WO2019041923A1 - 平坦层用组合物、其制备方法、平坦层材料、显示基板及显示装置 - Google Patents

平坦层用组合物、其制备方法、平坦层材料、显示基板及显示装置 Download PDF

Info

Publication number
WO2019041923A1
WO2019041923A1 PCT/CN2018/089026 CN2018089026W WO2019041923A1 WO 2019041923 A1 WO2019041923 A1 WO 2019041923A1 CN 2018089026 W CN2018089026 W CN 2018089026W WO 2019041923 A1 WO2019041923 A1 WO 2019041923A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat layer
composition
weight
styrene
crosslinking agent
Prior art date
Application number
PCT/CN2018/089026
Other languages
English (en)
French (fr)
Inventor
牟广营
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18806960.3A priority Critical patent/EP3677641A4/en
Priority to US16/304,749 priority patent/US11332634B2/en
Publication of WO2019041923A1 publication Critical patent/WO2019041923A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/06Ethers; Acetals; Ketals; Ortho-esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/24Derivatives of hydrazine
    • C08K5/25Carboxylic acid hydrazides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • G02F1/133519Overcoatings

Definitions

  • the present disclosure relates to the field of display, and in particular to a composition for a flat layer, a method for producing the same, a flat layer material, a display substrate, and a display device.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • CF color filter substrate
  • the color film substrate mainly comprises: a glass substrate, a black matrix (BM), an RGB color photoresist and an overcoat (OC) layer.
  • the RGB color photoresist includes red (Red), green (Green), and blue (Blue) colored layers.
  • the width is above 3 microns, and the height of the RGB color photoresist in the overlap region is higher than other regions. It is too high, resulting in a large angular difference.
  • the OC layer can also serve as a protective layer to prevent migration of small molecular substances in the colored layer to the liquid crystal layer, contaminating the liquid crystal and causing chromaticity unevenness.
  • the basic physical properties of OC materials have a great influence on their molding process and related defects.
  • increasing the cross-linking degree of the OC material and reducing the flow of the OC coating layer in the Oven process can improve the Oven Pin MURA; changing the OC material type, improving the hygroscopicity, and reducing the VAS Time ( For box time), flatness, surface tension, etc. can be controlled.
  • the hygroscopicity of the OC material has a great influence on the OC process time and product quality such as peripheral bubble, mura, and VAS time.
  • the OC material mainly consists of an acrylic resin-epoxy resin as a basic structure, and a OC coating raw material usable by a process is obtained by adding a crosslinking agent, a surface modifier, a solvent, and the like.
  • acrylic resin exhibits high optical properties, but there is room for improvement in hygroscopicity and dielectric properties.
  • the most commonly used acrylic resin is polymethyl methacrylate.
  • An object of the present disclosure is to provide a composition for a flat layer and a method for preparing the same, wherein the flat layer material formed by crosslinking and curing the composition has excellent dielectric properties, low density, and low water absorption. .
  • an embodiment of the present disclosure provides a composition for a flat layer comprising the following components:
  • a photoinitiator and/or a thermal initiator 0.1 to 0.5% by weight of a photoinitiator and/or a thermal initiator
  • the composition for a flat layer further includes: (meth) acrylate, and the total content of the (meth) acrylate and styrene is 10 to 30% by weight.
  • the mass ratio of the (meth) acrylate to styrene is 1: (1 to 5).
  • the crosslinking agent is divinylbenzene.
  • the surfactant is one or more of an alcohol ether phosphate, an alkylphenol polyoxyethylene 21 ether, and a castor oil polyoxyethylene 20 ether.
  • the solvent is one or more of propylene glycol methyl ether acetate, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether.
  • the thermal initiator is one or more of dibenzoyl peroxide, N,N-dimethylaniline, and azobisisobutyronitrile.
  • the photoinitiator is diphenyl ethyl ketone, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone, ⁇ , ⁇ -diethoxyacetophenone, ⁇ -hydroxyalkane
  • benzophenone benzophenone
  • 2,4-dihydroxybenzophenone 2,4-dihydroxybenzophenone
  • Another embodiment of the present disclosure provides a method of preparing a composition for a flat layer, comprising the steps of:
  • the method of preparation includes the following steps:
  • S1-1 mixing 10-30% by weight of styrene and a crosslinking agent to obtain a polystyrene prepolymer
  • the polystyrene prepolymer is reacted with 10 to 30 wt% of an epoxy resin, a crosslinking agent, 0.1 to 0.5 wt% of a photoinitiator and/or a thermal initiator, and 1 to 3 wt% of surface activity. Mixing with 40 to 77% by weight of a solvent to obtain a composition for a flat layer;
  • step S1-1 and step S1-2 the total addition amount of the crosslinking agent is 1 to 3 wt%.
  • the method of preparation comprises the steps of:
  • S2-2 the polystyrene prepolymer with 10 to 30 wt% of an epoxy resin, a crosslinking agent, a photoinitiator and/or a thermal initiator, 1 to 3 wt% of a surfactant, and 40 to 77 wt%
  • the solvent is mixed to obtain a composition for a flat layer;
  • step S2-1 and step S2-2 the total addition amount of the crosslinking agent is 1-3 wt%;
  • step S2-1 and step S2-2 the total addition amount of the thermal initiator and the photoinitiator is 0.1 to 0.5% by weight.
  • (meth) acrylate is also added when the epoxy resin is added, and the total addition amount of the (meth) acrylate and styrene is 10 to 30% by weight.
  • Another embodiment of the present disclosure provides a flat layer material obtained by crosslinking and curing the composition for a flat layer described above.
  • the cross-linking curing method is heating and/or ultraviolet irradiation
  • the heating temperature is 150 to 250 ° C
  • the heating time is 5 to 15 minutes
  • the ultraviolet irradiation time is 5 to 10 minutes.
  • Another embodiment of the present disclosure provides a display substrate obtained by crosslinking and curing a composition for a flat layer described above.
  • Another embodiment of the present disclosure provides a display device including the above display substrate.
  • FIG. 1 is a flow chart of preparing a composition for a flat layer in one embodiment of the present disclosure
  • FIG. 2 is a flow chart of a composition for preparing a flat layer in another embodiment of the present disclosure.
  • composition for a flat layer comprising the following components:
  • a photoinitiator and/or a thermal initiator 0.1 to 0.5% by weight of a photoinitiator and/or a thermal initiator
  • the composition for a flat layer includes styrene, an epoxy resin, a crosslinking agent, a photoinitiator and/or a thermal initiator, a surfactant, and a solvent.
  • the styrene is a main monomer component, and therefore, the flat layer composition of the present embodiment is cured to obtain a flat layer material having a crosslinked polystyrene structure as a main structure.
  • the styrene is contained in an amount of 10 to 30% by weight. In one example, the styrene may be included in an amount of 10 to 15% by weight. In another example, the styrene may be included in an amount of 15 to 25 wt%. In another example, the styrene may also be included in an amount of 25 to 30% by weight. The higher the styrene content, the greater the effect on the dielectric properties, density, and water absorption of the flat layer material, and the better the performance of the flat layer material in all aspects.
  • the composition for a flat layer may further include: (meth) acrylate.
  • the (meth) acrylate may be methyl methacrylate, methyl acrylate, ethyl acrylate or the like.
  • the total content of the (meth) acrylate and styrene is 10 to 30% by weight.
  • the mass ratio of the (meth) acrylate to styrene may be 1: (1 to 5).
  • the object of the present disclosure can also be achieved by partially replacing the conventional (meth) acrylate monomer by using a styrene monomer.
  • the composition for a flat layer comprises: 1 to 3 wt% of a crosslinking agent.
  • the composition for a flat layer may include 1.5 to 2.5% by weight of a crosslinking agent.
  • the crosslinking agent can react with styrene to form a crosslinked structure. Further, if the crosslinking agent is in the range of the above content, styrene can be formed into a better crosslinking network.
  • the crosslinking agent may be divinylbenzene.
  • the composition for a flat layer comprises: 1 to 3 wt% of a surfactant.
  • the composition for a flat layer may include 1.5 to 2.5% by weight of a surfactant.
  • the surfactant may be one or more of an alcohol ether phosphate, an alkylphenol polyoxyethylene 21 ether, and a castor oil polyoxyethylene 20 ether.
  • the composition for a flat layer comprises: 40 to 77% by weight of a solvent.
  • the solvent may be one or more of propylene glycol methyl ether acetate, ethylene glycol dimethyl ether, and diethylene glycol dimethyl ether.
  • the composition for a flat layer comprises: 0.1 to 0.5% by weight of a photoinitiator and/or a thermal initiator.
  • a photoinitiator may be added alone, or a thermal initiator may be added alone, or a photoinitiator and a thermal initiator may be added at the same time.
  • the thermal initiator may be one or more of dibenzoyl peroxide, N,N-dimethylaniline, and azobisisobutyronitrile.
  • the photoinitiator may be diphenyl ethyl ketone, ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone, ⁇ , ⁇ -diethoxyacetophenone, ⁇ -hydroxyalkylphenone, One or more of benzophenone and 2,4-dihydroxybenzophenone.
  • a method for preparing a composition for a flat layer includes the following steps:
  • a composition for a flat layer can be obtained.
  • the flat layer composition can be applied directly to the surface of other coatings and then cured to form a flat layer.
  • the preparation method may include the following steps:
  • S1-1 mixing 10-30% by weight of styrene and a crosslinking agent to obtain a polystyrene prepolymer
  • the polystyrene prepolymer is reacted with 10 to 30 wt% of an epoxy resin, a crosslinking agent, 0.1 to 0.5 wt% of a photoinitiator and/or a thermal initiator, and 1 to 3 wt% of surface activity. Mixing with 40 to 77% by weight of a solvent to obtain a composition for a flat layer;
  • step S1-1 and step S1-2 the total addition amount of the crosslinking agent is 1 to 3 wt%.
  • step S1-1 styrene is first mixed with a part of the crosslinking agent to obtain a polystyrene prepolymer. Upon reaction, the styrene monomer polymerizes to form a polymer.
  • the reaction time may be from 0.5 to 1 hour.
  • step S1-2 after obtaining the polystyrene prepolymer, in step S1-2, the polystyrene prepolymer and the epoxy resin, another part of the crosslinking agent, the photoinitiator and/or the thermal initiator, the surface The active agent and the solvent are mixed to obtain a composition for a flat layer.
  • the total amount of the crosslinking agent added in the step S1-1 and the step S1-2 is 1 to 3 wt%.
  • composition for a flat layer prepared by the preparation method of the present example has a longer polymer chain structure and a better crosslinked structure after curing.
  • the preparation method can include the following steps:
  • S2-2 the polystyrene prepolymer with 10 to 30 wt% of an epoxy resin, a crosslinking agent, a photoinitiator and/or a thermal initiator, 1 to 3 wt% of a surfactant, and 40 to 77 wt%
  • the solvent is mixed to obtain a composition for a flat layer;
  • the total addition amount of the crosslinking agent is 1-3 wt%, and the total addition amount of the photoinitiator and the thermal initiator is 0.1 to 0.5 wt%.
  • step S2-1 of the present example a better reaction of styrene and a crosslinking agent is facilitated by adding a thermal initiator to obtain a polystyrene prepolymer.
  • a thermal initiator may be further added, or a photoinitiator may be added, or a photoinitiator and a thermal initiator may be simultaneously added.
  • generally only one initiator, photoinitiator, or thermal initiator is added in step S2-2.
  • the total amount of the crosslinking agent added in the step S2-1 and the step S2-2 of the present example is 1 to 3 wt%. Further, the total addition amount of the photoinitiator and the thermal initiator in the step S2-1 and the step S2-2 of the present example is 0.1 to 0.5% by weight. That is, when the thermal initiator is added in both step S2-1 and step S2-2, the total amount of the thermal initiator is 0.1 to 0.5 wt%; when the thermal initiator is added in step S2-1, the step S2-2 is added. In the case of a photoinitiator, the total addition amount of the thermal initiator and the photoinitiator is 0.1 to 0.5% by weight.
  • (meth) acrylate may also be added when the epoxy resin is added, in which case the total content of the (meth) acrylate and styrene is from 10 to 30% by weight.
  • the method of preparing the composition for a flat layer may include the following steps:
  • S3-1 mixing styrene and a crosslinking agent to obtain a polystyrene prepolymer
  • the total addition amount of the crosslinking agent is 1 to 3 wt%, and the total content of the (meth) acrylate and styrene is 10 to 30 wt%.
  • the method for preparing the composition for a flat layer may include the following steps:
  • S4-1 mixing styrene, a thermal initiator and a crosslinking agent to obtain a polystyrene prepolymer;
  • the polystyrene prepolymer is mixed with 10 to 30% by weight of an epoxy resin, a crosslinking agent, a (meth) acrylate, a photoinitiator and/or a thermal initiator, and 1 to 3 wt% of the surface.
  • the active agent is mixed with 40 to 77% by weight of a solvent to obtain a composition for a flat layer.
  • step S4-1 a better reaction of styrene and a crosslinking agent is facilitated by adding a thermal initiator to obtain a polystyrene prepolymer.
  • the total amount of the crosslinking agent added in the step S4-1 and the step S4-2 is 1 to 3 wt%, and the total content of the (meth) acrylate and styrene is 10 to 30 wt%. Further, the total addition amount of the photoinitiator and the thermal initiator in the step S4-1 and the step S4-2 is 0.1 to 0.5% by weight.
  • step S4-1 when a thermal initiator is added in both of step S4-1 and step S4-2, the total amount of the thermal initiator added is 0.1 to 0.5 wt%; when the thermal initiator is added in step S4-1, step S4-2 When a photoinitiator is added, the total addition amount of the thermal initiator and the photoinitiator is 0.1 to 0.5% by weight.
  • a flat layer material obtained by crosslinking and curing the composition for a flat layer described in the above embodiments.
  • the flat layer material is obtained by cross-linking and curing a composition for a flat layer comprising the following components: 10 to 30% by weight of styrene;
  • a photoinitiator and/or a thermal initiator 0.1 to 0.5% by weight of a photoinitiator and/or a thermal initiator
  • styrene and a crosslinking agent undergo a polymerization reaction and a crosslinking reaction to effect curing, thereby obtaining a flat layer material.
  • the flat layer composition is coated and cured to obtain a flat layer.
  • the cross-linking curing method is heating and/or ultraviolet light (hereinafter, sometimes simply referred to as “UV light”) irradiation
  • the heating temperature is 150 to 250° C.
  • the heating time is 5 to 15 minutes
  • the ultraviolet irradiation is performed.
  • the time is 5 to 10 minutes.
  • a display substrate obtained by crosslinking and curing a composition for a flat layer described in the above embodiments.
  • a display device including the above display substrate.
  • composition for a flat layer of the present disclosure a method for producing the same, a flat layer material, and a display substrate will be described in detail below with reference to the examples, but the scope of the present invention is not limited by the following examples.
  • the water absorption rate was measured according to the method described in GB/T 1034-2008 plastic water absorption measurement; the dielectric constant and dielectric loss were measured according to GB/T 1409-2006 for electrical insulation materials at power frequency, audio, and high.
  • the method described in the recommended method for the permittivity and dielectric loss factor of the frequency is measured; the volume resistivity is measured according to the method described in GB/T 1410-2006 Solid Insulating Material Volume Resistivity and Surface Resistivity Test Method.
  • composition and content of the composition for a flat layer of this example are as follows:
  • Component 1 styrene and acrylate, accounting for 30% by weight, wherein the ratio of styrene to (meth) acrylate is 1:5, and (meth) acrylate is methyl methacrylate;
  • Component 2 epoxy resin, accounting for 10% by weight
  • Component 3 divinylbenzene, accounting for 1% by weight
  • Component 4 alcohol ether phosphate, accounting for 1% by weight
  • Component 5 dibenzoyl peroxide, accounting for 0.1% by weight;
  • Component 6 propylene glycol methyl ether acetate, accounting for 57.9 wt%.
  • the composition for a flat layer of the present embodiment is prepared by uniformly mixing the above components to obtain a composition for a flat layer.
  • the flat layer is coated with the composition, and further cured at a temperature of 150 to 250 ° C for 15 to 30 minutes to complete curing, thereby obtaining a flat layer material.
  • Example 1 The physical properties of the flat layer material prepared in Example 1 were tested for performance and compared with the existing flat layer material. See Table 1 for details of each physical property parameter.
  • composition and content of the composition for a flat layer of this example are as follows:
  • Component 1 styrene, accounting for 10% by weight
  • Component 2 epoxy resin, accounting for 30% by weight
  • Component 3 divinylbenzene, accounting for 1.5% by weight
  • Component 4 alkylphenol polyoxyethylene (21) ether, accounting for 3 wt%;
  • Component 5 N,N-dimethylaniline, accounting for 0.3% by weight;
  • Component 6 ethylene glycol dimethyl ether, accounting for 55.2% by weight;
  • the composition for a flat layer of the present embodiment is prepared by uniformly mixing the above components to obtain a composition for a flat layer.
  • the flat layer is coated with the composition, and further cured at a temperature of 150 to 250 ° C for 15 to 30 minutes to complete curing, thereby obtaining a flat layer material.
  • composition and content of the composition for a flat layer of this example are as follows:
  • Component 1 styrene and (meth) acrylate, accounting for 20% by weight, wherein the ratio of styrene to (meth) acrylate is 1:1, and (meth) acrylate is methyl methacrylate;
  • Component 2 epoxy resin, accounting for 20% by weight
  • Component 3 divinylbenzene, accounting for 2% by weight
  • Component 4 castor oil polyoxyethylene (20) ether, accounting for 2% by weight;
  • Component 5 diphenyl ethyl ketone, accounting for 0.5% by weight;
  • Component 6 Diethylene glycol dimethyl ether, accounting for 55.5 wt%.
  • the composition for a flat layer of the present embodiment is prepared by uniformly mixing the above components to obtain a composition for a flat layer.
  • the flat layer is coated with a composition, further irradiated with UV light (wavelength of 300 to 400 nm) for 5 to 10 minutes, and then cured at a temperature of 150 to 250 ° C for 5 to 15 minutes to complete curing, thereby obtaining a flat layer material.
  • composition and content of the composition for a flat layer of this example are as follows:
  • Component 1 styrene, accounting for 25 wt%;
  • Component 2 epoxy resin, accounting for 25 wt%
  • Component 3 divinylbenzene, accounting for 3 wt%
  • Component 4 alcohol ether phosphate, accounting for 3 wt%;
  • Component 5 ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone, accounting for 0.5% by weight;
  • Component 6 ethylene glycol dimethyl ether, accounting for 43.5 wt%;
  • the composition for a flat layer of the present embodiment is prepared by uniformly mixing the above components to obtain a composition for a flat layer.
  • the flat layer is coated with a composition, further irradiated with UV light (wavelength of 300 to 400 nm) for 5 to 10 minutes, and then cured at a temperature of 150 to 250 ° C for 5 to 15 minutes to complete curing, thereby obtaining a flat layer material.
  • composition and content of the composition for a flat layer of this example are as follows:
  • Component 1 styrene and (meth) acrylate, accounting for 30% by weight, wherein the ratio of styrene to (meth) acrylate is 1:5, and (meth) acrylate is methyl methacrylate;
  • Component 2 epoxy resin, accounting for 10% by weight
  • Component 3 divinylbenzene, accounting for 2.5 wt%
  • Component 4 alcohol ether phosphate, accounting for 1% by weight
  • Component 5 dibenzoyl peroxide, accounting for 0.1% by weight;
  • Component 6 propylene glycol methyl ether acetate, accounting for 56.4% by weight;
  • the polystyrene prepolymer was combined with 10 wt% epoxy resin, 1.5 wt% divinylbenzene, 0.08 wt% dibenzoyl peroxide, 1 wt% alcohol ether phosphate, and 57.9 wt% propylene glycol. Methyl ether acetate was mixed to obtain a composition for a flat layer.
  • the flat layer composition is coated and further cured at a temperature of 150 to 250 ° C for 15 to 30 minutes to complete curing, thereby obtaining a flat layer material.
  • composition and content of the composition for a flat layer of this example are as follows:
  • Component 1 styrene, accounting for 25 wt%;
  • Component 2 epoxy resin, accounting for 25 wt%
  • Component 3 divinylbenzene, accounting for 3 wt%
  • Component 4 alcohol ether phosphate, accounting for 3 wt%;
  • Component 5 ⁇ , ⁇ -dimethoxy- ⁇ -phenylacetophenone, accounting for 0.5% by weight;
  • Component 6 ethylene glycol dimethyl ether, accounting for 43.5 wt%;
  • the polystyrene prepolymer was combined with 25 wt% epoxy resin, 2.25 wt% divinylbenzene, 0.1 wt% dibenzoyl peroxide, 3 wt% alcohol ether phosphate, and 43.5 wt% B.
  • the diol dimethyl ether was mixed to obtain a composition for a flat layer.
  • the flat layer composition is coated and used, further irradiated with UV light (wavelength of 300 to 400 nm) for 5 to 10 minutes, and then cured at 150 to 250 ° C for 5 to 15 minutes to complete curing, thereby obtaining a flat layer material.
  • UV light wavelength of 300 to 400 nm
  • Example 6 The physical properties of the flat layer material prepared in Example 6 were tested for performance and compared with the existing flat layer material. See Table 2 for details of each physical property parameter.
  • the present disclosure also investigates the properties of crosslinked polystyrene and compares it with the properties of existing polymethyl methacrylate, and finds that polystyrene is very suitable for addition to flat layer materials. See Table 3 for specific experimental data of each physical property parameter.
  • the composition for a flat layer of the present disclosure includes the following components: 10 to 30% by weight of styrene; 10 to 30% by weight of an epoxy resin; 1-3% by weight of a crosslinking agent; and 0.1 to 0.5% by weight.
  • Photoinitiator and / or thermal initiator 1-3% by weight of surfactant; 40 ⁇ 77% by weight of solvent.
  • the flat layer composition of the present disclosure uses styrene as a main monomer component, and is cured by a photoinitiator and/or a thermal initiator to obtain crosslinked polystyrene and epoxy resin. a mixture of flat layer materials.
  • the flat layer material of this composition has physical properties such as more excellent dielectric properties, lower density, lower water absorption, and high electrical stability.
  • the experimental results show that the density of the flat layer material obtained by the present invention (g/cm 3 ) is 1.05 to 1.1; the dielectric constant is 2.5 to 3; the dielectric loss is ⁇ 10 -3 ; and the water absorption (%) is ⁇ 10 -3 Volume resistivity ( ⁇ cm) >10 16 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Materials For Photolithography (AREA)

Abstract

本公开涉及显示领域,特别涉及平坦层用组合物、其制备方法、平坦层材料及包括所述平坦层材料的显示基板及显示装置。所述平坦层用组合物包括如下组分:10~30wt%的苯乙烯;10~30wt%的环氧树脂;1~3wt%的交联剂;0.1~0.5wt%的光引发剂和/或热引发剂;1~3wt%的表面活性剂;40~77wt%的溶剂。所述平坦层用组合物以苯乙烯为主要单体成分,经引发剂引发可发生固化,得到平坦层材料。

Description

平坦层用组合物、其制备方法、平坦层材料、显示基板及显示装置
相关申请的交叉参考
本申请主张2017年8月30日在中国提交的中国专利申请号No.201710762111.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及显示领域,特别涉及平坦层用组合物、其制备方法、平坦层材料、显示基板及显示装置。
背景技术
薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,简称TFT-LCD)的主要结构包括对盒在一起的阵列基板和彩膜基板(CF)。
彩膜基板主要包括:玻璃基板、黑色矩阵(Black Matrix,简称BM)、RGB彩色光阻和平坦(Overcoat,简称OC)层。其中,RGB彩色光阻包括红(Red)、绿(Green)、蓝(Blue)着色层。为了保证彩膜基板的色彩均匀性及防止漏光,RGB彩色光阻与BM之间存在一定宽度的搭接,通常这个宽度在3微米以上,且搭接区域的RGB彩色光阻的高度较其他区域偏高,从而产生较大的角段差。为了消除该角段差,需要在RGB彩色光阻表面涂覆一层OC材料以保证CF的表面平坦性,从而保证形成于彩膜基板上的取向层(PI)摩擦(rubbing)的均匀性,能够实现高画面品质。此外,OC层还可以作为保护层以防止着色层中的小分子物质迁移至液晶层,污染液晶而造成色度不均。
在TFT-LCD领域的实际应用中,OC材料的基本物理特性对其成型工艺及相关不良具有较大影响。比如,增加OC材料的交联度、减少烘烤(Oven)工艺中的OC涂布层流动,可改善引角对(Oven Pin MURA);改变OC材料类型、改善吸湿性,可减少VAS Time(对盒时间),可控制平坦度、表面张力等。此外,OC材料的吸湿性对OC工艺间隔时间(tact time)及产品品质例如周边气泡(bubble)、框色泽不均(mura)及VAS time等等具有很大的影 响。
目前,OC材料主要以丙烯酸树脂-环氧树脂为基本结构组成,进而通过加入交联剂、表面改性剂、溶剂等而得到工艺可用的OC涂覆原材料。丙烯酸树脂作为主要结构组分之一,虽然表现出较高的光学特性,但在吸湿性、介电性能上存在可改善的空间。目前,最常用的丙烯酸树脂为聚甲基丙烯酸甲酯。
发明内容
本公开的目的在于:提供一种平坦层用组合物及其制备方法,所述平坦层用组合物经交联固化后形成的平坦层材料具备介电性能优异、密度低和吸水率低等优点。
为了实现上述目的,本公开的一个实施例提供一种平坦层用组合物,其包括如下组分:
10~30wt%的苯乙烯;
10~30wt%的环氧树脂;
1~3wt%的交联剂;
0.1~0.5wt%的光引发剂和/或热引发剂;
1~3wt%的表面活性剂;
40~77wt%的溶剂。
在一个示例中,所述平坦层用组合物还包括:(甲基)丙烯酸酯,所述(甲基)丙烯酸酯与苯乙烯的总含量为10~30wt%。
典型地,所述(甲基)丙烯酸酯与苯乙烯的质量比为1:(1~5)。
在一个示例中,所述交联剂为二乙烯基苯。
在一个示例中,所述表面活性剂为醇醚磷酸酯、烷基酚聚氧乙烯21醚和蓖麻油聚氧乙烯20醚中的一种或多种。
在一个示例中,所述溶剂为丙二醇甲醚醋酸酯、乙二醇二甲醚和二乙二醇二甲醚中的一种或多种。
在一个示例中,所述热引发剂为过氧化二苯甲酰、N,N-二甲基苯胺和偶氮二异丁腈中的一种或多种。
在一个示例中,所述光引发剂为二苯基乙酮、α,α-二甲氧基-α-苯基苯乙酮、α,α-二乙氧基苯乙酮、α-羟烷基苯酮、二苯甲酮和2,4-二羟基二苯甲酮中一种或多种。
本公开的另一个实施例提供一种平坦层用组合物的制备方法,其包括以下步骤:
将10~30wt%的苯乙烯、10~30wt%的环氧树脂、1~3wt%的交联剂、0.1~0.5wt%的光引发剂和/或热引发剂、1~3wt%的表面活性剂、40~77wt%的溶剂混合,得到平坦层用组合物。
在一个示例中,所述制备方法包括以下步骤:
S1-1:将10~30wt%的苯乙烯和交联剂混合,反应得到聚苯乙烯预聚体;
S1-2:将所述聚苯乙烯预聚体与10~30wt%的环氧树脂、交联剂、0.1~0.5wt%的光引发剂和/或热引发剂、1~3wt%的表面活性剂和40~77wt%的溶剂混合,得到平坦层用组合物;
步骤S1-1和步骤S1-2中,所述交联剂的总添加量为1~3wt%。
在另一个示例中,所述制备方法包括以下步骤:
S2-1:将10~30wt%的苯乙烯、交联剂和热引发剂混合,反应得到聚苯乙烯预聚体;
S2-2:将所述聚苯乙烯预聚体与10~30wt%的环氧树脂、交联剂、光引发剂和/或热引发剂、1~3wt%的表面活性剂和40~77wt%的溶剂混合,得到平坦层用组合物;
步骤S2-1和步骤S2-2中,所述交联剂的总添加量为1~3wt%;
步骤S2-1和步骤S2-2中,所述热引发剂和所述光引发剂的合计的总添加量为0.1~0.5wt%。
在一个示例中,在添加所述环氧树脂时还添加(甲基)丙烯酸酯,所述(甲基)丙烯酸酯与苯乙烯的总添加量为10~30wt%。
本公开的另一个实施例提供一种平坦层材料,其由上述平坦层用组合物经交联固化后得到。
在一个示例中,所述交联固化的方法为加热和/或紫外线照射,加热温度为150~250℃,加热的时间为5~15分钟,紫外线照射的时间为5~10分钟。
本公开的另一个实施例提供一种显示基板,所述显示基板中的平坦层采用上述平坦层用组合物经交联固化后得到。
本公开的另一个实施例提供一种显示装置,其包括上述显示基板。
附图说明
图1为本公开的一个实施例中制备平坦层用组合物的流程图;
图2为本公开的另一个实施例中制备平坦层用组合物的流程图。
具体实施方式
为了进一步理解本发明,下面结合附图对本发明的具体实施方式进行描述,但是应当理解,这些描述只是用于进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
根据本公开的一个实施例,提供了一种平坦层用组合物,其包括如下组分:
10~30wt%的苯乙烯;
10~30wt%的环氧树脂;
1~3wt%的交联剂;
0.1~0.5wt%的光引发剂和/或热引发剂;
1~3wt%的表面活性剂;
40~77wt%的溶剂。
在本实施例中,所述平坦层用组合物包括苯乙烯、环氧树脂、交联剂、光引发剂和/或热引发剂、表面活性剂和溶剂。其中,所述苯乙烯为主要单体成分,因此,本实施例的平坦层用组合物固化后可得到以交联聚苯乙烯结构为主体结构的平坦层材料。
在本实施例中,所述苯乙烯的含量为10~30wt%。在一个示例中,所述苯乙烯的含量可以为10~15wt%。在另一个示例中,所述苯乙烯的含量可以为15~25wt%。在另一个示例中,所述苯乙烯的含量还可以为25~30wt%。苯乙烯含量越高,对于制备平坦层材料的介电性能、密度以及吸水率的影响越大,平坦层材料的各方面性能越好。
进而,在一个示例中,所述平坦层用组合物还可以包括:(甲基)丙烯酸酯。所述(甲基)丙烯酸酯可以为甲基丙烯酸甲酯、丙烯酸甲酯、丙烯酸乙酯等。在所述平坦层用组合物中包括(甲基)丙烯酸酯时,所述(甲基)丙烯酸酯与苯乙烯的总含量为10~30wt%。典型地,所述(甲基)丙烯酸酯与苯乙烯的质量比可以为1:(1~5)。对于本公开的平坦层用组合物,通过使用苯乙烯单体来部分代替传统的(甲基)丙烯酸酯单体,也能够实现本公开的目的。
在本实施例中,所述平坦层用组合物中包括:1~3wt%的交联剂。在一个示例中,所述平坦层用组合物可以包括1.5~2.5wt%的交联剂。所述交联剂可与苯乙烯发生反应,从而形成交联结构。此外,如果交联剂在上述含量的范围内,则可使苯乙烯形成更好的交联网络。所述交联剂可以为二乙烯基苯。
在本实施例中,所述平坦层用组合物中包括:1~3wt%的表面活性剂。在一个示例中,所述平坦层用组合物可以包括1.5~2.5wt%的表面活性剂。所述表面活性剂可以为醇醚磷酸酯、烷基酚聚氧乙烯21醚和蓖麻油聚氧乙烯20醚中的一种或多种。
在本实施例中,所述平坦层用组合物中包括:40~77wt%的溶剂。所述溶剂可以为丙二醇甲醚醋酸酯、乙二醇二甲醚和二乙二醇二甲醚中的一种或多种。
在本实施例中,所述平坦层用组合物中包括:0.1~0.5wt%的光引发剂和/或热引发剂。在一个示例中,可以单独添加光引发剂,也可以单独添加热引发剂,还可以同时添加光引发剂和热引发剂。
所述热引发剂可以为过氧化二苯甲酰、N,N-二甲基苯胺和偶氮二异丁腈中的一种或多种。所述光引发剂可以为二苯基乙酮、α,α-二甲氧基-α-苯基苯乙酮、α,α-二乙氧基苯乙酮、α-羟烷基苯酮、二苯甲酮和2,4-二羟基二苯甲酮的一种或多种。
根据本公开的另一个实施例,提供了一种平坦层用组合物的制备方法参见图1,所述制备方法包括以下步骤:
将10~30wt%的苯乙烯、10~30wt%的环氧树脂、1~3wt%的交联剂、0.1~0.5wt%的光引发剂和/或热引发剂、1~3wt%的表面活性剂、40~77wt%的溶剂混合,得到平坦层用组合物。
在本实施例中,将各组分混合均匀后,即可得到平坦层用组合物。所述平坦层用组合物可直接涂覆于其他涂层的表面,然后再进行固化以形成平坦层。
参见图2,在一个示例中,所述制备方法可以包括以下步骤:
S1-1:将10~30wt%的苯乙烯和交联剂混合,反应得到聚苯乙烯预聚体;
S1-2:将所述聚苯乙烯预聚体与10~30wt%的环氧树脂、交联剂、0.1~0.5wt%的光引发剂和/或热引发剂、1~3wt%的表面活性剂和40~77wt%的溶剂混合,得到平坦层用组合物;
步骤S1-1和步骤S1-2中,所述交联剂的总添加量为1~3wt%。
在步骤S1-1中,首先将苯乙烯与部分交联剂进行混合,反应得到聚苯乙烯预聚体。经过反应,苯乙烯单体聚合形成聚合物。所述反应的时间可以为0.5~1小时。
接着,在得到聚苯乙烯预聚体后,在步骤S1-2中,将所述聚苯乙烯预聚体与环氧树脂、另一部分交联剂、光引发剂和/或热引发剂、表面活性剂和溶剂进行混合,得到平坦层用组合物。
步骤S1-1和步骤S1-2中交联剂的总添加量为1~3wt%。
通过本示例的制备方法制备得到的平坦层用组合物,经过固化后,聚合物链状结构较长,交联结构更好。
在另一个示例中,所述制备方法可以包括以下步骤:
S2-1:将10~30wt%的苯乙烯、交联剂和热引发剂混合,反应得到聚苯乙烯预聚体;
S2-2:将所述聚苯乙烯预聚体与10~30wt%的环氧树脂、交联剂、光引发剂和/或热引发剂、1~3wt%的表面活性剂和40~77wt%的溶剂混合,得到平坦层用组合物;
步骤S1-1和步骤S1-2中,所述交联剂的总添加量为1~3wt%,光引发剂和热引发剂的合计的总添加量为0.1~0.5wt%。
在本示例的步骤S2-1中,通过添加热引发剂,有利于苯乙烯和交联剂更好的反应,以得到聚苯乙烯预聚体。在本示例的步骤S2-2中,可以进一步添加热引发剂,或者可以添加光引发剂,或者可以同时添加光引发剂和热引发 剂。但是,考虑到后续固化步骤的简便性,一般在步骤S2-2中仅添加一种引发剂,光引发剂、或者热引发剂。
在本示例的步骤S2-1和步骤S2-2中交联剂的总添加量为1~3wt%。此外,在本示例的步骤S2-1和步骤S2-2中光引发剂和热引发剂的合计的总添加量为0.1~0.5wt%。即当步骤S2-1和步骤S2-2中均添加热引发剂时,热引发剂的总添加量为0.1~0.5wt%;当步骤S2-1中添加热引发剂,步骤S2-2中添加光引发剂时,热引发剂和光引发剂的合计的总添加量为0.1~0.5wt%。
在一个示例中,在添加所述环氧树脂时还可以添加(甲基)丙烯酸酯,此时,所述(甲基)丙烯酸酯与苯乙烯的总含量为10~30wt%。
在本示例中,所述平坦层用组合物的制备方法可以包括以下步骤:
S3-1:将苯乙烯和交联剂混合,反应得到聚苯乙烯预聚体;
S3-2:将所述聚苯乙烯预聚体与10~30wt%的环氧树脂、交联剂、(甲基)丙烯酸酯、0.1~0.5wt%的光引发剂和/或热引发剂、1~3wt%的表面活性剂和40~77wt%的溶剂混合,得到平坦层用组合物;
步骤S3-1和步骤S3-2中,所述交联剂的总添加量为1~3wt%,所述(甲基)丙烯酸酯与苯乙烯的总含量为10~30wt%。
或者,所述平坦层用组合物的制备方法可以包括以下步骤:
S4-1:将苯乙烯、热引发剂和交联剂混合,反应得到聚苯乙烯预聚体;
S4-2:将所述聚苯乙烯预聚体与10~30wt%的环氧树脂、交联剂、(甲基)丙烯酸酯、光引发剂和/或热引发剂、1~3wt%的表面活性剂和40~77wt%的溶剂混合,得到平坦层用组合物。
在步骤S4-1中,通过添加热引发剂,有利于苯乙烯和交联剂更好的反应,以得到聚苯乙烯预聚体。在步骤S4-1和步骤S4-2中交联剂的总添加量为1~3wt%,所述(甲基)丙烯酸酯与苯乙烯的总含量为10~30wt%。此外,在步骤S4-1和步骤S4-2中光引发剂和热引发剂的合计的总添加量为0.1~0.5wt%。即,当在步骤S4-1和步骤S4-2中均添加热引发剂时,热引发剂的总添加量为0.1~0.5wt%;当步骤S4-1中添加热引发剂,步骤S4-2中添加光引发剂时,热引发剂和光引发剂的合计的总添加量为0.1~0.5wt%。
根据本公开的另一个实施例,提供了一种平坦层材料,其由上述实施例 中所述的平坦层用组合物经交联固化后得到。
即,所述平坦层材料由包括如下组分的平坦层用组合物经交联固化得到:10~30wt%的苯乙烯;
10~30wt%的环氧树脂;
1~3wt%的交联剂;
0.1~0.5wt%的光引发剂和/或热引发剂;
1~3wt%的表面活性剂;
40~77wt%的溶剂。
本实施例中,在光引发剂和/或热引发剂的作用下,苯乙烯、交联剂发生聚合反应以及交联反应,实现固化,从而得到平坦层材料。
所述平坦层用组合物经过涂覆、固化,可以得到平坦层。
在一个示例中,所述交联固化的方法为加热和/或紫外线(以下,有时简称为“UV光”)照射,加热温度为150~250℃,加热的时间为5~15分钟,紫外线照射的时间为5~10分钟。
根据本公开的另一个实施例,还提供了一种显示基板,所述显示基板中的平坦层采用上述实施例中所述的平坦层用组合物经交联固化后得到。
根据本公开的另一个实施例,还提供了一种显示装置,其包括上述显示基板。
为了进一步理解本发明,下面结合实施例对本公开的平坦层用组合物及其制备方法、平坦层材料、显示基板进行详细说明,但本发明的保护范围不受以下实施例的限制。
各实施例中,吸水率根据GB/T 1034-2008塑料吸水性的测定中记载的方法进行测定;介电常数与介质损耗按照GB/T 1409-2006测量电气绝缘材料在工频、音频、高频下电容率和介质损耗因数的推荐方法中记载的方法进行测定;体积电阻率按照GB/T 1410-2006固体绝缘材料体积电阻率和表面电阻率试验方法中记载的方法进行测定。
实施例1
本实施例的平坦层用组合物的成分及含量(总量以100%记)如下:
组分1:苯乙烯和丙烯酸酯,占30wt%,其中苯乙烯与(甲基)丙烯酸 酯比例为1:5,(甲基)丙烯酸酯为甲基丙烯酸甲酯;
组分2:环氧树脂,占10wt%;
组分3:二乙烯基苯,占1wt%;
组分4:醇醚磷酸酯,占1wt%;
组分5:过氧化二苯甲酰,占0.1wt%;
组分6:丙二醇甲醚醋酸酯,占57.9wt%。
本实施例的平坦层用组合物的制备方法为:将上述组分混合均匀,即可得到平坦层用组合物。将该平坦层用组合物涂覆使用,进一步在150~250℃的温度下固化15~30min,完成固化,得到平坦层材料。
对于实施例1制备的平坦层材料的物理特性进行了性能测试,并以现有平坦层材料作为对比。各物理特性参数具体参见表1。
表1
物理特性参数 实施例1制备的平坦层材料 现有平坦层材料
密度(g/cm 3) 1.05~1.1 1.2~1.3
介电常数 2.5~3 3~4
介电损耗 ~10 -3 ~10 -2
吸水率(%) <10 -3 <10 -1
体积电阻率(Ω·cm) >10 16 >10 16
实施例2
本实施例的平坦层用组合物的成分及含量(总量以100%记)如下:
组分1:苯乙烯,占10wt%;
组分2:环氧树脂,占30wt%;
组分3:二乙烯基苯,占1.5wt%;
组分4:烷基酚聚氧乙烯(21)醚,占3wt%;
组分5:N,N-二甲基苯胺,占0.3wt%;
组分6:乙二醇二甲醚,占55.2wt%;
本实施例的平坦层用组合物的制备方法为:将上述组分混合均匀,即可 得到平坦层用组合物。将该平坦层用组合物涂覆使用,进一步在150~250℃的温度下固化15~30min,完成固化,得到平坦层材料。
实施例3
本实施例的平坦层用组合物成分及含量(总量以100%记)如下:
组分1:苯乙烯和(甲基)丙烯酸酯,占20wt%,其中苯乙烯与(甲基)丙烯酸酯比例为1:1,(甲基)丙烯酸酯为甲基丙烯酸甲酯;
组分2:环氧树脂,占20wt%;
组分3:二乙烯基苯,占2wt%;
组分4:蓖麻油聚氧乙烯(20)醚,占2wt%;
组分5:二苯基乙酮,占0.5wt%;
组分6:二乙二醇二甲醚,占55.5wt%。
本实施例的平坦层用组合物的制备方法为:将上述组分混合均匀,即可得到平坦层用组合物。将该平坦层用组合物涂覆使用,进一步利用UV光(波长300~400nm)照射5~10min,然后在150℃~250℃的温度下固化5~15min,完成固化,得到平坦层材料。
实施例4
本实施例的平坦层用组合物的成分及含量(总量以100%记)如下:
组分1:苯乙烯,占25wt%;
组分2:环氧树脂,占25wt%;
组分3:二乙烯基苯,占3wt%;
组分4:醇醚磷酸酯,占3wt%;
组分5:α,α-二甲氧基-α-苯基苯乙酮,占0.5wt%;
组分6:乙二醇二甲醚,占43.5wt%;
本实施例的平坦层用组合物的制备方法为:将上述组分混合均匀,即可得到平坦层用组合物。将该平坦层用组合物涂覆使用,进一步利用UV光(波长300~400nm)照射5~10min,然后在150℃~250℃的温度下固化5~15min,完成固化,得到平坦层材料。
实施例5
本实施例的平坦层用组合物的成分及含量(总量以100%记)如下:
组分1:苯乙烯和(甲基)丙烯酸酯,占30wt%,其中苯乙烯与(甲基)丙烯酸酯比例为1:5,(甲基)丙烯酸酯为甲基丙烯酸甲酯;
组分2:环氧树脂,占10wt%;
组分3:二乙烯基苯,占2.5wt%;
组分4:醇醚磷酸酯,占1wt%;
组分5:过氧化二苯甲酰,占0.1wt%;
组分6:丙二醇甲醚醋酸酯,占56.4wt%;
本实施例的平坦层用组合物的制备方法为:
将苯乙烯和(甲基)丙烯酸酯的混合物30wt%、过氧化二苯甲酰0.02wt%和二乙烯基苯1wt%混合,反应得到聚苯乙烯预聚体;
将所述聚苯乙烯预聚体与10wt%的环氧树脂、1.5wt%的二乙烯基苯、0.08wt%的过氧化二苯甲酰、1wt%的醇醚磷酸酯和57.9wt%的丙二醇甲醚醋酸酯混合,得到平坦层用组合物。
将上述平坦层用组合物涂覆使用,进一步在150~250℃的温度下固化15~30min,完成固化,得到平坦层材料。
实施例6
本实施例的平坦层用组合物的成分及含量(总量以100%记)如下:
组分1:苯乙烯,占25wt%;
组分2:环氧树脂,占25wt%;
组分3:二乙烯基苯,占3wt%;
组分4:醇醚磷酸酯,占3wt%;
组分5:α,α-二甲氧基-α-苯基苯乙酮,占0.5wt%;
组分6:乙二醇二甲醚,占43.5wt%;
本实施例的平坦层用组合物的制备方法为:
将25wt%的苯乙烯和0.75wt%的二乙烯基苯混合,反应得到聚苯乙烯预聚体;
将所述聚苯乙烯预聚体与25wt%的环氧树脂、2.25wt%的二乙烯基苯、0.1wt%的过氧化二苯甲酰、3wt%的醇醚磷酸酯和43.5wt%的乙二醇二甲醚混合,得到平坦层用组合物。
将上述平坦层用组合物涂覆使用,进一步利用UV光(波长300~400nm)照射5~10min,然后在150℃~250℃的温度下固化5~15min完成固化,得到平坦层材料。
对于实施例6制备的平坦层材料的物理特性进行了性能测试,并以现有平坦层材料作为对比。各物理特性参数具体参见表2。
表2
物理特性参数 实施例6制备的平坦层材料 现有平坦层材料
密度(g/cm 3) 1.00~1.05 1.2~1.3
介电常数 2.4~2.5 3~4
介电损耗 ~10 -3 ~10 -2
吸水率(%) <10 -3 <10 -1
体积电阻率(Ω·cm) >10 16 >10 16
此外,本公开还对交联聚苯乙烯的性能进行了研究,并与现有聚甲基丙烯酸甲酯的性能进行对比,结果发现聚苯乙烯非常适用于添加到平坦层材料中。各物理特性参数具体实验数据参见表3。
表3
Figure PCTCN2018089026-appb-000001
根据以上实施例,本公开的平坦层用组合物包括如下组分:10~30wt%的 苯乙烯;10~30wt%的环氧树脂;1~3wt%的交联剂;0.1~0.5wt%的光引发剂和/或热引发剂;1~3wt%的表面活性剂;40~77wt%的溶剂。与现有技术相比,本公开的平坦层用组合物以苯乙烯为主要单体成分,经光引发剂和/或热引发剂引发而发生固化,从而得到交联聚苯乙烯和环氧树脂的混合物,即平坦层材料。该种组成的平坦层材料具有更优异的介电性能、更低的密度和更低的吸水率、高电学稳定性等物理特性。实验结果表明,本发明得到的平坦层材料的密度(g/cm 3)为1.05~1.1;介电常数为2.5~3;介电损耗为~10 -3;吸水率(%)<10 -3;体积电阻率(Ω·cm)>10 16
以上实施例只是用于帮助理解本发明及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明主旨的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (16)

  1. 一种平坦层用组合物,其包括如下组分:
    10~30wt%的苯乙烯;
    10~30wt%的环氧树脂;
    1~3wt%的交联剂;
    0.1~0.5wt%的光引发剂和/或热引发剂;
    1~3wt%的表面活性剂;
    40~77wt%的溶剂。
  2. 根据权利要求1所述的平坦层用组合物,其中,还包括:(甲基)丙烯酸酯,所述(甲基)丙烯酸酯与苯乙烯的总含量为10~30wt%。
  3. 根据权利要求2所述的平坦层用组合物,其中,所述(甲基)丙烯酸酯与苯乙烯的质量比为1:(1~5)。
  4. 根据权利要求1所述的平坦层用组合物,其中,所述交联剂为二乙烯基苯。
  5. 根据权利要求1所述的平坦层用组合物,其中,所述表面活性剂为醇醚磷酸酯、烷基酚聚氧乙烯21醚和蓖麻油聚氧乙烯20醚中的任意一种或多种。
  6. 根据权利要求1所述的平坦层用组合物,其中,所述溶剂为丙二醇甲醚醋酸酯、乙二醇二甲醚和二乙二醇二甲醚中的任意一种或多种。
  7. 根据权利要求1所述的平坦层用组合物,其中,所述热引发剂为过氧化二苯甲酰、N,N-二甲基苯胺和偶氮二异丁腈中的任意一种或多种。
  8. 根据权利要求1所述的平坦层用组合物,其中,所述光引发剂为二苯基乙酮、α,α-二甲氧基-α-苯基苯乙酮、α,α-二乙氧基苯乙酮、α-羟烷基苯酮、二苯甲酮和2,4-二羟基二苯甲酮中的任意一种或多种。
  9. 一种平坦层用组合物的制备方法,其包括以下步骤:
    将10~30wt%的苯乙烯、10~30wt%的环氧树脂、1~3wt%的交联剂、0.1~0.5wt%的光引发剂和/或热引发剂、1~3wt%的表面活性剂、40~77wt%的溶剂混合,得到平坦层用组合物。
  10. 根据权利要求9所述的制备方法,其中,所述制备方法包括以下步骤:
    S1-1:将10~30wt%的苯乙烯和交联剂混合,反应得到聚苯乙烯预聚体;
    S1-2:将所述聚苯乙烯预聚体与10~30wt%的环氧树脂、交联剂、0.1~0.5wt%的光引发剂和/或热引发剂、1~3wt%的表面活性剂和40~77wt%的溶剂混合,得到平坦层用组合物;
    步骤S1-1和步骤S1-2中,所述交联剂的总添加量为1~3wt%。
  11. 根据权利要求9所述的制备方法,其中,所述制备方法包括以下步骤:
    S2-1:将10~30wt%的苯乙烯、交联剂和热引发剂混合,反应得到聚苯乙烯预聚体;
    S2-2:将所述聚苯乙烯预聚体与10~30wt%的环氧树脂、交联剂、光引发剂和/或热引发剂、1~3wt%的表面活性剂和40~77wt%的溶剂混合,得到平坦层用组合物;
    步骤S2-1和步骤S2-2中,所述交联剂的总添加量为1~3wt%;
    步骤S2-1和步骤S2-2中,热引发剂和光引发剂的合计的总添加量为0.1~0.5wt%。
  12. 根据权利要求9~11中任意一项所述的制备方法,其中,在添加所述环氧树脂时还添加(甲基)丙烯酸酯,所述(甲基)丙烯酸酯与苯乙烯的总含量为10~30wt%。
  13. 一种平坦层材料,其由权利要求1~8中任意一项所述的平坦层用组合物经交联固化后得到。
  14. 根据权利要求13所述的平坦层材料,其中,所述交联固化的方法为加热和/或紫外线照射,加热温度为150~250℃,加热的时间为5~15分钟,紫外线照射的时间为5~10分钟。
  15. 一种显示基板,所述显示基板中的平坦层采用如权利要求1~8中任意一项所述的平坦层用组合物经交联固化后得到。
  16. 一种显示装置,其包括如权利要求15所述的显示基板。
PCT/CN2018/089026 2017-08-30 2018-05-30 平坦层用组合物、其制备方法、平坦层材料、显示基板及显示装置 WO2019041923A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18806960.3A EP3677641A4 (en) 2017-08-30 2018-05-30 COMPOSITION FOR COATING LAYER, MANUFACTURING METHOD FOR IT, COATING LAYER, DISPLAY SUBSTRATE AND DISPLAY DEVICE
US16/304,749 US11332634B2 (en) 2017-08-30 2018-05-30 Composition for overcoat layer, preparation method for the same, overcoat layer material, display substrate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710762111.X 2017-08-30
CN201710762111.XA CN109422987B (zh) 2017-08-30 2017-08-30 平坦层用组合物、其制备方法、平坦层材料及显示装置

Publications (1)

Publication Number Publication Date
WO2019041923A1 true WO2019041923A1 (zh) 2019-03-07

Family

ID=65503977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/089026 WO2019041923A1 (zh) 2017-08-30 2018-05-30 平坦层用组合物、其制备方法、平坦层材料、显示基板及显示装置

Country Status (4)

Country Link
US (1) US11332634B2 (zh)
EP (1) EP3677641A4 (zh)
CN (1) CN109422987B (zh)
WO (1) WO2019041923A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006126872A (ja) * 2006-01-23 2006-05-18 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ
CN1898291A (zh) * 2004-05-06 2007-01-17 Jsr株式会社 固化性树脂组合物、保护膜及其形成方法
JP2008258203A (ja) * 2007-03-30 2008-10-23 Fujifilm Corp 固体撮像素子及び固体撮像素子の製造方法
CN102372887A (zh) * 2010-07-12 2012-03-14 株式会社Lg化学 用于保护膜的热固化树脂组合物
CN103360857A (zh) * 2013-07-15 2013-10-23 京东方科技集团股份有限公司 平坦保护层用组合物及其制备方法和显示装置
CN105182594A (zh) * 2015-08-25 2015-12-23 京东方科技集团股份有限公司 显示基板

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4522962A (en) * 1980-09-08 1985-06-11 Scm Corporation Epoxy modified emulsion polymers
AU563372B2 (en) * 1982-12-16 1987-07-09 Celanese Corporation Crosslinked microgel particles
DE3561017D1 (en) * 1984-02-28 1987-12-23 Shell Int Research Heat-curable polyepoxide-(meth)acrylate ester-styrene composition
JP2893875B2 (ja) * 1990-06-20 1999-05-24 ジェイエスアール株式会社 保護膜形成用材料
US5252637A (en) * 1992-06-12 1993-10-12 The Glidden Company Low VOC, high molecular weight epoxy emulsion coatings
US5389703A (en) * 1993-10-12 1995-02-14 Air Products And Chemicals, Inc. Method of making hybrid polymer of epoxy resin and the resulting product
US7537810B2 (en) * 2003-03-24 2009-05-26 Dai Nippon Printing Co., Ltd. Curable resin composition, photosensitive pattern-forming curable resin composition, color filter, substrate for liquid crystalline panel, and liquid crystalline panel
KR100579833B1 (ko) * 2003-12-09 2006-05-15 주식회사 삼양이엠에스 열경화형 오버코트용 1액형 에폭시 수지 조성물
KR101288411B1 (ko) * 2005-12-02 2013-07-22 삼성디스플레이 주식회사 감광성 수지 조성물, 이를 이용한 포토레지스트 패턴 형성방법 및 표시 기판의 제조 방법
JP4930143B2 (ja) * 2006-06-29 2012-05-16 Jnc株式会社 保護膜用組成物、カラーフィルター基板および液晶表示素子
JP2008031369A (ja) * 2006-07-31 2008-02-14 Tokyo Ohka Kogyo Co Ltd 平坦化膜形成用組成物
JP5075691B2 (ja) * 2008-03-14 2012-11-21 株式会社ダイセル 光及び/又は熱硬化性共重合体、硬化性樹脂組成物及び硬化物
KR20100099048A (ko) * 2009-03-02 2010-09-10 주식회사 동진쎄미켐 감광성 수지 조성물
JP5674399B2 (ja) * 2010-09-22 2015-02-25 富士フイルム株式会社 重合性組成物、感光層、永久パターン、ウエハレベルレンズ、固体撮像素子、及び、パターン形成方法
CN103087640A (zh) * 2011-11-08 2013-05-08 汉高股份有限公司 双固化粘合剂组合物及其用途以及粘合基底的方法
CN106684217A (zh) * 2017-01-17 2017-05-17 Tcl集团股份有限公司 发光器件衬底及其制备方法、发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898291A (zh) * 2004-05-06 2007-01-17 Jsr株式会社 固化性树脂组合物、保护膜及其形成方法
JP2006126872A (ja) * 2006-01-23 2006-05-18 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ
JP2008258203A (ja) * 2007-03-30 2008-10-23 Fujifilm Corp 固体撮像素子及び固体撮像素子の製造方法
CN102372887A (zh) * 2010-07-12 2012-03-14 株式会社Lg化学 用于保护膜的热固化树脂组合物
CN103360857A (zh) * 2013-07-15 2013-10-23 京东方科技集团股份有限公司 平坦保护层用组合物及其制备方法和显示装置
CN105182594A (zh) * 2015-08-25 2015-12-23 京东方科技集团股份有限公司 显示基板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3677641A4 *

Also Published As

Publication number Publication date
US11332634B2 (en) 2022-05-17
US20210222026A1 (en) 2021-07-22
CN109422987A (zh) 2019-03-05
EP3677641A4 (en) 2021-05-19
EP3677641A1 (en) 2020-07-08
CN109422987B (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
TWI412848B (zh) Sensitive radiation linear resin compositions, spacers and methods for their formation
CN1734351B (zh) 隔离物用感光性树脂组合物
TW200401139A (en) Liquid crystal display device and method of producing the same
CN101395534B (zh) 保护膜用热固性组合物、固化物以及液晶显示装置
WO2013189147A1 (zh) 反射式偏振片、制备反射式偏振片的方法及液晶显示装置
CN108153040A (zh) 黑色矩阵与间隔物的制作方法
WO2021246441A1 (ja) 光学フィルム、光学積層体および画像表示装置
WO2021168949A1 (zh) 一种显示面板及负性光阻材料
WO2019041923A1 (zh) 平坦层用组合物、其制备方法、平坦层材料、显示基板及显示装置
US20150369968A1 (en) Protective film material, display substrate and method for preparing the same
JP2016184031A (ja) 液晶用配向膜、リバースモード高分子分散型液晶素子
JP4099955B2 (ja) (高分子/液晶)複合膜表示装置及びその製造方法
TW202100647A (zh) 聚合性液晶組合物、液晶硬化膜、橢圓偏光板及有機el顯示裝置
CN109799650B (zh) 一种复合液晶层、其制备方法、显示面板及显示装置
US9036118B2 (en) Negative optical compensation assembly and method for preparing the same
TW202028368A (zh) 感光性樹脂組成物、光學膜及其製造方法
US10620536B2 (en) Color resist material of color filter and method for preparing color resist pattern of color filter
WO2019196152A1 (zh) 一种液晶显示面板的制作方法以及液晶介质组合物
TWI604527B (zh) 液晶裝置的製造方法與由此方法所製造出之液晶裝置
WO2020228120A1 (zh) 膜结构及其制备方法
TW201516526A (zh) 液晶顯示元件、液晶配向處理劑,及液晶配向膜
JP2008102516A (ja) (高分子/液晶)複合膜表示装置の製造方法
JP5640330B2 (ja) 着色層用感光性樹脂組成物の製造方法、カラーフィルタの製造方法および着色層用感光性樹脂組成物
JPH04202514A (ja) 硬化性組成物
TW202338409A (zh) 濾色器用紅色著色組成物、濾色器用紅色著色阻劑組成物、濾色器、及顯示裝置

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018806960

Country of ref document: EP

Effective date: 20200330