WO2019041807A1 - 高性能球形活性炭、其制备方法和用途 - Google Patents

高性能球形活性炭、其制备方法和用途 Download PDF

Info

Publication number
WO2019041807A1
WO2019041807A1 PCT/CN2018/081431 CN2018081431W WO2019041807A1 WO 2019041807 A1 WO2019041807 A1 WO 2019041807A1 CN 2018081431 W CN2018081431 W CN 2018081431W WO 2019041807 A1 WO2019041807 A1 WO 2019041807A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
spherical activated
hours
spherical
temperature
Prior art date
Application number
PCT/CN2018/081431
Other languages
English (en)
French (fr)
Inventor
常明珠
Original Assignee
深圳市环球绿地新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市环球绿地新材料有限公司 filed Critical 深圳市环球绿地新材料有限公司
Priority to KR1020207009301A priority Critical patent/KR102642123B1/ko
Priority to EP18852465.6A priority patent/EP3677544A4/en
Priority to US16/652,858 priority patent/US20200231447A1/en
Publication of WO2019041807A1 publication Critical patent/WO2019041807A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D5/00Composition of materials for coverings or clothing affording protection against harmful chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28019Spherical, ellipsoidal or cylindrical
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Definitions

  • the invention belongs to the technical field of adsorption materials, and particularly relates to high performance spherical activated carbon, a preparation method thereof and use thereof.
  • Activated carbon has a wide range of non-specific adsorption properties and is therefore the most widely used adsorbent.
  • Activated carbon is generally obtained by carbonizing a carbon-containing starting compound, followed by activation, and the carbon-containing starting compound is preferably such a compound capable of producing an economically reasonable yield. This is because the weight loss caused by the departure of the volatile components during the carbonization process and subsequent burnout during the activation process is remarkable.
  • the properties of the activated carbon produced depend on the starting materials.
  • Conventional starting materials are coconut shell, charcoal and wood, peat, stone coal, asphalt, etc., due to its wide range of sources, so the application value of activated carbon is more improved.
  • activated carbon can be used in different forms depending on the process, such as powdered carbon, chipped carbon, Kornkohle, Formkohle, and spherical activated carbon used since the late 1970s. .
  • Spherical activated carbon has numerous advantages over other forms of activated carbon such as powdered carbon, chipped carbon, granular carbon, shaped carbon, etc., which makes it useful or even essential for certain applications: it It is free-flowing, wear-resistant or more accurate, dust-free, and hard. Spherical activated carbon is highly desirable, for example, for a particular application, because of its particular shape, and also because of its high wear resistance.
  • Spherical activated carbon is still produced today mainly through multi-stage and very expensive methods.
  • the most widely known methods include the production of small spheres from stone coal tar pitch and suitable asphalt residues from the petrochemical industry, oxidizing the asphalt so that they are not meltable and then carbonizing and activating at low temperatures.
  • spherical activated carbon can also be made from bitumen in a multi-stage process. These multi-stage processes are very expensive, and the high cost associated with such spherical activated carbon prevents many applications in which spherical activated carbon would have been preferred for its performance.
  • a spherical activated carbon which, when it has a specific specific surface area, can have mechanical properties superior to those of the prior art. Moreover, the spherical activated carbon can obtain as large a particle size as possible while avoiding a decrease in its performance. Further, there is a need to develop a spherical activated carbon preparation method that is more stable and suitable for large-scale production.
  • the present invention provides a spherical activated carbon having a specific surface area B of less than 1250 m 2 /g.
  • 600m 2 / g ⁇ B ⁇ 1200m 2 / g 600m 2 / g ⁇ B ⁇ 1200m 2 / g .
  • 700m 2 / g ⁇ B ⁇ 1100m 2 / g 700m 2 / g ⁇ B ⁇ 1100m 2 / g .
  • the spherical activated carbon may have a median particle diameter D 50 of 0.2 to 1.5 mm, for example, 0.5 to 1.3 mm, such as 0.7 to 1.2 mm, and specifically 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9. Mm, 1.0 mm, 1.1 mm or 1.2 mm.
  • the spherical activated carbon has a median pore diameter of from 1 to 4 nm, such as from 1.5 to 3.8 nm, such as from 1.8 to 3.8 nm.
  • the spherical activated carbon may have a compressive strength of 10 to 300 N, for example 40 to 150 N, such as 50 to 140 N, such as 50 to 130 N.
  • the compressive strength refers to the maximum pressure value that each spherical activated carbon can withstand.
  • the spherical activated carbon may have a cracking rate of less than 10.0%, such as 1.0 to 10.0%, such as 1.5 to 6.0%, preferably less than 5.0%, such as 3.0 to 5.0%.
  • the spherical activated carbon may have a bulk density of from 300 to 1000 g/L, preferably from 400 to 800 g/L, for example from 450 to 700 g/L.
  • the spherical activated carbon has an iodine adsorption value of from 400 to 1100 mg/g, preferably from 500 to 1000 mg/g, for example from 600 to 950 mg/g.
  • the raw material for the preparation of the spherical activated carbon is a spherical polymer.
  • the invention also provides a preparation method of the spherical activated carbon, comprising the following steps:
  • the polymer in the step 1), can be produced by mixing a monomer and an initiator to carry out a polymerization reaction.
  • the polymer can be a homopolymer or a copolymer.
  • the homopolymer refers to a polymer prepared by polymerization of a monomer, which refers to a polymer prepared by polymerization of two or more monomers.
  • the monomer may be selected from compounds having from 2 to 60 carbon atoms and having at least one carbon-carbon double bond, for example having from 2 to 20 carbon atoms and having at least one carbon-carbon double bond.
  • the monomer may be selected from the group consisting of ethylene, propylene, isopropylene, butene, isobutylene, pentene, isoamylene, neopentene, hexene, isohexene, neohexene, styrene, methyl Styrene, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, butadiene, pentadiene, isoprene, pentadiene, isohexadiene, divinylbenzene, diethylene glycol diethylene Ether.
  • the polymer matrix of the copolymer comprises a structural unit derived from a first monomer and a structural unit derived from a second monomer, wherein the first monomer has 2 to 10 carbon atoms and contains at least one a carbon-carbon double bond, the second monomer having 4 to 15 carbon atoms and containing at least two carbon-carbon double bonds.
  • the structural unit derived from the first monomer comprises from 75% to 98%, preferably from 80% to 90%, of the total structural unit of the polymer network;
  • the structural unit of the second monomer accounts for 25% to 2%, preferably 20% to 10%, of the total structural unit of the polymer network.
  • the first monomer is selected from the group consisting of styrene, methyl styrene, acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate and a monoolefin having 2 to 6 carbon atoms.
  • the monoolefin having 2 to 6 carbon atoms is, for example, ethylene, propylene, isopropylene, butene, isobutylene, pentene, isoamylene, neopentene, hexene, isohexene, and new ones. Alkene and the like.
  • the second monomer is selected from one of butadiene, pentadiene, isoprene, pentadiene, isohexadiene, divinylbenzene and diethylene glycol divinyl ether or More species.
  • the polymerization reaction may be a suspension polymerization reaction; preferably, the polymerization reaction is also carried out in the presence of water, a dispersant, and a co-dispersant.
  • the weight ratio of water: dispersant: co-dispersant is 800 to 1000: 0.5 to 3.0: 0.05 to 0.2;
  • the weight ratio of the monomer:initiator may be 1:0.003 to 0.01.
  • the weight ratio of the first monomer:second monomer:initiator can range from 0.75 to 0.98: 0.02 to 0.25: 0.003 to 0.01.
  • the water, the dispersing agent, the co-dispersing agent constitute an aqueous phase
  • the monomer of the homopolymer, the first monomer of the copolymer, the second monomer and/or the initiator constitute an oil phase; the oil phase and the water phase
  • the weight ratio can be 1:4-6.
  • the suspension polymerization reaction may include:
  • the components are added to the reaction vessel, and compressed air or nitrogen is introduced into the reaction vessel to maintain the pressure in the reactor at a positive pressure of 0.5 MPa or less, and the temperature is raised to 70 ° C to 90 ° C for 2 hours. After 24 hours, the temperature was further raised to 100 ° C to 150 ° C, and the temperature was maintained for 4 hours to 36 hours, followed by washing with water, drying, and sieving to obtain a spherical polymer.
  • the dispersing agent is an inorganic dispersing agent or an organic dispersing agent, or a combination thereof, such as a silicate, a carbonate or a phosphate, or a combination thereof, for example, Polyvinyl alcohol, gelatin, carboxymethyl cellulose or polyacrylate, or a combination thereof.
  • the co-dispersing agent is sodium lauryl sulfate, calcium dodecylbenzenesulfonate, sodium dodecylbenzenesulfonate, calcium petroleum sulfonate, sodium petroleum sulfonate or strontium stearate. Or a combination thereof.
  • the initiator is an organic peroxy compound, an inorganic peroxy compound or an azo compound, or a combination thereof.
  • the initiator is a diacyl peroxide, a dioxane, a peroxyester, an azobisisobutyronitrile or a persulfate, or a combination thereof.
  • the polymerization reaction can also be carried out in the presence of a porogen.
  • the porogen may be selected from the group consisting of paraffin, magnesium sulfate, sodium carbonate, gelatin or glycerin, or a combination thereof.
  • the spherical polymer may have a median particle diameter D 50 of 0.2 to 1.5 mm, such as 0.5 to 1.3 mm, such as 0.7 to 1.0 mm, specifically 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, 1.1 mm or 1.2 mm.
  • the polymer may be a sulfonated polymer or a non-sulfonated polymer.
  • the sulfonation can be carried out in situ during the sulfonation and/or carbonization process prior to the carbonization step.
  • the unsulfonated polymer can also be prepared according to known methods or commercially available.
  • the sulfonation can be carried out using materials known in the art, such as contacting a non-sulfonated polymer with a sulfonating agent.
  • the sulfonating agent may be selected from a mixture of one or more of sulfuric acid (such as concentrated sulfuric acid), fuming sulfuric acid, and SO 3 .
  • the total weight ratio of the unsulfonated spherical polymer to the sulfonating agent may be from 3:1 to 1:3, for example from 2:1 to 1:2, such as from 1:1 to 1:1.5.
  • the temperature of the sulfonation step can vary over a wide range.
  • the temperature of the sulfonation step may be 60-200 ° C, such as 70-180 ° C, for example 80-150 ° C;
  • the sulfonation step can be carried out while the temperature is raised within the above temperature range.
  • the rate of temperature rise may be no more than 10 ° C / min, such as no more than 5 ° C / min, such as no more than 3 ° C / min.
  • the sulfonation step can be carried out for a period of from 0.5 to 12 hours, preferably from 1 to 10 hours, such as from 2 to 10 hours.
  • the sulfonation is carried out under an inert gas atmosphere, and the inert gas may be selected from a mixture of one or more of nitrogen, helium, and argon.
  • the carbonization of step 1) can be carried out in an inert atmosphere or in a mixed atmosphere of an inert gas and oxygen.
  • the carbonization temperature may be from 100 to 950 ° C, for example from 150 to 900 ° C, such as from 300 to 850 ° C.
  • the onset temperature of the carbonization step may be equal to or higher than the termination temperature of the sulfonation temperature.
  • the carbonization step can be carried out while the temperature is raised within the above temperature range.
  • the rate of temperature rise may be no more than 10 ° C / min, such as no more than 5 ° C / min, such as no more than 3 ° C / min.
  • the carbonization may be carried out sequentially in 2 or more temperature zones, for example in 2 to 10 temperature zones. And preferably, the temperatures of the temperature zones are different from each other. Alternatively, carbonization can be carried out at a gradient rising temperature.
  • the carbonization may have the same or different heating rates in different temperature zones, and the same or different holding times.
  • the carbonization is first performed in the first temperature region, and then sequentially proceeds to the next temperature region, for example, the second temperature region is carbonized;
  • the temperature of the first temperature region may be It is 100 to 500 ° C, for example, 150 to 450 ° C; the temperature in the second temperature region may be higher than the first temperature region, for example, 500 to 950 ° C, such as 650 to 950 ° C.
  • the carbonization time is from 30 minutes to 10 hours, such as from 1 to 8 hours, such as from 2 to 6 hours.
  • the inert gas is selected from at least one of nitrogen, helium, and argon;
  • the volume percentage of oxygen in the mixed atmosphere is 1-5%.
  • the spherical polymer can be sulfonated in situ during carbonization.
  • the activation of step 2) may comprise a first activation step and a second activation step.
  • the first activating step is carried out in an atmosphere containing water vapor; the second activating step is carried out in an atmosphere containing CO 2 .
  • the temperature of the first activation treatment is 700-1300 ° C, such as 800-1200 ° C, such as 850-950 ° C; the time of the first activation step may be 1-24 hours, such as 5-15 hours , such as 6-12 hours.
  • the atmosphere of the first activation step comprises or consists of a mixture of water vapor, in particular water vapour/inert gas, preferably water vapour/nitrogen.
  • the volume ratio (flow ratio) of the nitrogen gas and the water vapor is 3:1 or more, for example, 4:1 to 10:1, preferably 4:1 to 8:1.
  • the atmosphere may not contain other gases, for example, does not contain carbon monoxide (e.g. CO 2), oxygen, and ammonia.
  • carbon monoxide e.g. CO 2
  • oxygen e.g. oxygen
  • ammonia e.g.
  • the temperature of the second activation step is 700-1300 ° C, preferably 800-1200 ° C, for example 850-950 ° C; the time of the second activation step is 1-10 hours, for example 3-8 hour.
  • the atmosphere of the second activation step comprises CO 2 , such as CO 2 or a mixture of CO 2 and an inert gas, such as a mixture of CO 2 and nitrogen.
  • nitrogen and CO 2 volume ratio can be 10: 1 to 1: 10, such as 10: 1 to 2: 1, e.g. 8:1 to 4:1, such as 3:1 to 2:1.
  • the atmosphere of the second activation step may contain no other gases, for example no water vapor.
  • the temperature rise can be increased using a gradient.
  • it may be allowed to stand for 1 to 240 minutes, for example 5 to 150 minutes, when the temperature is raised to a certain temperature, and then the temperature is raised again.
  • the temperature raising process of the process of the invention may be continuous or batch.
  • the invention also provides the use of the spherical activated carbon as an adsorbent.
  • the spherical activated carbon of the present invention may be used for adsorption of harmful gases, such as CO, H 2 S, HCl, SO 2, NO X is one or more; or the spherical activated carbon used in the food industry, such As a preparation and / or bleaching food.
  • the present invention also provides the use of the above spherical activated carbon for the preparation of a medicament.
  • the present invention also provides an adsorbent comprising the above spherical activated carbon.
  • the present invention also provides a protective garment comprising the above spherical activated carbon.
  • the invention provides high performance spherical activated carbon, a preparation method thereof and use thereof.
  • the inventors have surprisingly found that using the preparation method of the present invention, it is possible to prepare a spherical activated carbon having a large particle diameter, for example, a spherical activated carbon of 0.2 to 1.5 mm or 0.5 to 1.2 mm, even in a good yield and at a low cost, or even This makes it possible to prepare spherical activated carbon of 0.7-1.1 mm.
  • the activated carbon has excellent physical or mechanical properties as well as a significantly reduced cracking rate.
  • the activated carbon further has excellent adsorption characteristics can be efficiently adsorb the harmful gases, such as CO, H 2 S, HCl, SO 2, NO X is one or more; or, for the spherical activated carbon In the food industry, as a preparation and / or bleaching food.
  • harmful gases such as CO, H 2 S, HCl, SO 2
  • NO X is one or more; or, for the spherical activated carbon In the food industry, as a preparation and / or bleaching food.
  • the specific surface area in the examples was tested by a nitrogen physisorber of the model of Belsorp mini II from MicrotracBEL Corp.
  • the compressive strength was tested by the pressure tester of Shanghai Yihuan Instrument Technology Co., Ltd.
  • the spherical polymer obtained in the step 1.1 of a mass ratio of 1:1 was mixed with concentrated sulfuric acid, and then the mixture was placed in an acid-resistant rotary tube furnace, and the following heat treatment was carried out at a heating rate of 5 ° C/min under a nitrogen atmosphere:
  • the carbonized product obtained in step 1.2 is heated to 800 ° C at a rate of 3 ° C / min in a mixed atmosphere of steam and nitrogen at a flow rate ratio of 1:4.5 (L/min), after staying for 360 minutes. Then, it was heated to 950 ° C at a rate of 3 ° C/min under a mixed atmosphere of carbon dioxide and nitrogen at a flow rate ratio of 1:4 (L/min) for 120 min. The temperature was lowered to obtain spherical activated carbon GSC1 in a yield of 37% based on the polymer.
  • the product has a median diameter of 0.75 mm, a median pore diameter of 3.50 nm, a specific surface area of 958 m 2 /g, a compressive strength of 79.90 N, a bulk density of 470 g/L, and a cracking rate of 4.72%.
  • the spherical polymer obtained in the step 2.1 of a mass ratio of 1:1.5 was mixed with SO 3 , and then the mixture was placed in an acid-resistant rotary tube furnace, and the following heat treatment was carried out at a heating rate of 4 ° C/min under a helium atmosphere:
  • the heating treatment was carried out at a heating rate of 3 ° C / min in a mixed atmosphere of 5% by volume of oxygen:
  • the carbonized product obtained in step 1.2 is heated to 950 ° C at a rate of 3 ° C / min in a mixed atmosphere of water vapor and nitrogen at a volume ratio of 1:4, and then at a flow rate ratio for 360 min. It was heated to 950 ° C at a rate of 4 ° C/min under a mixed atmosphere of carbon dioxide and nitrogen of 1:3 (L/min) for 120 min. The temperature was lowered to obtain spherical activated carbon GSC2, and the yield was 39% based on the polymer.
  • the product has a median diameter of 1.15 mm, a median pore diameter of 1.90 nm, a specific surface area of 956 m 2 /g, a compressive strength of 52.76 N, a bulk density of 460 g/L, and a cracking rate of 4.62%.
  • the stirring is turned on, the liquid bead in the kettle is adjusted to an appropriate particle size, the temperature is raised to 90 ° C, the temperature is maintained for 9 hours, and then the temperature is raised to 120 ° C, and the temperature is kept for 20 hours, filtered, washed, dried and sieved to obtain a white spherical polymer 3.12. Kg.
  • step 3.1 Add the polymer obtained in step 3.1 to a 50-liter reaction kettle, add 10 kg of fuming sulfuric acid with a concentration of 105% by mass, raise the temperature to 110 ° C, and keep it for 16 hours. After cooling, slowly add water, and after the kettle is full, extract 1/3 of the liquid. The water was continuously added dropwise, and the operation was carried out until the concentration of sulfuric acid in the kettle was less than 5%, and dried to obtain 4.28 kg of polymer microspheres. Subsequently, the polymer microspheres were subjected to heat treatment at a heating rate of 3 ° C/min under a nitrogen atmosphere as follows:
  • the heating treatment was carried out at a heating rate of 3 ° C / min in a mixed atmosphere of 1% by volume of oxygen:
  • the carbonized product obtained in step 1.2 is heated to 800 ° C at a rate of 3 ° C / min in a mixed atmosphere of water vapor and nitrogen at a volume ratio of 1:7 (L/min), after staying for 420 minutes. Then, it was heated to 950 ° C at a rate of 4 ° C/min under a mixed atmosphere of carbon dioxide and nitrogen at a flow rate ratio of 1:7 (L/min) for 200 min. The temperature was lowered to obtain spherical activated carbon GSC3, and the yield was 42% based on the polymer.
  • the product has a median diameter of 0.90 mm, a median pore diameter of 2.95 nm, a specific surface area of 1011 m 2 /g, a compressive strength of 78.24 N, a bulk density of 514 g/L, and a cracking rate of 3.32%.
  • the spherical polymer obtained in the step 4.1 of a mass ratio of 1:1.3 was mixed with concentrated sulfuric acid, and then the mixture was added to an acid-resistant rotary tube furnace, and the following heat treatment was carried out at a heating rate of 2 ° C/min under a nitrogen atmosphere:
  • the heating treatment was carried out at a heating rate of 3 ° C / min in a mixed atmosphere of 3% by volume of oxygen:
  • the carbonized product obtained in step 4.2 is heated to 750 ° C at a rate of 3 ° C / min in a mixed atmosphere of water vapor and nitrogen at a volume ratio of 1:6.5 (L / min), after staying for 300 min. Then, it was heated to 980 ° C at a rate of 2 ° C/min under a mixed atmosphere of carbon dioxide and nitrogen at a flow rate ratio of 1:5.5 (L/min) for 300 min. The temperature was lowered to obtain spherical activated carbon GSC4, and the yield was 41% based on the polymer.
  • the product has a median diameter of 0.55 mm, a median pore diameter of 2.19 nm, a specific surface area of 704 m 2 /g, a compressive strength of 124.72 N, a bulk density of 675 g/L, and a cracking rate of 4.92%.
  • the spherical activated carbon GSC1-GSC4 prepared in the above Examples 1-4 was subjected to measurement of iodine adsorption value, and the test method was carried out according to GB/T 12496.8-2015 "Determination of iodine adsorption value of wood activated carbon test method". The measurement results are shown in Table 1.
  • Example Iodine adsorption value (mg/g) Example 1 800 Example 2 780 Example 3 950 Example 4 600

Abstract

提供了一种高性能球形活性炭、其制备方法和用途。所述活性炭在较低的比表面积下具有优异的物理或机械性能。并且,所述制备方法能够以良好的收率和较低的成本制备得到具有较大粒径的球形活性炭。

Description

高性能球形活性炭、其制备方法和用途
本申请要求2017年9月1日向中国国家知识产权局提交的专利申请号为201710781322.8,发明名称为“高性能球形活性炭、其制备方法和用途”的在先申请的优先权。该在先申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于吸附材料技术领域,特别涉及高性能球形活性炭、其制备方法和用途。
背景技术
活性炭具有宽泛的非特异性吸附性能,并且因此是最广泛使用的吸附剂。活性炭通常是通过对含碳起始化合物进行碳化,随后进行活化来获得的,所述的含碳起始化合物优选是这样的能够产生经济合理的产率的化合物。这是因为在碳化过程中挥发性成分的离去以及随后在活化过程中的烧尽而产生的重量损失是显著的。
所生产的活性炭的性质(如细孔性或者粗孔性、坚固性或者脆性等)取决于起始材料的不同。常规的起始材料是椰子壳、木炭和木材、泥煤、石煤、沥青等,由于其来源广泛,因此使得活性炭的应用价值得到更多的提升。
但是,由于工艺的不同,活性炭可以以不同的形式来使用,例如有粉末碳,碎片状碳,粒状碳(Kornkohle),成型碳(Formkohle)以及从二十世纪七十年代末开始使用的球形活性炭。
球形活性炭相对于其他形式的活性炭例如粉末碳,碎片状碳,粒状碳,成型碳等而言具有众多的优点,这使得其对于某些应用而言是有用的或者甚至是必不可少的:它是自由流动的,耐磨损的或者更准确的说不起灰尘的,以及硬的。球形活性炭对于例如特定的应用领域而言是非常需要的,这是因为它特定的形状,以及还因为它高的耐磨损性。
球形活性炭今天仍然主要是通过多阶段和非常昂贵的方法来生产的。最广为人知的方法包括由石煤焦油沥青和来自石化工业的合适的沥青残留物来生产小球体,氧化所述的沥青以使得它们不可熔化,然后低温碳化和活化。例如,球形活性炭还可以在多阶段方法中由沥青来制造。这些多阶段方法是非常昂贵的,并且这种球形活性炭相关的高成本阻止了许多的应用,在这些应用中球形活性炭因为其性能而本应是优选的。
对于球形活性炭的生产工艺有很多,例如采用含碳原始材料经过碳化和活化处理,分别调控各个阶段的处理工艺参数,实现球形活性炭的制备。但是,当使用现有工艺制备球形活性炭时,还存在诸多缺陷。例如,现有工艺在实际生产中难以在得到较大粒径的球形活性炭的同时,获得令人满意的机械和强度特性,实际应用范围受到较大限制。并且,现有工艺难以实现球形活性炭的粒径、强度、孔径、比表面积等参数与其吸附性能的协同。为此,需要提供这样的球形活性炭,当其具有特定的比表面积时,能够具有优于现有技术的力学特性。并且,所述球形活性炭能够在避免其性能降低的前提下,获得尽可能大的粒径。更进一步地,还需要开发更为稳定、适合规模化生产的球形活性炭制备方法。
发明内容
为了改善现有技术的不足,本发明提供了一种球形活性炭,其比表面积B低于1250m 2/g。
例如,600m 2/g≤B≤1200m 2/g。作为实例,700m 2/g≤B≤1100m 2/g。
根据本发明,所述球形活性炭的中值粒径D 50可以为0.2-1.5mm,例如0.5-1.3mm,如0.7-1.2mm,具体可以为0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm或1.2mm。
优选地,所述球形活性炭的中值孔径为1~4nm,例如1.5~3.8nm,如1.8~3.8nm。
根据本发明,所述球形活性炭的抗压强度可以为10-300N,例如40-150N,如50-140N,如50-130N。
所述抗压强度是指每粒球形活性炭能够承受的最大压力值。
所述球形活性炭的开裂率可以为小于10.0%,如1.0~10.0%,如1.5~6.0%,优选小于5.0%,如3.0~5.0%。
根据本发明,所述球形活性炭的堆密度可以为300-1000g/L,优选为400-800g/L,例如450-700g/L。
根据本发明,所述球形活性炭的碘吸附值为400-1100mg/g,优选为500-1000mg/g,例如600-950mg/g。
根据本发明,所述球形活性炭的制备原料为球形聚合物。
本发明还提供一种所述球形活性炭的制备方法,包括如下步骤:
1)将球形聚合物碳化;
2)将步骤1)得到的产物活化。
根据本发明,步骤1)中,所述聚合物可以通过将单体、引发剂混合进行聚合反应制备。作为实例,所述聚合物可以是均聚物或共聚物。其中,所述均聚物是指由一种单体发生聚合反应制备的聚合物,所述共聚物是指由两种或更多种的单体发生聚合反应制备的聚合物。
根据本发明,所述单体可以选自具有2~60个碳原子,并且具有至少1个碳碳双键的化合物,例如具有2~20个碳原子,并且具有至少1个碳碳双键的化合物。例如,所述单体可以选自下列物质:乙烯、丙烯、异丙烯、丁烯、异丁烯、戊烯、异戊烯、新戊烯、己烯、异己烯、新己烯、苯乙烯、甲基苯乙烯、丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯、丁二烯、戊二烯、异戊二烯、戊二烯、异己二烯、二乙烯苯、二乙二醇二乙烯基醚。
作为选择,所述共聚物的聚合物母体包括衍生自第一单体的结构单元和衍生自第二单体的结构单元,其中所述第一单体具有2~10个碳原子且含有至少一个碳碳双键,所述第二单体具有4~15个碳原子且含有至少两个碳碳双键。
优选地,在所述共聚物的聚合物母体中,衍生自第一单体的结构单元占所述聚合物网络的总结构单元的75%到98%,优选为80%到90%;衍生自第二单体的结构单元占所述聚合物网络的总结构单元的25%到2%,优选为20%到10%。
根据本发明,所述第一单体选自苯乙烯、甲基苯乙烯、丙烯酸、甲基丙烯酸、丙烯酸甲酯、甲基丙烯酸甲酯和碳原子数为2~6的单烯烃中的一种或更多种,所述碳原子数为2~6的单烯烃例如为乙烯、丙烯、异丙烯、丁烯、异丁烯、戊烯、异戊烯、新戊烯、己烯、异己烯、新己烯等。
根据本发明,所述第二单体选自丁二烯、戊二烯、异戊二烯、戊二烯、异己二烯、二乙烯苯和二乙二醇二乙烯基醚中的一种或更多种。
根据本发明,所述聚合反应可以为悬浮聚合反应;优选地,聚合反应还在水、分散剂、助分散剂的存在下进行。
例如,水:分散剂:助分散剂的重量比为800~1000:0.5~3.0:0.05~ 0.2;
当所述聚合物为均聚物时,其单体:引发剂的重量比可以为1:0.003~0.01。
如果存在,第一单体:第二单体:引发剂的重量比可以为0.75~0.98:0.02~0.25:0.003~0.01。
优选地,水、分散剂、助分散剂构成水相,均聚物的单体、共聚物的第一单体、第二单体和/或引发剂构成油相;所述油相与水相的重量比可以为1:4~6。
根据本发明,悬浮聚合反应可以包括:
将各成分加入反应釜中,向反应釜中通入压缩空气或氮气,使反应釜中压力保持在表压小于等于0.5MPa的正压状态下,升温至70℃~90℃,保温2小时~24小时,再升温至100℃~150℃,保温4小时~36小时,然后水洗、干燥、筛分,得到球形聚合物。
在优选的实施方案中,分散剂为无机分散剂或有机分散剂或其组合,所述无机分散剂例如为硅酸盐、碳酸盐或磷酸盐、或其组合,所述有机分散剂例如为聚乙烯醇、明胶、羧甲基纤维素或聚丙烯酸盐、或其组合。
在优选的实施方案中,助分散剂为十二烷基硫酸钠、十二烷基苯磺酸钙、十二烷基苯磺酸钠、石油磺酸钙、石油磺酸钠或硬脂酸钡、或其组合。
在优选的实施方案中,所述引发剂为有机过氧化合物、无机过氧化合物或偶氮化合物、或其组合。
在优选的实施方案中,所述引发剂为过氧化二酰类、过氧化二烷类、过氧化酯类、偶氮二异丁腈或过硫酸盐、或其组合。
优选地,所述聚合反应还可以在致孔剂的存在下进行。所述致孔剂可以选自石蜡、硫酸镁、碳酸钠、明胶或甘油、或其组合。
根据本发明,所述球形聚合物的中值粒径D 50可以为0.2-1.5mm,例如0.5-1.3mm,如0.7-1.0mm,具体可以为0.5mm、0.6mm、0.7mm、0.8mm、0.9mm、1.0mm、1.1mm或1.2mm。
根据本发明,所述聚合物可以是经磺化的聚合物或未经磺化的聚合物。当使用未经磺化的聚合物时,可以在碳化步骤之前进行磺化和/或碳化过程中原位进行磺化。
作为实例,所述未经磺化的聚合物也可根据已知的方法制备或商购获得。
所述磺化可使用本领域已知的原料进行,例如将未经磺化的聚合物与磺化剂接触进行。所述磺化剂可以选自硫酸(如浓硫酸)、发烟硫酸、SO 3中的一种或多种的混合物。
根据本发明,未经磺化的球形聚合物与磺化剂的总重量比可以是3:1~1:3,例如2:1~1:2,如1:1~1:1.5。
所述磺化步骤的温度可以在很大的范围内变化。
例如,当在碳化步骤之前进行磺化时,磺化步骤的温度可以为60-200℃,如70-180℃,例如为80-150℃;
优选地,磺化步骤可以在上述温度范围内,在升温的同时进行反应。升温的速度可以为不超过10℃/min,例如不超过5℃/min,如不超过3℃/min。
磺化步骤的时间可以为0.5-12小时,优选1-10小时,如2-10小时。
优选地,所述磺化是在惰性气体气氛下进行的,所述惰性气体可以选自氮气、氦气、氩气中的一种或多种的混合物。
根据本发明,步骤1)的碳化可以在惰性气氛或者在惰性气体和氧气的混合气氛下进行。
通常,所述碳化的温度可以为100-950℃,例如150-900℃,如 300-850℃。
当在碳化步骤之前进行磺化时,碳化步骤的起始温度可以等于或高于磺化温度的终结温度。
优选地,碳化步骤可以在上述温度范围内,在升温的同时进行反应。升温的速度可以为不超过10℃/min,例如不超过5℃/min,如不超过3℃/min。
优选地,所述碳化可在2个或更多个温度区域依次进行,例如在2至10个温度区域依次进行。并且优选地,所述温度区域的温度彼此不相同。或者,碳化可以在梯度上升的温度下进行。
优选地,所述碳化在不同温度区域内可以具有相同或不同的升温速率,和相同或不同的保温时间。
优选地,当碳化在2个或更多个温度区域依次进行时,首先在第一温度区域碳化,然后依次进入下一温度区域,例如第二温度区域碳化;例如,第一温度区域的温度可以是100~500℃,例如150~450℃;第二温度区域的温度可以高于第一温度区域,例如500~950℃,如650~950℃。
优选地,所述碳化时间为30分钟-10小时,例如1-8小时,如2-6小时。
优选地,所述惰性气体选自氮气、氦气、氩气中的至少一种;
优选地,当碳化在惰性气体和氧气的混合气氛下进行时,混合气氛中氧气的体积百分比为1-5%。
应当理解,如果球形聚合物所处的温度既可以进行磺化,也可以使球形聚合物在碳化的过程中进行原位磺化。
根据本发明,步骤2)的活化可以包括第一活化步骤和第二活化步骤。
优选地,所述第一活化步骤在含有水蒸气的气氛中进行;所述第二活化步骤在含有CO 2的气氛中进行。
优选地,所述第一次活化处理的温度为700-1300℃,例如800-1200℃, 如850-950℃;所述第一活化步骤的时间可以为1-24小时,例如5-15小时,如6-12小时。
优选地,所述该第一活化步骤的气氛包含水蒸气,特别是水蒸气/惰性气体的混合物,优选是水蒸气/氮气的混合物,或者由上述组成。
优选地,所述氮气和水蒸气的体积比(流速比)在3:1以上,例如4:1~10:1,优选4:1~8:1。
根据本发明,所述第一活化步骤的气氛可以不包含其他气体,例如不包含氧化碳类(例如CO 2)、氧气和氨。
优选地,所述第二活化步骤的温度为700-1300℃,优选为800-1200℃,例如为850-950℃;所述第二活化步骤的时间为1-10小时,例如为3-8小时。
优选地,所述第二活化步骤的气氛包含CO 2,例如CO 2或者CO 2与惰性气体的混合物,如CO 2与氮气的混合物。
优选地,当所述第二活化气氛包含氮气与CO 2的混合物时,氮气与CO 2的体积比(流速比)可以为10:1~1:10,如10:1~2:1,例如8:1~4:1,如3:1~2:1。
根据本发明,所述第二活化步骤的气氛可以不包含其他气体,例如不包含水蒸气。
根据本发明,升温可以使用梯度升温。作为选择,可以在升温至一定温度时,停留1~240min,例如5~150min,然后再次升温。
优选地,本发明方法的升温过程可以是连续或间歇的。
本发明还提供所述球形活性炭作为吸附剂的用途。
本发明所述的球形活性炭可以用于吸附有害性气体,如CO、H 2S、HCl、SO 2、NO X中的一种或多种;或者,所述球形活性炭用于食品工业中,如作为准备和/或脱色食品。
本发明还提供上述球形活性炭用于制备药物的用途。
本发明还提供一种吸附剂,包含上述球形活性炭。
本发明还提供一件防护服,包含上述球形活性炭。
有益效果
本发明提供高性能球形活性炭、其制备方法和用途。发明人惊讶地发现,使用本发明的制备方法,能够以良好的收率和较低的成本制备得到具有较大粒径的球形活性炭,例如0.2-1.5mm或0.5-1.2mm的球形活性炭,甚至使得制备0.7-1.1mm的球形活性炭成为可能。并且,所述活性炭具有优异的物理或机械特性,以及显著降低的开裂率。并且,所述活性炭还具有优异的吸附特性,可以高效地吸附有害性气体,如CO、H 2S、HCl、SO 2、NO X中的一种或多种;或者,所述球形活性炭用于食品工业中,如作为准备和/或脱色食品。
具体实施方式
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
仪器和设备
实施例中的比表面积通过MicrotracBEL Corp.的型号为Belsorp mini II的氮气物理吸附仪测试。抗压强度通过上海益环仪器科技有限公司的压力测试仪测试。
实施例1
1.1球形聚合物基体的制备
在50升的聚合釜中加入18升水,加热至45℃,在搅拌状态下分别加入10g碳酸镁、20g明胶和0.15g次甲基蓝,搅匀后加入由3kg甲基苯乙烯、1kg双戊烯和20g过氧化苯甲酰混合而成的油相,再加入1.0kg石蜡,封闭聚合釜,向聚合釜内通入干净的压缩空气,保持釜内气相压力为0.02MPa。然后,开启搅拌,将釜内液珠调至适当粒度,升温至80℃,保温12小时,再升温至100℃,保温20小时,经过滤、洗涤、干燥和筛分,得到白球状聚合物2.35kg。
1.2磺化和碳化
将质量比为1:1的步骤1.1得到的球形聚合物与浓硫酸混合,随后将混合物加入耐酸旋转管式炉,在氮气气氛下,以5℃/min的加热速度进行如下加热处理:
加热至100℃,停留120分钟;
加热至150℃,停留240分钟;
以4℃/min的加热速度进行如下加热处理:
加热至300℃,停留120分钟;
加热至500℃,停留240分钟;
然后加热至650℃,停留100分钟。降温,得到碳化产物。
1.3活化
在旋转管式炉中,流速比为1:4.5(L/min)的水蒸汽和氮气的混合气氛下,将步骤1.2得到的碳化产物以3℃/min的速度加热至800℃,停留360min后,再在流速比为1:4(L/min)的二氧化碳和氮气的混合气氛下,以3℃/min的速度加热至950℃,停留120min。降温,得到球形 活性炭GSC1,收率以聚合物计为37%。产品中值粒径为0.75mm,中值孔径为3.50nm,比表面积为958m 2/g,抗压强度79.90N,堆密度470g/L,开裂率4.72%。
实施例2
2.1球形聚合物基体的制备
在50升的聚合釜中加入20升水,加热至40℃,在搅拌状态下分别加入10g碳酸钙、20g聚乙烯醇和0.15g石油磺酸钙,搅匀后加入由3kg苯乙烯、1kg异戊二烯和20g偶氮二异丁腈混合而成的油相,再加入1.6kg甘油,封闭聚合釜,向聚合釜内通入干净的压缩空气,保持釜内气相压力为0.04MPa。然后,开启搅拌,将釜内液珠调至适当粒度,升温至80℃,保温12小时,再升温至100℃,保温20小时,经过滤、洗涤、干燥和筛分,得到白球状聚合物2.67kg。
2.2磺化和碳化
将质量比为1:1.5的步骤2.1得到的球形聚合物与SO 3混合,随后将混合物加入耐酸旋转管式炉,在氦气气氛下,以4℃/min的加热速度进行如下加热处理:
加热至80℃,停留60分钟;
加热至150℃,停留300分钟;
以3℃/min的加热速度,在氧气的体积百分比为5%的混合气氛中,进行如下加热处理:
加热至200℃,停留90分钟;
加热至500℃,停留320分钟;
然后加热至600℃,停留120分钟。降温,得到碳化产物。
2.3活化
在旋转管式炉中,体积比为1:4的水蒸汽和氮气的混合气氛下,将步骤1.2得到的碳化产物以3℃/min的速度加热至950℃,停留360min后,再在流速比为1:3(L/min)的二氧化碳和氮气的混合气氛下,以4℃/min的速度加热至950℃,停留120min。降温,得到球形活性炭GSC2,收率以聚合物计为39%。产品中值粒径为1.15mm,中值孔径为1.90nm,比表面积为956m 2/g,抗压强度52.76N,堆密度460g/L,开裂率4.62%。
实施例3
3.1球形聚合物基体的制备
在50升的聚合釜中加入20升水,加热至40℃,在搅拌状态下分别加入12g碳酸镁、25g羧甲基纤维素钠和0.18g十二烷基苯磺酸钙,搅匀后加入由3.6kg二乙烯苯、1.2kg二乙二醇二乙烯基醚和25g过硫酸钠混合而成的油相,再加入2.2kg碳酸钠,封闭聚合釜,向聚合釜内通入干净的压缩空气,保持釜内气相压力为0.05MPa。然后,开启搅拌,将釜内液珠调至适当粒度,升温至90℃,保温9小时,再升温至120℃,保温20小时,经过滤、洗涤、干燥和筛分,得到白球状聚合物3.12kg。
3.2磺化和碳化
将步骤3.1得到的聚合物加入50升反应釜中,加入10kg质量浓度 为105%的发烟硫酸,升温至110℃,保温16小时,降温后缓慢滴加水,釜满后抽出1/3液体,继续滴加水,如此操作至釜中硫酸浓度小于5%,经干燥,得到聚合物微球4.28kg。随后在氮气气氛下,将所述聚合物微球以3℃/min的加热速度进行如下加热处理:
加热至120℃,停留110分钟;
加热至180℃,停留250分钟;
以3℃/min的加热速度,在氧气的体积百分比为1%的混合气氛中,进行如下加热处理:
加热至250℃,停留360分钟;
加热至450℃,停留240分钟;
然后加热至700℃,停留90分钟。降温,得到碳化产物。
3.3活化
在旋转管式炉中,体积比为1:7(L/min)的水蒸汽和氮气的混合气氛下,将步骤1.2得到的碳化产物以3℃/min的速度加热至800℃,停留420min后,再在流速比为1:7(L/min)的二氧化碳和氮气的混合气氛下,以4℃/min的速度加热至950℃,停留200min。降温,得到球形活性炭GSC3,收率以聚合物计为42%。产品中值粒径为0.90mm,中值孔径为2.95nm,比表面积为1011m 2/g,抗压强度78.24N,堆密度514g/L,开裂率3.32%。
实施例4
4.1球形聚合物基体的制备
在50升的聚合釜中加入18升水,加热至45℃,在搅拌状态下分别加入10g碳酸镁、20g明胶和0.15g次甲基蓝,搅匀后加入由3kg甲基苯乙烯、1kg双戊烯和20g过氧化苯甲酰混合而成的油相,再加入1.3kg硫酸镁,封闭聚合釜,向聚合釜内通入干净的压缩空气,保持釜内气相压力为0.02MPa。然后,开启搅拌,将釜内液珠调至适当粒度,升温至80℃,保温12小时,再升温至100℃,保温20小时,经过滤、洗涤、干燥和筛分,得到白球状聚合物2.51kg。
4.2磺化和碳化
将质量比为1:1.3的步骤4.1得到的球形聚合物与浓硫酸混合,随后将混合物加入耐酸旋转管式炉,在氮气气氛下,以2℃/min的加热速度进行如下加热处理:
加热至60℃,停留60分钟;
加热至130℃,停留100分钟;
加热至160℃,停留150分钟;
以3℃/min的加热速度,在氧气的体积百分比为3%的混合气氛中,进行如下加热处理:
加热至400℃,停留240分钟;
加热至550℃,停留240分钟
然后加热至700℃,停留100分钟。降温,得到碳化产物。
4.3活化
在旋转管式炉中,体积比为1:6.5(L/min)的水蒸汽和氮气的混合气氛下,将步骤4.2得到的碳化产物以3℃/min的速度加热至750℃,停 留300min后,再在流速比为1:5.5(L/min)的二氧化碳和氮气的混合气氛下,以2℃/min的速度加热至980℃,停留300min。降温,得到球形活性炭GSC4,收率以聚合物计为41%。产品中值粒径为0.55mm,中值孔径2.19nm,比表面积为704m 2/g,抗压强度124.72N,堆密度675g/L,开裂率4.92%。
实施例5碘吸附值的测定
对上述实施例1-4制备得到的球形活性炭GSC1-GSC4进行碘吸附值的测定,测试方法根据GB/T 12496.8-2015《木质活性炭试验方法碘吸附值的测定》进行。所述测定结果如表1所示。
表1实施例1-4制备得到的球形活性炭的碘吸附值
实施例 碘吸附值(mg/g)
实施例1 800
实施例2 780
实施例3 950
实施例4 600
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种球形活性炭,其特征在于,所述活性炭的比表面积B低于1250m 2/g;优选地,600m 2/g≤B≤1200m 2/g;例如700m 2/g≤B≤1100m 2/g。
  2. 根据权利要求1所述的球形活性炭,其特征在于,所述球形活性炭的中值粒径D 50可以为0.2-1.5mm,例如0.5-1.3mm,如0.7-1.2mm;
    优选地,所述球形活性炭的中值孔径为1~4nm,例如1.5~3.8nm,如1.8~3.8nm;
    优选地,所述球形活性炭的抗压强度可以为10-300N,例如40-150N,如50-140N,如50-130N;
    优选地,所述球形活性炭的开裂率为小于10.0%,如1.0~10.0%,如1.5~6.0%,优选小于5.0%,如3.0~5.0%。
  3. 根据权利要求1或2所述的球形活性炭,其特征在于,所述球形活性炭的碘吸附值为400-1100mg/g,优选为500-1000mg/g,例如600-950mg/g;
    优选地,所述球形活性炭的堆密度可以为300-1000g/L,优选为400-800g/L,例如450-700g/L。
  4. 根据权利要求1-3任一项所述的球形活性炭,其特征在于,所述球形活性炭的制备原料为球形聚合物。
  5. 权利要求1-4中任一项所述的球形活性炭的制备方法,包括如下步骤:
    1)将球形聚合物碳化;
    2)将步骤1)得到的产物活化。
  6. 根据权利要求5所述的制备方法,其特征在于,步骤1)的碳化的温度可以为100-950℃,例如150-900℃,如300-850℃;
    所述的碳化的时间为30分钟-10小时,例如1-8小时,如2-6小时;
    步骤2)的活化可以包括第一活化步骤和第二活化步骤;
    所述第一次活化处理的温度为700-1300℃,例如800-1200℃,如850-950℃;
    所述第一活化步骤的时间可以为1-24小时,例如5-15小时,如6-12小时;
    优选地,所述第一活化步骤的气氛包含水蒸气,特别是水蒸气/惰性气体的混合物,优选是水蒸气/氮气的混合物,或者由上述组成;
    优选地,所述氮气和水蒸气的体积比(流速比)在3:1以上,例如4:1~10:1,优选4:1~8:1;
    所述第二活化步骤的温度为700-1300℃,优选为800-1200℃,例如为850-950℃;
    所述第二活化步骤的时间为1-10小时,例如为3-8小时;
    优选地,所述第二活化步骤的气氛包含CO 2,例如CO 2或者CO 2与惰性气体的混合物,如CO 2与氮气的混合物。
    优选地,当所述第二活化气氛包含氮气与CO 2的混合物时,氮气与CO 2的体积比(流速比)可以为10:1~1:10,如10:1~2:1,例如8:1~4:1,如3:1~2:1。
  7. 权利要求1-4中任一项所述的球形活性炭作为吸附剂的用途;
    优选地,所述球形活性炭用于吸附有害性气体,如CO、H 2S、HCl、SO 2、NO X中的一种或多种;
    优选地,所述球形活性炭用于食品工业中,如作为准备和/或脱色食品。
  8. 权利要求1-4中任一项所述的球形活性炭用于制备药物的用途。
  9. 一种吸附剂,包含权利要求1-4中任一项所述的球形活性炭。
  10. 一件防护服,包含权利要求1-4中任一项所述的球形活性炭。
PCT/CN2018/081431 2017-09-01 2018-03-30 高性能球形活性炭、其制备方法和用途 WO2019041807A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207009301A KR102642123B1 (ko) 2017-09-01 2018-03-30 고성능 구형 활성 탄소, 및 이의 제조 방법과 용도
EP18852465.6A EP3677544A4 (en) 2017-09-01 2018-03-30 HIGH PERFORMANCE SPHERICAL CHARCOAL, METHOD OF MANUFACTURING AND USING IT
US16/652,858 US20200231447A1 (en) 2017-09-01 2018-03-30 High-performance spherical activated carbon, preparation method therefor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710781322.8A CN108383117B (zh) 2017-09-01 2017-09-01 高性能球形活性炭、其制备方法和用途
CN201710781322.8 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019041807A1 true WO2019041807A1 (zh) 2019-03-07

Family

ID=63076422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/081431 WO2019041807A1 (zh) 2017-09-01 2018-03-30 高性能球形活性炭、其制备方法和用途

Country Status (6)

Country Link
US (1) US20200231447A1 (zh)
EP (1) EP3677544A4 (zh)
KR (1) KR102642123B1 (zh)
CN (1) CN108383117B (zh)
TW (1) TWI684568B (zh)
WO (1) WO2019041807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912059A (zh) * 2020-07-09 2022-01-11 中国科学院大连化学物理研究所 一种沥青基球形活性炭及其制备方法和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111017923B (zh) * 2019-12-13 2021-08-24 中国科学院化学研究所 一种自由基诱导可控微球型活性碳及其制备方法
EP4260715A1 (en) * 2020-12-11 2023-10-18 Shenzhen Global Greenland New Materials Co., Ltd. Application of spherical carbon in flue gas adsorption of heat-not-burn tobacco product
TWI793542B (zh) * 2021-03-08 2023-02-21 中國鋼鐵股份有限公司 蜂巢狀活性碳組成物、蜂巢狀活性碳及其製造方法
KR102473841B1 (ko) * 2021-08-30 2022-12-02 이기영 활성탄의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631516A (zh) * 2004-11-04 2005-06-29 太原璀鸿科技有限公司 具有优良中分子吸附性能的树脂基球形活性炭制备方法
CN101668587A (zh) * 2007-03-14 2010-03-10 布卢彻有限责任公司 基于活性炭的具有高的中孔和大孔率的高性能吸附剂
CN102259853A (zh) * 2011-06-15 2011-11-30 李钱胜 球形活性炭的制备方法及盘式造球机
CN104955463A (zh) * 2013-02-22 2015-09-30 株式会社吴羽 经口投药用吸附剂及肾疾病治疗剂及肝疾病治疗剂

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0535885U (ja) * 1991-10-16 1993-05-14 クラレケミカル株式会社 活性炭添着繊維
US6300276B1 (en) * 1996-08-20 2001-10-09 Mhb Filtration Gmbh & Co. Kg Granular activated carbon from distillation residues
KR100501830B1 (ko) * 2002-06-03 2005-07-20 한국화학연구원 구형 활성탄의 제조방법
CN1247452C (zh) * 2003-07-18 2006-03-29 中国科学院山西煤炭化学研究所 一种高强度树脂基球状活性炭的制备方法
DE102005062160A1 (de) * 2005-12-19 2007-06-21 BLüCHER GMBH Aktivkohle für die medizinische Verwendung
CN101157451B (zh) * 2007-09-16 2011-04-06 中国科学院山西煤炭化学研究所 一种树脂基球炭的制备方法
JP2010222215A (ja) * 2009-03-25 2010-10-07 Kuraray Co Ltd 球状活性炭およびその製造方法
JP5658884B2 (ja) * 2010-02-01 2015-01-28 旭有機材工業株式会社 球状フルフリルアルコール樹脂粒子の製造方法及びそれによって得られた球状フルフリルアルコール樹脂粒子並びにそれを用いて得られる球状炭素粒子及び球状活性炭粒子
JP5985027B2 (ja) * 2010-10-12 2016-09-06 フタムラ化学株式会社 経口投与用医薬用吸着剤の製造方法
CN103641115A (zh) * 2013-11-19 2014-03-19 苏州丹百利电子材料有限公司 球形活性炭的制备方法
CN103787331A (zh) * 2014-02-28 2014-05-14 东北林业大学 一种介孔发达的沥青基球形活性炭的制备方法
DE102016101215A1 (de) * 2015-12-10 2017-06-14 BLüCHER GMBH Verfahren zur Herstellung von Aktivkohle und auf diese Weise hergestellte Aktivkohle sowie deren Verwendung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1631516A (zh) * 2004-11-04 2005-06-29 太原璀鸿科技有限公司 具有优良中分子吸附性能的树脂基球形活性炭制备方法
CN101668587A (zh) * 2007-03-14 2010-03-10 布卢彻有限责任公司 基于活性炭的具有高的中孔和大孔率的高性能吸附剂
CN102259853A (zh) * 2011-06-15 2011-11-30 李钱胜 球形活性炭的制备方法及盘式造球机
CN104955463A (zh) * 2013-02-22 2015-09-30 株式会社吴羽 经口投药用吸附剂及肾疾病治疗剂及肝疾病治疗剂

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GAO, FENG ET AL.: "Preparation of Resin-base Spherical Activated Carbon and Study on Adsorption Properties towards CO2", JOURNAL OF FUEL CHEMISTRY AND TECHNOLOGY, vol. 42, no. 1, 31 January 2014 (2014-01-31), pages 116 - 120, XP009519782, ISSN: 0253-2409 *
See also references of EP3677544A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912059A (zh) * 2020-07-09 2022-01-11 中国科学院大连化学物理研究所 一种沥青基球形活性炭及其制备方法和应用

Also Published As

Publication number Publication date
EP3677544A4 (en) 2021-06-02
EP3677544A1 (en) 2020-07-08
US20200231447A1 (en) 2020-07-23
TWI684568B (zh) 2020-02-11
KR102642123B1 (ko) 2024-02-29
CN108383117B (zh) 2020-03-06
KR20200067138A (ko) 2020-06-11
TW201912576A (zh) 2019-04-01
CN108383117A (zh) 2018-08-10

Similar Documents

Publication Publication Date Title
WO2019041807A1 (zh) 高性能球形活性炭、其制备方法和用途
CN107108232B (zh) 活性炭、水热炭及其制备方法
US10105680B2 (en) Activated carbon with excellent adsorption performance and process for producing same
CN108946722B (zh) 孔径可控的球形活性炭的制备方法及其产物和用途
CN108946724B (zh) 表面含有磺酸基的球形活性炭的制备方法及其产物和用途
CN108840335A (zh) 过热水蒸气活化制备球形活性炭的方法及其产物和用途
CN108946721B (zh) 高抗压强度的球形活性炭及其制备方法和用途
CN108993383A (zh) 球形活性炭的制备和筛选方法
TWI673233B (zh) 球形活性炭的製備方法及其產物和用途
CN108946728B (zh) 高粒径多孔球形活性炭、其制备方法和用途
CN108940198B (zh) 负载金属铁元素的球形活性炭、其制备方法和用途
CN108996503B (zh) 球形活性炭的活化方法及其产物和用途
CN107445162A (zh) 长柄扁桃壳制备中孔型活性炭的方法
CN110734059B (zh) 一种低比表面积活性炭及其制备方法和用途
JPH08208212A (ja) 活性炭の製造方法
CN110723735A (zh) 球形超容炭、其制备方法和用途
CN108970578A (zh) 球形活性炭的制备和再生方法
JPS61151012A (ja) 炭化物の賦活方法
CN108975332B (zh) 高硬度活性炭、其制备方法和用途
CN108946723B (zh) 负载金属氧化物的球形活性炭、其制备方法和用途
EP0394350B1 (en) Hydrophobic carbon molecular sieves
US20240140800A1 (en) Nitrogen-doped porous carbon material and preparation method and use thereof
CN108658074A (zh) 一种制备和再生球形活性炭的联合制备工艺和装置
SU1042794A1 (ru) Способ получени сорбента
Ehigiamusoe et al. Porous polymer carbons. V. Macroporous carbons from crosslinked α‐chloroacrylonitrile polymers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852465

Country of ref document: EP

Effective date: 20200401