes a low-temperature and low-pressure gas-liquid two-phase state, and then when it flows through the auxiliary heat exchanger 4, it absorbs heat , so that the temperature near the auxiliary heat exchanger 4 is reduced, thereby cooling the battery 5, which can improve the cooling effect on the battery 5, and at the same time blow low-temperature air to the battery 5 through the fan 6, which is more conducive to reducing the temperature of the battery 5.
  • the air conditioner further includes a gas-liquid separator 8, the exhaust port of the compressor 1 communicates with the first port 71 of the four-way reversing valve 7, and the four-way reversing valve 7
  • the second port 72 of the gas-liquid separator communicates with one end of the gas-liquid separator 8, the other end of the gas-liquid separator 8 communicates with the air return port of the compressor 1, and the left end of the condenser 2 communicates with the third port 73 of the four-way reversing valve 7
  • the right end of the condenser 2 communicates with the top end of the auxiliary heat exchanger 4
  • the bottom end of the auxiliary heat exchanger 4 communicates with the top end of the evaporator 3 through the first refrigerant pipeline 91
  • the bottom end of the evaporator 3 communicates through the second refrigerant pipeline 91.
  • the agent pipeline 92 communicates with the fourth port 74 of the four-way reversing valve 7 .
  • the first port 71 of the four-way reversing valve 7 communicates with the third port 73
  • the second port 72 of the four-way reversing valve 7 communicates with the fourth port 74
  • the compressor 1 discharges
  • the high-temperature and high-pressure refrigerant flows into the condenser 2 along the pipeline.
  • the refrigerant After the refrigerant is throttled from the condenser 2, it becomes a low-temperature and low-pressure gas-liquid two-phase state, and then when it flows through the auxiliary heat exchanger 4, it absorbs heat, making the auxiliary The temperature near the heat exchanger 4 decreases, and the fan 6 blows cold air to the battery 5 , thereby cooling the battery 5 , which can improve the cooling effect on the battery 5 .
  • the pipeline in the auxiliary heat exchanger 4 can be set shorter to reduce the impact on the cooling effect of the cab of the vehicle.
  • the above-mentioned air conditioner may also include a compressor 1, a condenser 2, an evaporator 3, a four-way reversing valve 7 and a gas-liquid separator 8.
  • a compressor 1 a condenser 2
  • evaporator 3 a condenser 3
  • a four-way reversing valve 7 a gas-liquid separator 8.
  • the present invention also provides a control method of the temperature management system of the vehicle, as shown in FIG. 3 , the control method of the present invention includes the following steps:
  • S200 According to the current operation mode, selectively control the fan to blow air toward the battery or toward the auxiliary heat exchanger.
  • the air conditioner determines whether to make the fan blow air toward the battery or to make the fan blow air toward the auxiliary heat exchanger according to the current operating mode of the air conditioner.
  • the step of "selectively controlling the fan to blow air toward the battery or toward the auxiliary heat exchanger according to the current operating mode" specifically includes steps S210 and S220.
  • the fan When the air conditioner is running in heating mode, the fan is controlled to rotate in reverse, and the heat emitted by the battery is blown to the auxiliary heat exchanger for heat recovery, which can increase the temperature of the refrigerant entering the condenser, reduce the frequency of the compressor, and save energy save electricity.
  • the fan When the air conditioner is running in cooling mode, the fan is controlled to rotate in the forward direction, blowing the low-temperature air near the auxiliary heat exchanger to the battery to reduce the temperature of the battery.
  • the vehicle temperature management system of the present invention further includes a third refrigerant pipeline 93 , a first electric control valve 101 and a second electric control valve 102 , and one end of the third refrigerant pipeline 93 It communicates with the bottom end of the auxiliary heat exchanger 4, the other end of the third refrigerant pipeline 93 communicates with the second refrigerant pipeline 92, and the first electric control valve 101 is arranged on the first refrigerant pipeline 91 to control The on-off state of the first refrigerant pipeline 91 , the second electric control valve 102 is arranged on the third refrigerant pipeline 93 , and the second electric control valve 102 is used to control the on-off state of the third refrigerant pipeline 93 .
  • the control method of the present invention also includes: judging whether to cool down the driver's cab when the auxiliary heat exchanger needs to be used to cool the battery; according to the judgment result, selectively opening the first electric control valve or the second electric control valve. valve.
  • the air conditioner When the temperature of the battery needs to be cooled by the auxiliary heat exchanger, the air conditioner needs to be operated in cooling mode. control valve.
  • a temperature sensor can be installed in the cab to determine whether the cab needs to be cooled according to the temperature in the cab. For example, if the temperature in the cab is greater than the preset temperature, it is judged that the cab needs to be cooled. , if the temperature in the cab is not greater than the preset temperature, it is determined that the cab does not need to be cooled; or, by sending a request message to the user, asking the user whether the cab needs to be cooled, etc. Adjustments and changes that do not deviate from the principle and scope of the present invention should be limited within the protection scope of the present invention.
  • the step of "selectively opening the first electric control valve or the second electric control valve according to the judgment result" specifically includes: if it is judged that it is not necessary to cool down the cab, then opening the second electric control valve; To cool down the cab, open the first electric control valve.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the condenser 2 along the pipeline. After the refrigerant is throttled from the condenser 2, it becomes a low-temperature and low-pressure gas-liquid two-phase state. Absorbing heat reduces the temperature near the auxiliary heat exchanger 4, and the fan 6 blows cold air to the battery 5, thereby cooling the battery 5, and the refrigerant flowing out of the auxiliary heat exchanger 4 directly follows the third refrigerant pipeline 93 and the second refrigerant pipeline 92 flow back to the compressor 1, and no refrigerant flows through the evaporator 3.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 1 flows into the condenser 2 along the pipeline. After the refrigerant is throttled from the condenser 2, it becomes a low-temperature and low-pressure gas-liquid two-phase state. Absorbing heat reduces the temperature near the auxiliary heat exchanger 4, and the fan 6 blows cold air to the battery 5, thereby cooling the battery 5, and the refrigerant flowing out of the auxiliary heat exchanger 4 directly follows the first refrigerant pipeline 91 flows into the evaporator 3 to cool down the cab, and the refrigerant flowing out of the evaporator 3 flows back to the compressor 1 along the second refrigerant pipeline 92 .
  • the first electric control valve 101 and the second electric control valve 102 are configured as electromagnetic valves or electronic expansion valves.
  • control method of the present invention further includes: adjusting the frequency of the compressor according to the temperature and the set target temperature.
  • the temperature of the battery can be detected by a temperature sensor installed on the battery, the temperature sensor can detect the temperature of the battery, and the temperature sensor and the temperature management system
  • the communication connection of the controller is used to transmit the data detected by the temperature sensor to the controller, and the controller can adjust the frequency of the compressor according to the temperature of the battery and the set target temperature.
  • the frequency of the compressor can be adjusted according to the difference between the battery temperature and the set target temperature. For example, if the difference between the battery temperature and the set target temperature is large, increase Increase the frequency of the compressor, on the contrary, if the difference between the temperature of the battery and the set target temperature is small, then reduce the frequency of the compressor; or, it can also be based on the ratio between the temperature of the battery and the set target temperature Adjust the frequency of the compressor, etc., this flexible adjustment and change does not deviate from the principle and scope of the present invention, and should be limited within the protection scope of the present invention.
  • the step of "adjusting the frequency of the compressor according to the temperature and the set target temperature” specifically includes: calculating the difference between the temperature and the set temperature; performing PID (Proportion Integration Differentiation) on the frequency of the compressor according to the difference. )adjust.
  • the frequency of the compressor can be adjusted dynamically, quickly and accurately, so that the temperature of the battery can be managed more effectively.
  • the controller is provided with a connected calculation unit and a PID adjustment unit, the calculation unit can calculate the difference between the temperature of the battery and the set target temperature, and the PID adjustment unit can calculate the difference between the battery temperature and the set target temperature. The difference between the PID adjustment of the frequency of the compressor.

Abstract

一种车辆的温度管理系统的控制方法及温度管理系统,该温度管理系统包括空调器、辅助换热器(4)、风扇(6)和电池(5),辅助换热器(4)串接在空调器的冷凝器(2)和蒸发器(3)之间,辅助换热器(4)靠近电池(5)设置,风扇(6)设置在辅助换热器(4)和电池(5)之间,该控制方法包括:获取空调器的当前运行模式;根据当前运行模式,选择性控制风扇(6)朝向电池(5)吹风或者朝向辅助换热器(4)吹风。通过这样的设置,当空调器以制冷模式运行时,能够通过辅助换热器(4)来降低电池(5)的温度;此外,当空调器以制热模式运行时,控制风扇(6)朝向辅助换热器(4)吹风,将电池(5)散发的热量吹向辅助换热器(4),进行热量回收,能够提高进入冷凝器(2)的制冷剂的温度,降低压缩机(1)的频率,节能节电。

Description

车辆的温度管理系统的控制方法及温度管理系统 技术领域
本发明涉及温度管理技术领域,具体提供一种车辆的温度管理系统的控制方法及温度管理系统。
背景技术
全球能源危机越来越严重,很多地区出现油慌、燃气短缺等现象,为应对危机必然大力发展新能源汽车,因此,电动汽车的占比越来越高,电动汽车的核心技术在于电池容量和使用寿命。
如果电池长时间处于高温的工作状态,会缩短电池的使用寿命。然而,现有车辆对电池的降温效果不太理想。
因此,本领域需要一种新的技术方案来解决上述问题。
发明内容
本发明旨在解决上述技术问题,即,解决现有的车辆的温度管理系统对电池的降温效果不太理想的问题。
在第一方面,本发明提供了一种车辆的温度管理系统的控制方法,所述温度管理系统包括空调器、辅助换热器、风扇和电池,所述电池与所述车辆的用电器件电连接,所述空调器包括压缩机、四通换向阀、冷凝器和蒸发器,所述蒸发器设置在所述车辆的驾驶室内,所述辅助换热器靠近所述电池设置以便对所述电池进行降温,所述风扇设置在所述辅助换热器和所述电池之间,所述压缩机的排气口与所述四通换向阀的第一端口连通,所述压缩机的回气口与所述四通换向阀的第二端口连通,所述冷凝器的一端与所述四通换向阀的第三端口连通,所述冷凝器的另一端与所述辅助换热器的一端连通,所述辅助换热器的另一端通过第一制冷剂管路与所述蒸发器的一端连通,所述蒸发器的另一端通过第二制 冷剂管路与所述四通换向阀的第四端口连通,所述控制方法包括:获取所述空调器的当前运行模式;根据所述当前运行模式,选择性控制所述风扇朝向所述电池吹风或者朝向所述辅助换热器吹风。
在上述车辆的温度管理系统的控制方法的优选技术方案中,“根据所述当前运行模式,选择性控制所述风扇朝向所述电池吹风或者朝向所述辅助换热器吹风”的步骤具体包括:如果所述当前运行模式为制热模式,则控制所述风扇朝向所述辅助换热器吹风。
在上述车辆的温度管理系统的控制方法的优选技术方案中,“根据所述当前运行模式,选择性控制所述风扇朝向所述电池吹风或者朝向所述辅助换热器吹风”的步骤还包括:如果所述当前运行模式为制冷模式,则控制所述风扇朝向所述电池吹风。
在上述车辆的温度管理系统的控制方法的优选技术方案中,所述温度管理系统还包括第三制冷剂管路、第一电控阀和第二电控阀,所述第三制冷剂管路的一端与所述辅助换热器的另一端连通,所述第三制冷剂管路的另一端与所述第二制冷剂管路连通,所述第一电控阀设置在所述第一制冷剂管路上以便控制所述第一制冷剂管路的通断状态,所述第二电控阀设置在所述第三制冷剂管路上以便控制所述第三制冷剂管路的通断状态,所述控制方法还包括:在需要通过所述辅助换热器对所述电池进行降温的情形下,判断是否需要对所述驾驶室进行降温;根据判断结果,选择性地打开所述第一电控阀或所述第二电控阀。
在上述车辆的温度管理系统的控制方法的优选技术方案中,“根据判断结果,选择性地打开所述第一电控阀或所述第二电控阀”的步骤具体包括:如果判定不需要对所述驾驶室进行降温,则打开所述第二电控阀。
在上述车辆的温度管理系统的控制方法的优选技术方案中,“根据判断结果,选择性地打开所述第一电控阀或所述第二电控阀”的步骤还包括:如果判定需要对所述驾驶室进行降温,则打开所述第一电控阀。
在上述车辆的温度管理系统的控制方法的优选技术方案中,所述第一电控阀和所述第二电控阀为电磁阀或者电子膨胀阀。
在上述车辆的温度管理系统的控制方法的优选技术方案中,在通过 所述辅助换热器对所述电池进行降温的过程中,所述控制方法还包括:获取所述电池的温度;根据所述温度和设定目标温度对所述压缩机的频率进行调节。
在上述车辆的温度管理系统的控制方法的优选技术方案中,“根据所述温度和设定目标温度对所述压缩机的频率进行调节”的步骤具体包括:计算所述温度与所述设定目标温度之间的差值;根据所述差值对所述压缩机的频率进行PID调节。
在第二方面,本发明还提供了一种温度管理系统,包括控制器,控制器配置成能够执行上述的控制方法。
在采用上述技术方案的情况下,本发明温度管理系统包括空调器、辅助换热器、风扇和电池,电池与车辆的用电器件电连接,空调器包括压缩机、四通换向阀、冷凝器和蒸发器,蒸发器设置在车辆的驾驶室内,辅助换热器靠近电池设置以便对电池进行降温,风扇设置在辅助换热器和电池之间,压缩机的排气口与四通换向阀的第一端口连通,压缩机的回气口与四通换向阀的第二端口连通,冷凝器的一端与四通换向阀的第三端口连通,冷凝器的另一端与辅助换热器的一端连通,辅助换热器的另一端通过第一制冷剂管路与蒸发器的一端连通,蒸发器的另一端通过第二制冷剂管路与四通换向阀的第四端口连通,控制方法包括:获取空调器的当前运行模式;根据当前运行模式,选择性控制风扇朝向电池吹风或者朝向辅助换热器吹风。通过这样的设置,即通过在电池附近增设一个辅助换热器,并将辅助换热器与车辆的空调器连通,串接在冷凝器与蒸发器之间,当空调器以制冷模式运行时,从压缩机排出的高温高压制冷剂先流经冷凝器,制冷剂从冷凝器节流后,变成低温低压的气液两相状态,然后在流经辅助换热器时,吸收热量,使得辅助换热器附近的温度降低,从而对电池进行降温,能够提高对电池的降温效果,同时通过风扇将低温空气吹向电池,更有利于降低电池的温度;此外,还能够在空调器运行的过程中,根据空调器的当前运行模式,来判断是使风扇朝向电池吹风,还是使风扇朝向辅助换热器吹风,具体而言,当空调器以制冷模式运行时,控制风扇正向旋转,将辅助换热器附近的低温空气 吹向电池,降低电池的温度,而当空调器以制热模式运行时,控制风扇反向旋转,将电池散发的热量吹向辅助换热器,进行热量回收,能够提高进入冷凝器的制冷剂的温度,降低压缩机的频率,节能节电。
进一步地,本发明的车辆的温度管理系统还包括第三制冷剂管路、第一电控阀和第二电控阀,第三制冷剂管路的一端与辅助换热器的底端连通,第三制冷剂管路的另一端与第二制冷剂管路连通,第一电控阀设置在第一制冷剂管路上,以便控制第一制冷剂管路的通断状态,第二电控阀设置在第三制冷剂管路上,第二电控阀用于控制第三制冷剂管路的通断状态,本发明的控制方法还包括:在需要通过辅助换热器对电池进行降温的情形下,判断是否需要对驾驶室进行降温;根据判断结果,选择性地打开第一电控阀或第二电控阀。通过这样的设置,在不需要对驾驶室进行降温时,可以只打开第二电控阀,第一电控阀仍保持关闭状态,没有制冷剂流经蒸发器,能够避免对驾驶室的温度造成影响,提升用户的使用体验。
又进一步地,“根据温度和设定目标温度对压缩机的频率进行调节”的步骤具体包括:计算温度与设定温度之间的差值;根据差值对压缩机的频率进行PID调节。通过这样的设置,能够对压缩机的频率进行动态、快速及精确地调节,从而能够更加有效地对电池的温度进行管理。
此外,本发明在上述技术方案的基础上进一步提供的温度管理系统由于采用了上述控制方法,进而具备了上述控制方法所具备的技术效果,相比于改进前的温度管理系统,本发明的车辆的温度管理系统能够更加有效地降低电池的温度,延长电池的使用寿命,提升用户的使用体验。
附图说明
下面结合附图来描述本发明的优选实施方式,附图中:
图1是本发明的车辆的温度管理系统的实施例一的结构示意图;
图2是本发明的车辆的温度管理系统的实施例二的结构示意图;
图3是本发明的车辆的温度管理系统的控制方法的流程图;
图4是本发明的车辆的温度管理系统的控制方法的实施例的流程图。
附图标记列表:
1、压缩机;2、冷凝器;3、蒸发器;4、辅助换热器;5、电池;6、风扇;7、四通换向阀;71、第一端口;72、第二端口;73、第三端口;74、第四端口;8、气液分离器;91、第一制冷剂管路;92、第二制冷剂管路;93、第三制冷剂管路;101、第一电控阀;102、第二电控阀。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。
需要说明的是,在本发明的描述中,术语“顶”、“底”、“左”、“右”等指示方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,还需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“设置”、“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体连接。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。
基于背景技术指出的现有的车辆的温度管理系统对电池的降温效果不太理想的问题。本发明提供了一种车辆的温度管理系统的控制方法及温度管理系统,旨在通过车辆的空调器来对电池进行降温,以提高对电池的降温效果。
首先参照图1和图2,其中,图1是本发明的车辆的温度管理系统的实施例一的结构示意图;图2是本发明的车辆的温度管理系统的实施例二的结构示意图。
如图1和图2所示,本发明的车辆的温度管理系统包括空调器、辅助换热器4、电池5和风扇6,其中,空调器包括相连的压缩机1、冷凝 器2、蒸发器3和四通换向阀7,蒸发器3设置在车辆的驾驶室内;电池5与车辆的用电器件电连接;辅助换热器4靠近电池5设置以便对电池5进行降温;风扇6位于辅助换热器4与电池5之间,压缩机1的排气口与四通换向阀7的第一端口71连通,压缩机1的回气口与四通换向阀7的第二端口72连通,冷凝器2的一端与四通换向阀7的第三端口73连通,冷凝器2的另一端与辅助换热器4的一端连通,辅助换热器4的另一端通过第一制冷剂管路91与蒸发器3的一端连通,蒸发器3的另一端通过第二制冷剂管路92与四通换向阀7的第四端口74连通。
通过在电池5附近增设一个辅助换热器4,并将辅助换热器4与车辆的空调器连通,串接在冷凝器2与蒸发器3之间,当空调器以制冷模式运行时,从压缩机1排出的高温高压制冷剂先流经冷凝器2,制冷剂从冷凝器2节流后,变成低温低压的气液两相状态,然后在流经辅助换热器4时,吸收热量,使得辅助换热器4附近的温度降低,从而对电池5进行降温,能够提高对电池5的降温效果,同时通过风扇6将低温空气吹向电池5,更有利于降低电池5的温度。
示例性地,如图1和图2所示,空调器还包括气液分离器8,压缩机1的排气口与四通换向阀7的第一端口71连通,四通换向阀7的第二端口72与气液分离器8的一端连通,气液分离器8的另一端与压缩机1的回气口连通,冷凝器2的左端与四通换向阀7的第三端口73连通,冷凝器2的右端与辅助换热器4的顶端连通,辅助换热器4的底端通过第一制冷剂管路91与蒸发器3的顶端连通,蒸发器3的底端通过第二制冷剂管路92与四通换向阀7的第四端口74连通。
在空调器以制冷模式运行时,四通换向阀7的第一端口71与第三端口73连通,四通换向阀7的第二端口72与第四端口74连通,压缩机1排出的高温高压制冷剂沿着管路流入冷凝器2,制冷剂从冷凝器2节流后,变成低温低压的气液两相状态,然后在流经辅助换热器4时,吸收热量,使得辅助换热器4附近的温度降低,风扇6将冷空气吹向电池5,从而对电池5进行降温,能够提高对电池5的降温效果。
需要说明的是,在保证能够实现对电池5进行有效降温的基础上, 可以将辅助换热器4内的管路设置的短一些,降低对车辆的驾驶室的制冷效果的影响。
此外,还需要说明的是,上述中的空调器即现有的空调器,除了包括压缩机1、冷凝器2、蒸发器3、四通换向阀7和气液分离器8以外,还可以包括现有空调器的一些常设必要元件,例如电子膨胀阀等,在此就不再一一赘述。
基于上述的车辆的温度管理系统,本发明还提供了一种车辆的温度管理系统的控制方法,如图3所示,本发明的控制方法包括以下步骤:
S100:获取空调器的当前运行模式。
S200:根据当前运行模式,选择性控制风扇朝向电池吹风或者朝向辅助换热器吹风。
在空调器运行的过程中,根据空调器的当前运行模式,来判断是使风扇朝向电池吹风,还是使风扇朝向辅助换热器吹风。
优选地,如图4所示,“根据当前运行模式,选择性控制风扇朝向电池吹风或者朝向辅助换热器吹风”的步骤具体包括步骤S210和S220。
S210:如果当前运行模式为制热模式,则控制风扇朝向辅助换热器吹风。
S220:如果当前运行模式为制冷模式,则控制风扇朝向电池吹风。
示例性地,风扇正向旋转时,朝向电池吹风,风扇反向旋转时,朝向辅助换热器吹风。
当空调器以制热模式运行时,控制风扇反向旋转,将电池散发的热量吹向辅助换热器,进行热量回收,能够提高进入冷凝器的制冷剂的温度,降低压缩机的频率,节能节电。
当空调器以制冷模式运行时,控制风扇正向旋转,将辅助换热器附近的低温空气吹向电池,降低电池的温度。
优选地,如图2所示,本发明的车辆的温度管理系统还包括第三制冷剂管路93、第一电控阀101和第二电控阀102,第三制冷剂管路93的一端与辅助换热器4的底端连通,第三制冷剂管路93的另一端与第二制冷剂管路92连通,第一电控阀101设置在第一制冷剂管路91上,以便 控制第一制冷剂管路91的通断状态,第二电控阀102设置在第三制冷剂管路93上,第二电控阀102用于控制第三制冷剂管路93的通断状态。
本发明的控制方法还包括:在需要通过辅助换热器对电池进行降温的情形下,判断是否需要对驾驶室进行降温;根据判断结果,选择性地打开第一电控阀或第二电控阀。
在需要通过辅助换热器对电池进行降温的时,需要使空调器制冷运行,在这种情形下,判断是否需要对驾驶室进行降温,来选择是打开第一电控阀还是打开第二电控阀。
需要说明的是,可以在驾驶室内安装温度传感器,根据驾驶室内的温度来判断是否需要对驾驶室进行降温,例如,如果驾驶室内的温度大于预设温度,则判断需要对驾驶室进行降温,反之,如果驾驶室内的温度不大于预设温度,则判定不需要对驾驶室进行降温;或者,也可以通过向用户发送请求信息,询问用户是否需要对驾驶室进行降温,等等,这种灵活地调整和改变并不偏离本发明的原理和范围,均应限定在本发明的保护范围之内。
优选地,“根据判断结果,选择性地打开第一电控阀或第二电控阀”的步骤具体包括:如果判定不需要对驾驶室进行降温,则打开第二电控阀;如果判定需要对驾驶室进行降温,则打开第一电控阀。
当判定不需要对驾驶室进行降温时,如图2所示,只打开第二电控阀102,第一电控阀101仍保持关闭状态。
压缩机1排出的高温高压制冷剂沿着管路流入冷凝器2,制冷剂从冷凝器2节流后,变成低温低压的气液两相状态,然后在流经辅助换热器4时,吸收热量,使得辅助换热器4附近的温度降低,风扇6将冷空气吹向电池5,从而对电池5进行降温,从辅助换热器4流出的制冷剂直接沿着第三制冷剂管路93和第二制冷剂管路92流回压缩机1,没有制冷剂流经蒸发器3。
当判定不需要对驾驶室进行降温时,如图2所示,只打开第一电控阀101,第二电控阀102仍保持关闭状态。
压缩机1排出的高温高压制冷剂沿着管路流入冷凝器2,制冷剂从冷 凝器2节流后,变成低温低压的气液两相状态,然后在流经辅助换热器4时,吸收热量,使得辅助换热器4附近的温度降低,风扇6将冷空气吹向电池5,从而对电池5进行降温,从辅助换热器4流出的制冷剂直接沿着第一制冷剂管路91流入蒸发器3,对驾驶室进行降温,从蒸发器3流出的制冷剂再沿着第二制冷剂管路92流回压缩机1。
优选地,如图2所示,第一电控阀101和第二电控阀102设置为电磁阀或者电子膨胀阀。
优选地,在通过辅助换热器对电池进行降温的过程中,本发明的控制方法还包括:根据温度和设定目标温度对压缩机的频率进行调节。
示例性地,在通过辅助换热器对电池进行降温的过程中,可以通过设置在电池上的温度传感器来检测电池的温度,该温度传感器能够检测电池的温度,将该温度传感器与温度管理系统的控制器通讯连接,以便将温度传感器检测到的数据传输给控制器,控制器能够根据电池的温度与设定目标温度对压缩机的频率进行调节。
需要说明的是,可以根据电池的温度与设定目标温度之间的差值的大小来调节压缩机的频率,例如,如果电池的温度与设定目标温度之间的差值较大,则增大压缩机的频率,反之,如果电池的温度与设定目标温度之间的差值较小,则减小压缩机的频率;或者,也可以根据电池的温度与设定目标温度之间的比值的大小来调节压缩机的频率,等等,这种灵活地调整和改变并不偏离本发明的原理和范围,均应限定在本发明的保护范围之内。
优选地,“根据温度和设定目标温度对压缩机的频率进行调节”的步骤具体包括:计算温度与设定温度之间的差值;根据差值对压缩机的频率进行PID(Proportion Integration Differentiation)调节。
通过这样的设置,能够对压缩机的频率进行动态、快速及精确地调节,从而能够更加有效地对电池的温度进行管理。
示例性地,控制器内设置有相连的计算单元和PID调节单元,计算单元能够计算电池的温度与设定目标温度之间的差值,PID调节单元能够根据电池的温度与设定目标温度之间的差值对压缩机的频率进行PID调 节。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种车辆的温度管理系统的控制方法,其特征在于,所述温度管理系统包括空调器、辅助换热器、风扇和电池,所述电池与所述车辆的用电器件电连接,所述空调器包括压缩机、四通换向阀、冷凝器和蒸发器,所述蒸发器设置在所述车辆的驾驶室内,所述辅助换热器靠近所述电池设置以便对所述电池进行降温,所述风扇设置在所述辅助换热器和所述电池之间,所述压缩机的排气口与所述四通换向阀的第一端口连通,所述压缩机的回气口与所述四通换向阀的第二端口连通,所述冷凝器的一端与所述四通换向阀的第三端口连通,所述冷凝器的另一端与所述辅助换热器的一端连通,所述辅助换热器的另一端通过第一制冷剂管路与所述蒸发器的一端连通,所述蒸发器的另一端通过第二制冷剂管路与所述四通换向阀的第四端口连通,所述控制方法包括:
    获取所述空调器的当前运行模式;
    根据所述当前运行模式,选择性控制所述风扇朝向所述电池吹风或者朝向所述辅助换热器吹风。
  2. 根据权利要求1所述的控制方法,其特征在于,“根据所述当前运行模式,选择性控制所述风扇朝向所述电池吹风或者朝向所述辅助换热器吹风”的步骤具体包括:
    如果所述当前运行模式为制热模式,则控制所述风扇朝向所述辅助换热器吹风。
  3. 根据权利要求1所述的控制方法,其特征在于,“根据所述当前运行模式,选择性控制所述风扇朝向所述电池吹风或者朝向所述辅助换热器吹风”的步骤具体包括:
    如果所述当前运行模式为制冷模式,则控制所述风扇朝向所述电池吹风。
  4. 根据权利要求1所述的控制方法,其特征在于,所述温度管理系 统还包括第三制冷剂管路、第一电控阀和第二电控阀,所述第三制冷剂管路的一端与所述辅助换热器的另一端连通,所述第三制冷剂管路的另一端与所述第二制冷剂管路连通,所述第一电控阀设置在所述第一制冷剂管路上以便控制所述第一制冷剂管路的通断状态,所述第二电控阀设置在所述第三制冷剂管路上以便控制所述第三制冷剂管路的通断状态,所述控制方法还包括:
    在需要通过所述辅助换热器对所述电池进行降温的情形下,判断是否需要对所述驾驶室进行降温;
    根据判断结果,选择性地打开所述第一电控阀或所述第二电控阀。
  5. 根据权利要求4所述的控制方法,其特征在于,“根据判断结果,选择性地打开所述第一电控阀或所述第二电控阀”的步骤具体包括:
    如果判定不需要对所述驾驶室进行降温,则打开所述第二电控阀。
  6. 根据权利要求5所述的控制方法,其特征在于,“根据判断结果,选择性地打开所述第一电控阀或所述第二电控阀”的步骤还包括:
    如果判定需要对所述驾驶室进行降温,则打开所述第一电控阀。
  7. 根据权利要求4所述的控制方法,其特征在于,所述第一电控阀和所述第二电控阀为电磁阀或者电子膨胀阀。
  8. 根据权利要求1至7中任一项所述的控制方法,其特征在于,在通过所述辅助换热器对所述电池进行降温的过程中,所述控制方法还包括:
    获取所述电池的温度;
    根据所述温度和设定目标温度对所述压缩机的频率进行调节。
  9. 根据权利要求8所述的控制方法,其特征在于,“根据所述温度和设定目标温度对所述压缩机的频率进行调节”的步骤具体包括:
    计算所述温度与所述设定目标温度之间的差值;
    根据所述差值对所述压缩机的频率进行PID调节。
  10. 一种温度管理系统,包括控制器,其特征在于,所述控制器配置成能够执行权利要求1至9中任一项所述的控制方法。
PCT/CN2022/099206 2021-11-29 2022-06-16 车辆的温度管理系统的控制方法及温度管理系统 WO2023093002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111436146.7 2021-11-29
CN202111436146.7A CN114216284A (zh) 2021-11-29 2021-11-29 车辆的温度管理系统的控制方法及温度管理系统

Publications (1)

Publication Number Publication Date
WO2023093002A1 true WO2023093002A1 (zh) 2023-06-01

Family

ID=80698849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099206 WO2023093002A1 (zh) 2021-11-29 2022-06-16 车辆的温度管理系统的控制方法及温度管理系统

Country Status (2)

Country Link
CN (1) CN114216284A (zh)
WO (1) WO2023093002A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114216284A (zh) * 2021-11-29 2022-03-22 青岛海尔空调器有限总公司 车辆的温度管理系统的控制方法及温度管理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280288A (ja) * 2009-06-04 2010-12-16 Toyota Motor Corp 蓄電装置の冷却装置
JP2011178270A (ja) * 2010-03-01 2011-09-15 Denso Corp バッテリ温度調整装置
CN103153660A (zh) * 2010-10-06 2013-06-12 日产自动车株式会社 车辆用空调设备
JP2013256288A (ja) * 2013-08-08 2013-12-26 Mitsubishi Motors Corp 車両用エアコンシステムの制御装置
JP2014225346A (ja) * 2013-05-15 2014-12-04 株式会社デンソー 電池温度調整ユニット
CN208539065U (zh) * 2018-06-29 2019-02-22 比亚迪股份有限公司 电池热管理装置、空调系统及车辆
JP2019119437A (ja) * 2018-01-10 2019-07-22 株式会社デンソー 車両用冷却システム
CN114216284A (zh) * 2021-11-29 2022-03-22 青岛海尔空调器有限总公司 车辆的温度管理系统的控制方法及温度管理系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10133733B4 (de) * 2001-07-11 2006-05-24 Stiebel Eltron Gmbh & Co. Kg Kraft-Wärme-Kopplungssystem
JP2005088752A (ja) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd 駆動用バッテリ冷却制御装置
JP2008173992A (ja) * 2007-01-16 2008-07-31 Toyota Motor Corp 燃料電池システム
JP2013060065A (ja) * 2011-09-12 2013-04-04 Daikin Industries Ltd 自動車用温調システム
CN208530220U (zh) * 2018-07-23 2019-02-22 中国重汽集团济南动力有限公司 一种氢燃料电池客车暖风系统
CN210425664U (zh) * 2019-07-25 2020-04-28 南方英特空调有限公司 一种应用节流短管的余热回收系统
CN112319181B (zh) * 2020-12-01 2022-02-01 南京协众汽车空调集团有限公司 一种新能源汽车整车集成式热管理系统及其工作方法
CN112549902B (zh) * 2020-12-18 2022-02-01 郑州大学 多模式冷媒直冷型新能源汽车热管理机组及其控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010280288A (ja) * 2009-06-04 2010-12-16 Toyota Motor Corp 蓄電装置の冷却装置
JP2011178270A (ja) * 2010-03-01 2011-09-15 Denso Corp バッテリ温度調整装置
CN103153660A (zh) * 2010-10-06 2013-06-12 日产自动车株式会社 车辆用空调设备
JP2014225346A (ja) * 2013-05-15 2014-12-04 株式会社デンソー 電池温度調整ユニット
JP2013256288A (ja) * 2013-08-08 2013-12-26 Mitsubishi Motors Corp 車両用エアコンシステムの制御装置
JP2019119437A (ja) * 2018-01-10 2019-07-22 株式会社デンソー 車両用冷却システム
CN208539065U (zh) * 2018-06-29 2019-02-22 比亚迪股份有限公司 电池热管理装置、空调系统及车辆
CN114216284A (zh) * 2021-11-29 2022-03-22 青岛海尔空调器有限总公司 车辆的温度管理系统的控制方法及温度管理系统

Also Published As

Publication number Publication date
CN114216284A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2023098079A1 (zh) 车辆的温度管理系统的控制方法及温度管理系统
US20100281901A1 (en) Air conditioner for vehicle
JP2019119437A (ja) 車両用冷却システム
KR101588767B1 (ko) 차량용 에어컨 시스템 제어방법
KR20150071540A (ko) 차량용 에어컨 시스템 제어방법
CN109094324B (zh) 汽车、空调系统及其控制方法
WO2023093002A1 (zh) 车辆的温度管理系统的控制方法及温度管理系统
CN109562674A (zh) 空调控制装置、空调控制方法
JP6040847B2 (ja) 車両用消費電力制御装置
CN102837579B (zh) 车辆用空调装置
WO2023098078A1 (zh) 车辆的温度管理系统的控制方法及温度管理系统
US20200171917A1 (en) Vehicular air conditioning system and method for controlling the same
CN106871470B (zh) 空调系统的压力调节方法
CN202915593U (zh) 电动汽车双蒸发器空调系统
CN110398082B (zh) 热管理系统及其控制方法
CN205220274U (zh) 电动汽车的电机电池温度集成控制系统
CN110529993B (zh) 运行控制装置及方法、空调器、计算机可读存储介质
WO2017135223A1 (ja) 車両用空調装置、それを備える車両及び車両用グリル装置の制御方法
WO2023093003A1 (zh) 车辆的温度管理系统的控制方法及温度管理系统
KR101693964B1 (ko) 하이브리드 차량용 난방시스템 및 하이브리드 차량용 난방시스템의 제어방법
CN110398043B (zh) 热管理系统及其控制方法
KR20140103474A (ko) 전기자동차용 히트펌프 시스템 제어방법
KR20110064380A (ko) 하이브리드 차량의 공조 제어방법
KR20090007008A (ko) 연료전지 차량용 연료전지 스택의 냉각 시스템
CN111251816B (zh) 车辆、车载空调系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897099

Country of ref document: EP

Kind code of ref document: A1