WO2019041907A1 - 一种可直接印刷的图像记录材料、制备方法 - Google Patents

一种可直接印刷的图像记录材料、制备方法 Download PDF

Info

Publication number
WO2019041907A1
WO2019041907A1 PCT/CN2018/088313 CN2018088313W WO2019041907A1 WO 2019041907 A1 WO2019041907 A1 WO 2019041907A1 CN 2018088313 W CN2018088313 W CN 2018088313W WO 2019041907 A1 WO2019041907 A1 WO 2019041907A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
recording material
image recording
image
silicon
Prior art date
Application number
PCT/CN2018/088313
Other languages
English (en)
French (fr)
Inventor
彭海炎
陈冠楠
周兴平
解孝林
廖永贵
葛宏伟
杨志芳
张小梅
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US16/308,637 priority Critical patent/US11222662B2/en
Publication of WO2019041907A1 publication Critical patent/WO2019041907A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/06Veined printings; Fluorescent printings; Stereoscopic images; Imitated patterns, e.g. tissues, textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/28Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen sulfur-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0005Production of optical devices or components in so far as characterised by the lithographic processes or materials used therefor
    • G03F7/001Phase modulating patterns, e.g. refractive index patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/0275Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with dithiol or polysulfide compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0755Non-macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/12Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings at least two benzene rings directly linked, e.g. biphenyls
    • C09K2019/121Compounds containing phenylene-1,4-diyl (-Ph-)
    • C09K2019/122Ph-Ph
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0441Formation of interference pattern, not otherwise provided for
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/18Particular processing of hologram record carriers, e.g. for obtaining blazed holograms
    • G03H2001/185Applying a curing step
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/40Particular irradiation beam not otherwise provided for
    • G03H2222/45Interference beam at recording stage, i.e. following combination of object and reference beams
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2240/00Hologram nature or properties
    • G03H2240/50Parameters or numerical values associated with holography, e.g. peel strength
    • G03H2240/54Refractive index
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/12Photopolymer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2270/00Substrate bearing the hologram
    • G03H2270/10Composition
    • G03H2270/14Plastic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2270/00Substrate bearing the hologram
    • G03H2270/30Nature
    • G03H2270/31Flexible

Definitions

  • the invention belongs to the field of functional materials, and in particular relates to an image recording material, a preparation method and an application thereof which can be directly printed.
  • the laser holography image Since the laser holography image stores the phase information and amplitude information of the coherent light at the same time, it can store and read the naked-eye 3D color image on the 2D plane, so it is widely used in 3D display, telepresence, data storage, modulated laser, high-end anti-counterfeiting. And other fields.
  • the key to realizing holographic 3D image storage is image recording materials. Generally, before the holographic image is stored, the polymer and other functional components are uniformly mixed by a solvent, coated, dried, and finally image storage is realized by laser holography. However, this method is complicated in process, wastes a large amount of solvent, and causes environmental pollution.
  • Another way is to first form a gel network containing active monomers by polymerization [Macromolecules 2014, 47(7): 2306-2315], and then holographic illumination to form an image.
  • the materials in this way are difficult to store for a long time and the transport conditions are high.
  • the third method is relatively simple, in which the active monomer and the inert component are uniformly mixed, filled into a mold, and the image is stored by holographic illumination. This method needs to be packaged in a glass box, which obviously increases the processing cost and is difficult to apply to continuous industrial production.
  • the present invention provides a directly printable image recording material and a recording method thereof, which are aimed at introducing a cage polysilsesquioxane in a photopolymerizable monomer.
  • the silicon-based monomer of the silicon core in combination with other material components, makes the recording material have an initial viscosity of 200 to 800 mPa ⁇ s while using a low silicon-based monomer having a cage polysilsesquioxane as a silicon core.
  • the thermal conductivity, the internal heat generated during the reaction process promotes the diffusion of the inert component, ensures the image storage quality, realizes the continuous industrial production of the image recording material, and greatly reduces the process cost and improves the production efficiency, thereby solving the present
  • a directly recordable image recording material comprising 25 to 78.8 parts by mass of a photopolymerizable monomer and 0.2 to 5 parts by mass of a photoinitiator is provided. And 20 to 70 parts by mass of the inert component and 0.05 to 2 parts by mass of the thermal polymerization inhibitor, the image recording material having an initial viscosity of 200 to 800 mPa ⁇ s, wherein:
  • the photopolymerizable monomer includes a thiol monomer and an olefin monomer, and the molar ratio of the thiol functional group to the olefin functional group in the photopolymerizable monomer is 1:10 to 10:1, and the thiol monomer and At least one of the olefin monomers is a silicon-based monomer having a cage polysilsesquioxane as a silicon core, and the molar percentage of the silicon-based monomer in the photopolymerizable monomer is not less than 10%.
  • the molar ratio of the thiol functional group to the olefin functional group in the photopolymerizable monomer is from 1:5 to 5:1.
  • the molar ratio of the thiol functional group to the olefin functional group in the photopolymerizable monomer is from 1:3 to 3:1.
  • the silicon-based monomer has a structure as shown in formula (I):
  • the outer organic functional groups R 1 , R 2 ... R 8 are each independently Ca H 2a+1 or C b H 2b SH, and at least one of them is C b H 2b SH; wherein a is an integer from 0 to 9, and b is an integer from 1 to 9;
  • the outer organic functional groups R 1 , R 2 ... R 8 are each independently C c H 2c+1 or C d H 2d - C 2 H 4 and at least one of them is C d H 2d -C 2 H 4 ; wherein c is an integer of 0 to 9, and d is an integer of 1 to 7.
  • the thiol monomer is not a silicon-based monomer, it is ethylene glycol bis(3-mercaptopropionate), trimethylolpropane tris(3-mercaptopropionate), and pentaerythritol tetra ( One or more of 3-mercaptopropionate.
  • the olefin monomer when it is not a silicon-based monomer, it is trimethylolpropane triacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, hyperbranched acrylate 6361-100, isocyanuric acid three Allyl ester, pentaerythritol triallyl ether, divinyl sulfone, tetravinyl silane, tetraallyl silane, 2,4,6-trivinyl-2,4,6-trimethylcyclotrisiloxane One or more of an alkane, tetramethyltetravinylcyclotetrasiloxane.
  • the photoinitiator is rose bengal/N-phenylglycine, (2,4,6-trimethoxyphenyl)diphenylphosphine oxide, Irgacure 184/dibenzoyl peroxide, Irgacure 784/over One or more of dibenzoyl peroxide and 3,3'-carbonyl bis(7-diethylamine coumarin)/N-phenylglycine.
  • the thermal polymerization inhibitor is one or more of tris(N-nitroso-N-phenylhydroxylamine)aluminum salt, p-tert-butylphenol and p-benzoquinone.
  • the inert component has a refractive index greater than 1.5, which is one or more of nematic liquid crystal, nano zinc sulfide, nano silica, nano zirconia and nano titanium dioxide; the nematic liquid crystal It is preferably one or more of 5CB, 7CB, 8OCB, P0616A and E7.
  • a recording method of the directly printable image recording material comprising the steps of:
  • step (3) dividing a laser beam into two coherent lights of equal intensity, and forming an interference field by expanding the beam, and placing the image recording material described in step (2) under an interference field for holographic exposure to obtain a holographic image;
  • the hologram image obtained in the step (3) is subjected to ultraviolet light post-curing.
  • the mixing time in the step (1) is 5 to 200 minutes.
  • the flexible film of the step (2) is one selected from the group consisting of polyethylene terephthalate, polyvinyl chloride film, polycarbonate film, polyethylene film and polypropylene film.
  • the flexible film substrate has a light transmittance of more than 70%.
  • the flexible film has a light transmittance of more than 80%.
  • the laser wavelength described in the step (3) is one of 365 nm, 405 nm, 442 nm, 460 nm or 532 nm.
  • the holographic exposure according to the step (3) has an exposure light intensity of 0.5 to 50 mW/cm 2 ; and an exposure time of 5 to 200 seconds.
  • the holographic exposure according to the step (3) has an exposure light intensity of 1 to 40 mW/cm 2 , and an exposure time of 5 to 150 seconds.
  • the holographic exposure according to the step (3) has an exposure light intensity of 3 to 30 mW/cm 2 and an exposure time of 20 to 100 seconds.
  • the post-cure time described in step (4) is from 50 to 1000 seconds.
  • the post-cure time described in step (4) is from 200 to 800 seconds.
  • the directly printable image recording material of the present invention by using a high viscosity, high rigidity, low thermal conductivity and low refractive index cage polysilsesquioxane monomer with other photopolymerizable monomers, and high refraction
  • the high refractive index inert component increases the viscosity of the system when it is a solid nanoparticle, and the introduction of the liquid liquid crystal reduces the viscosity of the system.
  • the initial viscosity of the image recording material is obtained. 200 ⁇ 800mPa ⁇ s, can be directly applied to the film without having to be packaged in a glass box, suitable for printing and continuous production, easy to operate;
  • the image recording material of the present invention converts reaction heat into heat in the system by using a low thermal conductivity monomer, accelerates diffusion of the inert component, and promotes phase separation between the formed polymer and the inert component;
  • the image recording material of the present invention is obtained by introducing a silicon-based monomer having a cage polysilsesquioxane as a core in a photopolymerizable monomer, in combination with other material components such as a high refractive index inert component.
  • the recording material has an initial viscosity of 200 to 800 mPa ⁇ s while utilizing the low thermal conductivity of the silicon-based monomer having the cage polysilsesquioxane as a core, and the internal heat generated during the reaction promotes the diffusion of the inert component.
  • the image storage quality is ensured, and the increase of the viscosity of the image recording material can be skillfully solved for direct printing, but increasing the viscosity of the system reduces the diffusion rate of molecules and particles in the system, resulting in a contradiction in the quality of holographic image storage.
  • the directly recordable image recording material of the present invention contains at least one silicon-based monomer having a cage polysilsesquioxane as a core, and an inert component having a specific refractive index range is used, and the components are synergistically coordinated. It constitutes an inseparable whole.
  • reaction conditions of the recording method of the present invention are insensitive to oxygen and water, and do not require harsh application conditions; after coherent laser exposure, a holographic image excellent in storage quality can be obtained, and the corresponding holographic grating has a diffraction efficiency of not less than 90%.
  • Figure 1 is a graph showing the relationship between the viscosity of a printable image recording material produced by the present invention and the content of a silicon-based monomer.
  • the present invention provides a directly printable image recording material comprising 25 to 78.8 parts by mass of a photopolymerizable monomer, 0.2 to 5 parts by mass of a photoinitiator, 20 to 70 parts by mass of an inert component, and 0.05 to 2 a mass of the thermal polymerization inhibitor, the image recording material having an initial viscosity of 200 to 800 mPa ⁇ s, wherein:
  • the photopolymerizable monomer includes a thiol monomer and an olefin monomer, and the molar ratio of the thiol functional group to the olefin functional group in the photopolymerizable monomer is from 1:10 to 10:1, preferably from 1:5 to 5:1, further Preferably, it is 1:3 to 3:1, and at least one of the thiol monomer and the olefin monomer is a silicon-based monomer having a cage polysilsesquioxane as a silicon core, and the silicon-based monomer is The mole percentage in the photopolymerizable monomer is not less than 10%.
  • the silicon-based monomer has a structure as shown in the formula (I):
  • the outer organic functional groups R 1 , R 2 ... R 8 are each independently Ca H 2a+1 or C b H 2b SH And at least one organic functional group is C b H 2b SH; wherein a is an integer of 0-9, and b is an integer of -9.
  • the outer organic functional groups R 1 , R 2 ... R 8 are each independently C c H 2c+1 or C d H 2d - C 2 H 4 and at least one of them is C d H 2d -C 2 H 4 ; wherein c is an integer of 0 to 9, and d is an integer of 1 to 7.
  • the thiol monomer when it is not a silicon-based monomer, it may be selected from ethylene glycol bis(3-mercaptopropionate), trimethylolpropane tris(3-mercaptopropionate), and pentaerythritol tetrakis(3-mercaptopropane) One or more of the acid esters.
  • the olefin monomer when it is not a silicon-based monomer, it may be selected from the group consisting of trimethylolpropane triacrylate, pentaerythritol tetraacrylate, pentaerythritol triacrylate, hyperbranched acrylate 6361-100, triallyl isocyanurate, Pentaerythritol triallyl ether, divinyl sulfone, tetravinyl silane, tetraallyl silane, 2,4,6-trivinyl-2,4,6-trimethylcyclotrisiloxane, tetramethyl One or more of the group of tetravinylcyclotetrasiloxanes.
  • Fig. 1 is a graph showing the relationship between the viscosity of a printable image-recording material produced by the present invention and the content of a silicon-based monomer. It can be seen from Fig. 1 that as the content of the silicon-based monomer increases, the viscosity of the image-recording material gradually increases.
  • the photoinitiator is rose red/N-phenylglycine, (2,4,6-trimethoxyphenyl)diphenylphosphine oxide, Irgacure 184/dibenzoyl peroxide, Irgacure 784/dibenzoyl peroxide. And one of 3,3'-carbonylbis(7-diethylaminecoumarin)/N-phenylglycine.
  • the thermal polymerization inhibitor is one of tris(N-nitroso-N-phenylhydroxylamine)aluminum salt, p-tert-butylphenol and p-benzoquinone.
  • the refractive index of the inert component is preferably greater than 1.5, which is one or more of nematic liquid crystal, nano zinc sulfide, nano silica, nano zirconia and nano titanium dioxide; wherein the nematic liquid crystal is preferably 5CB, 7CB One or several of 8OCB, P0616A and E7.
  • the above method for recording a directly printable image recording material includes the following steps:
  • the flexible film is selected from the group consisting of polyethylene terephthalate, polyvinyl chloride film, and polycarbonate.
  • the flexible film substrate preferably has a light transmittance of more than 70%, and further preferably the light transmittance of the flexible film is greater than 80%.
  • the hologram image obtained in the step (3) is subjected to ultraviolet light post-curing.
  • the laser wavelength described in the step (3) is one of 365 nm, 405 nm, 442 nm, 460 nm or 532 nm.
  • Holographic exposure, exposure light intensity is 0.5 to 50 mW/cm 2 , preferably 1 to 40 mW/cm 2 , further preferably 3 to 30 mW/cm 2 ; exposure time is 5 to 200 seconds, preferably 5 to 150 seconds, further preferably 20 to 100 second.
  • the post-cure time described in the step (4) is from 50 to 1,000 seconds, preferably from 200 to 800 seconds.
  • the directly printable image recording material of the present invention comprises 45 to 75 parts of photopolymerizable monomer, 0.2 to 3 parts of photoinitiator, 20 to 50 parts of high refractive index inert component, and 0.05 to 2 parts of thermal polymerization inhibitor. If the initial viscosity of the image recording material is too large, the material is difficult to print uniformly. If the viscosity is too small, the material may be displaced and difficult to fix.
  • the initial recording viscosity of the image recording material of the present invention is between 200 mPa ⁇ s and 800 mPa ⁇ s, and can be directly applied to the film.
  • a coherent laser exposure can obtain a holographic image with excellent storage quality; the holographic image corresponds to a grating diffraction efficiency of not less than 90%.
  • the diffraction efficiency is also related to processing factors such as processing light intensity and exposure time.
  • the preferred processing light intensity is 1 to 40 mW/cm 2 , more preferably 3 to 30 mW/cm 2 ; and the exposure time is preferably 5 to 150 seconds, and more preferably 20 to 100 seconds.
  • the present invention combines a high viscosity, high rigidity, low thermal conductivity and low refractive index cage polysilsesquioxane monomer with other photopolymerizable monomers, and a high refractive index inert component, the initial of the image recording material Viscosity not less than 200mPa ⁇ s, can be directly applied to the film without having to be packaged in a glass box, suitable for printing and continuous production, easy to operate; possible mechanism is: low thermal conductivity monomer converts reaction heat into heat in the system Accelerating the diffusion of the inert component, promoting the phase separation between the formed polymer and the inert component; and the reaction conditions of the recording method of the present invention are insensitive to oxygen and water, and do not require harsh application conditions; after coherent laser exposure, A hologram image excellent in storage quality is obtained, and the corresponding holographic grating has a diffraction efficiency of not less than 90%.
  • a directly printable image recording material comprising 65 wt.% of a photopolymerizable monomer, 3 wt.% of a photoinitiator, 30 wt.% of a high refractive index inert component, and 2 wt.% of a thermal polymerization inhibitor.
  • the viscosity was 382 mPa ⁇ s.
  • the photoinitiator is rose bengal/N-phenylglycine.
  • the high refractive index inert component is a nematic liquid crystal 8OCB, and the thermal polymerization inhibitor is p-tert-butylphenol.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the directly printable image recording material was placed in a dark reactor, and stirred and mixed at normal temperature for 5 minutes to obtain a uniform mixed solution.
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 50 seconds, and the grating diffraction efficiency corresponding to the hologram was 86%.
  • a directly printable image recording material comprising 25 wt.% of a photopolymerizable monomer, 3 wt.% of a photoinitiator, 70 wt.% of a high refractive index inert component, and 2 wt.% of a thermal polymerization inhibitor.
  • the viscosity was 221 mPa ⁇ s.
  • the photoinitiator is rose bengal/N-phenylglycine.
  • the high refractive index inert component is a nematic liquid crystal 8OCB, and the thermal polymerization inhibitor is p-tert-butylphenol.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 50 seconds, and the diffraction efficiency of the grating corresponding to the hologram was 16%.
  • Example 1 is the same as the other examples, except that the ratio of the high refractive index inert component to the photopolymerizable monomer is different, resulting in a large difference in the diffraction efficiency of the obtained grating, indicating that the high refractive index inert component and the photopolymerizable single
  • the proportion of the body has a great influence on the diffraction efficiency of the holographic grating, and the high content of the high refractive index inert component reduces the diffraction efficiency.
  • a directly printable image recording material comprising 60 wt.% photopolymerizable monomer, 1.95 wt.% photoinitiator, 38 wt.% high refractive index inert component, and 0.05 wt.% thermal polymerization inhibitor Its viscosity is 454 mPa ⁇ s.
  • the photoinitiator is Irgacure 184 / dibenzoyl peroxide.
  • the high refractive index inert component is nano zinc sulfide, and the thermal polymerization inhibitor is p-benzoquinone.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 300 seconds, and the grating diffraction efficiency corresponding to the hologram was 89%.
  • a directly printable image recording material comprising 60 wt.% photopolymerizable monomer, 1.95 wt.% photoinitiator, 38 wt.% high refractive index inert component, and 0.05 wt.% thermal polymerization inhibitor It has a viscosity of 245 mPa ⁇ s.
  • the photopolymerizable monomer is a mixture of pentaerythritol triacrylate and pentaerythritol tetrakis(3-mercaptopropionate) in a molar ratio of 1:1, and the molar percentage of the silicon-based monomer is zero.
  • the photoinitiator is Irgacure 184 / dibenzoyl peroxide.
  • the high refractive index inert component is nano zinc sulfide, and the thermal polymerization inhibitor is p-benzoquinone.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 300 seconds, and the diffraction efficiency of the grating corresponding to the hologram was 0%.
  • Example 2 The other conditions of Example 2 were the same as those of Comparative Example 2 except that Comparative Example 2 did not contain a silicon-based monomer, indicating that the introduction of a silicon-based monomer can significantly improve the diffraction efficiency of the holographic grating.
  • a directly printable image recording material comprising 69.3 wt.% photopolymerizable monomer, 0.6 wt.% photoinitiator, 30 wt.% high refractive index inert component, and 0.1 wt.% thermal inhibition polymerization
  • the viscosity of the agent was 598 mPa ⁇ s.
  • the molar percentage of the silicon-based monomer was 57.2% in a mixture having a molar ratio of 4:3.
  • the photoinitiator is 3,3'-carbonylbis(7-diethylaminecoumarin)/N-phenylglycine.
  • the high refractive index inert component is a nematic liquid crystal P0616A, and the thermal polymerization inhibitor is a tris(N-nitroso-N-phenylhydroxylamine) aluminum salt.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 600 seconds, and the grating diffraction efficiency corresponding to the hologram was 94%.
  • a directly printable image recording material comprising 69.3 wt.% photopolymerizable monomer, 0.6 wt.% photoinitiator, 30 wt.% high refractive index inert component, and 0.1 wt.% thermal inhibition polymerization
  • the viscosity of the agent was 598 mPa ⁇ s.
  • the molar percentage of the silicon-based monomer was 57.2% in a mixture having a molar ratio of 4:3.
  • the photoinitiator is 3,3'-carbonylbis(7-diethylaminecoumarin)/N-phenylglycine.
  • the high refractive index inert component is a nematic liquid crystal P0616A, and the thermal polymerization inhibitor is a tris(N-nitroso-N-phenylhydroxylamine) aluminum salt.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the photoinitiator absorbs photons to form free radicals, thereby initiating polymerization of the monomers, resulting in the consumption of bright-cell monomers, interference of the monomer in the dark region of the interference field to the bright region
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam is carried.
  • Image information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 600 seconds, and the grating diffraction efficiency corresponding to the hologram was 14%.
  • Comparing Example 3 with Comparative Example 3 the others are the same, and only the exposure conditions are different, resulting in a large difference in grating diffraction efficiency, indicating that the exposure conditions have a large influence on the diffraction efficiency of the holographic grating, too low exposure light intensity and too short exposure time. It is difficult to form an ordered grating structure, and the diffraction efficiency is poor.
  • a directly printable image recording material comprising 78.8 wt.% photopolymerizable monomer, 1 wt.% photoinitiator, 20 wt.% high refractive index inert component, and 0.2 wt.% thermal polymerization inhibitor Its viscosity is 614 mPa ⁇ s.
  • the photoinitiator is Irgacure 784 / dibenzoyl peroxide.
  • the high refractive index inert component is nano titanium dioxide, and the thermal polymerization inhibitor is p-benzoquinone.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 600 seconds, and the grating diffraction efficiency corresponding to the hologram was 84%.
  • a directly printable image recording material comprising 54 wt.% of a photopolymerizable monomer, 5 wt.% of a photoinitiator, 40 wt.% of a high refractive index inert component, and 1 wt.% of a thermal polymerization inhibitor.
  • the viscosity was 559 mPa ⁇ s.
  • the molar percentage of the silicon-based monomer was 27.3% in terms of a mixture having a molar ratio of 8:3.
  • the photoinitiator is (2,4,6-trimethoxyphenyl)diphenylphosphine oxide.
  • the high refractive index inert component is nano zirconia, and the thermal polymerization inhibitor is a tris(N-nitroso-N-phenylhydroxylamine) aluminum salt.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 1000 seconds, and the grating diffraction efficiency corresponding to the hologram was 74%.
  • a directly printable image recording material comprising 60 wt.% photopolymerizable monomer, 0.2 wt.% photoinitiator, 38.5 wt.% high refractive index inert component, and 1.3 wt.% thermal inhibition polymerization
  • the viscosity of the agent was 538 mPa ⁇ s.
  • the molar percentage of the silicon-based monomer is 20% in a mixture having a molar ratio of 4:1.
  • the photoinitiator is 3,3'-carbonylbis(7-diethylaminecoumarin)/N-phenylglycine.
  • the high refractive index inert component is 18.5 wt.% liquid crystal E7 and 20 wt.% zinc sulfide nanoparticles, and the thermal polymerization inhibitor is p-tert-butylphenol.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 600 seconds, and the grating diffraction efficiency corresponding to the hologram was 92%.
  • a directly printable image recording material comprising 70 wt.% of a photopolymerizable monomer, 3 wt.% of a photoinitiator, 25 wt.% of a high refractive index inert component, and 2 wt.% of a thermal polymerization inhibitor.
  • the viscosity was 621 mPa ⁇ s.
  • the molar percentage of the silicon-based monomer was 33.3% in a molar ratio of 2:1.
  • the photoinitiator is Iragcure 184/dibenzoyl peroxide.
  • the high refractive index inert component is nano zinc sulfide, and the thermal polymerization inhibitor is p-benzoquinone.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 600 seconds, and the grating diffraction efficiency corresponding to the hologram was 82%.
  • a directly printable image recording material comprising 45 wt.% photopolymerizable monomer, 1.8 wt.% photoinitiator, 53.2 wt.% high refractive index inert component, and 0.5 wt.% thermal inhibition polymerization
  • the viscosity of the agent was 503 mPa ⁇ s.
  • the molar percentage of the silicon-based monomer was 66.6% in a molar ratio of 1:1:1.
  • the photoinitiator is 3,3'-carbonylbis(7-diethylaminecoumarin)/N-phenylglycine.
  • the high refractive index inert component is nano silica, and the thermal polymerization inhibitor is a tris(N-nitroso-N-phenylhydroxylamine) aluminum salt.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 200 seconds, and the grating diffraction efficiency corresponding to the hologram was 85%.
  • a directly printable image recording material comprising 75 wt.% photopolymerizable monomer, 0.7 wt.% photoinitiator, 24.1 wt.% high refractive index inert component, and 0.2 wt.% thermal inhibition polymerization
  • the viscosity of the agent was 416 mPa ⁇ s.
  • the mole percent of silicon based monomer is 62.5%.
  • the photoinitiator is 3,3'-carbonylbis(7-diethylaminecoumarin)/N-phenylglycine.
  • the high refractive index inert component is a nematic liquid crystal 5CB and 7CB, and the thermal polymerization inhibitor is p-tert-butylphenol.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 500 seconds, and the grating diffraction efficiency corresponding to the hologram was 80%.
  • a directly printable image recording material comprising 65 wt.% photopolymerizable monomer, 0.4 wt.% photoinitiator, 34.6 wt.% high refractive index inert component, and 0.5 wt.% thermal inhibition polymerization
  • the viscosity of the agent was 346 mPa ⁇ s.
  • the photoinitiator is 3,3'-carbonylbis(7-diethylaminecoumarin)/N-phenylglycine.
  • the high refractive index inert component is a nematic liquid crystal 5CB, and the thermal polymerization inhibitor is p-benzoquinone.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 800 seconds, and the grating diffraction efficiency corresponding to the hologram was 82%.
  • a directly printable image recording material comprising 54.4 wt.% photopolymerizable monomer, 0.3 wt.% photoinitiator, 44.7 wt.% high refractive index inert component, and 0.6 wt.% thermal resistance
  • a polymerization agent having a viscosity of 317 mPa ⁇ s.
  • the molar percentage of the silicon-based monomer is 100% in a mixture having a molar ratio of 4:1.
  • the photoinitiator is (2,4,6-trimethoxyphenyl)diphenylphosphine oxide.
  • the high refractive index inert component is liquid crystal E7, and the thermal polymerization inhibitor is a tris(N-nitroso-N-phenylhydroxylamine) aluminum salt.
  • the application can directly print a recording method of an image recording material, comprising the following steps:
  • the inert component of the bright region of the interference field diffuses into the dark region, and finally forms a microstructure in which the polymer-rich region and the inert component-rich region are periodically arranged, wherein a laser beam carries an image.
  • Information can be transferred to the image recording material;
  • the hologram image obtained in the step (3) was subjected to ultraviolet post-curing for 300 seconds, and the grating diffraction efficiency corresponding to the hologram was 76%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Textile Engineering (AREA)
  • Vascular Medicine (AREA)
  • Holo Graphy (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

一种可直接印刷的图像记录材料及制备方法,该图像记录材料包括25~78.8份的可光聚合单体、0.2~5份的光引发剂、20~70份的惰性组分以及0.05~2份的热阻聚剂,初始粘度为200~800mPa·s,可光聚合单体包括硫醇单体和烯烃单体,硫醇单体和烯烃单体中至少有一个为以笼型聚倍半硅氧烷为硅核的硅基单体。通过在可光聚合单体中引入POSS基硫醇单体或烯烃单体,协同其他材料组分,使得该记录材料的初始粘度为200~800mPa·s,同时利用POSS基可光聚合单体的低导热特性,确保了图像存储质量,实现了图像记录材料的连续化工业生产,降低了工艺成本,提高了生产效率。

Description

一种可直接印刷的图像记录材料、制备方法 【技术领域】
本发明属于功能材料领域,具体涉及一种可直接印刷的图像记录材料、制备方法及应用。
【背景技术】
激光全息图像由于同时存储了相干光的相位信息和振幅信息,可在2D平面上实现裸眼3D彩色图像的存储与读取,因此广泛应用于3D显示、远程呈现、数据存储、调制激光、高端防伪等领域。实现全息3D图像存储的关键是图像记录材料。通常,在全息图像存储前,将聚合物与其他功能组分通过溶剂混合均匀、涂膜、干燥,最后通过激光全息加工而实现图像的存储。但这种方式工艺复杂、浪费大量的溶剂,并引起环境污染。另一种方式是先通过聚合反应形成含有活性单体的凝胶网络【Macromolecules 2014,47(7):2306-2315】,再全息光照形成图像。这种方式中的材料难以长期存储、转运条件较高。第三种方式较为简单,具体是将活性单体与惰性组分混合均匀后,灌装到模具中,再通过全息光照存储图像。这种方式需要封装于玻璃盒中,显然提高了加工成本,且难以应用于连续化工业生产。
为了实现全息的工业化应用,发展一种可适用于连续化工业生产模式的材料是关键。全息的连续化工业生产需要将材料直接刷涂于透光性良好的塑料基材或玻璃基材上,再经由全息曝光记录图像。该方法要求材料可直接印刷,通常黏度为200~800mPa·s。但根据Einstein-Stocks方程,增加材料粘度往往降低体系内分子和粒子的扩散速率,导致全息图像存储质量变差,甚至无法记录【Macromolecules 2015,48(9):2958-2966】。这一矛盾限制了可印刷全息图像材料的发展,从而限制了全息的工业化应用。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种可直接印刷的图像记录材料及其记录方法,其目的在于通过在可光聚合单体中引入以笼型聚倍半硅氧烷为硅核的硅基单体,协同其他材料组分,使得该记录材料的初始粘度为200~800mPa·s,同时利用以笼型聚倍半硅氧烷为硅核的硅基单体的低导热特性,其反应过程中产生的内热促进惰性组分的扩散,确保了图像存储质量,实现了图像记录材料的连续化工业生产,并大幅降低工艺成本、提高了生产效率,由此解决了现有技术不能连续化工业生产,或增加粘度却导致图像存储质量变差的技术问题。
为实现上述目的,按照本发明的一个方面,提供了一种可直接印刷的图像记录材料,其特征在于,包括25~78.8质量份的可光聚合单体、0.2~5质量份的光引发剂、20~70质量份的惰性组分以及0.05~2质量份的热阻聚剂,所述图像记录材料的初始粘度为200~800mPa·s,其中:
所述可光聚合单体包括硫醇单体和烯烃单体,所述可光聚合单体中硫醇官能团和烯烃官能团的摩尔比为1:10~10:1,所述硫醇单体和所述烯烃单体中至少有一个为以笼型聚倍半硅氧烷为硅核的硅基单体,所述硅基单体在可光聚合单体中的摩尔百分数不低于10%。
优选地,所述可光聚合单体中硫醇官能团和烯烃官能团的摩尔比为1:5~5:1。
进一步优选地,所述可光聚合单体中硫醇官能团和烯烃官能团的摩尔比为1:3~3:1。
优选地,所述硅基单体具有如式(一)所示的结构:
Figure PCTCN2018088313-appb-000001
Figure PCTCN2018088313-appb-000002
当所述硫醇单体为式(一)所示的硅基硫醇单体时,其外层有机官能团R 1,R 2…R 8各自独立地为C aH 2a+1或C bH 2bSH,且至少有一个为C bH 2bSH;其中,a为0~9的整数,b为1~9的整数;
当所述烯烃单体为式(一)所示的硅基烯烃单体时,其外层有机官能团R 1,R 2…R 8各自独立地为C cH 2c+1或C dH 2d-C 2H 4,且至少有一个为C dH 2d-C 2H 4;其中,c为0~9的整数,d为1~7的整数。
优选地,所述硫醇单体不为硅基单体时,其为乙二醇二(3-巯基丙酸酯)、三羟甲基丙烷三(3-巯基丙酸酯)和季戊四醇四(3-巯基丙酸酯)中的一种或几种。
优选地,所述烯烃单体不为硅基单体时,其为三羟甲基丙烷三丙烯酸酯、季戊四醇四丙烯酸酯、季戊四醇三丙烯酸酯、超支化丙烯酸酯6361-100、异氰脲酸三烯丙酯、季戊四醇三烯丙基醚、二乙烯基砜、四乙烯基硅烷、四烯丙基硅烷、2,4,6-三乙烯基-2,4,6-三甲基环三硅氧烷、四甲基四乙烯基环四硅氧烷中的一种或几种。
优选地,所述光引发剂为玫瑰红/N-苯基甘氨酸、(2,4,6-三甲氧基苯基)二苯氧化膦、Irgacure 184/过氧化二苯甲酰、Irgacure 784/过氧化二苯甲酰和3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸中的一种或多种。
优选地,所述热阻聚剂为三(N-亚硝基-N-苯基羟胺)铝盐、对叔丁基苯酚和对苯醌中的一种或多种。
优选地,所述惰性组分的折射率大于1.5,其为向列相液晶、纳米硫化锌、纳米二氧化硅、纳米氧化锆和纳米二氧化钛中的一种或几种;所述向列相液晶优选为5CB、7CB、8OCB、P0616A和E7中一种或几种。
按照本发明的另一个方面,提供了一种所述的可直接印刷的图像记录材料的记录方法,其特征在于,包括如下步骤:
(1)将所述的图像记录材料的各组分加入深色反应器中,经过超声或 者搅拌混合,得到均匀的混合溶液;
(2)将步骤(1)所得的混合溶液均匀地刷涂在柔性薄膜上,获得柔性薄膜支撑的图像记录材料;
(3)将一束激光均分为光强相等的两束相干光,经过扩束形成干涉场,将步骤(2)所述的图像记录材料置于干涉场下进行全息曝光,得到全息图像;
(4)将步骤(3)中所得到的全息图像进行紫外光后固化。
优选地,步骤(1)所述混合时间为5~200分钟。
优选地,步骤(2)所述柔性薄膜选自聚对苯二甲酸乙二酯、聚氯乙烯膜、聚碳酸酯膜、聚乙烯膜和聚丙烯膜中的一种。
优选地,所述柔性薄膜基材透光率大于70%。
进一步优选地,所述柔性薄膜的透光率大于80%。
优选地,步骤(3)所述的激光波长为365纳米、405纳米、442纳米、460纳米或532纳米中的一种。
优选地,步骤(3)所述的全息曝光,曝光光强为0.5~50mW/cm 2,;曝光时间为5~200秒。
优选地,步骤(3)所述的全息曝光,曝光光强为1~40mW/cm 2,;曝光时间为5~150秒。
优选地,步骤(3)所述的全息曝光,曝光光强为3~30mW/cm 2;曝光时间为20~100秒。
优选地,步骤(4)所述的后固化时间为50~1000秒。
优选地,步骤(4)所述的后固化时间为200~800秒。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果。
(1)本发明的可直接印刷的图像记录材料,通过将高粘度、高刚性、低导热和低折射率的笼型聚倍半硅氧烷单体与其他可光聚合单体、以及高 折射率惰性组分复合,高折射率惰性组分为固体纳米粒子时会增加体系粘度,而液态液晶的引入会降低体系粘度,通过调配各种组分比例,得到所述图像记录材料的初始粘度为200~800mPa·s,可直接刷涂于薄膜上,而不必封装于玻璃盒中,适合印刷和连续生产,简单易操作;
(2)本发明的图像记录材料利用低导热单体将反应热转变成体系内热,加快惰性组分扩散、促进生成的聚合物与惰性组分之间的相分离;
(3)本发明的图像记录材料通过在可光聚合单体中引入以笼型聚倍半硅氧烷为核的硅基单体,协同其他材料组分,如高折射率惰性组分,使得该记录材料的初始粘度为200~800mPa·s,同时利用以笼型聚倍半硅氧烷为核的硅基单体的低导热特性,其反应过程中产生的内热促进惰性组分的扩散,确保了图像存储质量,巧妙地解决了增加图像记录材料粘度可用于直接印刷,但是增加体系粘度又会降低体系内分子和粒子的扩散速率,导致全息图像存储质量变差的矛盾。
(4)本发明可直接印刷的图像记录材料至少含有一种以笼型聚倍半硅氧烷为核的硅基单体,配合采用特定折射率范围的惰性组分,各组分协同配合,构成了不可分割的整体。
(5)本发明的记录方法的反应条件对氧气和水不敏感,无需苛刻的应用条件;经过相干激光曝光,可得到存储质量优异的全息图像,对应的全息光栅衍射效率不低于90%。
【附图说明】
图1是本发明制得的可印刷的图像记录材料的粘度与硅基单体含量的关系。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的 本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供的一种可直接印刷的图像记录材料,包括25~78.8质量份的可光聚合单体、0.2~5质量份的光引发剂、20~70质量份的惰性组分以及0.05~2质量份的热阻聚剂,所述图像记录材料的初始粘度为200~800mPa·s,其中:
可光聚合单体包括硫醇单体和烯烃单体,可光聚合单体中硫醇官能团和烯烃官能团的摩尔比为1:10~10:1,优选为1:5~5:1,进一步优选为1:3~3:1,硫醇单体和所述烯烃单体中至少有一个为以笼型聚倍半硅氧烷为硅核的硅基单体,所述硅基单体在可光聚合单体中的摩尔百分数不低于10%。
该硅基单体具有如式(一)所示的结构:
Figure PCTCN2018088313-appb-000003
当硫醇单体为式(一)所示的硅基硫醇单体时,其外层有机官能团R 1,R 2…R 8各自独立地为C aH 2a+1或C bH 2bSH,且至少有一个有机官能团为C bH 2bSH;其中,a为0~9的整数,b为1~9的整数。
当烯烃单体为式(一)所示的硅基烯烃单体时,其外层有机官能团R 1,R 2…R 8各自独立地为C cH 2c+1或C dH 2d-C 2H 4,且至少有一个为C dH 2d-C 2H 4;其中,c为0~9的整数,d为1~7的整数。
硫醇单体不为硅基单体时,可以选自乙二醇二(3-巯基丙酸酯)、三羟甲基丙烷三(3-巯基丙酸酯)和季戊四醇四(3-巯基丙酸酯)中的一种或几种。
烯烃单体不为硅基单体时,可以选自三羟甲基丙烷三丙烯酸酯、季戊 四醇四丙烯酸酯、季戊四醇三丙烯酸酯、超支化丙烯酸酯6361-100、异氰脲酸三烯丙酯、季戊四醇三烯丙基醚、二乙烯基砜、四乙烯基硅烷、四烯丙基硅烷、2,4,6-三乙烯基-2,4,6-三甲基环三硅氧烷、四甲基四乙烯基环四硅氧烷中的一种或几种。
图1是本发明制得的可印刷的图像记录材料的粘度与硅基单体含量的关系,从图1可以看出随着硅基单体含量增加,图像记录材料的粘度逐渐增加。
光引发剂为玫瑰红/N-苯基甘氨酸、(2,4,6-三甲氧基苯基)二苯氧化膦、Irgacure 184/过氧化二苯甲酰、Irgacure 784/过氧化二苯甲酰和3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸中的一种。
热阻聚剂为三(N-亚硝基-N-苯基羟胺)铝盐、对叔丁基苯酚和对苯醌中的一种。
惰性组分的折射率优选大于1.5,其为向列相液晶、纳米硫化锌、纳米二氧化硅、纳米氧化锆和纳米二氧化钛中的一种或几种;其中向列相液晶优选为5CB、7CB、8OCB、P0616A和E7中一种或几种。
上述可直接印刷的图像记录材料的记录方法,包括如下步骤:
(1)将所述的可直接印刷的图像记录材料的各组分加入深色反应器中,常温下(20~30℃)经过超声或者搅拌混合,混合时间为5~200分钟,得到均匀的混合溶液;
(2)将步骤(1)所得的混合溶液均匀地刷涂在柔性薄膜上,获得柔性薄膜支撑的图像记录材料;柔性薄膜选自聚对苯二甲酸乙二酯、聚氯乙烯膜、聚碳酸酯膜、聚乙烯膜和聚丙烯膜中的一种;所述柔性薄膜基材透光率优选大于70%,进一步优选柔性薄膜的透光率大于80%。
(3)将一束激光均分为光强相等的两束相干光,经过扩束形成干涉场,将步骤(2)所述的图像记录材料置于干涉场下进行全息曝光,在干涉场亮区,光引发剂吸收光子形成自由基,引发可光聚合单体进行聚合反应,导 致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中,得到全息图像;
(4)将步骤(3)中所得到的全息图像进行紫外光后固化。
步骤(3)所述的激光波长为365纳米、405纳米、442纳米、460纳米或532纳米中的一种。全息曝光,曝光光强为0.5~50mW/cm 2,优选1~40mW/cm 2,进一步优选3~30mW/cm 2;曝光时间为5~200秒,优选5~150秒,进一步优选20~100秒。
步骤(4)所述的后固化时间为50~1000秒,优选200~800秒。
作为优选的方案,本发明的可直接印刷的图像记录材料包含45~75份的可光聚合单体,0.2~3份的光引发剂,20~50份的高折射率惰性组分以及0.05~2份的热阻聚剂。图像记录材料初始粘度过大材料难以均匀印刷,粘度过小则材料会发生位移而难以固定,本发明的图像记录材料初始粘度在200mPa·s至800mPa·s之间,可直接刷涂于薄膜上而不必封装于玻璃盒中,经过相干激光曝光,可得到存储质量优异的全息图像;所述全息图像对应的光栅衍射效率不低于90%。衍射效率除与可光聚合单体与高折射率惰性组分的种类与含量相关外,还与加工光强、曝光时间等加工因素相关。优选的加工光强为1~40mW/cm 2,进一步优选3~30mW/cm 2;曝光时间优选为5~150秒,进一步优选20~100秒。
本发明将高粘度、高刚性、低导热和低折射率的笼型聚倍半硅氧烷单体与其他可光聚合单体、以及高折射率惰性组分复合,所述图像记录材料的初始粘度不低于200mPa·s,可直接刷涂于薄膜上,而不必封装于玻璃盒中,适合印刷和连续生产,简单易操作;可能的机理是:低导热单体将反应热转变成体系内热,加快惰性组分扩散、促进生成的聚合物与惰性组分之间的相分离;且本发明的记录方法的反应条件对氧气和水不敏感,无需 苛刻的应用条件;经过相干激光曝光,可得到存储质量优异的全息图像,对应的全息光栅衍射效率不低于90%。
以下为实施例:
实施例1:
一种可直接印刷的图像记录材料,包括65wt.%的可光聚合单体、3wt.%的光引发剂、30wt.%的高折射率惰性组分以及2wt.%的热阻聚剂,其粘度为382mPa·s。
所述的可光聚合单体为季戊四醇四丙烯酸酯、超支化丙烯酸酯6361-100和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=R 5=R 6=R 7=R 8=C 3H 6SH)、乙二醇二(3-巯基丙酸酯)按照摩尔比为1:1:1:2的混合物,硅基单体的摩尔百分数为20%。所述的光引发剂为玫瑰红/N-苯基甘氨酸。所述的高折射率惰性组分为向列相液晶8OCB,所述的热阻聚剂为对叔丁基苯酚。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将所述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合5分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚丙烯薄膜上。
(3)将一束532纳米激光均分为光强为5mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光30秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化50秒,全息图对应的光栅衍射效率为86%。
对比例1:
一种可直接印刷的图像记录材料,包括25wt.%的可光聚合单体、3wt.%的光引发剂、70wt.%的高折射率惰性组分以及2wt.%的热阻聚剂,其粘度为221mPa·s。
所述的可光聚合单体为季戊四醇四丙烯酸酯、超支化丙烯酸酯6361-100和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=R 5=R 6=R 7=R 8=C 3H 6SH)、乙二醇二(3-巯基丙酸酯)按照摩尔比为1:1:1:2的混合物,硅基单体的摩尔百分数为20%。所述的光引发剂为玫瑰红/N-苯基甘氨酸。所述的高折射率惰性组分为向列相液晶8OCB,所述的热阻聚剂为对叔丁基苯酚。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合5分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚丙烯薄膜上。
(3)将一束532纳米激光均分为光强为5mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光30秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化50秒,全息图对应的光栅衍射效率为16%。
实施例1与实施例1其他相同,仅高折射率惰性组分与可光聚合单体的比例有不同,导致得到的光栅衍射效率差别很大,表明高折射率惰性组分与可光聚合单体的比例对全息光栅的衍射效率影响较大,高折射率惰性 组分含量过高会降低衍射效率。
实施例2:
一种可直接印刷的图像记录材料,包括60wt.%的可光聚合单体、1.95wt.%的光引发剂、38wt.%的高折射率惰性组分以及0.05wt.%的热阻聚剂,其粘度为454mPa·s。
所述的可光聚合单体为季戊四醇三丙烯酸酯、季戊四醇三烯丙基醚和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=C 5H 11,R 5=R 6=R 7=R 8=C 2H 4SH)、三羟甲基丙烷三(3-巯基丙酸酯)按照摩尔比为3:3:3:2的混合物,硅基单体的摩尔百分数为27.3%。所述的光引发剂为Irgacure184/过氧化二苯甲酰。所述的高折射率惰性组分为纳米硫化锌,所述的热阻聚剂为对苯醌。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下超声混合20分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚对苯二甲酸乙二酯薄膜上。
(3)将一束365纳米激光均分为光强为20mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光100秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化300秒,全息图对应的光栅衍射效率为89%。
对比例2:
一种可直接印刷的图像记录材料,包括60wt.%的可光聚合单体、1.95wt.%的光引发剂、38wt.%的高折射率惰性组分以及0.05wt.%的热阻聚剂,其粘度为245mPa·s。
所述的可光聚合单体为季戊四醇三丙烯酸酯和季戊四醇四(3-巯基丙酸酯)按照摩尔比为1:1的混合物,硅基单体的摩尔百分数为0。所述的光引发剂为Irgacure 184/过氧化二苯甲酰。所述的高折射率惰性组分为纳米硫化锌,所述的热阻聚剂为对苯醌。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合20分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚对苯二甲酸乙二酯薄膜上。
(3)将一束365纳米激光均分为光强为20mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光100秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化300秒,全息图对应的光栅衍射效率为0%。
实施例2与对比例2其他条件相同,唯一区别是对比例2不含有硅基单体,表明硅基单体的引入可显著改善全息光栅的衍射效率。
实施例3:
一种可直接印刷的图像记录材料,包括69.3wt.%的可光聚合单体、0.6wt.%的光引发剂、30wt.%的高折射率惰性组分以及0.1wt.%的热阻聚剂, 其粘度为598mPa·s。
所述的可光聚合单体为异氰脲酸三烯丙酯和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=C 3H 7,R 5=R 6=R 7=R 8=C 3H 6SH)按照摩尔比为4:3的混合物,硅基单体的摩尔百分数为57.2%。所述的光引发剂为3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸。所述的高折射率惰性组分为向列相液晶P0616A,所述的热阻聚剂为三(N-亚硝基-N-苯基羟胺)铝盐。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合50分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚对苯二甲酸乙二酯薄膜上。
(3)将一束442纳米激光均分为光强为3mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光30秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化600秒,全息图对应的光栅衍射效率为94%。
对比例3:
一种可直接印刷的图像记录材料,包括69.3wt.%的可光聚合单体、0.6wt.%的光引发剂、30wt.%的高折射率惰性组分以及0.1wt.%的热阻聚剂,其粘度为598mPa·s。
所述的可光聚合单体为异氰脲酸三烯丙酯和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=C 3H 7,R 5=R 6=R 7=R 8=C 3H 6SH)按照摩尔 比为4:3的混合物,硅基单体的摩尔百分数为57.2%。所述的光引发剂为3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸。所述的高折射率惰性组分为向列相液晶P0616A,所述的热阻聚剂为三(N-亚硝基-N-苯基羟胺)铝盐。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合50分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚对苯二甲酸乙二酯薄膜上。
(3)将一束442纳米激光均分为光强为0.5mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光5秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化600秒,全息图对应的光栅衍射效率为14%。
实施例3与对比例3比较,其他相同,仅曝光条件不同,导致光栅衍射效率差异很大,表明曝光条件对全息光栅的衍射效率影响较大,过低的曝光光强与过短的曝光时间难以形成有序的光栅结构,衍射效率较差。
实施例4:
一种可直接印刷的图像记录材料,包括78.8wt.%的可光聚合单体、1wt.%的光引发剂、20wt.%的高折射率惰性组分以及0.2wt.%的热阻聚剂,其粘度为614mPa·s。
所述的可光聚合单体为季戊四醇四(3-巯基丙酸酯)和以POSS为核的烯烃单体(式(一)结构中R 1=R 2=R 3=R 4=R 5=R 6=R 7=R 8=C 2H 4-C 2H 4)、三羟甲 基丙烷三丙烯酸酯按照摩尔比为5:1:4的混合物,硅基单体的摩尔百分数为10%。所述的光引发剂为Irgacure 784/过氧化二苯甲酰。所述的高折射率惰性组分为纳米二氧化钛,所述的热阻聚剂为对苯醌。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合200分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚碳酸酯薄膜上。
(3)将一束532纳米激光均分为光强为10mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光10秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化600秒,全息图对应的光栅衍射效率为84%。
实施例5:
一种可直接印刷的图像记录材料,包括54wt.%的可光聚合单体、5wt.%的光引发剂、40wt.%的高折射率惰性组分以及1wt.%的热阻聚剂,其粘度为559mPa·s。
所述的可光聚合单体为季戊四醇四(3-巯基丙酸酯)和以POSS为核的烯烃单体(式(一)结构中R 1=R 2=R 3=R 4=R 5=R 6=R 7=R 8=C 2H 4)按照摩尔比为8:3的混合物,硅基单体的摩尔百分数为27.3%。所述的光引发剂为(2,4,6-三甲氧基苯基)二苯氧化膦。所述的高折射率惰性组分为纳米氧化锆,所述的热阻聚剂为三(N-亚硝基-N-苯基羟胺)铝盐。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合100分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚乙烯薄膜上。
(3)将一束405纳米激光均分为光强为50mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光200秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化1000秒,全息图对应的光栅衍射效率为74%。
实施例6:
一种可直接印刷的图像记录材料,包括60wt.%的可光聚合单体、0.2wt.%的光引发剂、38.5wt.%的高折射率惰性组分以及1.3wt.%的热阻聚剂,其粘度为538mPa·s。
所述的可光聚合单体为二乙烯基砜和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=C 5H 11,R 5=R 6=R 7=R 8=C 2H 4SH)按照摩尔比为4:1的混合物,硅基单体的摩尔百分数为20%。所述的光引发剂为3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸。所述的高折射率惰性组分为18.5wt.%液晶E7和20wt.%的硫化锌纳米粒子,所述的热阻聚剂为对叔丁基苯酚。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合50分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚氯乙烯薄膜上。
(3)将一束442纳米激光均分为光强为5mW/cm 2的两束相干光,经 过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光20秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化600秒,全息图对应的光栅衍射效率为92%。
实施例7:
一种可直接印刷的图像记录材料,包括70wt.%的可光聚合单体、3wt.%的光引发剂、25wt.%的高折射率惰性组分以及2wt.%的热阻聚剂,其粘度为621mPa·s。
所述的可光聚合单体为乙二醇二(3-巯基丙酸酯)和以POSS为核的烯烃单体(式(一)结构中R 1=R 2=R 3=R 4=C 2H 4-C 2H 4,R 5=R 6=R 7=R 8=CH 3)按照摩尔比为2:1的混合物,硅基单体的摩尔百分数为33.3%。所述的光引发剂为Iragcure184/过氧化二苯甲酰。所述的高折射率惰性组分为纳米硫化锌,所述的热阻聚剂为对苯醌。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合50分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚氯乙烯薄膜上。
(3)将一束460纳米激光均分为光强为10mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光60秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向 暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化600秒,全息图对应的光栅衍射效率为82%。
实施例8:
一种可直接印刷的图像记录材料,包括45wt.%的可光聚合单体、1.8wt.%的光引发剂、53.2wt.%的高折射率惰性组分以及0.5wt.%的热阻聚剂,其粘度为503mPa·s。
所述的可光聚合单体为季戊四醇四(3-巯基丙酸酯)、四乙烯基硅烷和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=R 5=R 6=R 7=OH,R 8=C 9H 18SH)按照摩尔比为1:1:1的混合物,硅基单体的摩尔百分数为66.6%。所述的光引发剂为3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸。所述的高折射率惰性组分为纳米二氧化硅,所述的热阻聚剂为三(N-亚硝基-N-苯基羟胺)铝盐。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下超声混合100分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚氯乙烯薄膜上。
(3)将一束460纳米激光均分为光强为2mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光100秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化200秒,全息 图对应的光栅衍射效率为85%。
实施例9:
一种可直接印刷的图像记录材料,包括75wt.%的可光聚合单体、0.7wt.%的光引发剂、24.1wt.%的高折射率惰性组分以及0.2wt.%的热阻聚剂,其粘度为416mPa·s。
所述的可光聚合单体为三羟甲基丙烷三(3-巯基丙酸酯)、2,4,6-三乙烯基-2,4,6-三甲基环三硅氧烷和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=R 5=R 6=R 7=OH,R 8=C 9H 18SH)按照摩尔比为3:2:3的混合物,硅基单体的摩尔百分数为62.5%。所述的光引发剂为3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸。所述的高折射率惰性组分为向列相液晶5CB和7CB,所述的热阻聚剂为对叔丁基苯酚。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下搅拌混合200分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚氯乙烯薄膜上。
(3)将一束442纳米激光均分为光强为30mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光20秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化500秒,全息图对应的光栅衍射效率为80%。
实施例10:
一种可直接印刷的图像记录材料,包括65wt.%的可光聚合单体、0.4 wt.%的光引发剂、34.6wt.%的高折射率惰性组分以及0.5wt.%的热阻聚剂,其粘度为346mPa·s。
所述的可光聚合单体为以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=C 5H 11O,R 5=R 6=R 7=R 8=C 7H 14SH)和四烯丙基硅烷按照摩尔比为1:4的混合物,硅基单体的摩尔百分数为100%。所述的光引发剂为3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸。所述的高折射率惰性组分为向列相液晶5CB,所述的热阻聚剂为对苯醌。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下超声混合30分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚氯乙烯薄膜上。
(3)将一束460纳米激光均分为光强为5mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光25秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化800秒,全息图对应的光栅衍射效率为82%。
实施例11:
一种可直接印刷的图像记录材料,包括54.4wt.%的可光聚合单体、0.3wt.%的光引发剂、44.7wt.%的高折射率惰性组分以及0.6wt.%的热阻聚剂,其粘度为317mPa·s。
所述的可光聚合单体为四甲基四乙烯基环四硅氧烷和以POSS为核的硫醇单体(式(一)结构中R 1=R 2=R 3=R 4=C 3H 7O,R 5=R 6=R 7=R 8=C 3H 6SH) 按照摩尔比为4:1的混合物,硅基单体的摩尔百分数为100%。所述的光引发剂为(2,4,6-三甲氧基苯基)二苯氧化膦。所述的高折射率惰性组分为液晶E7,所述的热阻聚剂为三(N-亚硝基-N-苯基羟胺)铝盐。
所述的应用可直接印刷图像记录材料的记录方法,包括以下步骤:
(1)将上述的可直接印刷的图像记录材料加入深色反应器中,常温下超声混合50分钟,得到均匀的混合溶液。
(2)将步骤(1)所得的混合溶液均匀地刷涂在聚氯乙烯薄膜上。
(3)将一束405纳米激光均分为光强为4mW/cm 2的两束相干光,经过扩束形成干涉场,将步骤(2)所述的薄膜置于干涉场下进行全息曝光40秒,形成干涉图案;在干涉场亮区,光引发剂吸收光子形成自由基,进而引发单体进行聚合反应,导致亮区单体被消耗,干涉场暗区的单体扩散至亮区参与聚合反应;同时,由于化学势的变化,干涉场亮区的惰性组分向暗区扩散,最终形成富聚合物区与惰性组分富集区呈周期性排列的微观结构,其中一束激光携带图像信息,就可转印到所述的图像记录材料中;
(4)将步骤(3)中所得到的全息图像进行紫外后固化300秒,全息图对应的光栅衍射效率为76%。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可直接印刷的图像记录材料,其特征在于,包括25~78.8质量份的可光聚合单体、0.2~5质量份的光引发剂、20~70质量份的惰性组分以及0.05~2质量份的热阻聚剂,所述图像记录材料的初始粘度为200~800mPa·s,其中:
    所述可光聚合单体包括硫醇单体和烯烃单体,所述可光聚合单体中硫醇官能团和烯烃官能团的摩尔比为1:10~10:1,所述硫醇单体和所述烯烃单体中至少有一个为以笼型聚倍半硅氧烷为硅核的硅基单体,所述硅基单体在可光聚合单体中的摩尔百分数不低于10%。
  2. 如权利要求1所述的图像记录材料,其特征在于,所述硅基单体具有如式(一)所示的结构:
    Figure PCTCN2018088313-appb-100001
    当所述硫醇单体为式(一)所示的硅基硫醇单体时,其外层有机官能团R 1,R 2…R 8各自独立地为C aH 2a+1或C bH 2bSH,且至少有一个为C bH 2bSH;其中,a为0~9的整数,b为1~9的整数;
    当所述烯烃单体为式(一)所示的硅基烯烃单体时,其外层有机官能团R 1,R 2…R 8各自独立地为C cH 2c+1或C dH 2d-C 2H 4,且至少有一个为C dH 2d-C 2H 4;其中,c为0~9的整数,d为1~7的整数。
  3. 如权利要求1或2所述的图像记录材料,其特征在于,所述硫醇单体不为硅基单体时,其为乙二醇二(3-巯基丙酸酯)、三羟甲基丙烷三(3-巯基丙酸酯)和季戊四醇四(3-巯基丙酸酯)中的一种或几种。
  4. 如权利要求1或2所述的图像记录材料,其特征在于,所述烯烃单体不为硅基单体时,其为三羟甲基丙烷三丙烯酸酯、季戊四醇四丙烯酸酯、季戊四醇三丙烯酸酯、超支化丙烯酸酯6361-100、异氰脲酸三烯丙酯、季戊四醇三烯丙基醚、二乙烯基砜、四乙烯基硅烷、四烯丙基硅烷、2,4,6-三乙烯基-2,4,6-三甲基环三硅氧烷、四甲基四乙烯基环四硅氧烷中的一种或几种。
  5. 如权利要求1或2所述的图像记录材料,其特征在于,所述光引发剂为玫瑰红/N-苯基甘氨酸、(2,4,6-三甲氧基苯基)二苯氧化膦、Irgacure 184/过氧化二苯甲酰、Irgacure 784/过氧化二苯甲酰和3,3'-羰基双(7-二乙胺香豆素)/N-苯基甘氨酸中的一种或多种。
  6. 如权利要求1或2所述的图像记录材料,其特征在于,所述热阻聚剂为三(N-亚硝基-N-苯基羟胺)铝盐、对叔丁基苯酚和对苯醌中的一种或多种。
  7. 如权利要求1或2所述的图像记录材料,其特征在于,所述惰性组分的折射率大于1.5,其为向列相液晶、纳米硫化锌、纳米二氧化硅、纳米氧化锆和纳米二氧化钛中的一种或几种;所述向列相液晶优选为5CB、7CB、8OCB、P0616A和E7中一种或几种。
  8. 如权利要求1~7任意一项所述的可直接印刷的图像记录材料的记录方法,其特征在于,包括如下步骤:
    (1)将如权利要求1~7任意一项所述的图像记录材料的各组分加入深色反应器中,经过超声或者搅拌混合,得到均匀的混合溶液;
    (2)将步骤(1)所得的混合溶液均匀地刷涂在柔性薄膜上,获得柔性薄膜支撑的图像记录材料;
    (3)将一束激光均分为光强相等的两束相干光,经过扩束形成干涉场,将步骤(2)所述的图像记录材料置于干涉场下进行全息曝光,得到全息图像;
    (4)将步骤(3)中所得到的全息图像进行紫外光后固化。
  9. 如权利要求8所述的记录方法,其特征在于,步骤(3)所述的激光波长为365纳米、405纳米、442纳米、460纳米或532纳米中的一种。
  10. 如权利要求8所述的记录方法,其特征在于,步骤(3)所述的全息曝光,曝光光强为0.5~50mW/cm 2,优选1~40mW/cm 2,;曝光时间为5~200秒,优选5~150秒。
PCT/CN2018/088313 2017-08-30 2018-05-25 一种可直接印刷的图像记录材料、制备方法 WO2019041907A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/308,637 US11222662B2 (en) 2017-08-30 2018-05-25 Directly printable image recording material and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710765386.9 2017-08-30
CN201710765386.9A CN107599661B (zh) 2017-08-30 2017-08-30 一种可直接印刷的图像记录材料、制备方法

Publications (1)

Publication Number Publication Date
WO2019041907A1 true WO2019041907A1 (zh) 2019-03-07

Family

ID=61056568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088313 WO2019041907A1 (zh) 2017-08-30 2018-05-25 一种可直接印刷的图像记录材料、制备方法

Country Status (3)

Country Link
US (1) US11222662B2 (zh)
CN (1) CN107599661B (zh)
WO (1) WO2019041907A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117649863A (zh) * 2023-12-06 2024-03-05 四川大学 含poss纳米材料的光致聚合物全息存储材料、制备方法及应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107599661B (zh) 2017-08-30 2019-04-12 华中科技大学 一种可直接印刷的图像记录材料、制备方法
CN110527523B (zh) * 2018-05-23 2020-09-08 华中科技大学 一种双重图像存储材料、其制备方法和应用
CN113527594B (zh) * 2021-07-14 2022-07-05 上海理工大学 复合引发剂全息光致聚合物及其制备成全息记录膜的方法
CN114891226B (zh) * 2022-05-11 2023-08-15 广东工业大学 一种光固化3d打印的陶瓷前驱体浆料、其制备方法及陶瓷化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514845A (zh) * 2001-06-11 2004-07-21 �������⻯ѧƷ�ع����޹�˾ 具有复合结构的肟酯光引发剂
US20060194120A1 (en) * 2005-02-28 2006-08-31 Inphase Technologies, Inc. Holographic recording medium with control of photopolymerization and dark reactions
US20110027697A1 (en) * 2007-11-27 2011-02-03 Southbourne Investments Ltd. Holographic Recording Medium
CN107544207A (zh) * 2017-08-30 2018-01-05 华中科技大学 一种基于硫醇烯烃点击反应的全息光聚合物
CN107599661A (zh) * 2017-08-30 2018-01-19 华中科技大学 一种可直接印刷的图像记录材料、制备方法
CN107603642A (zh) * 2017-08-30 2018-01-19 华中科技大学 一种高衍射效率低驱动电压的全息聚合物分散液晶及其制备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1423757B1 (en) * 2001-08-21 2009-04-29 Ciba Holding Inc. Bathochromic mono- and bis-acylphosphine oxides and sulfides and their use as photoinitiators
CN100372897C (zh) * 2005-07-28 2008-03-05 同济大学 一种数码喷印用纳米油墨及其制备方法
US7773291B2 (en) * 2006-06-01 2010-08-10 Light Resonance Technologies, Llc. Light filter/modulator and array of filters/modulators
JP5553827B2 (ja) * 2008-06-06 2014-07-16 ビーエーエスエフ ソシエタス・ヨーロピア 光開始剤混合物
US20110207029A1 (en) * 2008-10-01 2011-08-25 Bayer Materialscience Ag Media for volume-holographic recording based on self-developing polymer
EP2370449B1 (en) * 2008-12-01 2013-08-14 Basf Se Silsesquioxane photoinitiators
JP6109569B2 (ja) * 2010-05-07 2017-04-05 住友ベークライト株式会社 回路基板用エポキシ樹脂組成物、プリプレグ、積層板、樹脂シート、プリント配線板用積層基材、プリント配線板、及び半導体装置
WO2012073659A1 (ja) * 2010-12-03 2012-06-07 関西ペイント株式会社 塗膜形成方法
CN103881508B (zh) * 2014-04-02 2016-04-27 武汉华工图像技术开发有限公司 一种模压全息信息记录材料
CN104109217B (zh) * 2014-06-23 2017-05-10 华中科技大学 一种全息记录材料、全息记录底板及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514845A (zh) * 2001-06-11 2004-07-21 �������⻯ѧƷ�ع����޹�˾ 具有复合结构的肟酯光引发剂
US20060194120A1 (en) * 2005-02-28 2006-08-31 Inphase Technologies, Inc. Holographic recording medium with control of photopolymerization and dark reactions
US20110027697A1 (en) * 2007-11-27 2011-02-03 Southbourne Investments Ltd. Holographic Recording Medium
CN107544207A (zh) * 2017-08-30 2018-01-05 华中科技大学 一种基于硫醇烯烃点击反应的全息光聚合物
CN107599661A (zh) * 2017-08-30 2018-01-19 华中科技大学 一种可直接印刷的图像记录材料、制备方法
CN107603642A (zh) * 2017-08-30 2018-01-19 华中科技大学 一种高衍射效率低驱动电压的全息聚合物分散液晶及其制备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117649863A (zh) * 2023-12-06 2024-03-05 四川大学 含poss纳米材料的光致聚合物全息存储材料、制备方法及应用
CN117649863B (zh) * 2023-12-06 2024-06-11 四川大学 含poss纳米材料的光致聚合物全息存储材料、制备方法及应用

Also Published As

Publication number Publication date
US20210183407A1 (en) 2021-06-17
CN107599661A (zh) 2018-01-19
CN107599661B (zh) 2019-04-12
US11222662B2 (en) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2019041907A1 (zh) 一种可直接印刷的图像记录材料、制备方法
Ni et al. 3D image storage in photopolymer/ZnS nanocomposites tailored by “photoinitibitor”
Peng et al. Monochromatic visible light “photoinitibitor”: Janus-faced initiation and inhibition for storage of colored 3D images
JP2008261919A (ja) ホログラム記録材料及びホログラム記録媒体
JP4155771B2 (ja) 体積型ホログラム記録用感光性組成物及びそれを用いた体積型ホログラム記録用感光性媒体
Natarajan et al. Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization
WO2005109115A1 (ja) ホログラム記録材料及びホログラム記録媒体
JP2010113341A (ja) ホログラム記録材料及びホログラム記録媒体
KR20070097040A (ko) 높은 측면 해상도를 갖는 굴절률 구배층을 제조하기 위한유기-무기 하이브리드 물질을 포함하는 광학소자 및 그의제조방법
JP2008083405A (ja) ホログラム記録材料及びホログラム記録媒体
JP2002236439A (ja) 体積型ホログラム記録用感光性組成物及び体積型ホログラム記録用感光性媒体
WO2019223074A1 (zh) 一种双重图像存储材料、其制备方法和应用
JPH06148880A (ja) 光記録膜及びその製造方法
CN107533318A (zh) 全息记录组合物、全息记录介质和全息记录介质的制造方法
CN107603642B (zh) 一种高衍射效率低驱动电压的全息聚合物分散液晶及其制备
Kunieda et al. Photochemical and photophysical properties of C60 dendrimers studied by laser flash photolysis
TW200912483A (en) Optical compensation sheet, polarizing plate and TN-mode liquid crystal display device
Chen et al. Liquid crystal-assisted manufacturing of flexible holographic polymer nanocomposites for high-security level anticounterfeiting
CN107544207B (zh) 一种基于硫醇烯烃点击反应的全息光聚合物
JP5656867B2 (ja) グラジエント構造を有する光学的素子を製造するための方法および組成物
Hou et al. Polymerization-induced growth of microprotuberance on the photocuring coating
Horne et al. Structural Mediation of Interlayer Excitation Transport in Zirconium− Phosphonate Multilayers
Chen et al. Fabrication of Fluorescent Holographic Micropatterns Based on Azobenzene-Containing Host− Guest Complexes
Murray et al. Review of recent advances in photosensitive polymer materials and requirements for transmission diffractive optical elements for LED light sources
CN108139525A (zh) 光学相位差构件及投影机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849554

Country of ref document: EP

Kind code of ref document: A1