WO2019041383A1 - 电动汽车的供电系统、控制方法和电动汽车 - Google Patents

电动汽车的供电系统、控制方法和电动汽车 Download PDF

Info

Publication number
WO2019041383A1
WO2019041383A1 PCT/CN2017/101685 CN2017101685W WO2019041383A1 WO 2019041383 A1 WO2019041383 A1 WO 2019041383A1 CN 2017101685 W CN2017101685 W CN 2017101685W WO 2019041383 A1 WO2019041383 A1 WO 2019041383A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
electric vehicle
bus
voltage
battery
Prior art date
Application number
PCT/CN2017/101685
Other languages
English (en)
French (fr)
Inventor
李璟瑜
吴德平
Original Assignee
苏州达思灵新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州达思灵新能源科技有限公司 filed Critical 苏州达思灵新能源科技有限公司
Priority to EP17905917.5A priority Critical patent/EP3476647B1/en
Priority to KR1020187035378A priority patent/KR102179718B1/ko
Priority to RU2018142994A priority patent/RU2717704C1/ru
Priority to JP2018565787A priority patent/JP6758426B2/ja
Priority to US16/302,489 priority patent/US20210206290A1/en
Publication of WO2019041383A1 publication Critical patent/WO2019041383A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/19Switching between serial connection and parallel connection of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present disclosure relates to the field of new energy vehicle technologies, and in particular, to a power supply system, a control method, and an electric vehicle of an electric vehicle.
  • the power systems used in pure electric vehicles in the world are all connected in series using a single battery pack or multiple battery packs. It is required to maintain the balance of the state of charge and the balance of the battery characteristics between the battery cells and the battery pack. And there are strict requirements on the consistency of the battery core.
  • a single battery pack or multiple battery packs in series has the following disadvantages: old and new batteries, batteries of different capacities, or battery packs of different characteristics cannot be used together; failure of one battery core or battery pack can cause failure of the entire battery system. These problems have greatly increased the production and screening costs of the battery system, and the secondary use of the old battery is more difficult.
  • the present disclosure proposes a power supply system, a control method, and an electric vehicle for an electric vehicle.
  • a power supply system for an electric vehicle including:
  • the battery system is composed of a battery pack or a plurality of battery packs connected in parallel, and the BMS controls the connection and disconnection of the battery pack and the high-voltage DC bus, and the battery system is used to power the electric vehicle;
  • a range extender unit for generating a direct current, charging the battery system and/or powering the electric vehicle
  • a controller for controlling a power generation state of the range controller unit, controlling each of the battery packs and the electric a connection state of a high voltage DC bus of the motor vehicle, and/or a connection state between the range controller unit and the high voltage DC bus of the electric vehicle;
  • a plurality of switches are disposed between each of the battery packs and a high voltage DC bus of the electric vehicle, and/or between a range extender unit and a high voltage DC bus of the electric vehicle.
  • an electric vehicle comprising: a power supply system using an electric vehicle according to any of the embodiments of the present disclosure and/or the electric vehicle is controlled by a control method of an embodiment of the present disclosure.
  • a method of controlling a power supply system for an electric vehicle includes: providing power to the electric vehicle using a power supply system of the electric vehicle according to any one of the embodiments of the present disclosure.
  • the present disclosure uses a parallel battery system and a range extender unit to supply power to the electric vehicle.
  • the plurality of battery packs in the battery system are connected in parallel, and has the characteristics of modularity, simple integration/maintenance, and high reliability.
  • the range extender unit controls the range extender unit, the voltages of the plurality of battery packs in parallel are balanced, so that the battery system is flexibly arranged on the electric vehicle, which simplifies the integrated design of the entire vehicle.
  • a single battery pack failure does not affect the operation of the electric vehicle.
  • the replacement of the faulty battery pack is simple, allowing the old and new battery packs to be used in parallel, allowing battery packs of different materials and different capacities to be used in parallel.
  • the present disclosure has a high industrial utilization value.
  • the present disclosure can be used as a new solution in the development route of the electric vehicle, and effectively solves the problem of the mileage anxiety of the pure electric vehicle, and solves the problems of modularization, interchangeable use and parallel use of the battery pack.
  • FIG. 1 shows a schematic structural view of a power supply system of an electric vehicle according to an embodiment of the present disclosure.
  • FIG. 2 is a flow chart showing a control method of a power supply system of an electric vehicle according to an embodiment of the present disclosure.
  • FIG. 3 is a flow chart showing the main control software in the control method of the power supply system of the electric vehicle according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram showing a flow of an extended-range operation mode of a control method of a power supply system of an electric vehicle according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a flow of an equalization operation mode of a control method of a power supply system of an electric vehicle according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic structural view of a power supply system of an electric vehicle according to an embodiment of the present disclosure.
  • the power supply system of the electric vehicle includes:
  • the battery system is composed of a battery pack or a plurality of battery packs connected in parallel, and the BMS (Battery Management System) controls the connection and disconnection of the battery pack and the high-voltage DC bus, and the battery system is used for electric The car is powered.
  • BMS Battery Management System
  • a range extender unit for generating a direct current, charging and/or powering the battery system.
  • the range extender unit is capable of DC power generation to generate a DC current to charge a single or all battery packs of the battery system.
  • the range extender unit also powers the electric vehicle while charging the battery pack.
  • a controller for controlling a power generation state of the range controller unit, controlling a connection state of each of the battery packs with a high voltage DC bus of the electric vehicle, and/or controlling a high voltage DC bus of the range extender unit and the electric vehicle Connection status.
  • the controller can adjust the generating current of the range unit, control the operating noise of the range unit, and control the range unit to charge a battery pack or simultaneously charge multiple battery packs.
  • a plurality of switches are disposed between each of the battery packs and a high voltage DC bus of the electric vehicle, and/or between a range extender unit and a high voltage DC bus of the electric vehicle.
  • the battery pack B1 can be connected or disconnected from the high voltage DC bus through the switch S1+, or can be connected or disconnected from the range extender unit through the switch S1-.
  • the range unit 3 generates electricity to charge the battery pack B1, and can also charge all the battery packs, and can also provide partial power to the electric vehicle while charging the battery pack.
  • the controller 4 monitors the voltage of each battery pack or controls the connection and disconnection between the battery pack and the DC high voltage bus through a Controller Area Network (CAN) such as the CAN2 bus.
  • CAN Controller Area Network
  • the range extender unit 3 is controlled to charge the battery pack when it is determined that the battery pack B1 needs to be charged.
  • the controller 4 can manage the operating noise of the range extender unit based on the need for charging and the need for comprehensive powering of the electric vehicle. Specifically, the controller controls the range extender unit to generate electricity, outputs different power generation currents according to actual needs, and controls the working state of the range extender unit through CAN1 communication to manage the working noise. For example, the controller connects a specified battery pack or a plurality of battery packs to the high-voltage DC bus to power the electric vehicle through the switch S1+ to the switch SN+, or controls the switch S1-to the switch SN- to the battery pack and the range extender unit Turn on to charge one or more of the specified battery packs.
  • each battery pack includes a main switch and a pre-charge switch, and the main switch can connect or disconnect the battery pack and the high-voltage DC bus.
  • the pre-charge switch is used to pass the pre-charge resistor before the main switch is turned on.
  • the system capacitor is charged, and both the main switch and the pre-charge switch are controlled by the BMS.
  • the BMS in the battery pack receives an instruction from the controller through CAN2 communication to control the on/off of the battery pack.
  • the range extender unit is an on-vehicle DC power generation device.
  • the range extender unit includes at least one of a fuel generator, a natural gas generator, an alcohol ether generator, a compressed air generator, and a hydrogen fuel cell generator.
  • the range extender unit is configured to provide a generating current to charge the battery pack, or to power the electric vehicle, or to simultaneously charge the battery pack and power the electric vehicle.
  • the multiple switches include a first switch group and a second switch group; the first switch group includes at least one first switch, and the second switch group includes at least one second switch;
  • the first switch is disposed between the battery pack and the high voltage DC bus, and the second switch is disposed between the battery pack and a range extender unit.
  • the controller is configured to control a power generation state of the range extender unit; and control a state of each of the first switches and/or each of the second switches according to a voltage of each battery pack to control each battery pack Connection status with the high voltage DC bus, and / or control the connection status of each battery pack and range extender unit.
  • the controller can turn on or off a specified one or more battery packs from the high voltage DC bus by controlling the designated first switch.
  • the controller can also switch the specified one or more battery packs to the range extender unit by controlling the designated second switch.
  • each of the first switches included in the first switch group may be a switch S1+ to a switch SN+.
  • Each of the second switches included in the second switch group may include a switch S1- to a switch SN-.
  • the switch S1+ to the switch SN+ is used to cut off or turn on the connection of the battery pack to the high voltage DC bus, or to cut or close the connection of the battery pack to other battery packs through the high voltage DC bus.
  • Switch S1-to switch SN- is used to cut or turn on the battery pack and increase The connection of the program unit.
  • the controller ensures that no less than one battery pack is connected to the high voltage DC bus when the system is started to provide power for the electric vehicle.
  • the controller adopts a constant power generation state to ensure optimal power generation efficiency when controlling the normal power generation of the range extender unit to power the electric vehicle.
  • the controller can detect the voltage of each battery pack and determine whether the voltages of the battery packs are consistent.
  • the connection state of each battery pack, range extender unit, and high voltage DC bus is controlled according to the voltage of each battery pack. For example, the following can be included:
  • the range extender unit may not work (pure power operation mode), or it may be in a constant power generation state (extended range operation mode).
  • the current generated by the range extender unit can directly power the electric vehicle, or simultaneously charge multiple battery packs, or simultaneously power multiple electric battery packs while powering the electric vehicle. Multiple switches are turned on simultaneously in the extended range mode.
  • the controller is further configured to control all battery packs to be connected to the high voltage DC bus by the BMS through the CAN2 command, and control the first switch between all the battery packs and the high voltage DC bus to be controlled.
  • the second switch between all of the battery packs and the range extender unit is disconnected, and the control of the range extender unit is in a stopped state to cause the electric vehicle to enter a pure electric mode of operation.
  • the controller is further configured to control all battery packs to be connected to the high voltage DC bus by the BMS through the CAN2 command, and control the first switch between all the battery packs and the high voltage DC bus to be controlled.
  • the second switch between all the battery packs and the range extender unit is turned on, and the control range extender unit is in a constant power generation state to cause the electric vehicle to enter the extended range operation mode.
  • controller is further configured to control, in the extended-range working mode, the range extender unit to enter a rated power generation state or a half-power generation state according to the power consumption state and/or the vehicle speed of the electric vehicle.
  • the controller is further configured to operate in the extended range mode if the battery system
  • the electric vehicle is controlled to enter the limp operation state, and the speed of the electric vehicle is limited to the limp.
  • the vehicle speed is such that the electric power consumption of the electric vehicle is lower than the power generation amount of the range generator unit in the rated power generation state.
  • the controller detects the voltage and state of charge of each battery pack through CAN2 communication immediately after the electric vehicle is powered on. If the voltages of multiple battery packs are inconsistent, first connect the highest voltage battery pack to the high voltage DC bus to power the electric vehicle. If it is detected that the voltage of one battery pack is lower than other battery packs, immediately start the range extender to charge the battery pack until the voltage of the battery pack matches the other battery packs and then connect it to the high voltage DC bus to provide electric vehicles. power. When the controller controls the power generation unit to generate power to charge the battery pack, the controller gradually reduces the power generation current after reaching the target voltage.
  • the controller is further configured to: if the voltages of the battery packs are inconsistent, first pass the first battery pack with the highest voltage to the high voltage DC bus by the BMS through the CAN2 command, The first switch connected to the first battery pack is turned on, and the second switch is turned off to cause the electric vehicle to enter an equalization mode of operation.
  • the first battery pack having the highest voltage may be one or more. After the first battery pack with the highest voltage is connected to the high voltage DC bus, the equalization is performed in any of the following manners.
  • the controller controls the equalization working mode. If the voltage of the second battery pack is lower than the voltage of the high voltage DC bus, the voltage of the high voltage DC bus is used as the first target voltage, and the BMS is used by the CAN2 command.
  • the second battery pack is connected to the high voltage DC bus, and the first switch connected to the second battery pack is disconnected, the second switch is turned on, and the second battery pack is charged by the range extender unit; if the second battery is When the voltage of the packet increases to reach the first target voltage, the first switch connected to the second battery pack is controlled to be turned on to connect the second battery pack to the high voltage DC bus.
  • the controller is further configured to control the equalization working mode, if the second battery pack The voltage is higher than the voltage of the high voltage DC bus, and the voltage of the second battery pack is used as the second target voltage, and the second switch between the range controller unit and the first battery pack is controlled to be turned on, and the range extender unit is controlled. Entering the power following power generation state, increasing the high voltage DC bus voltage by reducing the load of the first battery pack; if the high voltage DC bus voltage is lowered to the second target voltage, controlling the first switch connected to the second battery pack to be turned on To connect the second battery pack to the high voltage DC bus.
  • the second battery pack is a battery pack other than the first battery pack in each battery pack. As shown in FIG. 1, the plurality of battery packs included in the battery system are numbered B1 to BN. If the first battery pack is the battery pack B1, the second battery pack may be one of the battery pack B2 to the battery pack BN.
  • the range unit first charges the battery pack B1, and the second low voltage battery pack is at Disconnected from the isolation state. After the battery pack B1 is fully charged and connected to the high-voltage DC bus, the range extender unit starts to charge the battery pack B2 until the battery pack B2 is connected to the high-voltage DC bus.
  • the controller is further configured to control the range extender unit to enter a constant voltage if the voltage of the second battery pack is lower than a voltage of the high voltage DC bus in the equalization mode of operation. The power generation state, charging the second battery pack.
  • the controller is further configured to control, in the equalization mode, that the range extender unit enters power following if a voltage of the second battery pack is higher than a voltage of the high voltage DC bus.
  • the power generation state increases its voltage by mitigating the load of the first battery pack.
  • the power supply system of the electric vehicle of the present disclosure is jointly powered by a parallel battery system and a range extender unit, and a plurality of battery packs in the battery system are connected in parallel, and has the characteristics of modularity, simple integration/maintenance, and high reliability. Moreover, by controlling the range extender unit, the voltages of the plurality of battery packs in parallel are balanced, so that the battery system is flexibly arranged on the electric vehicle, which simplifies the integrated design of the entire vehicle. Moreover, a single battery pack failure does not affect the operation of the electric vehicle. The replacement of the faulty battery pack is simple, allowing the old and new battery packs to be used in parallel, allowing battery packs of different materials and different capacities to be used in parallel. In summary, the present disclosure has High industrial use value.
  • the present disclosure can be used as a new solution in the development route of the electric vehicle, and effectively solves the problem of the mileage anxiety of the pure electric vehicle, and solves the problems of modularization, interchangeable use and parallel use of the battery pack.
  • This embodiment is based on the structure of the power supply system of the electric vehicle of the above embodiment, and the principle of providing power to the electric vehicle by the battery pack is described with reference to FIG.
  • the battery packs are connected to the high-voltage DC bus by the BMS through CAN2 communication.
  • the controller 4 turns on the switch S1+ to the switch SN+, and all the battery packs S1 to SN simultaneously supply power to the electric vehicle.
  • Switch S1-to switch SN- remains open and the electric vehicle is in pure electric mode.
  • the controller 4 controls the battery pack SN+ to be connected to the high voltage DC bus through the CAN2 communication, and the controller 4 directly turns on the switch SN+, so that the battery pack BN first Powering electric vehicles.
  • the controller 4 monitors the voltage of other battery packs such as the battery pack B1 through the CAN2 bus. As the voltage of the battery pack BN is discharged and the voltage drops to the level of the battery pack B1, the controller 4 immediately turns on the switch S1+ to connect the battery pack B1 to the DC high voltage bus, and joins the power supply for the electric vehicle.
  • the controller 4 determines that the voltage of a certain battery pack B1 is much lower than the battery pack BN having the highest voltage.
  • the battery pack BN needs to be discharged for a long time to reach the voltage consistency, and the controller 4 immediately turns on the switch S1-, keeps the switch S1+ open, controls the range extender unit 3 to generate electricity and charges the battery pack B1 to gradually increase the voltage. .
  • the switch S1+ is turned on to cause the battery pack B1 to start being supplied to the electric vehicle.
  • the electric vehicle works in the balanced working mode (also called the balanced charging working mode).
  • the ranger unit 3 stops generating electricity, the whole vehicle enters the pure electric working mode.
  • the controller 4 controls the range extender unit 3 to enter a constant power generation state during the whole vehicle running, and directly joins the power supply to the electric vehicle.
  • the range extender unit 3 On the basis of the main power supply of the battery system, the range extender unit 3 also provides partial power for the whole vehicle to effectively reduce the load of the battery system and extend the driving range of the whole vehicle.
  • the controller 4 turns on the switch S1+ to the switch SN+, and all the battery packs S1 The battery pack SN simultaneously supplies power to the electric vehicle.
  • the control range extender unit 3 is in a constant power generation state, the switch S1-to the switch SN- is turned on, and the electric vehicle is in the extended range working mode.
  • the controller 4 when the state of charge of the battery system is lower than a given value, such as 30%, the controller 4 immediately controls the start of the range extender unit 3 to enter a constant power generation state.
  • the controller 4 simultaneously monitors the vehicle speed and power consumption of the entire vehicle.
  • the controller 4 controls the range extender unit 3 to operate in the rated constant power state.
  • the controller 4 controls the range extender unit 3 to operate in a lower half-power state, at which time the work of the range extender unit 3 The noise is drastically reduced, increasing the comfort of the vehicle. .
  • the range extender unit 3 and the battery system simultaneously supply power to the electric vehicle, and the whole vehicle works in an extended range working mode (also referred to as an extended range electric drive mode).
  • the range extender unit 3 enters a stop state when the vehicle stops at a red light or when the vehicle speed is less than a given vehicle speed, for example, 20 km/h, and the working noise of the range extender unit is eliminated.
  • the battery system enters a deficient state due to discharge, for example, the SOC (remaining power) of the battery system is less than 10%, and the rated power of the range unit 3 is lower than the power consumption of the whole vehicle.
  • the SOC (remaining power) of the battery system is less than 10%
  • the rated power of the range unit 3 is lower than the power consumption of the whole vehicle.
  • the whole vehicle enters the working state, and the speed of the vehicle will be limited to the speed of the limp to make the power consumption demand lower than the increase.
  • the entire battery system in the embodiment is composed of a plurality of battery packs B1 to BN, and each battery pack can be separately mounted and disassembled.
  • the battery pack B1 to the battery pack BN allow one or more of the battery packs to be replaced during maintenance, except that the same voltage specifications need to be the same, the newly replaced battery pack and the original battery pack are not required to have the same health state, The newly replaced battery pack does not require the same capacity or the same material as the original battery pack.
  • the voltage specifications of the plurality of battery packs are the same, generally means that the nominal voltage of each of the plurality of battery packs is the same and coincides with the nominal voltage of the high voltage DC bus.
  • the capacity, battery material, health status, and the like of each of the plurality of battery packs may be the same or different.
  • the battery pack BN is replaced by a new battery pack of the same voltage level with a smaller capacity.
  • the new battery pack has a higher no-load voltage, so the electric high-voltage DC bus is first connected when the electric vehicle starts. Powering electric vehicles. Since the battery capacity is small, the battery voltage drops sharply below the other battery packs when the large current is discharged, so that other battery packs cannot be connected to the high voltage DC bus.
  • the controller 4 controls the ranger unit 3 to start, the switch SN- is turned on, starts power generation to the battery pack BN and simultaneously charges quickly, and reduces the discharge current of the battery pack to increase the voltage.
  • the controller 4 controls the other battery packs to quickly turn on the high voltage DC bus.
  • the battery pack BN is replaced by an old battery pack of the same voltage level.
  • the old battery pack has a high no-load voltage. Therefore, when the electric vehicle is started, the high-voltage DC bus is first connected to power the electric vehicle. Since the internal resistance of the old battery pack is high, the battery voltage drops sharply below the other battery packs when the large current is discharged, so that other battery packs cannot be connected to the high voltage DC bus.
  • the controller 4 uses the same control strategy to connect other battery packs to the high voltage DC bus.
  • the present disclosure has the feature of allowing the battery pack to be used in parallel on the electric vehicle, effectively overcoming the problem that the battery packs of different charging states, different capacities, and different health states cannot be used on the same electric vehicle under the same voltage level, especially The problem of not being able to connect in parallel. Electric steam It is easier to replace and repair the battery pack of the car, and it is convenient to temporarily increase the battery pack for increasing the driving range.
  • the difference between this embodiment and the above embodiment is that, in the plurality of battery packs B1 to BN constituting the battery system, if one of the battery packs has a serious fault and cannot work, the controller 4 reports an error through the CAN2 bus.
  • the code automatically recognizes and cuts off the connection of the battery pack to the high voltage DC bus, and stops the power supply of the battery pack. At this time, the remaining battery pack of the battery system continues to power the electric vehicle and does not cause an emergency stop accident.
  • the controller when detecting that a battery pack has a serious fault, disconnects the battery pack from the high voltage DC bus until the fault is recovered. For example, multiple battery packs are simultaneously connected to a high voltage DC bus to power an electric vehicle. During operation, the controller detects a serious fault in the battery pack BN, disconnects the switch SN+ and the switch SN-, and isolates the battery pack BN. Other battery packs can continue to provide power for the electric vehicle.
  • the controller 4 immediately starts the ranger unit 3 to generate power to compensate for the possibility of overloading other battery packs by reducing one battery pack.
  • the present disclosure provides a power supply system for an electric vehicle having modularity and integration/maintenance of the battery system and its simple features. Therefore, the extended-range electric vehicle can be more convenient and economical in commercial development and use. It can effectively solve the problem of mileage anxiety of pure electric vehicles and solve the cost bottleneck of battery system production, replacement and ladder utilization, and has high industrial utilization. value.
  • the present disclosure also provides an electric vehicle comprising: the power supply system of the electric vehicle according to any one of the embodiments of the present disclosure or the electric vehicle is controlled by the control method of the embodiment of the present disclosure.
  • FIG. 2 is a flow chart showing a control method of a power supply system of an electric vehicle according to an embodiment of the present disclosure. As shown in FIG. 2, the control method of the power supply system of the electric vehicle adopts any one of the disclosures.
  • the power supply system of the electric vehicle described in the embodiment provides power for the electric vehicle.
  • the method includes:
  • Step 101 The controller controls the power generation state of the range extender unit; and controls the states of the first switches and/or the second switches according to the voltage of each battery pack to control the connection state of each battery pack and the high voltage DC bus, and / or control the connection status of each battery pack and range extender unit.
  • step 101 includes:
  • Step 201 If it is detected that the voltages of the battery packs are consistent, all the battery packs are controlled by the BMS to be connected to the high voltage DC bus through the CAN2 command, and the first switch between all the battery packs and the high voltage DC bus is controlled to be turned on, and all the batteries are controlled. The second switch between the package and the range extender unit is disconnected, and the control range unit is in a stopped state to cause the electric vehicle to enter a pure electric mode of operation.
  • Step 202 If it is detected that the voltages of the battery packs are consistent, the BMS controls all the battery packs to be connected to the high voltage DC bus through the CAN2 command, and controls the first switch between all the battery packs and the high voltage DC bus to be turned on, and controls all the batteries.
  • the second switch between the package and the range extender unit is turned on, and the control range unit is in a constant power generation state to cause the electric vehicle to enter the extended range operation mode.
  • the method further includes:
  • Step 203 In the extended range working mode, control the range extender unit to enter a rated power generation state or a half power generation state according to a power consumption state and/or a vehicle speed of the electric vehicle.
  • the method further includes:
  • Step 204 In the extended range working mode, if the battery system is in a deficient state, and the power generation amount of the range extender unit in the rated power generation state is lower than the power consumption of the electric vehicle, controlling the electric The vehicle enters a limp operation state, and limits the vehicle speed of the electric vehicle to a limp speed so that the electric vehicle consumes less power than the range generator unit generates power in a rated power generation state.
  • step 101 further includes:
  • Step 205 If it is detected that the voltages of the battery packs are inconsistent, the first battery pack with the highest voltage is connected to the high voltage DC bus by the BMS through the CAN2 command, and the first battery pack is connected. The first switch is turned on and the second switch is turned off to cause the electric vehicle to enter an equalization mode of operation.
  • the method further includes:
  • Step 206 Control the equalization working mode. If the voltage of the second battery pack is lower than the voltage of the high voltage DC bus, the voltage of the high voltage DC bus is used as the first target voltage, and the second battery pack is used by the BMS through the CAN2 command. The high voltage DC bus is turned on, the first switch connected to the second battery pack is disconnected, the second switch is turned on, and the second battery pack is charged by the range extender unit; if the voltage of the second battery pack is increased When the first target voltage is reached, the first switch connected to the second battery pack is controlled to be turned on to connect the second battery pack to the high voltage DC bus.
  • Step 207 controlling the equalization working mode, if the voltage of the second battery pack is higher than the voltage of the high voltage DC bus, and using the voltage of the second battery pack as the second target voltage, controlling the range extender unit and the first battery pack a second switch is turned on, controlling the ranger unit to enter a power following power generation state, increasing a high voltage DC bus voltage by reducing a load of the first battery pack; if the high voltage DC bus voltage is lowered to the second target The voltage controls the first switch connected to the second battery pack to be turned on to connect the second battery pack to the high voltage DC bus.
  • the second battery pack is a battery pack other than the first battery pack in each battery pack.
  • an example of a workflow of the present invention for controlling and managing a power supply system of an electric vehicle by using the main control software is as follows:
  • the controller 4 First, immediately after powering up the controller 4, it is checked whether the battery system needs to be started or operated (301). If it is not necessary to start or work, the controller 4 confirms that the main switch of the battery pack remains off (302), re-confirm that the high voltage DC bus switch is off (303), and then enters the standby state.
  • controller 4 upon receipt of the start command, controller 4 immediately checks each battery pack voltage (304). It is judged whether the voltage of each battery pack is consistent (305). If they are consistent, determine if each battery pack is fault free (306). Do not allow faulty battery packs to be connected. After confirming that each battery pack has no fault, first turn on the high voltage DC bus switches S1+ to N+ (307). The battery pack is then notified via the CAN2 bus to turn on the main switch (308). At this time, all battery packs are connected to the high-voltage DC bus to power the electric car.
  • the range extender unit is started to enter the extended range working mode (referred to as the extended range mode) (310). ).
  • the controller 4 continues to check the voltage balance state of the remaining battery packs (313), and if the remaining battery pack voltages are all the same, enters a single equalization (or equalization) control (314), otherwise enters multiple times. Equalization control (315).
  • the controller 4 further checks if there is a battery pack failure (316). If the faulty battery pack BN is found, the connection of the battery pack to the high voltage DC bus is cut off, that is, the switch SN+ (316) is turned off, so that other battery packs continue to power the electric vehicle and continue to drive.
  • the sub-control software immediately checks the actual power consumption state of the electric vehicle (406) to determine the power generation state of the range extender unit 3.
  • the control current is reduced to zero current, and power generation is stopped (407).
  • the control power generation current is reduced to half current, and the half power is constant power generation (408).
  • the rated power is generated (409).
  • the control range unit 3 stops generating electricity (411).
  • the half-power constant power generation (412) of the range extender unit is controlled.
  • the control range unit 3 is constantly generating power at rated power (413). Power generation control is performed on the range extender unit 3 (414).
  • the above-mentioned power consumption rate and vehicle speed may individually determine the operating state of the range extender unit 3, and may also comprehensively determine the operating state of the range extender unit 3.
  • the lower of the two determined power generations is used. For example, it is determined that the ranger unit 3 is constantly generating power at rated power according to the vehicle speed, and the range unit 3 is determined to be constant power generation at half power according to the power consumption rate, and then the range unit 3 is determined to be constant power generation at half power.
  • the controller 4 detects a manual forced stop (415), then the range extender unit is controlled to enter a shutdown state (416), otherwise the monitoring of the temperature of the battery pack is continued (417). If the temperature of the battery pack is at a preset low temperature (such as 0 ° C), the power generation power is generated following the actual power demand of the vehicle, that is, the power follows the hybrid power generation (418). If the temperature of the battery pack rises back to the normal operating temperature, the power generation power is constant speed constant power generation (419), for example, rated constant power generation.
  • the temperature of the range extender unit is further checked (421). If the temperature is too high, the range extender unit is operated for a period of time (e.g., 60 seconds) under zero power generation (422) and then stopped (416). Otherwise, the system re-checks the power consumption rate of the vehicle and returns to the power generation control state.
  • the workflow of the disclosed sub-control software in the equalization charging control mode is:
  • the range extender unit 3 (501) is started, ready to start generating electricity. Among them, it can be determined first whether to perform an equalization (502). If so, the identity of the battery pack, ie ID (503), is read. If it is not an equalization, but multiple equalizations, the ID of the lowest battery pack can be read (504). After determining the required balanced battery pack BN, the actual battery pack The voltage is checked to determine the power of the balanced power generation and the power generation mode.
  • the voltage of the battery pack BN is read (505). If it is judged that the voltage of the battery pack BN is much lower than the high voltage DC bus voltage (the voltage of the battery pack BN/high voltage DC bus voltage ⁇ 0.9) (506), the switch SN-(507) is turned on to control the range extender unit to enter the constant voltage. Power generation mode (508). When judging that the voltage of the battery pack BN is within the allowable range of the high voltage DC bus voltage (for example, 0.9 ⁇ voltage of the battery pack BN / high voltage DC bus voltage ⁇ 1.1) (509), turn on the DC high voltage bus switch SN+ (510), and the battery The package BN is connected to a high voltage DC bus to provide power for the electric vehicle. Determine if all battery packs are connected to the high voltage DC bus (511), and if so, return. Otherwise, continue to equalize other battery packs.
  • the battery pack BN exceeds the voltage of the high voltage DC bus (such as the voltage of the battery pack BN/high voltage DC bus voltage > 1.1)
  • the battery pack BN is no longer balancedly charged, but the range extender unit 3 is controlled. Entering the power following power generation state (512), the battery pack load that has been connected to the high voltage DC bus is reduced, and the battery pack voltage is restored and improved.
  • the DC output power generation can be continuously performed under the premise of balanced charging of the parallel battery pack, including constant power generation, constant voltage power generation or power following power generation, and is also suitable as an auxiliary power source for a pure electric drive electric vehicle. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

一种电动汽车的供电系统,包括:电池系统,由一个电池包或多个并联的电池包组成,所述电池系统用于为所述电动汽车提供动力;增程器机组(3),用于产生直流电流,为所述电池系统充电和/或为所述电动汽车提供动力;控制器(4),用于控制增程器机组(3)的发电状态,控制各所述电池包与所述电动汽车的高压直流总线的连接状态,和/或控制增程器机组(3)与所述电动汽车的高压直流总线的连接状态;多个开关,控制各所述电池包与所述高压直流总线之间的接通或断开,和/或增程器机组(3)与高压直流总线之间的接通或断开。还公开了使用该供电系统的控制方法以及电动汽车。采用该并联电池系统和增程器机组联合供电,具有模块化、集成/维护简单、高可靠性的特征。

Description

电动汽车的供电系统、控制方法和电动汽车
交叉引用
本申请主张2017年9月1日提交的中国专利申请号为201710779935.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及新能源汽车技术领域,尤其涉及一种电动汽车的供电系统、控制方法和电动汽车。
背景技术
目前,世界上纯电动汽车使用的动力系统都是采用单一电池包或多个电池包串联应用。要求各电池芯及电池包之间保持充电状态的均衡和电池特性的均衡。并且对电池芯的一致性有严格的要求。
单一电池包或多个电池包串联应用具有以下缺点:新旧电池,不同容量的电池,或不同特性的电池包无法一起使用;一个电池芯或电池包失效会导致整个电池系统的失效。这些问题大大提高了电池系统的生产和筛选成本,旧电池的二次使用更是难度很大。
发明内容
有鉴于此,本公开提出了一种电动汽车的供电系统、控制方法和电动汽车。
根据本公开的一方面,提供了一种电动汽车的供电系统,包括:
电池系统,由一个电池包或多个并联的电池包组成,由BMS控制该电池包与高压直流总线的接通与断开,所述电池系统用于为电动汽车提供动力;
增程器机组,用于产生直流电流,为所述电池系统充电和/或为所述电动汽车提供动力;
控制器,用于控制增程器机组的发电状态,控制各所述电池包与所述电 动汽车的高压直流总线的连接状态,和/或控制增程器机组与所述电动汽车的高压直流总线的连接状态;
多个开关,设置于各所述电池包与所述电动汽车的高压直流总线之间,和/或增程器机组与所述电动汽车的高压直流总线之间。
根据本公开的另一方面,提供了一种电动汽车,包括:采用本公开任一实施例所述的电动汽车的供电系统和/或所述电动汽车采用本公开实施例的控制方法进行控制。
根据本公开的另一方面,提供了一种电动汽车的供电系统的控制方法,包括:采用本公开任一实施例所述的电动汽车的供电系统为所述电动汽车提供动力。
本公开,采用并联电池系统和增程器机组联合给电动汽车供电,电池系统中的多个电池包并联,具有模块化、集成/维护简单、高可靠性的特征。并且,通过对增程器机组的控制,来对多个电池包并联时的电压进行均衡,使得电池系统在电动汽车上布置灵活,简化了整车集成设计。并且,单一电池包故障不影响电动汽车运行。对故障电池包更换简单,允许新旧电池包并联使用,允许不同材料不同容量的电池包并联使用。综上,本公开具高度产业利用价值。
因此,本公开可以作为电动汽车开发技术路线中一个新型解决方案,在有效的解决纯电动汽车里程焦虑问题同时,解决电池包模块化、互换使用和并联使用等问题。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施例的电动汽车的供电系统的结构示意图。
图2示出根据本公开一实施例的电动汽车的供电系统的控制方法的流程示意图。
图3示出根据本公开一实施例的电动汽车的供电系统的控制方法中主控软件的流程示意图。
图4示出根据本公开一实施例的电动汽车的供电系统的控制方法的增程工作模式流程的示意图。
图5示出根据本公开一实施例的电动汽车的供电系统的控制方法的均衡工作模式流程的示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
实施例1
图1示出根据本公开一实施例的电动汽车的供电系统的结构示意图。如图1所示,该电动汽车的供电系统包括:
电池系统,由一个电池包或多个并联的电池包组成,由BMS(Battery Management System,电池管理系统)控制该电池包与高压直流总线的接通与断开,所述电池系统用于为电动汽车提供动力。
增程器机组,用于产生直流电流,为所述电池系统充电和/或为所述电动汽车提供动力。具体地,增程器机组能够直流发电产生直流电流,为电池系统的单一或全部电池包充电。增程器机组也可在为电池包充电的同时为电动汽车提供动力。
控制器,用于控制增程器机组的发电状态,控制各所述电池包与所述电动汽车的高压直流总线的连接状态,和/或控制增程器机组与所述电动汽车的高压直流总线的连接状态。此外,控制器能够调节增程器机组的发电电流,控制增程器机组工作噪声,并控制增程器机组给某一个电池包充电或给多个电池包同时充电。
多个开关,设置于各所述电池包与所述电动汽车的高压直流总线之间,和/或增程器机组与所述电动汽车的高压直流总线之间。
例如,电池包B1可以通过开关S1+与高压直流总线连接或断开,也可以通过开关S1-与增程器机组连接或断开。增程器机组3发电可以给电池包B1充电,也可以给全部电池包充电,也可以在给电池包充电的同时给电动汽车提供部分动力。控制器4会通过控制器局域网络(Controller Area Network,CAN)例如CAN2总线监督各电池包的电压或控制电池包与直流高压总线之间的接通与断开。在确定电池包B1需要充电时控制增程器机组3为该电池包进行充电。
此外,控制器4还可以根据充电需要和为电动汽车提供动力的需要综合变化来管理增程器机组的工作噪声。具体地,控制器控制增程器机组进行发电,根据实际需要输出不同的发电电流,通过CAN1通讯控制增程器机组的工作状态,管理工作噪声。例如:控制器通过开关S1+至开关SN+将指定的一个电池包或多个电池包连接到高压直流总线上给电动汽车提供动力,或控制开关S1-至开关SN-将电池包与增程器机组接通,为指定的一个或多个电池包进行充电。
在本实施例中,每个电池包内部包括主开关和预充电开关,主开关可以连接或断开电池包与高压直流总线的连接,预充电开关用于在主开关接通前通过预充电阻给系统电容充电,主开关和预充电开关均由BMS进行控制。所述电池包中的BMS通过CAN2通讯接受来自控制器的指令,控制电池包的通/断。
在本实施例中,所述增程器机组是一种车载直流发电装置。所述增程器机组包括燃油发电机、天然气发电机、醇醚发电机、压缩空气发电机和氢燃料电池发电机中的至少一种。所述增程器机组用于提供发电电流,以给电池包充电,或给电动汽车供电,或同时给电池包充电及给电动汽车供电。
在一种可能的实现方式中,所述多个开关包括第一开关组和第二开关组;第一开关组包括至少一个第一开关,第二开关组包括至少一个第二开关;
所述第一开关设置于所述电池包与所述高压直流总线之间,所述第二开关设置于所述电池包与增程器机组之间。
在一种可能的实现方式中,所述控制器用于控制增程器机组的发电状态;根据各电池包的电压,控制各第一开关和/或各第二开关的状态,以控制各电池包与高压直流总线的连接状态,和/或控制各电池包和增程器机组的连接状态。
具体而言,控制器可以通过控制指定的第一开关,将指定的一个电池包或多个电池包与高压直流总线接通或断开。控制器还可以通过控制指定的第二开关,将指定的一个或多个电池包与增程器机组接通或断开。
例如,多个开关也可以称为电池隔离开关。如图1所示,第一开关组包括的各第一开关可以为开关S1+至开关SN+。第二开关组包括的各第二开关可以包括开关S1-至开关SN-。在控制器的控制下,开关S1+至开关SN+用于切断或接通电池包与高压直流总线的连接,或切断或接通电池包通过高压直流总线与其他电池包的连接。开关S1-至开关SN-用于切断或接通电池包与增 程器机组的连接。
在本实施例中,所述控制器在系统启动工作时保证不少于一个电池包与高压直流总线连接,为电动汽车提供动力。所述控制器在控制增程器机组正常发电给电动汽车提供动力时,采用恒功率发电状态以保证最佳发电效率。
在本实施例中,控制器可以对各电池包的电压进行检测,判断各电池包的电压是否一致。根据各电池包的电压控制各电池包、增程器机组、高压直流总线的连接状态。例如可以包括以下情况:
情况一、各电池包的电压一致。
如果多个电池包电压一致,可以将多个电池包同时连接在高压直流总线上,为电动汽车提供动力。这时增程器机组可以不工作(纯电工作模式),也可以处于恒功率发电状态(增程工作模式)。增程器机组所发电流可以直接为电动汽车提供动力,或为多个电池包同时充电,或为电动汽车提供动力的同时为多个电池包同时充电。增程工作模式下多个开关同时接通。
在一种可能的实现方式中,所述控制器还用于通过CAN2命令由BMS控制所有电池包与高压直流总线接通,控制所有电池包与高压直流总线之间的第一开关接通,控制所有电池包与增程器机组之间的第二开关断开,控制增程器机组处于停机状态,以使得所述电动汽车进入纯电工作模式。
在一种可能的实现方式中,所述控制器还用于通过CAN2命令由BMS控制所有电池包与高压直流总线接通,控制所有电池包与高压直流总线之间的第一开关接通,控制所有电池包与增程器机组之间的第二开关接通,控制增程器机组处于恒功率发电状态,以使得所述电动汽车进入增程工作模式。
进一步地,所述控制器还用于在所述增程工作模式,根据所述电动汽车的耗电状态和/或车速,控制所述增程器机组进入额定功率发电状态或半功率发电状态。
进一步地,所述控制器还用于在所述增程工作模式,如果所述电池系统 处于亏电状态,且增程器机组在额定功率发电状态的发电量低于所述电动汽车的耗电量,则控制所述电动汽车进入跛行工作状态,将所述电动汽车的车速限制为跛行车速,以使得所述电动汽车的耗电量低于所述增程器机组在额定功率发电状态的发电量。
情况二、各电池包的电压不一致。
控制器在电动汽车上电后立即通过CAN2通讯检测各电池包的电压和充电状态。如果多个电池包的电压不一致,首先将电压最高的电池包连接到高压直流总线为电动汽车提供动力。如果检测到一个电池包的电压低于其他电池包,则立即启动增程器为该电池包充电,直至该电池包的电压与其他电池包一致后将其接入高压直流总线,为电动汽车提供动力。所述控制器在控制增程器机组发电给电池包充电时,在达到目标电压之后逐步减小发电电流。
在一种可能的实现方式中,所述控制器还用于如果检测到各电池包的电压不一致,则先通过CAN2命令由BMS将电压最高的第一电池包与高压直流总线接通,将的第一电池包连接的第一开关接通、第二开关断开,以使得所述电动汽车进入均衡工作模式。
本实施例中,电压最高的第一电池包可以为一个,也可以为多个。在将与电压最高的第一电池包接入高压直流总线后,采用以下任意方式进行均衡。
方式一,所述控制器控制所述均衡工作模式,如果第二电池包的电压低于所述高压直流总线的电压,以高压直流总线的电压作为第一目标电压,通过CAN2命令由BMS将第二电池包与高压直流总线接通,控制与第二电池包连接的第一开关断开、第二开关接通,由增程器机组为所述第二电池包充电;如果所述第二电池包的电压增加达到所述第一目标电压,则控制与第二电池包连接的第一开关接通,以将第二电池包与高压直流总线接通。
方式二,所述控制器还用于控制所述均衡工作模式,如果第二电池包的 电压高于所述高压直流总线的电压,以第二电池包的电压作为第二目标电压,控制增程器机组与第一电池包之间的第二开关接通,控制所述增程器机组进入功率跟随发电状态,通过降低第一电池包的负载提高高压直流总线电压;如果所述高压直流总线电压降低到所述第二目标电压,则控制与第二电池包连接的第一开关接通,以将第二电池包与高压直流总线接通。
其中,所述第二电池包为各电池包中除了所述第一电池包之外的其他电池包。如图1所示,电池系统包括的多个电池包的标号为B1至BN。如果第一电池包为电池包B1,第二电池包可能为电池包B2至电池包BN中的某一个。
例如,如果多个电池包含三个以上电池包,其中有两个电池包B1、B3电压低于高压直流总线电压,这时增程器机组首先给电池包B1充电,第二个低压电池包处于断开隔离状态。电池包B1完成充电接入高压直流总线后,增程器机组开始给电池包B2充电,直至完成充电将电池包B2接入高压直流总线。
在一种可能的实现方式中,所述控制器还用于在所述均衡工作模式,如果第二电池包的电压低于所述高压直流总线的电压,控制所述增程器机组进入恒压发电状态,给第二电池包充电。
在一种可能的实现方式中,所述控制器还用于在所述均衡工作模式,如果第二电池包的电压高于所述高压直流总线的电压,控制所述增程器机组进入功率跟随发电状态,通过减轻第一电池包的负载提高其电压。
本公开电动汽车的供电系统,采用并联电池系统和增程器机组联合供电,电池系统中的多个电池包并联,具有模块化、集成/维护简单、高可靠性的特征。并且,通过对增程器机组的控制,来对多个电池包并联时的电压进行均衡,使得电池系统在电动汽车上布置灵活,简化了整车集成设计。并且,单一电池包故障不影响电动汽车运行。对故障电池包更换简单,允许新旧电池包并联使用,允许不同材料不同容量的电池包并联使用。综上,本公开具 高度产业利用价值。
因此,本公开可以作为电动汽车开发技术路线中一个新型解决方案,在有效的解决纯电动汽车里程焦虑问题同时,解决电池包模块化、互换使用和并联使用等问题。
实施例2
本实施例在上述实施例的电动汽车的供电系统结构的基础上,参见图1采用示例介绍电池包为电动汽车提供动力的原理。
例如,在电动汽车启动时,如果所有电池包B1至电池包BN的电压都是均衡的(即多个电池包的电压一致),则通过CAN2通讯由BMS控制各电池包与高压直流总线接通,控制器4接通开关S1+至开关SN+,全部电池包S1至电池包SN同时为电动汽车供电。开关S1-至开关SN-保持断开,电动汽车处于纯电工作模式。
再如,在电动汽车启动时,如果电池包BN电压最高,控制器4通过CAN2通讯由BMS控制电池包SN+与高压直流总线接通,同时控制器4直接接通开关SN+,使电池包BN首先给电动汽车提供动力。与此同时,控制器4通过CAN2总线监视其他电池包例如电池包B1的电压。随着电池包BN的放电而导致电压下降到电池包B1的水平,控制器4立即接通开关S1+将电池包B1与直流高压总线接通,加入为电动汽车供电中。
再如,如果控制器4判断某一电池包B1的电压远低于电压最高的电池包BN。需要电池包BN以较长时间放电才能达到电压的一致,则控制器4立即接通开关S1-,保持开关S1+断开,控制增程器机组3发电并给电池包B1充电使电压逐渐升高。当电池包B1的电压接近电池包BN的电压(目标电压)时,接通开关S1+使电池包B1开始加入给电动汽车供电中。这时电动汽车工作在均衡工作模式(也可以称为均衡充电工作模式)。均衡工作完成后,如果增程器机组3停止发电,整车进入纯电工作模式。
实施例3
本实施例与上述实施例的不同之处在于,所述控制器4在整车行驶过程中控制增程器机组3进入恒功率发电状态,直接加入给电动汽车供电中。在电池系统为主要供电的基础上,增程器机组3也为整车行驶提供部分动力,有效减轻电池系统的负载,延长整车续驶里程。
例如,在电动汽车启动时,如果所有电池包B1至电池包BN的电压都是均衡的(即多个电池包的电压一致),则控制器4接通开关S1+至开关SN+,全部电池包S1至电池包SN同时为电动汽车供电。并且控制增程器机组3处于恒功率发电状态,开关S1-至开关SN-接通,电动汽车处于增程工作模式。
再如,当电池系统的充电状态低于给定值如30%时,控制器4立即控制启动增程器机组3进入恒功率发电状态。所述控制器4同时监视整车的车速及耗电情况。在车速较高如大于80公里/小时同时耗电大于增程器机组3额定功率时,控制器4控制增程器机组3工作在额定恒功率状态。在车速低于给定车速如60公里/小时或整车耗电低于半功率时,控制器4控制增程器机组3工作在较低的半功率状态,这时增程器机组3的工作噪声急剧降低,增加整车的舒适度。。
本实施例中,增程器机组3和电池系统同时给电动汽车供电,整车工作在增程工作模式(也可以称为增程电动驱动模式)。
在一种可能的实现方式中,所述增程器机组3在停车如红灯时或车速小于给定车速如20公里/小时时进入停机状态,消除增程器机组的工作噪声。
在一种可能的实现方式中,增程器机组3在恒功率发电状态下的发电功率大于整车耗电功率情况下,剩余电量给电池系统充电。
在一种可能的实现方式中,电池系统因放电进入亏电状态,比如电池系统的SOC(剩余电量)小于10%,而增程器机组3的额定功率发电低于整车耗电,这时整车进入跛行工作状态,车速会限制在跛行车速使耗电需求低于增 程器机组3的额定功率。
实施例4
本实施例与上述实施例的不同之处在于,本实施例中整个电池系统由多个电池包B1至电池包BN并联构成,每个电池包可以单独安装和拆卸。所述电池包B1至电池包BN允许在维修时换掉其中一个或多个电池包,除了相同电压规格需要相同外,新换上的电池包与原电池包不要求具有相同的健康状态,也不要求新换上的电池包与原电池包具有同样的容量或同样的材料。
具体而言,多个电池包的电压规格相同,通常是指多个电池包中每个电池包的标称电压相同,且与高压直流总线的标称电压一致。多个电池包中每个电池包的容量、电池材料、健康状态等可以相同,也可以不同。
在一种可能的实现方式中,所述电池包BN被一个容量较小的同电压等级新电池包换掉,这个新电池包空载电压较高因此在电动汽车启动时首先接入高压直流总线为电动汽车供电。由于电池容量较小在大电流放电时电池电压会急剧下降到低于其他电池包,使得其他电池包无法接入高压直流总线。这时控制器4控制增程器机组3启动,开关SN-接通,开始发电给电池包BN同时快速充电,减小电池包的放电电流使电压升高。当新电池包电压接近其他电池包时,控制器4控制其他电池包迅速接通到高压直流总线上。
在一种可能的实现方式中,所述电池包BN被一个同电压等级的旧电池包换掉。这个旧电池包空载电压较高因此在电动汽车启动时,首先接入高压直流总线为电动汽车供电。由于旧电池包内阻较高在大电流放电时电池电压会急剧下降到低于其他电池包,使得其他电池包无法接入高压直流总线。所述控制器4会采用同样的控制策略,将其他电池包连接到高压直流总线上。
本公开具有允许电池包并联在电动汽车上使用的特征,有效克服了在同一电压等级下,不同充电状态、不同容量、不同健康状态的电池包不能在同一辆电动汽车上使用的问题,尤其是不能并联连接使用的问题。使得电动汽 车的电池包的更换和维修更容易,便于为增加续驶里程而临时增加电池包。
实施例5
本实施例与上述实施例的不同之处在于,组成电池系统的多个电池包B1至电池包BN中,如果有一个电池包出现严重故障导致无法工作,控制器4会通过CAN2总线报告的错误代码自动识别并切断该电池包与高压直流总线的连接,停止该电池包的供电工作。这时电池系统剩余的电池包继续为电动汽车提供动力,不会导致紧急停车事故。
在一种可能的实现方式中,控制器在检测到某一个电池包出现严重故障时,断开该电池包与高压直流总线的连接,直至故障恢复。例如,多个电池包同时连接在高压直流总线上为电动汽车提供动力。运行过程中控制器检测到电池包BN出现严重故障,断开开关SN+和开关SN-,将电池包BN隔离,其他电池包可继续为电动汽车提供动力。
在一种可能的实现方式中,故障电池包被切断连接后,控制器4立即启动增程器机组3发电,以补偿因减少一个电池包导致其他电池包过载的可能性。
本公开提供的一种电动汽车的供电系统,其具有电池系统模块化和集成/维护及其简单的特征。因此,使得增程式电动汽车可以在商业化开发和使用中更加方便和经济,在有效的解决纯电动汽车里程焦虑问题同时更解决了电池系统生产、更换及梯次利用的成本瓶颈,具高度产业利用价值。
实施例6
本公开还提供一种电动汽车,包括:本公开任一实施例所述的电动汽车的供电系统/或所述电动汽车采用本公开实施例的控制方法进行控制。
实施例7
图2示出根据本公开一实施例的电动汽车的供电系统的控制方法的流程示意图。如图2所示,该电动汽车的供电系统的控制方法采用本公开任一实 施例所述的电动汽车的供电系统为电动汽车的提供动力。所述方法包括:
步骤101、控制器控制增程器机组的发电状态;根据各电池包的电压,控制各第一开关和/或各第二开关的状态,以控制各电池包与高压直流总线的连接状态,和/或控制各电池包和增程器机组的连接状态。
在一种可能的实现方式中,步骤101包括:
步骤201、如果检测到各电池包的电压一致,则通过CAN2命令由BMS控制所有电池包与高压直流总线接通,控制所有电池包与高压直流总线之间的第一开关接通,控制所有电池包与增程器机组之间的第二开关断开,控制增程器机组处于停机状态,以使得所述电动汽车进入纯电工作模式。
步骤202、如果检测到各电池包的电压一致,则通过CAN2命令由BMS控制所有电池包与高压直流总线接通,控制所有电池包与高压直流总线之间的第一开关接通,控制所有电池包与增程器机组之间的第二开关接通,控制增程器机组处于恒功率发电状态,以使得所述电动汽车进入增程工作模式。
在一种可能的实现方式中,在步骤202之后,该方法还包括:
步骤203、在所述增程工作模式,根据所述电动汽车的耗电状态和/或车速,控制所述增程器机组进入额定功率发电状态或半功率发电状态。
在一种可能的实现方式中,在步骤202之后,该方法还包括:
步骤204、在所述增程工作模式,如果所述电池系统处于亏电状态,且增程器机组在额定功率发电状态的发电量低于所述电动汽车的耗电量,则控制所述电动汽车进入跛行工作状态,将所述电动汽车的车速限制为跛行车速,以使得所述电动汽车的耗电量低于所述增程器机组在额定功率发电状态的发电量。
在一种可能的实现方式中,步骤101还包括:
步骤205、如果检测到各电池包的电压不一致,则先通过CAN2命令由BMS将电压最高的第一电池包与高压直流总线接通,将的第一电池包连接的 第一开关接通、第二开关断开,以使得所述电动汽车进入均衡工作模式。
在一种可能的实现方式中,在步骤205之后,该方法还包括:
步骤206、控制所述均衡工作模式,如果第二电池包的电压低于所述高压直流总线的电压,以高压直流总线的电压作为第一目标电压,通过CAN2命令由BMS将第二电池包与高压直流总线接通,控制与第二电池包连接的第一开关断开、第二开关接通,由增程器机组为所述第二电池包充电;如果所述第二电池包的电压增加达到所述第一目标电压,则控制与第二电池包连接的第一开关接通,以将第二电池包与高压直流总线接通。
步骤207、控制所述均衡工作模式,如果第二电池包的电压高于所述高压直流总线的电压,以第二电池包的电压作为第二目标电压,控制增程器机组与第一电池包之间的第二开关接通,控制所述增程器机组进入功率跟随发电状态,通过降低第一电池包的负载提高高压直流总线电压;如果所述高压直流总线电压降低到所述第二目标电压,则控制与第二电池包连接的第一开关接通,以将第二电池包与高压直流总线接通。
其中,所述第二电池包为各电池包中除了所述第一电池包之外的其他电池包。
参考图3,本公开通过主控软件来控制与管理电动汽车的供电系统的一种工作流程示例如下:
首先,控制器4上电后立即检查电池系统是否需要启动或工作(301)。如果不需要启动或工作,控制器4确认电池包的主开关保持断开后(302),重新确认高压直流总线开关断开(303),然后进入待机状态。
第二,在收到启动命令后,控制器4立即检查各电池包电压(304)。判断各电池包电压是否一致(305)。如果一致,判断各电池包是否无故障(306)。禁止有故障电池包接通。在确认各电池包无故障后,首先接通高压直流总线开关S1+至N+(307)。然后通过CAN2总线通知电池包接通主开关(308)。 这时,所有电池包同时连接到高压直流总线上,为电动汽车提供动力。在开车过程中如果控制器4检测到电池充电状态SOC低于亏电状态(如:SOC<30%)(309),则启动增程器机组进入增程工作模式(简称增程模式)(310)。
第三,如果电池包电压不一致,则首先找出最高电压的电池包BN,接通该电池包的高压直流总线开关(311)。然后通过CAN2总线通知电池包BN接通主开关(312),使该电池包开始给电动汽车供电。与此同时,控制器4继续检查剩余电池包的电压均衡状态(313),如果剩下的电池包电压全部一致,则进入单次均衡(或称一次均衡)控制(314),否则进入多次均衡控制(315)。
第四,在完成均衡控制之后,控制器4进一步检查是否有电池包故障(316)。如果发现故障电池包BN则切断该电池包与高压直流总线的连接,即断开开关SN+(316),使其他电池包继续为电动汽车提供动力,保持继续行驶。
参考图4,本公开通过子控软件实现增程工作模式的流程示例如下:
首先,在进入增程工作模式后先检查增程器机组3是否存在严重故障(401)。如果确认存在严重故障则在确定连接高压直流总线各开关(开关S1-至SN-)断开(402)之后,发送错误代码(403)后,直接返回主控软件,否则启动增程器机组3(404)。
第二,在确定增程器机组3启动成功(405)后,子控软件立即检查电动汽车的实际耗电状态(406),以决定增程器机组3的发电状态。在整车耗电率低于20%时,控制发电电流降为零电流,停止发电(407)。在整车耗电率低于50%时,控制发电电流降为半电流,半功率恒定发电(408)。在整车耗电率大于50%时,额定功率发电(409)。
第三,检查电动汽车的整车车速(410),以决定增程器机组3的发电状 态。在整车车速低于25公里/小时,控制增程器机组3停止发电(411)。在整车车速高于35公里/小时,且低于45公里/小时,控制增程器机组3半功率恒定发电(412)。在整车车速高于60公里/小时,控制增程器机组3在额定功率恒定发电(413)。对增程器机组3进行发电控制(414)。
上述的耗电率、车速可以单独决定增程器机组3的工作状态,也可以综合决定增程器机组3的工作状态。在综合决定增程器机组3的工作状态,通常以所确定的两个发电功率中较低的一个为准。例如,根据车速确定增程器机组3在额定功率恒定发电,根据耗电率确定增程器机组3在半功率恒定发电,则综合后确定增程器机组3在半功率恒定发电。
第四,控制器4如果检测到手动强制停机(415),则控制增程器机组进入停机状态(416),否则继续进入对电池包的温度进行监控检查(417)。如电池包的温度处于预设低温(如0℃)状态下,则发电功率跟随整车实际动力需求进行发电,即功率跟随混串发电(418)。如电池包的温度上升回到正常工作温度,则发电功率为恒转速恒功率发电(419)例如额定恒功率发电。
第五,若增程动力系统停机条件满足(420),则进一步检查增程器机组的温度(421)。如果温度过高,则保持增程器机组在零功率发电情况下继续运行一段时间(如60秒)后(422)再进行停机操作(416)。否则,系统重新检查整车的耗电率,返回发电功率控制状态。
参考图5,本公开子控软件在均衡充电控制模式(也即均衡工作模式)的工作流程是:
首先,在进入均衡充电控制模式时,启动增程器机组3(501),准备开始发电。其中,可以先判断是否进行一次均衡(502)。如果是,读取该电池包的标识、即ID(503)。如果不是一次均衡,而是多次均衡,可以读取电压最小电池包的ID(504)。在确定所需均衡的电池包BN后,对电池包的实际 电压进行检查,判断均衡发电的功率和发电模式。
第二,读取电池包BN的电压(505)。如果判断电池包BN的电压远低于高压直流总线电压(电池包BN的电压/高压直流总线电压<0.9)(506),则接通开关SN-(507)后控制增程器机组进入恒压发电模式(508)。当判断电池包BN的电压在高压直流总线电压的允许范围内(如0.9<电池包BN的电压/高压直流总线电压<1.1)(509),接通直流高压总线开关SN+(510),将电池包BN接入高压直流总线,为电动汽车提供动力。判断全部电池包是否都接入高压直流总线上(511),如果是,则返回。否则,继续对其他电池包进行均衡。
第三,如果电池包BN的电压超过高压直流总线的电压(如电池包BN的电压/高压直流总线电压>1.1),则不再为电池包BN进行均衡充电,而是控制增程器机组3进入功率跟随发电状态(512),使已经接入高压直流总线的电池包负载降低,电池包电压得到恢复和提高。
本公开可根据应用需要在承担并联电池包均衡充电的前提下,可以连续进行直流输出发电,包括恒功率发电、恒压发电或者功率跟随发电等,也适合作为纯电驱动电动汽车等的辅助电源。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (11)

  1. 一种电动汽车的供电系统,其特征在于,包括:
    电池系统,由一个电池包或多个并联的电池包组成,由BMS控制该电池包与高压直流总线的接通与断开,所述电池系统用于为电动汽车提供动力;
    增程器机组,用于产生直流电流,为所述电池系统充电和/或为所述电动汽车提供动力;
    控制器,用于控制增程器机组的发电状态,控制各所述电池包与所述电动汽车的高压直流总线的连接状态,和/或控制增程器机组与所述电动汽车的高压直流总线的连接状态;
    多个开关,设置于各所述电池包与所述电动汽车的高压直流总线之间,和/或增程器机组与所述电动汽车的高压直流总线之间。
  2. 根据权利要求1所述的系统,其特征在于,
    所述增程器机组包括燃油发电机、天然气发电机、醇醚发电机、压缩空气发电机和氢燃料电池发电机中的至少一种,所述增程器机组用于提供发电电流,以给电池包充电,或给电动汽车供电,或同时给电池包充电及给电动汽车供电。
  3. 根据权利要求1所述的系统,其特征在于,
    所述多个开关包括第一开关组和第二开关组;第一开关组包括至少一个第一开关,设置于所述电池包与所述高压直流总线之间;第二开关组包括至少一个第二开关,设置于所述电池包与增程器机组之间。
  4. 根据权利要求3所述的系统,其特征在于,
    所述控制器用于控制增程器机组的发电状态;根据各电池包的电压,控制各第一开关和/或各第二开关的状态,以控制各电池包与高压直流总线的连接状态,和/或控制各电池包和增程器机组的连接状态。
  5. 根据权利要求4所述的系统,其特征在于,
    所述控制器还用于如果检测到各电池包的电压一致,则通过CAN2命令 由BMS控制所有电池包与高压直流总线接通,控制所有电池包与高压直流总线之间的第一开关接通,控制所有电池包与增程器机组之间的第二开关断开,控制增程器机组处于停机状态,以使得所述电动汽车进入纯电工作模式;或者,通过CAN2命令由BMS控制所有电池包与高压直流总线接通,控制所有电池包与高压直流总线之间的第一开关接通,控制所有电池包与增程器机组之间的第二开关接通,控制增程器机组处于恒功率发电状态,以使得所述电动汽车进入增程工作模式。
  6. 根据权利要求5所述的系统,其特征在于,
    所述控制器还用于在所述增程工作模式,根据所述电动汽车的耗电状态和/或车速,控制所述增程器机组进入额定功率发电状态或半功率发电状态;或者,如果所述电池系统处于亏电状态,且增程器机组在额定功率发电状态的发电量低于所述电动汽车的耗电量,则控制所述电动汽车进入跛行工作状态,将所述电动汽车的车速限制为跛行车速,以使得所述电动汽车的耗电量低于所述增程器机组在额定功率发电状态的发电量。
  7. 根据权利要求4所述的系统,其特征在于,
    所述控制器还用于如果检测到各电池包的电压不一致,则先通过CAN2命令由BMS将电压最高的第一电池包与高压直流总线接通,将的第一电池包连接的第一开关接通、第二开关断开,以使得所述电动汽车进入均衡工作模式。
  8. 根据权利要求7所述的系统,其特征在于,
    所述控制器还用于控制所述均衡工作模式,如果第二电池包的电压低于所述高压直流总线的电压,以高压直流总线的电压作为第一目标电压,通过CAN2命令由BMS将第二电池包与高压直流总线接通,控制与第二电池包连接的第一开关断开、第二开关接通,由增程器机组为所述第二电池包充电;如果所述第二电池包的电压增加达到所述第一目标电压,则控制与第二电池 包连接的第一开关接通,以将第二电池包与高压直流总线接通;
    其中,所述第二电池包为各电池包中除了所述第一电池包之外的其他电池包。
  9. 根据权利要求7所述的系统,其特征在于,
    所述控制器还用于控制所述均衡工作模式,如果第二电池包的电压高于所述高压直流总线的电压,以第二电池包的电压作为第二目标电压,控制增程器机组与第一电池包之间的第二开关接通,控制所述增程器机组进入功率跟随发电状态,通过降低第一电池包的负载提高高压直流总线电压;如果所述高压直流总线电压降低到所述第二目标电压,则控制与第二电池包连接的第一开关接通,以将第二电池包与高压直流总线接通;
    其中,所述第二电池包为各电池包中除了所述第一电池包之外的其他电池包。
  10. 一种电动汽车的供电系统的控制方法,其特征在于,包括:采用如权利要求1至9中任一项所述的电动汽车的供电系统为所述电动汽车提供动力。
  11. 一种电动汽车,其特征在于,包括:采用如权利要求1至9中任一项所述的电动汽车的供电系统和/或所述电动汽车采用权利要求10所述的控制方法进行控制。
PCT/CN2017/101685 2017-09-01 2017-09-14 电动汽车的供电系统、控制方法和电动汽车 WO2019041383A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17905917.5A EP3476647B1 (en) 2017-09-01 2017-09-14 Power supply system for electric vehicle, control method and electric vehicle
KR1020187035378A KR102179718B1 (ko) 2017-09-01 2017-09-14 전기 자동차의 급전 시스템, 제어방법 및 전기 자동차
RU2018142994A RU2717704C1 (ru) 2017-09-01 2017-09-14 Система электропитания, способ управления для электрифицированных транспортных средств и эликтрифицированное транспортное средство
JP2018565787A JP6758426B2 (ja) 2017-09-01 2017-09-14 電気自動車の給電システム、制御方法及び電気自動車
US16/302,489 US20210206290A1 (en) 2017-09-01 2017-09-14 Power supply system, control method for electric vehicles and electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710779935.8A CN107599859B (zh) 2017-09-01 2017-09-01 电动汽车的供电系统、控制方法和电动汽车
CN201710779935.8 2017-09-01

Publications (1)

Publication Number Publication Date
WO2019041383A1 true WO2019041383A1 (zh) 2019-03-07

Family

ID=61056967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/101685 WO2019041383A1 (zh) 2017-09-01 2017-09-14 电动汽车的供电系统、控制方法和电动汽车

Country Status (7)

Country Link
US (1) US20210206290A1 (zh)
EP (1) EP3476647B1 (zh)
JP (1) JP6758426B2 (zh)
KR (1) KR102179718B1 (zh)
CN (1) CN107599859B (zh)
RU (1) RU2717704C1 (zh)
WO (1) WO2019041383A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212494A1 (de) * 2019-04-18 2020-10-22 e.Go REX GmbH Schaltungsanordnung für ein bordnetz eines elektrisch angetriebenen kraftfahrzeugs und verfahren zum betreiben einer solchen schaltungsanordnung
US11465532B2 (en) 2021-01-22 2022-10-11 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11465764B2 (en) 2020-12-08 2022-10-11 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11661180B2 (en) 2020-07-08 2023-05-30 Archer Aviation Inc. Systems and methods for power distribution in electric aircraft
US11919631B2 (en) 2021-02-08 2024-03-05 Archer Aviation, Inc. Vertical take-off and landing aircraft with aft rotor tilting

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110303947A (zh) * 2018-03-01 2019-10-08 弘允新能源(上海)有限公司 一种可供给新能源汽车的大功率燃料电池dcdc控制器
GB2574196B (en) 2018-05-21 2022-08-24 Bae Systems Plc Supercapacitor arrangement for enhancing electronic power performance of waterborne vehicles
CN108964231B (zh) * 2018-07-20 2022-08-12 深圳市邦特瑞电气有限公司 一种基于增程器的移动充电装置及方法
CN109004295A (zh) * 2018-07-24 2018-12-14 武汉力唯新能源科技有限公司 电池包管理控制系统及电动汽车用的电池包系统
CN109459083B (zh) * 2018-09-14 2021-01-15 武汉科技大学 一种增程式电动汽车故障诊断实验平台
CN109249822B (zh) * 2018-10-08 2021-01-15 爱驰汽车有限公司 支持双动力源的电池管理装置
CN109532564A (zh) * 2018-12-14 2019-03-29 宁波石墨烯创新中心有限公司 一种电源系统及电动汽车
CN109501603B (zh) * 2018-12-21 2019-07-12 苏州达思灵新能源科技有限公司 一种标准化增程动力系统及管理方法
CN109677296B (zh) * 2018-12-26 2022-08-05 法法汽车(中国)有限公司 一种动力电池及其控制方法、电动汽车
CN109733212B (zh) * 2019-01-24 2021-11-05 赵睿忱 一种电动汽车
JP7136315B2 (ja) * 2019-02-28 2022-09-13 Tdk株式会社 直流給電システム
CN110254235A (zh) * 2019-05-31 2019-09-20 重庆金康动力新能源有限公司 汽车驱动方法、电动汽车、装置、设备和存储介质
CN110217113A (zh) * 2019-06-12 2019-09-10 北京工业大学 自由活塞膨胀机-直线发电机与复合电源增程式电动汽车
CN110562095A (zh) * 2019-08-14 2019-12-13 珠海凯邦电机制造有限公司 电动汽车、电池电压调节电路及方法
CN110768330B (zh) * 2019-10-18 2023-05-26 湖南小步科技有限公司 一种充放电控制方法、装置及ups系统
KR102607997B1 (ko) * 2020-02-28 2023-12-01 동관 엠프렉스 테크놀로지 리미티드 배터리 팩 관리 시스템, 배터리 팩, 차량 및 관리 방법
EP3875300A1 (en) 2020-03-06 2021-09-08 Volvo Car Corporation Limp home mode for a battery electric vehicle
JP7244635B2 (ja) * 2020-03-27 2023-03-22 東莞新能安科技有限公司 並列接続電池セットの充放電管理方法、電子装置及び電気システム
CN111431228B (zh) * 2020-03-27 2023-06-20 东莞新能安科技有限公司 并联电池组充放电管理方法及电子装置
US12095920B2 (en) 2020-06-01 2024-09-17 Ola Electric Mobility Limited Offline authentication of batteries
WO2021260719A1 (en) * 2020-06-25 2021-12-30 Tvs Motor Company Limited Energy storage device
KR20220005347A (ko) 2020-07-06 2022-01-13 현대자동차주식회사 차량의 배터리 충전 장치 및 방법
CN114030366A (zh) * 2020-07-29 2022-02-11 四川鼎鸿智电装备科技有限公司 多动力源工程机械能量管理系统、方法、装置和存储介质
FR3115242A1 (fr) * 2020-10-21 2022-04-22 Ntn-Snr Roulements Procédé de charge de la batterie d’alimentation électrique du moteur d’un véhicule automobile
CN112776663A (zh) * 2021-02-25 2021-05-11 重庆金康赛力斯新能源汽车设计院有限公司 电动汽车供电方法、装置和电子设备
US20230021984A1 (en) * 2021-07-21 2023-01-26 Caterpillar Inc. System and method for disengaging battery strings
CN113815489B (zh) * 2021-10-29 2023-06-16 格林美股份有限公司 一种电动汽车供电系统
DE102021129775A1 (de) * 2021-11-16 2023-05-17 Webasto SE System zum Bereitstellen von Energie für ein Fahrzeug und Verfahren zum Betreiben eines solchen Systems
JP7396384B2 (ja) * 2022-03-18 2023-12-12 いすゞ自動車株式会社 バッテリ管理装置
CN114374354B (zh) * 2022-03-23 2022-06-14 杭州智仝科技有限公司 多电压平台的分布式电驱动系统
JP7396386B2 (ja) 2022-03-23 2023-12-12 いすゞ自動車株式会社 バッテリ管理装置
WO2023215526A1 (en) * 2022-05-06 2023-11-09 Zero Nox, Inc. Modularization and power management of battery modules
CN114954046B (zh) * 2022-06-23 2022-11-15 上海洛轲智能科技有限公司 V2v充电控制方法、装置和系统
GB2620140A (en) * 2022-06-28 2024-01-03 Bamford Excavators Ltd A control system
CN115848150B (zh) * 2022-12-26 2024-07-30 中国重汽集团济南动力有限公司 基于多动力电池的汽车及其供电方法、系统和设备
JP7524983B1 (ja) 2023-01-30 2024-07-30 いすゞ自動車株式会社 バッテリ管理装置
JP7544161B2 (ja) 2023-01-30 2024-09-03 いすゞ自動車株式会社 バッテリ管理装置
WO2024186139A1 (ko) * 2023-03-07 2024-09-12 주식회사 이브니스 배터리를 이용하여 전력 변환 시스템을 간단하게 구축한 급속 충전 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692404B2 (en) * 2007-09-24 2010-04-06 Harris Technology, Llc Charging control in an electric vehicle
CN101966821A (zh) * 2010-10-14 2011-02-09 超威电源有限公司 一种增程式纯电动汽车系统
JP2013038910A (ja) * 2011-08-08 2013-02-21 Toyota Motor Corp 電源システムおよびそれを備える車両
CN102951037A (zh) * 2012-11-16 2013-03-06 同济大学 增程式电动汽车的能量控制策略多模式自动切换方法
CN103481785A (zh) * 2013-09-24 2014-01-01 湖南南车时代电动汽车股份有限公司 增程式动力系统及其双电压保护方法
CN105904978A (zh) * 2016-05-31 2016-08-31 重庆理工大学 双动力电池组的增程式电动车

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924725B2 (ja) * 2003-03-14 2007-06-06 株式会社日立製作所 鉄道車両の駆動装置
WO2011028703A2 (en) * 2009-09-01 2011-03-10 Boston-Power, Inc. Safety and performance optimized controls for large scale electric vehicle battery systems
US8981710B2 (en) * 2010-09-20 2015-03-17 Indy Power Systems Llc Energy management system
JP5338856B2 (ja) * 2011-06-13 2013-11-13 株式会社デンソー 車両用制御装置
JP2014087116A (ja) * 2012-10-22 2014-05-12 Hitachi Ltd 鉄道車両駆動システム
JP2014117066A (ja) * 2012-12-10 2014-06-26 Nippon Sharyo Seizo Kaisha Ltd 大型搬送車両
CN104853947B (zh) * 2012-12-12 2018-03-30 特瓦汽车有限公司 增程器控制
RU135189U1 (ru) * 2013-04-26 2013-11-27 Михаил Александрович Рыжкин Многокомпонентная аккумуляторная батарея для подключаемых гибридных и электрических транспортных средств
KR101490928B1 (ko) * 2013-06-27 2015-02-09 현대자동차 주식회사 충전 장치 및 충전 방법
CN103640493A (zh) * 2013-12-17 2014-03-19 奇瑞汽车股份有限公司 一种电动汽车增程系统
JP6303812B2 (ja) * 2014-05-26 2018-04-04 トヨタ自動車株式会社 電源制御装置および電源制御方法
CN104103865B (zh) * 2014-07-22 2016-05-18 合肥国轩高科动力能源有限公司 纯电动汽车的增程电池组系统
US9912017B1 (en) * 2014-09-03 2018-03-06 Ho-Hsun David Kuo Apparatus and method for intelligent battery optimization and equalization management system
CN204870587U (zh) * 2015-07-21 2015-12-16 厦门路迅电控有限公司 一种纯电动车车载电源及车载设备的供电结构
CN105172607B (zh) * 2015-07-30 2017-09-12 山东梅拉德能源动力科技有限公司 一种电动汽车动力切换控制方法
US10076964B2 (en) * 2015-12-15 2018-09-18 Faraday & Future Inc. Pre-charge system and method
CN106712168B (zh) * 2016-12-14 2023-08-18 华南理工大学 一种基于电感储能的并联电池组双向无损均衡电路
CN106904082B (zh) * 2017-03-15 2018-05-22 苏州达思灵新能源科技有限公司 一种增程式电动汽车用车载直流辅助电源

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7692404B2 (en) * 2007-09-24 2010-04-06 Harris Technology, Llc Charging control in an electric vehicle
CN101966821A (zh) * 2010-10-14 2011-02-09 超威电源有限公司 一种增程式纯电动汽车系统
JP2013038910A (ja) * 2011-08-08 2013-02-21 Toyota Motor Corp 電源システムおよびそれを備える車両
CN102951037A (zh) * 2012-11-16 2013-03-06 同济大学 增程式电动汽车的能量控制策略多模式自动切换方法
CN103481785A (zh) * 2013-09-24 2014-01-01 湖南南车时代电动汽车股份有限公司 增程式动力系统及其双电压保护方法
CN105904978A (zh) * 2016-05-31 2016-08-31 重庆理工大学 双动力电池组的增程式电动车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3476647A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020212494A1 (de) * 2019-04-18 2020-10-22 e.Go REX GmbH Schaltungsanordnung für ein bordnetz eines elektrisch angetriebenen kraftfahrzeugs und verfahren zum betreiben einer solchen schaltungsanordnung
CN113784869A (zh) * 2019-04-18 2021-12-10 伊哥莱克斯有限公司 电驱动机动车的车辆电气系统的电路布置以及用于操作此类电路布置的方法
JP2022522234A (ja) * 2019-04-18 2022-04-14 スタック ハイドロゲン ソルーションズ ゲーエムベーハー 電動自動車両の車両電気システムのための回路装置及びこのタイプの回路装置を動作させるための方法
CN113784869B (zh) * 2019-04-18 2023-01-06 斯塔克氢气解决方案有限公司 电驱动机动车的车载网络的电路布置及用于操作其的方法
JP7202742B2 (ja) 2019-04-18 2023-01-12 スタック ハイドロゲン ソルーションズ ゲーエムベーハー 電動自動車両の車両電気システムのための回路装置及びこのタイプの回路装置を動作させるための方法
US11560068B2 (en) 2019-04-18 2023-01-24 Stack Hydrogen Solutions Gmbh Circuit arrangement for a vehicle electrical system of an electrically driven motor vehicle and method for operating a circuit arrangement of this type
US11661180B2 (en) 2020-07-08 2023-05-30 Archer Aviation Inc. Systems and methods for power distribution in electric aircraft
US11465764B2 (en) 2020-12-08 2022-10-11 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11945594B2 (en) 2020-12-08 2024-04-02 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11465532B2 (en) 2021-01-22 2022-10-11 Archer Aviation, Inc. Systems and methods for power distribution in electric aircraft
US11919631B2 (en) 2021-02-08 2024-03-05 Archer Aviation, Inc. Vertical take-off and landing aircraft with aft rotor tilting

Also Published As

Publication number Publication date
CN107599859B (zh) 2018-07-06
US20210206290A1 (en) 2021-07-08
JP6758426B2 (ja) 2020-09-23
JP2019532605A (ja) 2019-11-07
EP3476647A1 (en) 2019-05-01
RU2717704C1 (ru) 2020-03-25
CN107599859A (zh) 2018-01-19
KR20190031442A (ko) 2019-03-26
EP3476647A4 (en) 2020-03-25
EP3476647B1 (en) 2022-04-20
KR102179718B1 (ko) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2019041383A1 (zh) 电动汽车的供电系统、控制方法和电动汽车
CN110228369B (zh) 电池动力系统、车辆和控制方法
CN102487145B (zh) 控制燃料电池混合系统的操作的系统和方法
TWI474577B (zh) 電池管理系統、電池模組及均衡多個電池模組的方法
KR101482300B1 (ko) 무정지형 모듈러 배터리 관리 시스템
CN108162989A (zh) 一种城市轨道交通车辆用牵引辅助一体化车载储能系统
CN102832657B (zh) 电池管理系统及电池管理方法
JP2006254610A (ja) 車両用制御装置
CN112046427A (zh) 车辆供电系统及供电控制方法
US11811251B2 (en) On-board distributed power supply system and onboard power supply control method and apparatus
US9987931B2 (en) Method of disconnecting secondary battery and electric power supply system
CN108736531B (zh) 动力电池组、复合电源、控制方法以及车辆
CN115257599A (zh) 一种自动驾驶车型的供电方法和系统
CN214396436U (zh) 一种燃料电池车用高压拓扑结构
CN111934414B (zh) 换电站的备电控制系统的控制方法和换电站
JP5404712B2 (ja) 充電装置、車載用充電装置、車載用充電装置における充電方法
CN212400970U (zh) 一种轨道交通车辆用不对称辅助供电系统
CN114884166A (zh) 一种多电池支路并联控制方法及其装置
CN113910936A (zh) 一种车载充电机及其控制方法
CN114763068B (zh) 一种车用充电宝系统及充电方法
CN219145049U (zh) 高压拓扑结构及电动工程车
CN111731141B (zh) 一种轨道交通车辆用不对称辅助供电系统及其充电方法
CN116476696A (zh) 一种高压架构新能源汽车系统及控制方法
CN110676833B (zh) 轨道能量回馈系统及其控制方法
CN117650294A (zh) 用于运行具有多个电化学蓄能器的电化学蓄能系统的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 20187035378

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018565787

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017905917

Country of ref document: EP

Effective date: 20181026

ENP Entry into the national phase

Ref document number: 2017905917

Country of ref document: EP

Effective date: 20181026

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17905917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE