WO2019041341A1 - 锂离子电池负极材料 - Google Patents

锂离子电池负极材料 Download PDF

Info

Publication number
WO2019041341A1
WO2019041341A1 PCT/CN2017/100357 CN2017100357W WO2019041341A1 WO 2019041341 A1 WO2019041341 A1 WO 2019041341A1 CN 2017100357 W CN2017100357 W CN 2017100357W WO 2019041341 A1 WO2019041341 A1 WO 2019041341A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
rare earth
negative electrode
earth element
lithium ion
Prior art date
Application number
PCT/CN2017/100357
Other languages
English (en)
French (fr)
Inventor
魏汝超
Original Assignee
超能高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 超能高新材料股份有限公司 filed Critical 超能高新材料股份有限公司
Priority to PCT/CN2017/100357 priority Critical patent/WO2019041341A1/zh
Priority to CN201780050968.7A priority patent/CN109792042A/zh
Publication of WO2019041341A1 publication Critical patent/WO2019041341A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention provides a negative electrode material for a lithium ion battery, in particular to a solid solution lithium ion battery anode material in which a rare earth element is solid-dissolved in a silicon-based material.
  • a method for improving the performance of a silicon-based negative electrode material including material modification and structural modification, wherein the material modification method is to introduce other non-silicon atoms to modify the silicon-based material component; and the structural modification method is to modify the surface of the silicon-based material.
  • a process such as encapsulation, embedment, or surface modification, forms a structurally stable silicon-based material-forming structure. The above methods aim to utilize the high capacitance advantage of the silicon-based material, reduce the volume expansion effect of the silicon-based negative electrode material, and reduce the shortcomings of the capacitance loss and the cycle life caused by the fracture and disintegration of the negative electrode material.
  • WO2012086277 proposes a rare earth modified cathode material which is modified with an erbium (Er) compound on the surface of the lithium cobaltate and nickel cobalt manganese oxide mixture cathode material.
  • Er erbium
  • the electrode material Modification rare earth materials are mostly used in compound cathode materials. Due to the difference in properties of the positive and negative materials, if the lithium compound material is directly converted to the anode material system, the lithium compound material cannot have the advantage of high capacitance like the silicon-based material, so it is necessary to develop rare earth.
  • a modified silicon-based anode material to maintain a high capacitance advantage.
  • the Chinese patent CN100352084C proposes a negative electrode material, which is prepared by adding a rare earth compound to a negative electrode material of carbon and silicon mixture to prepare a mixture nano-anode material, thereby improving the battery capacity.
  • the mixing method can not effectively reduce the expansion effect of the silicon-based anode material;
  • the invention proposed in the Chinese patent CN102931388A is to prepare the anode material by coating the lithium titanate with rare earth oxide, thereby maintaining the structural strength of the anode material and obtaining a good cycle.
  • Cide CN103247790A proposes a lithium-ion battery anode material whose main material is silicon alloy Si-X, where X can be rare earth element, The amount of SiO2 is controlled by the oxygen content to reduce the irreversible capacitance, thereby increasing the capacitance and cycle life of the anode material.
  • this patent refers to the alloy of silicon and rare earth elements, the main technical means is to regulate the anode material.
  • WO2013168786 proposes a silicon-rare earth alloy anode material, which improves the silicon base by alloy form.
  • the capacity of the material however, the material has a low capacity retention rate in the long-term use of lithium ion battery charge and discharge, which represents the proposed method material, can not effectively improve the performance of the lithium ion battery, that is, its material may still exist in the foregoing The problem of material expansion faced by silicon alloy materials.
  • the present invention provides a lithium ion battery anode material
  • the anode material includes a silicon-based material and a rare earth element
  • the rare earth element is solid-dissolved in a silicon-based material to form a composite of a silicon-based material and a rare earth element solid solution.
  • the molar ratio of the rare earth element to the solid solution in the silicon-based material is not more than 1/27.
  • the anode material of the lithium ion battery further includes one or more of graphite, tin or aluminum oxide.
  • the invention dissolves the rare earth element into the negative electrode material to form a solid solution composite structure, thereby improving the structural strength of the material and reducing the performance of the negative electrode of the silicon-based negative electrode material in the charging and discharging process of the battery, thereby causing the negative electrode performance to be reduced due to material fracture and disintegration.
  • the negative electrode material maintains the advantages of excellent capacity and cycle life, and achieves the goal of improving the performance of the lithium ion battery.
  • FIG. 1b is a schematic diagram of a lattice structure after lithium ion implantation of a non-modified silicon-based anode material.
  • Fig. 1c is a schematic view showing the fragmentation and disintegration of the lattice structure of the unmodified silicon-based anode material after lithium ion deintercalation to form a fragment.
  • FIG. 2a is a schematic diagram of a lattice structure of a rare earth element solid solution composite silicon-based anode material before lithium ion implantation.
  • 2c is a schematic diagram showing the lattice structure of lithium ion deintercalation of a rare earth element solid solution composite silicon-based anode material.
  • the silicon-based material and the rare earth element solid solution composite lithium ion battery anode material the main system of which is composed of a silicon-based anode material, wherein the silicon-based anode material may be pure silicon (Si).
  • silicon alloy Si-M, such as: Si-Sn
  • silicon composite Si-X, such as: SiC
  • silicon-containing compound SiO x , such as: SiO 2 ; Si x N y , such as: Si 3 N a material such as: Si x N y O z , such as: Si 2 N 2 O
  • the rare earth element is dissolved in the silicon-based anode material to form a silicon-based rare earth element solid solution composite lithium ion battery anode material
  • the rare earth element solid solution composite can be used alone in the preparation of the anode material of the lithium ion battery, or can be mixed with other anode materials (such as graphite, tin, alumina, etc., which are mentioned and not mentioned), and is prepared into a kind.
  • Composite lithium ion battery anode material such as graphite, tin, alumina, etc., which are mentioned and not mentioned
  • a rare earth element is solid-dissolved in a solid solution in a solid solution to form a solid solution composite in which a rare earth element is dissolved to replace a part of silicon atoms in a lattice of a silicon-based material to open a lattice gap.
  • the rare earth element is solid-dissolved in the silicon-based negative electrode material to enhance the structural strength of the negative electrode material; the rare earth element is solid-dissolved in the lithium ion battery electrode material, and the negative electrode material is reduced.
  • the material caused by the volume expansion and disintegration causes the capacitance to decrease. Due to the insertion of rare earth elements, the lattice constant is changed, and the cell cell spacing in the crystal lattice is increased.
  • Lithium ion intercalation/de-intercalation channel which improves the ability of lithium ion to be intercalated/deintercalated, thereby maintaining excellent capacitance and cycle life.
  • the solid solution of rare earth elements does not change the original material.
  • the crystal structure improves the structural strength of the negative electrode material and reduces material damage under the mechanism of material strengthening.
  • FIG. 1a to 1c illustrate the volume expansion effect of a silicon-based negative electrode material produced by a lithium ion intercalation/deintercalation process in a charge-discharge process of a silicon-based negative electrode material without modification, and a silicon-based negative electrode material as a charge and discharge procedure of a lithium ion battery
  • the volume changes drastically; in Figure 1a, the silicon atom 101 constitutes a silicon-based anode material 100 crystal Lattice structure, lithium ion has not been embedded in the silicon-based anode material 100, its material structure; in the battery charging process, as shown in Figure 1b, lithium ion 102 is embedded in the silicon-based anode material 100, forming a silicon-based anode with a large volume expansion Material 100; lithium ion battery discharge procedure is carried out, as shown in Fig.
  • Lithium ion tunnels (202) also provide a buffering space for the structural strain of the silicon-based anode material during lithium ion intercalation, which reduces material damage caused by volume expansion; lithium ion battery discharge procedures are performed, such as 2c, the lithium ion 102 is deintercalated from the rare earth element solid solution silicon-based negative electrode material 200, and the rare earth element solid solution composite silicon base after lithium ion deintercalation is obtained under the material strengthening mechanism obtained by solid solution of rare earth element 201.
  • the negative electrode material 200 which is improved in structural strength, causes the silicon-based negative electrode material to maintain structural integrity after the lithium ion 102 is deintercalated.
  • the structural strength of the silicon-based negative electrode material can be enhanced by the solid solution of the rare earth element in the silicon-based negative electrode material.
  • the solid solution amount is the key factor affecting the properties of the final negative electrode material, and the solid solution amount is in the solid solution.
  • the crystal center silicon atom is replaced by a rare earth atom, and the smallest crystal lattice is composed of 3 silicon atoms on each side, and is constructed into a 3 ⁇ 3 ⁇ 3 crystal structure.
  • the rare earth element is in the silicon-based anode material (rare earth /Si)
  • the upper limit of the solid solution amount is 1/(3 ⁇ 3 ⁇ 3), that is, the ratio of 1/27 molar ratio.
  • overlapping contacts will occur between the rare earth atoms, which will cause precipitation, instead of Conducive to the strengthening of the structure of the negative electrode material.
  • Ratio of solid solution of rare earth element dissolved in silicon-based anode material If calculated by weight percentage (wt%), since the atomic weight of each rare earth element is different, the weight percentage of the solid solution amount will also be different.
  • the solid solution rare earth element is cerium (Eu, the atomic weight is about 152 g/mol).
  • the upper limit of the molar solid solution When the upper limit of the molar solid solution is 1/27 moles, the upper limit of the solid solution amount is 152/(28*27), that is, 20% by weight; when the solid solution rare earth element is cerium (Ce, the atomic weight is about When 140.1 g/mol), the upper limit of the molar solid solution is 1/27 moles, and the upper limit of the solid solution amount is 140.1/(28*27), that is, 18.5 wt%; when the solid solution rare earth element is strontium ( When Y is an atomic weight of about 88.91 g/mol, the upper limit of the molar solid solution is 1/27 mole percent, and the upper limit of the solid solution amount is 88.91 / (28 * 27), that is, 11.8 wt%.
  • the ratio of the solid solution amount of the rare earth element is a major factor affecting the performance of the lithium ion battery of the silicon-based negative electrode material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锂离子电池负极材料,所述负极材料包括硅基材料及稀土元素,所述稀土元素固溶于硅基材料形成硅基材料与稀土元素固溶体之复合物,其中稀土元素于硅基材料中之固溶量摩尔比不大于27分之1。该负极材料藉由稀土元素固溶于负极材料中形成固溶体复合物结构,以提升材料结构强度,减少硅基负极材料于电池充放电程序中,因材料破碎崩解造成之负极性能降低,进而使该负极材料维持优异电容量与循环寿命等优点,达成锂离子电池性能改善之目标。

Description

锂离子电池负极材料 技术领域
本发明提供一种锂离子电池负极材料,尤其指一种稀土元素固溶于硅基材料之固溶体复合物锂离子电池负极材料。
背景技术
硅基负极材料(anode)因具有高电容量(high capacitance)之特性,逐渐受到瞩目,其首次理论电容量可达到4200mAh/g,因此在锂离子电池性能提升上,具有相当大的潜力。然而,若单纯使用硅或以锂-硅等合金形式材料作为锂离子电池负极材料,则会面临负极材料体积膨胀(swelling)之问题,在N.Dimov等人发表于ElectrochimicaActa,2003,48(11),p1579-1587之论文提到,使用锂-硅等锂离子合金系统之锂离子电池负极材料,体积将会膨胀100-300%,造成负极材料内部崩裂(internal cracks),导致锂离子电池循环寿命(cycle life)下降。
提升硅基负极材料性能方法,包含材料改质以及结构修饰,其中,材料改质方法为引入其他非硅之原子对硅基材料成分进行改质;结构修饰方法,为透过硅基材料表面修饰程序,如:包覆(encapsulation)、嵌入(embedment)或表面修饰(surface modification)等,形成结构稳定之硅基材料赋型结构。上述之方法,目的皆是期望利用硅基材料高电容优势,同时降低硅基负极材料体积膨胀效应,减少负极材料碎裂崩解所引起之电容量损失与循环寿命降低之缺点。
在提升锂离子电池性能之电极材料改质上,稀土元素(rare earth elements)因其具有良好材料分散性,以及材料结构强化性等优异特性,而逐渐受到重视,目前稀土元素最常见于正极材料之改质,藉以提升锂离子电池性能,中国专利CN203386848U提出一种稀土掺杂之碳电极锂离子蓄电池,说明在锂离子化合物电极材料LiMxMn2-xO4中加入钇(Y)形成复合材料,稳定了电极材料之结构,减少体积变化所造成之电容量衰退;WO2012086277提出一种稀土改质之正极(cathode)材料,在钴酸锂与镍钴锰酸锂混合物正极材料表面以铒(Er)化合物改质,抑制因高温而造成之电容量损失;然而在前述领域中电极材料 改质,稀土材料大多用于化合物正极材料,由于正极与负极材料性质上的差异,若直接转换于负极材料系统上,锂化合物材料无法像硅基材料一样具有高电容之优势,因此需要发展稀土改质之硅基负极材料,以维持高电容优势。
稀土元素在负极材料改质方面,中国专利CN100352084C提出一种负极材料,透过添加混合方式,于碳、硅混合物负极材料中加入稀土化合物制备混合物纳米负极材料,进而提高电池电容量,然而单纯材料混合方式无法有效减少硅基负极材料之膨胀效应;中国专利CN102931388A所提出之发明,是利用稀土氧化物(rare earth oxide)包覆钛酸锂制备负极材料,进而维持负极材料结构强度,得到良好循环寿命,然而,其电容量相对较低,无法维持硅基材料高电容优势;中国专利CN103247790A提出一种锂离子电池负极材料,其主体材料为硅合金Si-X,其中X可为稀土元素,藉由氧气含量调控来控制SiO2生成量,以降低不可逆电容,进而提升负极材料电容量与循环寿命,虽然,该篇专利提到硅与稀土元素的合金,然而其主要的技术手段在于调控其负极材料中氧含量以避免电容量损失,也就是说其必须对合金进行氧含量控制才能产生其避免电容量损失之效果,工艺技术上较为繁杂且成本较高;WO2013168786提出一种硅-稀土合金负极材料,藉由合金形式提高硅基材料之电容量,然而该材料在锂离子电池充放电长效使用上,其电容量维持率偏低,代表所提出之方法材料,无法有效提升锂离子电池性能,亦即其材料依旧可能存在前述硅合金材料所面临之材料膨胀之问题。
综上所述,负极材料电容量对锂离子电池性能有显著的重要性,如何以较低成本及较有效益的技术手段来提升负极材料电容量以及提高循环寿命,将是一个重要且急待解决的课题。
发明内容
为了解决上述问题,本发明提出了一种锂离子电池负极材料,所述负极材料包括硅基材料及稀土元素,所述稀土元素固溶于硅基材料形成硅基材料与稀土元素固溶体之复合物,其中稀土元素于硅基材料中之固溶量摩尔比不大于27分之1。
所述硅基材料系纯硅、硅合金、硅复合物或含硅之化合物;所述稀土元素 系钪(Sc)、钇(Y)、镧系(La)或锕系(Ac)稀土元素中之一种或一种以上所构成之单质、混合物、复合物或化合物。
所述锂离子电池之负极材料还包括一种或一种以上之石墨、锡或氧化铝。
本发明藉由稀土元素固溶于负极材料中形成固溶体复合物结构,以提升材料结构强度,减少硅基负极材料于电池充放电程序中,因材料破碎崩解造成之负极性能降低,进而使该负极材料维持优异电容量与循环寿命等优点,达成锂离子电池性能改善之目标。
附图说明
图1a为无改质之硅基负极材料锂离子嵌入前之晶格结构示意图。
图1b为无改质之硅基负极材料锂离子嵌入后之晶格结构示意图。
图1c为无改质之硅基负极材料晶格结构于锂离子脱嵌后碎裂崩解,形成破碎片段示意图。
图2a为稀土元素固溶体复合物硅基负极材料锂离子嵌入前之晶格结构示意图。
图2b为稀土元素固溶体复合物硅基负极材料锂离子嵌入后之晶格结构示意图。
图2c为稀土元素固溶体复合物硅基负极材料锂离子脱嵌后之晶格结构示意图。
具体实施方式
本发明提供了一种包含硅基材料与稀土元素固溶体复合物之锂离子电池负极材料,所述之稀土元素系包含钪(Sc)、钇(Y)、镧系(La)、锕系(Ac)等稀土元素中之一种或一种以上所构成之单质、混合物、复合物或化合物。
在一较佳实施例中,所述之硅基材料与稀土元素固溶体复合物锂离子电池负极材料,其主体系由硅基负极材料所构成,其中,硅基负极材料可以是纯硅(Si)、硅合金(Si-M,如:Si-Sn)、硅复合物(Si-X,如:SiC)、含硅化合物(SiOx,如:SiO2;SixNy,如:Si3N4;SixNyOz,如:Si2N2O)等材料,而所述稀土元素固溶于所述硅基负极材料形成硅基稀土元素固溶体复合物锂离子电池负极材料,所 述稀土元素固溶体复合物可以单独运用在锂离子电池负极材料之制备,也可与其他负极材料(如:石墨、锡、氧化铝等提及与未提及之负极材料)混合使用,制备成为一种复合型锂离子电池负极材料。
本发明之较佳实施例是以元素固溶方式将稀土元素固溶于硅基负极材料形成固溶体复合物,当中稀土元素固溶取代硅基材料晶格中部分硅原子以撑开晶格间隙,藉此扩充锂离子通道,有效维持硅基材料高电容量,同时提供缓冲空间,减少硅基材料体积膨胀引起之材料碎裂崩解而造成电容量损失,以及维持良好循环寿命之效果;稀土元素固溶不改变主体材料之晶体结构,因稀土元素之离子半径较大,使得晶格常数(lattice constant)随之变大,因此扩充了锂离子通道,促使改质后之电极具有更优异的充放电稳定性。
在负极材料中,加入少量之固溶元素,其目的在于藉由固溶元素的导入,以强化负极材料之结构,减少因体积变化而造成材料碎裂崩解之电容量损失进而维持良好循环寿命;本发明之较佳实施例中,藉由稀土元素固溶于硅基负极材料中,提升了负极材料结构强度;在锂离子电池电极材料中固溶稀土元素,其一,减少了因负极材料在充放电过程中体积膨胀引起之材料碎裂崩解而造成电容量下降,因稀土元素插入,改变晶格常数(lattice constant),使晶格内晶胞(unit cell)间距变大,拓展了锂离子之嵌入/脱嵌(intercalation/de-intercalation)通道,提高锂离子嵌入/脱嵌之能力,进而维持优异电容量以及循环寿命;其二,稀土元素的固溶,不改变原有材料之晶体结构,在材料强化作用机制下,提高负极材料结构强度,减少材料破坏。
上述之材料强化机制于本发明所提出之硅基负极材料之实际作用,在于稀土元素固溶于硅基负极材料所造成之结构强化效果,其实际强化作用,乃透过固溶强化(solid solution strengthening)作用机制来达到结构强化之目的,固溶元素进入固溶体后,造成邻近母相原子晶格应变(lattice strain),晶格应变场与固溶元素相互作用,使得材料结构受到限制不致变形,进而提高负极材料之结构强度。
图1a至图1c说明无改质之硅基负极材料充放电程序锂离子嵌入/脱嵌的过程所产生之硅基负极材料体积膨胀效应,随着锂离子电池充放电程序进行,硅基负极材料体积变化剧烈;在图1a中,硅原子101构成硅基负极材料100晶 格结构,锂离子尚未嵌入硅基负极材料100前,其材料结构状况;在电池充电程序中,如图1b所示,锂离子102嵌入硅基负极材料100,形成体积大幅度膨胀之硅基负极材料100;锂离子电池放电程序进行,如图1c所示,锂离子从硅基负极材料脱嵌,硅基负极材料无法承受因锂离子嵌入/脱嵌所造成体积剧烈变化因而碎裂崩解,形成破碎片段103。
由此可知,使用硅基材料作为锂离子电池负极材料,材料膨胀崩解效应对锂离子电池性能之影响甚大。本发明之较佳实施例藉由稀土元素固溶于硅基负极材料可以提升材料之结构强度,进而提升锂离子电池性能之效益,图2a-2c所示为稀土元素固溶体复合物硅基负极材料充放电程序锂离子嵌入/脱嵌过程示意图。图2a所示,稀土元素201固溶于硅基负极材料后,拓展了锂离子之嵌入/脱嵌通道202,强化了负极材料结构,进而提高应变强度,形成了具有良好充放电性能之稀土元素固溶体复合物硅基负极材料200;锂离子电池充电程序中,如图2b所示,锂离子102嵌入稀土元素固溶体复合物硅基负极材料200中,因稀土原子固溶于硅基负极材料拓展了锂离子通道202(lithium ion tunnels),同时提供了硅基负极材料于锂离子嵌入时结构应变之缓冲空间(buffering space),减少了体积膨胀所造成之材料破坏;锂离子电池放电程序进行,如图2c所示,锂离子102从稀土元素固溶体复合物硅基负极材料200脱嵌,在稀土元素201固溶所获得之材料强化作用机制下,锂离子脱嵌后之稀土元素固溶体复合物硅基负极材料200,其因结构强度提高,使得锂离子102脱嵌后,硅基负极材料依旧维持结构完整。
本发明之较佳实施例中,透过稀土元素固溶于硅基负极材料可以增强硅基负极材料之结构强度,然而,固溶量是影响最终负极材料性质的关键,固溶量为固溶体中所添加之溶质量,即硅基负极材料中所加入之稀土元素含量;本发明之较佳实施例所提出之稀土固溶体复合物负极材料,以晶格之立体结构来看,其最大立体障碍之晶格中心硅原子被稀土原子取代,所述最小晶格各边为3个硅原子,构筑成3×3×3晶体结构,依此立体结构计算,其稀土元素于硅基负极材料中(稀土/硅)固溶量上限为1/(3×3×3),即1/27摩尔比,超过此上限固溶量比例,稀土原子之间将会发生重迭接触,进而造成析出,反而不利于负极材料结构之强化。稀土元素固溶于硅基负极材料中之固溶量比例 若以重量百分比(wt%)计算,由于各稀土元素的原子量不同,因此其固溶量之重量百分比亦会有所不同,当固溶之稀土元素为铕(Eu,原子量约为152克/摩尔)时,摩尔固溶量上限1/27摩尔换算为重量百分比,则固溶量上限将为152/(28*27),即20wt%;当固溶之稀土元素为铈(Ce,原子量约为140.1克/摩尔)时,摩尔固溶量上限1/27摩尔换算为重量百分比,则固溶量上限将为140.1/(28*27),即18.5wt%;当固溶之稀土元素为钇(Y,原子量约为88.91克/摩尔)时,摩尔固溶量上限1/27摩尔换算为重量百分比,则固溶量上限将为88.91/(28*27),即11.8wt%。
当稀土元素固溶量过高,会形成大尺寸之中间化合物,分布在晶粒内部或是晶界上,造成非均匀分布之巨观析出,进而使材料结构强度下降,不利于硅基负极材料之结构强度提升,同时造成额外之电容量损失,造成电池性能降低,因此,稀土元素固溶量之比例为影响硅基负极材料锂离子电池性能之主要因子。
以上所述者仅为用以解释本发明之较佳实施例,并非企图据以对本发明做任何形式上之限制,凡在相同发明精神下所作有关本发明之任何修饰或变更,皆仍应包括在本发明意图保护之范畴。
【符号说明】
100  硅基负极材料晶格结构
101  硅原子
102  锂离子
103  硅基负极材料晶格碎片
200  稀土元素固溶体复合物硅基负极材料晶格结构
201  稀土元素
202  锂离子通道

Claims (7)

  1. 一种锂离子电池负极材料,包括硅基材料及稀土元素,所述稀土元素固溶于硅基材料形成硅基材料与稀土元素固溶体的复合物,其中,稀土元素在硅基材料中的固溶量摩尔比不大于27分之1。
  2. 如权利要求1所述的锂离子电池负极材料,其中,所述硅基材料是纯硅、硅合金、硅复合物或含硅化合物。
  3. 如权利要求1或2所述的锂离子电池负极材料,其中,所述稀土元素是钪、钇、镧系或锕系稀土元素中的一种或更多种所构成的单质、混合物、复合物或化合物。
  4. 如权利要求1或2所述的锂离子电池负极材料,还包括石墨、锡或氧化铝中的一种或更多种。
  5. 如权利要求1或2所述的锂离子电池负极材料,其中,所述稀土元素是铕,铕在硅基材料中的固溶量的重量百分比不大于20wt%。
  6. 如权利要求1或2所述的锂离子电池负极材料,其中,所述稀土元素是铈,铈在硅基材料中的固溶量的重量百分比不大于18.5wt%。
  7. 如权利要求1或2所述的锂离子电池负极材料,其中,所述稀土元素是钇,钇在硅基材料中的固溶量的重量百分比不大于11.8wt%。
PCT/CN2017/100357 2017-09-04 2017-09-04 锂离子电池负极材料 WO2019041341A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/100357 WO2019041341A1 (zh) 2017-09-04 2017-09-04 锂离子电池负极材料
CN201780050968.7A CN109792042A (zh) 2017-09-04 2017-09-04 锂离子电池负极材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100357 WO2019041341A1 (zh) 2017-09-04 2017-09-04 锂离子电池负极材料

Publications (1)

Publication Number Publication Date
WO2019041341A1 true WO2019041341A1 (zh) 2019-03-07

Family

ID=65524772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100357 WO2019041341A1 (zh) 2017-09-04 2017-09-04 锂离子电池负极材料

Country Status (2)

Country Link
CN (1) CN109792042A (zh)
WO (1) WO2019041341A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113224286B (zh) * 2021-04-25 2022-11-08 浙江大学自贡创新中心 一种高容量锂离子电池硅基复合负极材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705150A (zh) * 2004-05-31 2005-12-07 潘树明 锂离子电池负极材料的制作方法
JP2014116297A (ja) * 2012-11-14 2014-06-26 Santoku Corp リチウムイオン二次電池用負極活物質
CN104078646A (zh) * 2007-07-23 2014-10-01 索尼株式会社 负极、电池以及制造它们的方法
CN104471758A (zh) * 2012-05-11 2015-03-25 株式会社三德 锂离子二次电池的负极
CN106803579A (zh) * 2017-01-13 2017-06-06 浙江大学 一种含正极材料的硅或硅合金复合锂离子电池负极材料及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063762A1 (ja) * 2010-11-08 2012-05-18 古河電気工業株式会社 リチウムイオン二次電池用負極に用いるナノサイズ粒子及びその製造方法
WO2015064633A1 (ja) * 2013-10-30 2015-05-07 古河電気工業株式会社 負極活物質及びその製造方法並びにそれを用いた負極及び非水電解質二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705150A (zh) * 2004-05-31 2005-12-07 潘树明 锂离子电池负极材料的制作方法
CN104078646A (zh) * 2007-07-23 2014-10-01 索尼株式会社 负极、电池以及制造它们的方法
CN104471758A (zh) * 2012-05-11 2015-03-25 株式会社三德 锂离子二次电池的负极
JP2014116297A (ja) * 2012-11-14 2014-06-26 Santoku Corp リチウムイオン二次電池用負極活物質
CN106803579A (zh) * 2017-01-13 2017-06-06 浙江大学 一种含正极材料的硅或硅合金复合锂离子电池负极材料及其制备方法和应用

Also Published As

Publication number Publication date
CN109792042A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
CN111180691B (zh) 双层碳包覆的硅基复合材料及其制备方法和应用
WO2021134199A1 (zh) 用于二次电池的硅基负极材料及其制备方法,二次电池
CN110970600B (zh) 一种锂离子二次电池负极材料及其制备方法和应用
US20230046142A1 (en) Cobalt-free layered positive electrode material and method for preparing same, and lithium-ion battery
CN110534733A (zh) 一种大单晶锂离子电池镍钴锰酸锂正极材料制备方法
CN1785823A (zh) 磷位部分取代型磷酸铁锂粉体的制备方法
CN104934608A (zh) 一种石墨烯原位包覆锂离子电池正极材料的制备方法
JP2007115687A (ja) 負極活物質、その製造方法、並びにそれを採用した負極及びリチウム電池
CN104916865A (zh) 用于具有持续高容量/单位面积的锂离子电池的Si/C复合材料阳极
JP6006662B2 (ja) 珪素含有粒子の製造方法、非水電解質二次電池の負極材の製造方法、および、非水電解質二次電池の製造方法
CN102832376B (zh) 一种锂离子电池负极用硅碳基复合材料的制备方法
WO2022002057A1 (zh) 硅氧复合负极材料、负极和锂离子电池及其制备方法
WO2018209912A1 (zh) 一种锡硫化物/硫/少层石墨烯复合材料及其制备方法和应用
WO2016202167A1 (zh) 一种锂离子电池钛酸锂负极浆料及其制备方法
WO2016201982A1 (zh) 一种锂离子电池石墨负极浆料及其制备方法
EP3836260A1 (en) Negative electrode material, and preparation method therefor and use thereof
Liang et al. Submicron silica as high− capacity lithium storage material with superior cycling performance
Zhang et al. Li2SnO3 derived secondary Li–Sn alloy electrode for lithium-ion batteries
CN106784703A (zh) 一种具有高压实密度单晶正极材料的制备方法
CN104993120A (zh) 一种锂离子电池负极浆料及其制备方法
WO2019041341A1 (zh) 锂离子电池负极材料
CN109216697A (zh) 一种高镍大晶粒三元材料及其制备方法
TWI639265B (zh) Lithium ion battery anode material
Cheng et al. Investigation of electrochemical performance on SnSe2 and SnSe nanocrystals as anodes for lithium ions batteries
JP5376399B2 (ja) リチウム二次電池用正極活物質及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923745

Country of ref document: EP

Kind code of ref document: A1