WO2019039787A1 - 긴장력 육안 확인이 가능한 앵커 장치 및 그 시공 방법 - Google Patents

긴장력 육안 확인이 가능한 앵커 장치 및 그 시공 방법 Download PDF

Info

Publication number
WO2019039787A1
WO2019039787A1 PCT/KR2018/009319 KR2018009319W WO2019039787A1 WO 2019039787 A1 WO2019039787 A1 WO 2019039787A1 KR 2018009319 W KR2018009319 W KR 2018009319W WO 2019039787 A1 WO2019039787 A1 WO 2019039787A1
Authority
WO
WIPO (PCT)
Prior art keywords
leaf spring
reaction force
head
force device
convex portion
Prior art date
Application number
PCT/KR2018/009319
Other languages
English (en)
French (fr)
Inventor
이용주
정혁상
김호규
김성규
박원태
오동욱
윤환희
Original Assignee
동양대학교 산학협력단
주식회사 그라운드이엔씨
주식회사 동성엔지니어링
우리기술개발 주식회사
서울과학기술대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동양대학교 산학협력단, 주식회사 그라운드이엔씨, 주식회사 동성엔지니어링, 우리기술개발 주식회사, 서울과학기술대학교 산학협력단 filed Critical 동양대학교 산학협력단
Publication of WO2019039787A1 publication Critical patent/WO2019039787A1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2200/00Geometrical or physical properties
    • E02D2200/14Geometrical or physical properties resilient or elastic
    • E02D2200/146Springs
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0026Metals
    • E02D2300/0029Steel; Iron
    • E02D2300/0034Steel; Iron in wire form
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/30Miscellaneous comprising anchoring details

Definitions

  • the present invention relates to an anchor device capable of visually confirming a tensile force and a construction method thereof.
  • Anchor devices are widely used as a method to reinforce the ground.
  • the anchor device applied to the slope surface is configured such that the anchor end portion is fixed to the ground via grouting or the like and the anchor is pulled up by the strand of the anchor so that the anchor and the lower side pressure plate support the slope face. That is, the tensile force of the stranded wire acts as the pressing force of the pressure plate against the slope surface.
  • the administrator can easily confirm the lifted apparatus of the anchor devices on the slope face with the naked eye and can secure the pressing force against the slope by reinvestigating the weakened or stiffened strand.
  • the present invention has been conceived to solve the above-mentioned problems, and it is an object of the present invention to provide an anchor apparatus and an anchor apparatus which are capable of maintaining an elastic restoring force And it is an object of the present invention to provide an anchor device.
  • An object of the present invention is to provide an anchor device having a structure that can naturally induce a deformation of a leaf spring in a pressing process of a head due to tension of a strand of a strand to prevent breakage of the leaf spring.
  • Another object of the present invention is to provide an anchor device structure and an additional construction method that can be easily applied to a previously installed anchor device by applying a leaf spring having a structure capable of maintaining an elastic force even if divided.
  • the present invention provides a straddle-type vehicle comprising a plurality of stranded wires (60) embedded in a ground; A pressure plate (10) having a through hole (11) through which the strand of the strand penetrates and which is placed on the ground to press the ground; A reaction force device (20) placed on the pressure plate (10) and having a through hole (21) through which the strand is passed; An annular leaf spring 30 which surrounds the plurality of stranded wires from outside and is placed on the upper side of the reaction force device 20; A head (40) having a plurality of wedge holes (41) through which the plurality of stranded wires (60) pass, respectively, and being placed on the reaction force device (20) via the leaf spring (30); And a wedge (50) surrounding each of the plurality of strands (60) and inserted into the wedge hole (41).
  • the cross section (cc) of the leaf spring (30) A convex portion 32 protruding to the convex portion 32; And an inflection point 33 provided at an inner end of the convex portion 32 and extending outward with respect to an inflection point 33 provided at the outer side end of the convex portion 32, Wherein the curved surface portion of the concave portion is in contact with the upper surface of the reaction force device and the concave portion is in contact with the concave portion, Is upwardly moved beyond a portion in contact with the upper surface of the reaction force device (20).
  • the reaction force device 20 has an annular concave groove 22 formed on an upper surface corresponding to an outer side of a position through which the strand passes, and is provided so as to surround the plurality of strands.
  • a space provided between the bottom surface of the convex portion 32 of the plate spring 30 and the annular concave groove 22 of the reaction force device 20 is provided with an annular elastic body 25 ).
  • the cross-section (d-d) of the elastic member 25 seen from the circumferential direction has a major axis extending in the left-right direction and a minor axis extending in the up-down direction.
  • the plate spring 30 is installed in a form in which a plurality of leaf springs 301, 302, and 303 are vertically stacked.
  • the plurality of leaf springs may have different thicknesses in order to have different elastic forces.
  • a receiving groove 42,44 for receiving the leaf spring 30 is formed on the bottom surface of the head 40.
  • the receiving groove has a radius of curvature larger than that of the convex portion 32 of the leaf spring 30
  • a convex receiving groove (42) having at least a portion of the upper surface of the convex portion (32);
  • concave receiving grooves 44 which are respectively provided at the outer end and the inner end of the convex portion receiving groove 42 and accommodate the concave portion 34 of the plate spring 30.
  • the depth h1 of the recess receiving groove 44 is greater than the height of the leaf spring.
  • the convex portion receiving groove 42 of the head and the convex portion 32 of the plate spring are engaged with each other when the head 40 is pressed on the reaction force device 20.
  • the reaction force device 20 includes a first reaction force device 20-1 and a second reaction force device 20-2 which are divided in the circumferential direction about the plurality of stranded wires 60, ) Includes a first leaf spring (30-1) and a second leaf spring (30-2) divided circumferentially around the plurality of stranded wires (60), and the lower end of the head (40)
  • the insertion head 43 is provided with a first insertion head 43-1 which is divided in the circumferential direction about the plurality of stranded wires 60, And a second insertion head 43-2.
  • the present invention is an additional construction method for applying the anchor device, the method comprising: separating the head (40) from the pressure plate (10); The first reaction force device 20-1 and the second reaction force device 20-2, the first leaf spring 30-1, and the second reaction force device 20-2 are provided from the side between the separator 10 and the head 40, Two leaf springs 30-2, and sequentially inserting the first insertion head 43-1 and the second insertion head 43-2 from bottom to top; And pressing the reaction force device and the leaf spring against the head by releasing the separation of the head.
  • the anchor device of the present invention since the elastic restoring force of the leaf spring interposed therebetween is constantly maintained even if the head and the platen are pressed against each other, the anchor device whose tension of the strand is weakened due to the loss of the elastic restoring force, Can be confirmed.
  • the leaf spring since the elastic deformation of the leaf spring is naturally induced in the pressing process of the anchor device, the leaf spring is prevented from breakage, and the anchor device with weak tension of the strand can be surely visually confirmed.
  • the elastic force can still be exerted. Therefore, it is very easy to construct a tensile force confirmation structure including the leaf spring on the anchor device Do.
  • FIG. 1 is a side sectional view showing a state before a tensile force is applied to an anchor device visually capable of confirming a tensile force according to an embodiment of the present invention.
  • FIG. 2 is an enlarged view of a portion A in Fig.
  • FIG. 3 is a side sectional view showing a state in which tensile force is applied to the anchor device of FIG.
  • FIG. 4 is an enlarged view of a portion B in Fig.
  • Fig. 5 is a plan view and a bottom view of the head of the anchor device of Fig. 1, respectively.
  • Fig. 6 is a plan view of the leaf spring of the anchor device of Fig. 1 and a circumferential section (C-C) of the leaf spring.
  • FIG. 7 is a plan view showing a reaction force device of the anchor device of FIG.
  • Fig. 8 is a plan view of an elastic body of the anchor device of Fig. 1 and a circumferential section (D-D) of the elastic body.
  • FIG. 9 is a cross-sectional side view showing a state before a tensile force is applied to an anchor device visually capable of confirming a tensile force according to another embodiment of the present invention.
  • FIG. 10 is a plan view and a bottom view of the head of the anchor apparatus of FIG. 9; FIG.
  • FIG. 11 is a plan view and a bottom view of the insertion head of the anchor apparatus of FIG. 9; FIG.
  • FIG. 12 is a plan view of the plate spring of the anchor device of FIG. 9; FIG.
  • Fig. 13 is a plan view showing a reaction force device of the anchor device of Fig. 9; Fig.
  • FIG. 14 is a plan view showing an elastic body of the anchor device of Fig.
  • FIG. 15 is a view simply showing the process of additionally installing the anchor device of FIG. 9 to the previously installed anchor device.
  • 16 is a flowchart showing a construction method of applying an embodiment of an anchor device to a new site.
  • 17 is a flowchart showing a construction method for applying another embodiment of an anchor device to an existing site.
  • the anchor device includes a PC stranded wire (60) whose tip is fixed to the ground and exposed to the outside of the ground.
  • a plurality of the stranded wires 60 may be provided depending on the shape and area of the pressure plate 10.
  • a through hole (11) through which the strand (60) passes is provided on the pressure plate (10).
  • a plurality of through-holes 11 may be provided corresponding to the number and positions of the strands 60.
  • the through-hole 11 may be provided in a size such that the plurality of stranded wires 60 can pass therethrough together.
  • reaction force device (20) is placed on the upper portion of the through hole (11).
  • the reaction force device 20 has a generally circular shape as shown in Fig.
  • the shape of the reaction force device can be variously configured in correspondence with the shape of the pressure plate.
  • a through hole (21) through which the strand (60) penetrates is provided at the center of the reaction force device (20).
  • a plurality of the through holes 21 may be provided corresponding to the number and position of the strands 60.
  • the through-hole 21 may be provided in a size such that the plurality of stranded wires 60 can pass therethrough together.
  • the form in which one large through hole 21 is formed in the central portion may be in the form of a flat donut.
  • annular recessed groove 22 is provided around the through-hole 21.
  • the cross-section of the annular concave groove 22 viewed from the circumferential direction may be a groove shape having a predetermined width w1 which is gently downward convex as shown in the figure.
  • a leaf spring 30 and an elastic body 25 are stacked on the reaction force device 20.
  • the leaf spring 30 and the elastic body 25 all have an annular shape as a whole.
  • the stranded wire 60 passes through the central portion of the annular leaf spring 30 and the elastic body 25.
  • the cross section CC of the leaf spring 30 viewed in the circumferential direction includes a convex portion 32 whose center portion protrudes upward convexly and a concave portion 34 provided at an outer end portion and an inner end portion of the convex portion 32, .
  • the concave portion 34 extending from the inner circumference and the outer circumference of the convex portion 32 is formed in a direction away from the convex portion 32 with reference to the inflection point 33 located at both ends of the convex portion 32.
  • the concave portion 34 of the leaf spring 30 further extends from the lowest point in contact with the upper surface of the reaction force device 20, and its end is upwardly closed. Therefore, the curved surface portions of the concave portion 34 provided at the lower end of the leaf spring 30 contact and come into contact with each other in the reaction force device 20 and the leaf spring 30.
  • the elastic member 25 is interposed in the space defined by the plate spring 30, more specifically, the convex portion 32 and the annular concave groove 22.
  • the elastic body 25 may be made of a rubber material.
  • the elastic body 25 also has a ring shape corresponding to the leaf spring 30 and the annular concave groove 22.
  • the cross-section D-D of the elastic body 25 in the circumferential direction may be an elliptical shape having a long axis extending laterally and a short axis extending vertically.
  • the upper surface of the elliptical cross section is at least partially in contact with the convex portion 32 and the lower surface of the elliptic cross section is in contact with at least a part of the annular concave groove 22.
  • the elastic member 25 further reinforces the elastic restoring force which may be insufficient for the leaf spring 30.
  • the leaf spring 30 can be configured to have a predetermined elastic force corresponding to the tensile force of the strand.
  • the leaf springs 30 may be stacked as a plurality of (301, 302, 303) as shown in FIG. Accordingly, it is possible to provide the leaf spring in a form of stacking a plurality of leaf springs corresponding to the elastic force required of the leaf spring 30.
  • the concave portions 34 of the leaf springs 30 of the stacked plurality of plate springs 30 can be prevented from being deformed even when the leaf springs 30 are stacked, unlike the case where only the convex portions 32 are provided, Is indirectly supported from the upper surface of the reaction force device 20 directly or through a lower leaf spring. Therefore, the elastic force that is generated when the plurality of leaf springs 30 are stacked is displayed as it is by adding all the elastic forces of the leaf springs.
  • the leaf springs 30 may be laminated with leaf springs having different thicknesses from each other.
  • the elastic force of the leaf spring also increases.
  • the rate at which the elastic force of the leaf spring increases is larger than the ratio of the thickness of the leaf spring. That is, when the thickness of the leaf spring 30 is doubled, the elastic force can be increased more than two times.
  • This provides flexibility of the plate spring installation in correspondence with the height h1 of the concave receiving groove 44 of the head 40 to be described later. That is, it is preferable that the depth h1 of the recess receiving groove 44 is larger than the entire thickness of the recess of the leaf spring provided on the anchor device. If the height of the recess receiving groove 44 provided in the field is very high Alternatively, instead of stacking a plurality of relatively thin leaf springs several layers, it is possible to install leaf springs in a manner using thick leaf springs.
  • leaf springs having a plurality of different elastic forces by appropriately laminating leaf springs having a plurality of different elastic forces, it is possible and easy to construct leaf springs suitable for the field conditions.
  • a head (40) is placed on the top of the reaction force device (20).
  • the head 40 is placed on the reaction force device 20 with the plate spring 30 and the elastic body 25 interposed therebetween.
  • the head 40 receives the force of the strand 60 and transmits it to the platen 10 in such a configuration that the strand 60 is fixed in a tensioned state.
  • a plurality of wedge holes 41 through which the stranded wire 60 passes are formed in the head 40.
  • the wedge hole 41 is formed in a conical shape with a lower light-tight cone, and a wedge 50 is inserted from the upper side thereof.
  • the wedge 50 may be a split wedge that surrounds the strand 60.
  • the bottom surface of the head 40 is provided with receiving grooves 42, 44 for receiving the leaf springs 30 provided thereunder. Therefore, the receiving grooves 42 and 44 are also provided to surround the strand 60 and have a size corresponding to the size of the leaf spring 30.
  • the receiving groove includes a convex portion receiving groove 42 for receiving the convex portion 32 of the leaf spring and a concave receiving groove 44 for receiving the concave portion 34.
  • the center (deepest portion) of the convex portion receiving groove 42 is aligned with the center (the highest portion) of the convex portion 32 of the leaf spring.
  • the concave receiving grooves 44 are provided at the outer and inner ends of the convex receiving grooves 42, respectively.
  • the convex portion receiving groove 42 is formed deeper than the concave receiving groove 44 and is formed to have a radius of curvature larger than the radius of curvature of the convex portion 32 before the plate spring 30 is deformed .
  • the convex portion receiving groove 42 is in contact with a portion including the top of the plate spring convex portion 32 as shown in Figs. 1 and 2 before the head 40 is pressed, 3 and 4, the leaf spring 30 may be deformed and entirely contact with the convex portion 32 of the leaf spring.
  • the width w2 of the convex portion receiving groove 42 is formed wider than the width w1 of the annular concave groove 22 described above. According to this structure, when the leaf spring 30 is squeezed by the head 40, the elastic body 25 can naturally spread widely.
  • the concave receiving groove 44 preferably receives the concave portion 34 and does not interfere with the concave portion.
  • the concave portion 34 of the leaf spring 30 moves inward and outward relative to the convex portion when the leaf spring 30 is pressed by the head 40, 44). ≪ / RTI > In this respect, it is preferable that the recess receiving grooves 44 are not interfered with the recesses 34.
  • the ground is punctured, an anchor including the strand 60 is inserted, and the tip of the strand is fixed to the ground through grouting and curing.
  • a pressure plate such as a lattice block or a panel is installed.
  • the pliers 10, the reaction force device 20, the leaf spring 40, and the head 40 are sequentially stacked so that the stranded wire exposed on the ground penetrates and penetrates.
  • an elastic body 25 may be additionally stacked on the lower part of the leaf spring 40, and the leaf spring and the elastic body 25 may be integrally laminated.
  • a fixing cap (not shown) is provided after fixing the strand with the wedge, the structure of the head 40, the tip of the strand and the wedge are prevented from being exposed to the outside, So that water can not penetrate into the structure near the head 40.
  • the convex portion 32 So that the concave portion 34 smoothly moves on the upper surface of the reaction force device 40.
  • the rubber elastic body provided under the convex portion 32 is also elastically deformed to have a longer axis and a shorter axis, thereby supporting the leaf spring 30.
  • a tensile force gauging device as disclosed in Patent No. 1477719 or No. 1579908 may additionally be installed.
  • the elastic body 25 and the leaf spring 30 are resiliently restored and the head 40 is returned from the reaction force device 20 And it is easily ascertainable through a tensile force visual confirmation device or the like.
  • the anchor device of the first embodiment can be applied easily when the anchor device is initially installed for reinforcing the ground or the slope face, the anchor device of the second embodiment can be additionally installed to the existing anchor device, It is a structure.
  • the anchor device provided in the prior art generally comprises a strand 60 fixed to the ground, a support plate 10 penetrating the strand 60 and pressing the ground surface, And a head 40 fixed to the strand 60 by a wedge 50 to transmit the tensile force of the strand to the stratum 10.
  • the second embodiment of the present invention has a structure that can be additionally applied to the anchor device thus provided.
  • a reaction force device 20 is installed on the upper part of the pressure plate 10.
  • the reaction force device 20 includes a first reaction force device 20-1 and a second reaction force device 20-2 which are divided into two in the circumferential direction (refer to FIG. 13).
  • the reaction force device 20 and the reaction force device 20 are in contact with each other in the circumferential direction, So that it has a form similar to the reaction force device of the embodiment.
  • the reaction force device of the second embodiment has one through-hole 21 through which a plurality of stranded wires 60 can pass together, and the two reaction devices 20-1, 20-2 in the circumferential direction.
  • a leaf spring 30 and an elastic body 25 are placed on the top of the reaction force device.
  • the leaf spring and the elastic body are also divided into two in the circumferential direction to form the first leaf spring 30-1 and the second leaf spring 30-2 and the first elastic body 25-1 and the second elastic body 25-2, (See Figs. 12 and 14). When they are connected to each other in the circumferential direction, they have the same shape as the leaf spring and the elastic body of the first embodiment.
  • the elastic body 25 has an elliptical cross-section in the circumferential direction, the elastic force acting in the up-and-down direction is maintained as it is, even in the half-divided form as described above.
  • the leaf spring 30 can also exert the elastic force in the vertical direction by the circumferential cross section itself, the elastic force acting in the vertical direction is maintained even in the half divided form as described above.
  • the advantage of the structure of the plate spring of the present invention is remarkable in comparison with the fact that the conventional diaphragm spring can not exert an elastic force when the diaphragm is divided into two parts as described above because the diaphragm spring exerts an elastic force in a structure integrally connected in the circumferential direction .
  • the insertion head 43 is further inserted into the bottom of the head 40 because it is expected that the receiving groove of the leaf spring 30 is not formed on the bottom surface of the head 40.
  • the previously installed head 40 may have a flat bottom portion as shown in FIG. 10 (b).
  • the insertion head 43 provided with the receiving grooves 42 and 44 capable of receiving the leaf springs 30 is further stacked on the bottom surface of the head 40. [ The head 40 including the insertion head 43 at the bottom portion presses the reaction force device 20 at an upper portion of the reaction force device 20 via the leaf spring 30 and the elastic body 25.
  • the insertion head 43 may also be divided into two in the circumferential direction to constitute the first insertion head 43-1 and the second insertion head 43-2, respectively. They may also have one through hole (see FIG. 11) that can pass through a plurality of stranded wires 60.
  • the insertion head 43 has a convex portion receiving groove 42 and a concave receiving groove 44 which can receive the convex portion and the concave portion of the leaf spring 30, respectively.
  • the anchor device installed in the previous stage is a state in which the head 40 is provided on the support plate 10 and the tensioned strand 60 presses the head 40 toward the support plate 10. Further, a protective cap (not shown) for covering the head is provided, and the inside thereof is filled with grease.
  • the protective cap is removed and the state of the grease filled in the inside is checked to see whether the environment is capable of permeating moisture. And remove the grease.
  • the pre-installed head 40 is lifted by using a heavy equipment.
  • the tension applied to the strand is checked. If the head 40 is lifted by a force smaller than the tension applied to the strand of the anchor device, the residual tension may be less than the design tension. Conversely, if the force applied to lift the head is equal to or greater than the design force, it can be determined that the residual tension is normally maintained above the design tension.
  • a re-tension operation is performed.
  • the re-tensioning operation is carried out in such a manner as to interpose a block between the head 40 and the pressure plate 10, for example, in a state in which the head 40 is lifted from the pressure plate 10 .
  • a reaction force device 20, a leaf spring 30, an elastic body 25, and an insertion head 43 are interposed between the pressure plate 10 and the head 40 from below to above.
  • Such a construction procedure can be carried out without disassembling the head 40 and the stranded wire 60, as described above, the first reaction force device 20-1 and the second reaction force device 20-2, The spring 30-1 and the second leaf spring 30-2 and the first insertion head 43-1 and the second insertion head 43-2 are connected to the separated pressure plate 10 and the head 40, respectively.
  • the two parts of the parts may be shifted from each other so that the parts are separated from each other.
  • the divided positions of the first reaction force device 20-1 and the second reaction force device 20-2 are arranged at 12 o'clock and 6 o'clock positions
  • the first elastic body 25-1 and the second elastic body 25-2 are arranged at 2 o'clock and 8 o'clock positions
  • the divided positions of the insertion head 43-2 can be stacked at 4 o'clock and 10 o'clock positions.
  • the head lifted by the heavy equipment is gradually lowered, and the head is moved to a block interposed therebetween (when there is a re-tensioning operation) , So that the elastic body is pressed and the pressing plate is pressed.
  • the protection cap is reinstalled, it is possible to complete the construction by filling the inside with grease.
  • the tension applied to the strand of the anchor when the tension applied to the strand of the anchor is relaxed or the strand of the strand is loosened, it can be easily confirmed by the naked eye by simply performing additional work as described above in the previously installed anchor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

본 발명은, 지압판(10) 상에 놓여지고, 상기 강연선이 관통하는 관통홀(21)을 구비하는 반력장치(20); 상기 복수 개의 강연선을 외측에서 둘러싸며 상기 반력장치(20)의 상부에 놓여지는 환형의 판스프링(30); 상기 복수 개의 강연선(60)이 각각 관통하는 복수 개의 웻지홀(41)을 구비하고, 상기 판스프링(30)을 개재하며 상기 반력장치(20) 상에 놓여지는 헤드(40);를 포함하고, 상기 판스프링(30)은, 중앙부가 상부로 볼록하게 돌출된 볼록부(32); 및 상기 볼록부(32)의 외측 단부와 내측 단부에 각각 마련되되, 상기 외측 단부에 마련되는 변곡점(33)을 기준으로 외향 연장되고, 상기 볼록부(32)의 내측 단부에 마련되는 변곡점(33)을 기준으로 내향 연장되며, 아래로 볼록한 형태의 오목부(34);를 포함하며, 상기 오목부(34)의 곡면 부위는 상기 반력장치(20)의 상부 면에 접하고, 상기 오목부(34)의 단부는 상기 반력장치(20)의 상부 면에 접하는 부위를 지나 상향하는 것을 특징으로 하는 긴장력 육안 확인이 가능한 앵커 장치 및 이의 시공 방법을 제공한다.

Description

긴장력 육안 확인이 가능한 앵커 장치 및 그 시공 방법
본 발명은 긴장력 육안 확인이 가능한 앵커 장치 및 그 시공 방법에 관한 것이다.
지반을 보강하는 방법으로 앵커 장치가 널리 사용되고 있다.
비탈면에 적용되는 앵커 장치는 앵커의 선단부를 그라우팅 등의 방식을 통해 지반에 고정하고, 앵커의 강연선을 인장하여 상기 앵커와 그 하부의 지압판이 비탈면을 가압 지지하도록 구성된다. 즉 강연선의 인장력이 비탈면에 대한 지압판의 가압력으로 작용하게 된다.
그런데 시공 후 시간이 흐름에 따라, 지반의 각종 환경 변화로 인해 앵커의 선단부의 고착 지점이 연약해지거나, 강연선이 늘어나는 등의 문제가 발생하면 비탈면을 가압하던 지압판의 가압력이 사라지게 된다. 이처럼 비탈면에 대한 보강력이 사라지면, 붕괴 등의 사고가 일어날 가능성이 매우 높아진다.
따라서 시공 후에도 앵커 장치에 대한 점검은 지속적으로 이루어져야 한다. 그러나 앵커 장치의 강연선을 모두 직접 인장력 측정하는 것은 매우 번거로운 일이 아닐 수 없다.
이러한 점을 감안하여 종래에는, 인장력이 사라진 앵커 장치를 육안으로 손쉽게 확인할 수 있는 장치가 고안되었다. 이는 앵커 장치의 지압판과 헤드 사이에 접시스프링을 개재한 구조로 설명될 수 있다. 상기 장치는, 앵커의 강연선의 인장력이 사라지면 상기 접시스프링이 탄성 복원하면서 헤드를 들어올리는 원리를 이용한 것이다.
따라서 관리자는, 비탈면의 앵커 장치들 중 헤드가 들어올려진 장치를 육안으로 쉽게 확인할 수 있고, 인장력이 사라지거나 약해진 강연선을 다시 재인장하여 비탈면에 대한 가압력을 확보할 수 있다.
그러나, 상술한 종래의 앵커 장치는, 접시스프링이 지나치게 변형되어 거의 100% 탄성 변형되거나 이를 넘어 소성 변형 영역까지 다다르게 되는 결과, 앵커의 강연선의 인장력이 약해지거나 사라지더라도, 접시스프링이 탄성 복원되지 않아 헤드가 들어올려지지 않는 경우가 빈번하게 발생한다.
또한 접시스프링의 형상으로 인해, 접시스프링이 압착되는 과정에서 접시스프링의 하단부가 지압판을 파고 들어 파손되는 문제도 빈번하게 발생한다.
아울러 기존의 앵커 장치에 육안 확인을 위한 접시스프링을 추가 시공하여 설치하고자 할 때, 헤드를 완전히 분리하지 않고서는 접시스프링을 헤드와 지압판 사이에 개재할 수 있는 방법이 없어 추가 시공이 매우 번거로웠다(측면에서 접시스프링을 삽입하기 위해 원주 방향으로 접시스프링을 분할하는 순간, 접시스프링은 스프링의 능력을 상실하게 된다).
본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 앵커 장치의 헤드와 지압판이 상호 압착되더라도 그 사이에 개재된 판스프링의 탄성 변형이 60~70% 정도만 이루어져서, 지속적으로 탄성 복원력을 유지할 수 있도록 한 앵커 장치를 제공하는 것을 목적으로 한다.
본 발명은, 강연선의 인장으로 인한 헤드의 압착 과정에서 판스프링의 변형을 자연스럽게 유도하여 판스프링의 파손을 방지할 수 있는 구조를 구비하는 앵커 장치를 제공하는 것을 목적으로 한다.
또한 본 발명은, 분할되더라도 탄성력을 그대로 유지할 수 있는 구조를 가지는 판스프링을 적용하여, 기 시공된 앵커 장치에 추가 시공이 용이한 앵커 장치 구조와 그 추가 시공 방법을 제공하는 것을 목적으로 한다.
상술한 과제를 해결하기 위해 본 발명은, 지반에 매립되는 복수 개의 강연선(60); 상기 강연선이 관통하는 관통홀(11)을 구비하며 상기 지반 상에 놓여져 지반을 가압하는 지압판(10); 상기 지압판(10) 상에 놓여지고, 상기 강연선이 관통하는 관통홀(21)을 구비하는 반력장치(20); 상기 복수 개의 강연선을 외측에서 둘러싸며 상기 반력장치(20)의 상부에 놓여지는 환형의 판스프링(30); 상기 복수 개의 강연선(60)이 각각 관통하는 복수 개의 웻지홀(41)을 구비하고, 상기 판스프링(30)을 개재하며 상기 반력장치(20) 상에 놓여지는 헤드(40); 및 상기 복수 개의 강연선(60)을 각각 둘러싸며 상기 웻지홀(41)에 삽입되는 웻지(50);를 포함하고, 상기 판스프링(30)을 원주 방향에서 바라본 단면(c-c)은, 중앙부가 상부로 볼록하게 돌출된 볼록부(32); 및 상기 볼록부(32)의 외측 단부와 내측 단부에 각각 마련되되, 상기 외측 단부에 마련되는 변곡점(33)을 기준으로 외향 연장되고, 상기 볼록부(32)의 내측 단부에 마련되는 변곡점(33)을 기준으로 내향 연장되며, 아래로 볼록한 형태의 오목부(34);를 포함하고, 상기 오목부(34)의 곡면 부위가 상기 반력장치(20)의 상부 면에 접하고, 상기 오목부(34)의 단부는 상기 반력장치(20)의 상부 면에 접하는 부위를 지나 상향하는 것을 특징으로 하는 앵커 장치를 제공한다.
상기 반력장치(20)는, 상기 강연선이 관통하는 위치보다 외측에 해당하는 상부 면에 형성되며 상기 복수 개의 강연선을 둘러싸는 형태로 마련된 환형 오목홈(22)을 구비하고, 상기 판스프링(30)은 상기 환형 오목홈(22) 상에 놓여지며, 상기 판스프링(30)의 볼록부(32) 저면과 상기 반력장치(20)의 환형 오목홈(22) 사이에 마련된 공간에는 환형의 탄성체(25)가 개재된다.
상기 탄성체(25)를 원주 방향에서 바라본 단면(d-d)은, 좌우 방향으로 연장되는 장축을 가지고 상하 방향으로 연장되는 단축을 가진다.
상기 판스프링(30)은, 복수 개의 판스프링(301,302,303)이 상하로 적층된 형태로 설치된다.
상기 복수 개의 판스프링은, 서로 다른 탄성력을 가지기 위해 그 두께가 다를 수 있다.
상기 헤드(40)의 저면에는 상기 판스프링(30)을 수용하는 수용홈(42,44)이 형성되고, 상기 수용홈은, 상기 판스프링(30)의 볼록부(32)보다 큰 곡률반경을 가지며 상기 볼록부(32)의 상면의 적어도 일부와 접하게 되는 볼록부 수용홈(42); 및 상기 볼록부 수용홈(42)의 외측 단부와 내측 단부에 각각 마련되며 상기 판스프링(30)의 오목부(34)를 수용하는 오목부 수용홈(44)을 포함한다.
상기 오목부 수용홈(44)의 깊이(h1)는 상기 판스프링의 높이보다 크다.
상기 반력장치(20) 상에 상기 헤드(40)가 압착된 상태에서 상기 헤드의 볼록부 수용홈(42)과 상기 판스프링의 볼록부(32)가 형합된다.
상기 반력장치(20)는 상기 복수 개의 강연선(60)을 중심으로 원주 방향으로 분할된 제1반력장치(20-1)와 제2반력장치(20-2)를 포함하고, 상기 판스프링(30)은 상기 복수 개의 강연선(60)을 중심으로 원주 방향으로 분할된 제1판스프링(30-1)과 제2판스프링(30-2)를 포함하며, 상기 헤드(40)의 하단부에는 상기 헤드(40)와 별도의 부품으로 마련된 삽입헤드(43)가 구비되고, 상기 삽입헤드(43)는 상기 복수 개의 강연선(60)을 중심으로 원주 방향으로 분할된 제1삽입헤드(43-1)와 제2삽입헤드(43-2)를 포함한다.
또한 본 발명은, 상기 앵커 장치를 적용하기 위한 추가 시공 방법으로서, 상기 시공 방법은, 상기 지압판(10)으로부터 상기 헤드(40)를 이격하는 단계; 이격된 상기 지압판(10)과 헤드(40) 사이의 측방으로부터, 상기 제1반력장치(20-1) 및 제2반력장치(20-2), 상기 제1판스프링(30-1) 및 제2판스프링(30-2), 그리고 상기 제1삽입헤드(43-1) 및 제2삽입헤드(43-2)를 아래로부터 위쪽으로 차례로 삽입하는 단계; 및 상기 헤드의 이격을 해제하여 상기 반력장치와 상기 판스프링을 상기 헤드로 압착하는 단계;를 포함한다.
본 발명의 앵커 장치에 따르면, 헤드와 지압판이 상호 압착되더라도 그 사이에 개재된 판스프링의 탄성 복원력이 지속적으로 유지되므로, 판스프링이 탄성 복원력을 상실하여 강연선의 장력이 약해진 앵커 장치를 확실히 육안으로 확인할 수 있다.
또한 본 발명에 따르면, 앵커 장치의 압착 과정에서 판스프링의 탄성 변형이 자연스럽게 유도되므로, 판스프링의 파손이 방지되고, 이에 따라 강연선의 장력이 약해진 앵커 장치를 확실히 육안으로 확인할 수 있다.
또한 본 발명에 따르면, 앵커 장치에 적용되는 환형 판스프링의 구조가 원주 방향으로 분할되더라도 여전히 탄성력을 발휘할 수 있으므로, 기 시공된 앵커 장치에 판스프링을 포함하는 인장력 확인 구조를 추가 시공하기가 매우 용이하다.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.
도 1은 본 발명에 따른 일 실시예로서, 인장력 확인이 시각적으로 가능한 앵커 장치에 인장력을 가하기 전의 상태를 나타낸 측면 단면도이다.
도 2는 도 1의 A 부분의 확대도이다.
도 3은 도 1의 앵커 장치에 인장력을 가한 상태를 나타낸 측면 단면도이다.
도 4는 도 3의 B 부분의 확대도이다.
도 5는 도 1의 앵커 장치의 헤드의 평면도와 저면도를 각각 나타낸 도면이다.
도 6은 도 1의 앵커 장치의 판스프링의 평면도와 상기 판스프링의 원주 방향 단면(C-C)을 각각 나타낸 도면이다.
도 7은 도 1의 앵커 장치의 반력장치를 나타낸 평면도이다.
도 8은 도 1의 앵커 장치의 탄성체의 평면도와 상기 탄성체의 원주 방향 단면(D-D)을 각각 나타낸 도면이다.
도 9는 본 발명에 따른 다른 일 실시예로서, 인장력 확인이 시각적으로 가능한 앵커 장치에 인장력을 가하기 전의 상태를 나타낸 측면 단면도이다.
도 10은 도 9의 앵커 장치의 헤드의 평면도와 저면도를 각각 나타낸 도면이다.
도 11은 도 9의 앵커 장치의 삽입헤드의 평면도와 저면도를 각각 나타낸 도면이다.
도 12는 도 9의 앵커 장치의 판스프링의 평면도를 나타낸 도면이다.
도 13은 도 9의 앵커 장치의 반력장치를 나타낸 평면도이다.
도 14는 도 9의 앵커 장치의 탄성체를 나타낸 평면도이다.
도 15는 기 설치된 앵커 장치에 사후적으로 도 9의 앵커 장치를 추가 시공하는 과정을 간단하게 표현한 도면이다.
도 16은 앵커 장치의 일실시예를 신규 현장에 적용하는 시공 방법을 나타낸 플로우 차트이다.
도 17은 앵커 장치의 다른 일 실시예를 기존 현장에 적용하는 시공 방법을 나타낸 플로우 차트이다.
<부호의 설명>
10: 지압판
11: 관통홀
20,20-1,20-2: 반력장치
21: 관통홀
22: 환형 오목홈
25,25-1,25-2: 탄성체(고무)
30,301,302,303,30-1,30-2: 판스프링
32: 볼록부
33: 변곡점
34: 오목부
40: 헤드
41: 웻지홀
42: 볼록부 수용홈
43,43-1,43-2: 삽입헤드
44: 오목부 수용홈
50: 웻지
60: 강연선
w1: 오목홈 폭
w2: 볼록부 수용홈 폭
h1: 오목부 수용홈 깊이
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조로 하여 상세히 설명한다.
본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위하여 제공되는 것이다.
[제1실시예]
이하 도 1 내지 도 8을 참조하여, 본 발명에 따른 앵커 장치의 제1실시예를 설명한다.
본 발명에 따른 앵커 장치는, 선단부가 지반에 고정되고 지반 외부로 노출되는 PC 강연선(60)을 포함한다. 강연선(60)은 지압판(10)의 형태와 면적에 따라서 복수 개 설치될 수 있다.
지압판(10)은 지반 위에 놓여지며 상기 강연선(60)이 관통하여 상부로 노출된다. 지압판(10)에는 상기 강연선(60)이 관통하여 지나가는 관통홀(11)이 마련된다. 일례로서, 상기 관통홀(11)은 강연선(60)의 개수와 위치에 대응하여 복수 개 마련될 수 있다. 이 외에도, 상기 관통홀(11)은 복수 개의 강연선(60)이 함께 관통할 수 있는 크기로 한 개 마련될 수도 있다.
상기 관통홀(11)의 상부에는 반력장치(20)가 놓여진다. 실시예에서 반력장치(20)는 도 7에 도시된 바와 같이 대체적으로 원형의 형상을 구비하는 것이 예시된다. 그러나 반력장치의 형상은 지압판의 형상과 대응하여 다양하게 구성할 수 있다.
상기 반력장치(20)의 중앙부에는 상기 강연선(60)이 관통하는 관통홀(21)이 마련된다. 상기 관통홀(21)은 도 7에 도시된 바와 같이 강연선(60)의 개수와 위치에 대응하여 복수 개 마련될 수 있다. 이 외에도, 상기 관통홀(21)은 복수 개의 강연선(60)이 함께 관통할 수 있는 크기로 한 개 마련될 수도 있다. 특히 중앙부에 하나의 커다란 관통홀(21)이 형성된 형태는, 납작한 도넛 형태일 수 있다.
상기 반력장치(20)의 상부 면에서, 상기 관통홀(21)의 둘레로는 환형 오목홈(22)이 마련된다. 환형 오목홈(22)을 원주 방향에서 바라본 단면은, 도시된 바와 같이 완만하게 아래로 볼록하고 소정의 폭(w1)을 가지는 홈 형태일 수 있다.
상기 반력장치(20)의 상부에는 판스프링(30)과 탄성체(25)가 적층된다. 판스프링(30)과 탄성체(25)는 모두, 전체적으로 환형의 형상을 가진다. 상기 강연선(60)은 환형의 판스프링(30)와 탄성체(25)의 중앙부를 관통한다.
판스프링(30)을 원주 방향으로 바라본 단면(C-C)은, 중앙부가 상부로 볼록하게 돌출된 볼록부(32)와, 상기 볼록부(32)의 외측 단부와 내측 단부에 마련된 오목부(34)를 포함한다. 볼록부(32)의 내측 둘레와 외측 둘레에 각각 연장 형성된 오목부(34)는 볼록부(32)의 양단에 위치하는 변곡점(33)을 기준으로 볼록부(32)로부터 멀어지는 방향으로 형성된다.
상기 판스프링(30)의 오목부(34)는 반력장치(20)의 상부 면에 접하는 최저점으로부터 더 연장되어, 그 단부가 상향하며 마감된다. 따라서 반력장치(20)와 판스프링(30)은, 판스프링(30)의 하단부에 마련된 오목부(34)의 곡면 부위가 서로 접하며 접촉한다.
*상기 판스프링(30)의 상기 반력장치(20) 상에 놓여진 상태에서, 상기 판스프링(30)의 볼록부(32)의 중심, 즉 볼록부(32)의 상단부는 상기 반력장치(20)의 환형 오목홈(22)의 최저점, 즉 홈 형상의 중앙부와 정렬된다.
상기 판스프링(30), 보다 구체적으로 볼록부(32)와 환형 오목홈(22)에 의해 규정되는 공간에, 상기 탄성체(25)가 개재된다. 상기 탄성체(25)는 고무 재질로 제작될 수 있다. 상기 탄성체(25) 역시 판스프링(30) 및 환형 오목홈(22)과 대응하는 링 형상이다.
상기 탄성체(25)를 원주방향에서 바라본 단면(D-D)은 측방으로 연장되는 장축과 상하방향으로 연장되는 단축을 가지는 타원 형상일 수 있다. 또한 상기 타원 단면의 상부면은 상기 볼록부(32)와 적어도 일부 접하게 되며, 타원 단면의 하부면은 상기 환형 오목홈(22)의 적어도 일부와 접하게 된다.
상기 탄성체(25)는, 자칫 판스프링(30)으로는 부족할 수 있는 탄성 복원력을 더욱 보강해준다.
상기 판스프링(30)은 강연선의 인장력에 대응하여 소정의 탄성력을 가지도록 구성할 수 있다. 판스프링(30)은 도시된 바와 같이 복수 개(301, 302, 303) 적층하는 형태로 구비될 수 있다. 따라서 판스프링(30)에 요구되는 탄성력에 대응하여 복수 개의 판스프링을 적층하는 형태로 판스프링을 설치하는 것이 가능하다.
단순히 볼록부(32)만 마련된 것과 달리, 본 발명에 따르면 오목부(34)도 마련되어 있기 때문에, 판스프링(30)을 적층하더라도, 적층된 복수 개의 판스프링(30)의 오목부(34) 모두가 반력장치(20)의 상부 면으로부터 직접적 또는 하부의 판스프링을 통해 간접적으로 지지된다. 따라서 복수 개의 판스프링(30)을 적층하였을 때 가지게 되는 탄성력은 각각의 판스프링의 탄성력을 모두 더한 만큼 그대로 발휘된다.
또한 상기 판스프링(30)은 서로 두께가 다른 판스프링을 적층하는 것도 가능하다. 판스프링(30)의 두께가 두꺼워지면 그만큼 판스프링의 탄성력도 증가하게 되는데, 판스프링의 두께가 두꺼워지는 비율보다 판스프링의 탄성력이 증가하는 비율이 더 커지게 된다. 즉 판스프링(30)의 두께가 2배가 되면, 탄성력은 2배 이상 증가할 수 있다.
이는 후술할 헤드(40)의 오목부 수용홈(44)의 높이 내지 깊이(h1)와 대응하여 판스프링 설치의 유연성을 제공한다. 즉 오목부 수용홈(44)의 깊이(h1)는 앵커 장치에 설치되는 판스프링의 오목부 전체의 두께보다 더 큰 것이 바람직한데, 현장에 구비된 오목부 수용홈(44)의 높이가 그다지 높지 않다면, 복수 개의 상대적으로 얇은 판스프링을 여러 겹 적층하는 대신, 두꺼운 판스프링을 사용하는 방식으로 판스프링을 설치하는 것이 가능하다.
본 발명에 따르면, 복수 개의 서로 다른 탄성력을 가지는 판스프링을 적절히 적층함으로써, 현장 상황에 맞는 판스프링 시공이 가능하고 용이하다.
상기 반력장치(20)의 상부에는 헤드(40)가 놓여진다. 상기 헤드(40)는 상술한 판스프링(30)과 탄성체(25)를 사이에 두고 상기 반력장치(20) 상에 놓여진다.
헤드(40)는 강연선(60)이 인장된 상태로 고정되는 구성으로서, 강연선(60)의 힘을 받아 이를 지압판(10)에 전달한다. 이를 위해 헤드(40)에는 상기 강연선(60)이 관통하는 웻지홀(41)이 복수 개 마련된다. 상기 웻지홀(41)은 상광하협의 원뿔 형태로 이루어지고, 그 상부로부터 웻지(50)가 삽입된다. 웻지(50)는 상기 강연선(60)을 둘러싸는 분할 웻지일 수 있다.
상기 헤드(40)의 저면에는 그 하부에 마련되어 있는 판스프링(30)을 수용하는 수용홈(42, 44)이 마련된다. 따라서 수용홈(42, 44) 역시 상기 강연선(60)을 둘러싸는 형태로 마련되며, 상기 판스프링(30)의 크기와 대응하는 크기로 마련된다.
상기 수용홈은, 판스프링의 볼록부(32)를 수용하는 볼록부 수용홈(42)과 오목부(34)를 수용하는 오목부 수용홈(44)을 포함한다.
상기 볼록부 수용홈(42)의 중심(가장 깊은 곳)은 판스프링의 볼록부(32)의 중심(가장 높은 곳)과 정렬된다. 그리고 오목부 수용홈(44)은 상기 볼록부 수용홈(42)의 외측 단부와 내측 단부에 각각 마련된다.
상기 볼록부 수용홈(42)은 오목부 수용홈(44)보다 더 깊게 형성되며, 상기 판스프링(30)이 변형되기 전의 볼록부(32)의 곡률반경보다 더 큰 곡률반경을 가지도록 형성된다. 따라서 볼록부 수용홈(42)은, 헤드(40)가 가압되기 전에는 도 1과 도 2에 도시된 바와 같이 상기 판스프링 볼록부(32)의 정상을 포함하는 일부분과 접하게 되지만, 헤드(40)가 가압된 후에는 도 3 및 도 4에 도시된 바와 같이 상기 판스프링(30)이 변형되며 판스프링의 볼록부(32)와 전체적으로 접할 수 있다.
볼록부 수용홈(42)의 너비 내지 폭(w2)는 앞서 설명한 환형 오목홈(22)의 폭(w1)보다 넓게 형성된다. 이러한 구조에 따르면, 판스프링(30)이 헤드(40)에 의해 압착되었을 때, 탄성체(25)가 자연스럽게 넓게 퍼질 수 있도록 해준다.
상기 오목부 수용홈(44)은 상기 오목부(34)를 수용하되 오목부와는 간섭되지 않는 것이 바람직하다. 판스프링(30)의 오목부(34)는 판스프링(30)이 헤드(40)에 의해 가압되면 볼록부를 기준으로 각각 내측 방향과 외측 방향으로 이동하게 되는데, 이러한 이동은 상기 오목부 수용홈(44) 내에서 자연스럽게 이루어질 수 있다. 이러한 점에서 오목부 수용홈(44)은 오목부(34)와 간섭되지 않는 것이 바람직하다.
상기 강연선(60)이 인장되었을 때, 상기 헤드(40)에 있어서, 상기 수용홈(42, 44)을 제외한 나머지 저면은 상기 반력장치(20)의 상부와 맞닿게 된다.
이하 도 16을 참조하여, 상술한 앵커 장치의 제1실시예의 시공 방법에 대해 설명한다.
먼저 지반을 천공한 후 강연선(60)을 포함하는 앵커를 삽입하고, 그라우팅과 양생 등의 과정을 거쳐 강연선의 선단부를 지반에 고착한다. 다음으로, 격자블럭이나 패널 등의 수압판을 설치한다.
그리고 도 1에 도시된 바와 같이 지반 위로 노출된 강연선이 내삽 관통하도록 지압판(10), 반력장치(20), 판스프링(40), 및 헤드(40)를 순차적으로 적층한다. 이때 판스프링(40)의 하부에는 탄성체(25)를 추가적으로 적층할 수 있으며, 판스프링과 탄성체(25)를 일체화하여 적층하는 것도 가능하다.
이 상태에서 강연선을 인장하며 웻지(50)를 강연선에 외삽하면, 도 3에 도시된 바와 같이 헤드(40)가 지압판(10) 쪽으로 가압되며 지압판(10)이 지반을 견고하게 보강하게 된다.
강연선에 긴장력 도입이 완료되고, 이를 웻지로 고정한 후에는 보호캡(미도시)을 설치하여 상술한 헤드(40), 강연선의 선단부, 웻지 등의 구조물이 외부로 노출되지 않도록 하고, 상기 보호캡 내부에 그리스를 충진하여 상기 헤드(40) 부근의 구조물에 수분이 침투하지 못하도록 한다.
본 발명에 따르면, 판스프링(30)의 오목부(34)의 곡면 부위가 반력장치(20) 상에 놓여져 있기 때문에, 헤드(40)가 판스프링을 가압할 때, 판스프링의 볼록부(32)가 측방으로 펼쳐지며 상기 오목부(34)가 반력장치(40)의 상부 면을 타고 부드럽게 이동하게 된다.
아울러 볼록부(32) 하부에 마련되어 있는 고무 재질의 탄성체 역시 장축이 더 길어지고 단축이 더 짧아지는 형태로 탄성 변형되며 상기 판스프링(30)을 지지하게 된다.
그리고 추가적으로, 등록특허공보 제1477719호 또는 제1579908호에 개시된 바와 같은 인장력 육안 확인장치가 추가적으로 더 설치될 수 있다.
본 발명에 따르면, 시공 후 앵커의 강연선의 인장력이 완화되거나 강연선이 느슨해지게 되면, 상기 탄성체(25)와 판스프링(30)이 탄성 복원되며, 상기 헤드(40)를 상기 반력장치(20)로부터 상부로 들어 올리게 되고, 이것은 인장력 육안 확인장치 등을 통해 쉽게 확인 가능하게 된다.
[제2실시예]
이하 도 9 내지 도 15를 참조하여, 본 발명에 따른 앵커 장치의 제2실시예를 설명한다. 제2실시예를 설명함에 있어서, 제1실시예와 중복되는 부분에 대해서는 설명을 생략하고, 주로 차이점을 위주로 살펴본다.
제1실시예의 앵커장치는, 앵커장치를 지반 내지 비탈면 보강을 위해 최초 시공할 때 적용하기 용이한 구조라 할 수 있다면, 제2실시예의 앵커장치는, 기 설치된 앵커장치에 추가적인 시공이 가능하고 보다 용이한 구조라 할 수 있다.
기 설치된 앵커 장치는, 통상적으로, 지반에 고정된 강연선(60)과, 상기 강연선(60)이 관통하며 지반 면을 가압하는 지압판(10)과, 상기 지압판(10) 상에 놓여지고 상기 강연선(60)이 관통하며, 웻지(50)에 의해 강연선(60)과 고정되어 강연선의 인장력을 상기 지압판(10)에 전달하는 헤드(40)를 포함한다.
본 발명의 제2실시예는, 이와 같이 기 설치된 앵커 장치에 추가 시공 가능한 구조를 가진다. 먼저 상기 지압판(10) 상부에는 반력장치(20)가 설치된다. 반력장치(20)는 원주 방향으로 2분할된 제1반력장치(20-1)와 제2반력장치(20-2)로 이루어져 있으며(도 13 참조), 이들을 원주 방향으로 맞닿게 연결하면 제1실시예의 반력장치와 유사한 형태를 갖추게 된다. 다만 제1실시예에서 예시한 바와 달리, 제2실시예의 반력장치는 복수 개의 강연선(60)이 함께 관통할 수 있는 하나의 관통홀(21)을 구비하며, 이는 두 반력장치(20-1, 20-2)를 원주 방향으로 연결할 때 규정될 수 있다.
다음으로, 상기 반력장치의 상부에는 판스프링(30)과 탄성체(25)가 얹어진다. 판스프링과 탄성체 역시 원주 방향으로 2분할되어 각각 제1판스프링(30-1)과 제2판스프링(30-2), 그리고 제1탄성체(25-1)와 제2탄성체(25-2)로 이루어질 수 있다(도 12 및 도 14 참조). 이들을 원주 방향으로 맞닿게 연결하면 제1실시예의 판스프링 및 탄성체와 동일한 형태를 갖추게 된다.
탄성체(25)는 원주 방향으로 타원형의 단면을 가지는 구조이므로, 상술한 바와 같이 1/2로 분할된 형태에서도 상하방향으로 작용하는 탄성력은 그대로 유지된다. 마찬가지로, 판스프링(30) 역시 원주 방향의 단면 자체로 상하 방향으로 탄성력을 발휘할 수 있는 구조이기 때문에, 상술한 바와 같이 1/2로 분할된 형태에서도 상하방향으로 작용하는 탄성력은 그대로 유지된다.
종래의 접시스프링은 원주방향으로 전체적으로 연결된 구조에서 탄성력을 발휘하는 구조이기 때문에, 위와 같이 2분할을 하게 되면 탄성력을 발휘할 수 없었다는 점과 대비하면, 본 발명의 판스프링의 구조가 가지는 장점은 주목할 만하다.
한편 기 시공된 헤드(40)의 저면부에는 판스프링(30)의 수용홈이 형성되어 있지 않은 것이 예상되는 점에서, 상기 헤드(40)의 저부에는 삽입헤드(43)가 추가 삽입된다. 즉 기 시공된 헤드(40)는 도 10의 (b)에 도시된 바와 같이 저면 부분이 평평한 형태일 수 있다.
이에 본 발명에서는 상기 판스프링(30)을 수용할 수 있는 수용홈(42, 44)이 마련된 삽입헤드(43)를 헤드(40) 저면에 추가 적층한다. 따라서 저부에 상기 삽입헤드(43)를 포함하는 헤드(40)는 상기 판스프링(30)과 탄성체(25)를 개재하며 상기 반력장치(20)의 상부에서 상기 반력장치(20)를 가압한다.
상기 삽입헤드(43) 역시 원주 방향으로 2분할되어 각각 제1삽입헤드(43-1)와 제2삽입헤드(43-2)를 구성할 수 있다. 또한 이들은 복수 개의 강연선(60)아 함께 관통할 수 있는 하나의 관통홀(도 11 참조)을 구비할 수 있다. 아울러, 상기 삽입헤드(43)의 저면에는 상기 판스프링(30)의 볼록부와 오목부를 각각 수용할 수 있는 볼록부 수용홈(42)과 오목부 수용홈(44)을 구비한다.
이하 도 17을 참조하여, 상술한 앵커 장치의 제2실시예의 앵커 장치의 추가 시공 방법에 대해 설명한다.
기 시공된 앵커 장치는 지압판(10) 상에 헤드(40)가 설치되고, 인장된 강연선(60)이 헤드(40)를 지압판(10) 쪽으로 가압하고 있는 상태이다. 또한 상기 헤드를 덮는 보호캡(미도시)이 설치되고, 내부에 그리스가 충진되어 있는 상태이다.
제2실시예의 앵커 장치를 추가 시공하기 위해서는, 먼저, 상기 보호캡을 분리하고 내부에 충진되어 있던 그리스의 상태를 점검하여 수분이 침투할 수 있는 환경이었는지 여부 등을 확인한다. 그리고 그리스를 제거한다.
이 상태에서 도 15에 도시된 바와 같이, 기 설치된 헤드(40)를 중장비를 이용하여 들어 올리게 된다. 이러한 과정에서 기존에 강연선에 적용되었던 긴장력을 체크하게 된다. 가령 기 시공된 앵커 장치의 강연선에 인가된 긴장력보다 작은 힘으로 헤드(40)가 들어올려진다면 잔류 긴장력이 설계 긴장력보다 약해졌다고 판단할 수 있다. 반대로, 헤드를 들어올리기 위해 작용된 힘이 설계력과 같거나 그보다 크다면 잔류 긴장력이 설계 긴장력 이상으로 정상적으로 유지되었다고 판단할 수 있다.
이와 같이, 지압판(10)에 대해 헤드(40)를 이격시켜 들어올린 상태에서, 잔류 긴장력이 설계 긴장력보다 약해졌다고 판단되는 경우, 재긴장 작업을 하게 된다. 재긴장 작업은, 가령, 헤드(40)가 지압판(10)으로부터 들어올려진 상태에서, 그 사이에, 헤드(40)와 지압판(10) 사이를 더 이격시킬 수 있는 블록을 개재하는 방식으로 진행된다.
다음으로, 지압판(10)과 헤드(40) 사이에, 아래로부터 위쪽으로 반력장치(20), 판스프링(30)과 탄성체(25), 그리고 삽입 헤드(43)를 개재한다. 이와 같은 시공 절차는 헤드(40)와 강연선(60)을 해체하지 않고도, 앞서 설명한 바와 같이 2분할된 제1반력장치(20-1) 및 제2반력장치(20-2), 상기 제1판스프링(30-1) 및 제2판스프링(30-2), 그리고 상기 제1삽입헤드(43-1) 및 제2삽입헤드(43-2)를, 각각 이격된 지압판(10)과 헤드(40) 사이의 측방을 통해 끼워 넣을 수 있다.
또한 이들을 끼워 넣을 때에는, 각 부품들이 2분할된 위치가 서로 어긋나도록 하며 적층함으로써, 각 부품들이 분할되어 발생할 수 있는 문제점을 미연에 방지할 수도 있다. 가령 제1반력장치(20-1)와 제2반력장치(20-2)의 분할된 위치는 12시와 6시 방향으로 배열하고, 제1판스프링(30-1)과 제2판스프링(30-2), 그리고 제1탄성체(25-1)과 제2탄성체(25-2)의 분할된 위치는 2시와 8시 방향으로 배열하며, 제1삽입헤드(43-1)와 제2삽입헤드(43-2)의 분할된 위치는 4시와 10시 방향으로 배열하며 적층할 수 있다.
상술한 바와 같이 반력장치, 판스프링, 삽입헤드를 각각 개재한 뒤에는, 중장비로 들어 올렸던 헤드를 서서히 내려 놓아, 헤드가 그 하부에 개재된 블록(재긴장 작업이 있었을 경우), 반력장치, 판스프링, 탄성체를 가압하며 상기 지압판을 가압하도록 한다. 그리고 보호캡을 재설치한 후 그 내부에 그리스를 충진함으로써 시공을 완료할 수 있다.
본 발명에 따르면, 기 시공된 앵커 장치에 상술한 바와 같이 간단히 추가 시공을 함으로써, 앵커의 강연선의 인장력이 완화되거나 강연선이 느슨해지게 되었을 때, 이를 육안으로 쉽게 확인 가능하게 된다.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을 지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.

Claims (9)

  1. 지반에 매립되는 복수 개의 강연선(60);
    상기 강연선이 관통하는 관통홀(11)을 구비하며 상기 지반 상에 놓여져 지반을 가압하는 지압판(10);
    상기 지압판(10) 상에 놓여지고, 상기 강연선이 관통하는 관통홀(21)을 구비하는 반력장치(20);
    상기 복수 개의 강연선을 외측에서 둘러싸며 상기 반력장치(20)의 상부에 놓여지는 환형의 판스프링(30);
    상기 복수 개의 강연선(60)이 각각 관통하는 복수 개의 웻지홀(41)을 구비하고, 상기 판스프링(30)을 개재하며 상기 반력장치(20) 상에 놓여지는 헤드(40); 및
    상기 복수 개의 강연선(60)을 각각 둘러싸며 상기 웻지홀(41)에 삽입되는 웻지(50);를 포함하고,
    상기 판스프링(30)을 원주 방향에서 바라본 단면(c-c)은,
    중앙부가 상부로 볼록하게 돌출된 볼록부(32); 및
    상기 볼록부(32)의 외측 단부와 내측 단부에 각각 마련되되, 상기 외측 단부에 마련되는 변곡점(33)을 기준으로 외향 연장되고, 상기 볼록부(32)의 내측 단부에 마련되는 변곡점(33)을 기준으로 내향 연장되며, 아래로 볼록한 형태의 오목부(34);를 포함하고,
    상기 오목부(34)의 곡면 부위가 상기 반력장치(20)의 상부 면에 접하고, 상기 오목부(34)의 단부는 상기 반력장치(20)의 상부 면에 접하는 부위를 지나 상향하며,
    상기 반력장치(20)는, 상기 강연선이 관통하는 위치보다 외측에 해당하는 상부 면에 형성되며 상기 복수 개의 강연선을 둘러싸는 형태로 마련된 환형 오목홈(22)을 구비하고,
    상기 판스프링(30)은 상기 환형 오목홈(22) 상에 놓여지며,
    상기 판스프링(30)의 볼록부(32) 저면과 상기 반력장치(20)의 환형 오목홈(22) 사이에 마련된 공간에는 환형의 탄성체(25)가 개재되는 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치.
  2. 청구항 1에 있어서,
    상기 탄성체(25)를 원주 방향에서 바라본 단면(d-d)은,
    좌우 방향으로 연장되는 장축을 가지고 상하 방향으로 연장되는 단축을 가지는 타원 형상인 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치.
  3. 청구항 1에 있어서,
    상기 판스프링(30)은,
    복수 개의 판스프링(301,302,303)이 상하로 적층된 형태로 설치되는 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치.
  4. 청구항 3에 있어서,
    상기 복수 개의 판스프링은, 서로 다른 탄성력을 가지기 위해 그 두께가 다른 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치.
  5. 지반에 매립되는 복수 개의 강연선(60);
    상기 강연선이 관통하는 관통홀(11)을 구비하며 상기 지반 상에 놓여져 지반을 가압하는 지압판(10);
    상기 지압판(10) 상에 놓여지고, 상기 강연선이 관통하는 관통홀(21)을 구비하는 반력장치(20);
    상기 복수 개의 강연선을 외측에서 둘러싸며 상기 반력장치(20)의 상부에 놓여지는 환형의 판스프링(30);
    상기 복수 개의 강연선(60)이 각각 관통하는 복수 개의 웻지홀(41)을 구비하고, 상기 판스프링(30)을 개재하며 상기 반력장치(20) 상에 놓여지는 헤드(40); 및
    상기 복수 개의 강연선(60)을 각각 둘러싸며 상기 웻지홀(41)에 삽입되는 웻지(50);를 포함하고,
    상기 판스프링(30)을 원주 방향에서 바라본 단면(c-c)은,
    중앙부가 상부로 볼록하게 돌출된 볼록부(32); 및
    상기 볼록부(32)의 외측 단부와 내측 단부에 각각 마련되되, 상기 외측 단부에 마련되는 변곡점(33)을 기준으로 외향 연장되고, 상기 볼록부(32)의 내측 단부에 마련되는 변곡점(33)을 기준으로 내향 연장되며, 아래로 볼록한 형태의 오목부(34);를 포함하고,
    상기 오목부(34)의 곡면 부위가 상기 반력장치(20)의 상부 면에 접하고, 상기 오목부(34)의 단부는 상기 반력장치(20)의 상부 면에 접하는 부위를 지나 상향하며,
    상기 헤드(40)의 저면에는 상기 판스프링(30)을 수용하는 수용홈(42,44)이 형성되고,
    상기 수용홈은,
    상기 판스프링(30)의 볼록부(32)보다 큰 곡률반경을 가지며 상기 볼록부(32)의 상면의 적어도 일부와 접하게 되는 볼록부 수용홈(42); 및
    상기 볼록부 수용홈(42)의 외측 단부와 내측 단부에 각각 마련되며 상기 판스프링(30)의 오목부(34)를 수용하는 오목부 수용홈(44)을 포함하는 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치.
  6. 청구항 5에 있어서,
    상기 오목부 수용홈(44)의 깊이(h1)는 상기 판스프링의 높이보다 큰 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치.
  7. 청구항 5에 있어서,
    상기 반력장치(20) 상에 상기 헤드(40)가 압착된 상태에서 상기 헤드의 볼록부 수용홈(42)과 상기 판스프링의 볼록부(32)가 형합되는 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치.
  8. 청구항 1 내지 청구항 7 중 어느 한 항에 있어서,
    상기 반력장치(20)는 상기 복수 개의 강연선(60)을 중심으로 원주 방향으로 분할된 제1반력장치(20-1)와 제2반력장치(20-2)를 포함하고,
    상기 판스프링(30)은 상기 복수 개의 강연선(60)을 중심으로 원주 방향으로 분할된 제1판스프링(30-1)과 제2판스프링(30-2)를 포함하며,
    상기 헤드(40)의 하단부에는 상기 헤드(40)와 별도의 부품으로 마련된 삽입헤드(43)가 구비되고, 상기 삽입헤드(43)는 상기 복수 개의 강연선(60)을 중심으로 원주 방향으로 분할된 제1삽입헤드(43-1)와 제2삽입헤드(43-2)를 포함하는 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치.
  9. 청구항 8의 장치를 적용하기 위한 보수 시공 방법으로서,
    상기 지압판(10)으로부터 상기 헤드(40)를 이격하는 단계;
    이격된 상기 지압판(10)과 헤드(40) 사이의 측방으로부터, 상기 제1반력장치(20-1) 및 제2반력장치(20-2), 상기 제1판스프링(30-1) 및 제2판스프링(30-2), 그리고 상기 제1삽입헤드(43-1) 및 제2삽입헤드(43-2)를 아래로부터 위쪽으로 차례로 삽입하는 단계; 및
    상기 헤드(40)의 이격을 해제하여 상기 반력장치와 상기 판스프링을 상기 헤드로 압착하는 단계;를 포함하는 것을 특징으로 하는
    긴장력 육안 확인이 가능한 앵커 장치 보수 시공 방법.
PCT/KR2018/009319 2017-08-23 2018-08-14 긴장력 육안 확인이 가능한 앵커 장치 및 그 시공 방법 WO2019039787A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0106900 2017-08-23
KR1020170106900A KR101835831B1 (ko) 2017-08-23 2017-08-23 긴장력 육안 확인이 가능한 앵커 장치 및 그 시공 방법

Publications (1)

Publication Number Publication Date
WO2019039787A1 true WO2019039787A1 (ko) 2019-02-28

Family

ID=62088397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/009319 WO2019039787A1 (ko) 2017-08-23 2018-08-14 긴장력 육안 확인이 가능한 앵커 장치 및 그 시공 방법

Country Status (2)

Country Link
KR (1) KR101835831B1 (ko)
WO (1) WO2019039787A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102125243B1 (ko) 2019-08-19 2020-06-22 우리기술개발 주식회사 기시공된 앵커의 재인장 및 인장력 육안확인 장치 시공 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184081A (ja) * 2001-12-18 2003-07-03 Ohbayashi Corp グラウンドアンカー及びこのグラウンドアンカーの定着方法
KR20100018714A (ko) * 2008-08-07 2010-02-18 박범수 인장재 제거형 앵커
KR101232642B1 (ko) * 2012-09-17 2013-02-13 송효정 지중 앙카용 피씨 강연선을 재인장 조정하기 위한 재인장 정착구
KR20150107545A (ko) * 2014-03-15 2015-09-23 주식회사 티엠이앤씨 조립식 콘크리트 구조물의 접합부를 위한 지수용 탄성 접합 부재 및 이를 이용한 접합 방법
KR101579908B1 (ko) * 2015-05-18 2015-12-24 우리기술개발 주식회사 영구앵커용 인장력 육안 확인장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003184081A (ja) * 2001-12-18 2003-07-03 Ohbayashi Corp グラウンドアンカー及びこのグラウンドアンカーの定着方法
KR20100018714A (ko) * 2008-08-07 2010-02-18 박범수 인장재 제거형 앵커
KR101232642B1 (ko) * 2012-09-17 2013-02-13 송효정 지중 앙카용 피씨 강연선을 재인장 조정하기 위한 재인장 정착구
KR20150107545A (ko) * 2014-03-15 2015-09-23 주식회사 티엠이앤씨 조립식 콘크리트 구조물의 접합부를 위한 지수용 탄성 접합 부재 및 이를 이용한 접합 방법
KR101579908B1 (ko) * 2015-05-18 2015-12-24 우리기술개발 주식회사 영구앵커용 인장력 육안 확인장치

Also Published As

Publication number Publication date
KR101835831B1 (ko) 2018-04-20

Similar Documents

Publication Publication Date Title
WO2018155790A1 (ko) 금속 소재의 전단시험용 시험체 및 그 시험체의 전단시험장치
WO2012115418A2 (ko) 크레인 인양용 대형 콘크리트 블록, 그 제작 방법 및 그 설치 방법
WO2018021702A1 (ko) 파이프 연결장치
WO2019039787A1 (ko) 긴장력 육안 확인이 가능한 앵커 장치 및 그 시공 방법
WO2018012797A1 (ko) 원터치식 철근 커플러
WO2017111207A1 (ko) 응력의 자가진단이 가능한 지반앵커 및 그 시공방법
WO2010018938A1 (en) Construction support
EP3284865B1 (en) Cable anchorage with seal element and prestressing system comprising such anchorage
WO2012039557A2 (ko) 철도 레일 고정용 탄성클립 및 이의 설치방법
WO2019231096A1 (ko) 이차전지용 노칭장치 및 방법
WO2018110890A1 (ko) 전자 부품 하우징 및 이를 포함하는 dc-dc 컨버터
WO2015072681A1 (ko) 차량 카펫의 매트 고정용 클립
US20200199831A1 (en) Improved assembly comprising a structural cable and a saddle
KR20110137483A (ko) 앵커정착장치
JP6132142B2 (ja) Pc外ケーブルの緊張力解放方法
JP2018119393A (ja) アンカーの再緊張方法、アンカー頭部構造、及び孔内アンカーヘッド
KR20200088156A (ko) 인장장치용 웨지 압착블록 및 이를 이용한 시공방법
WO2018182181A1 (ko) 프레스 금형 장치, 이를 이용한 프레스 성형 방법과 프레스 성형물
WO2015069059A1 (ko) 조적벽체의 보강장치 및 이를 이용한 조적벽체의 보강방법
KR101363191B1 (ko) 엘리베이터의 메인로프 고정장치
JP6226498B1 (ja) 既設アンカー除荷方法
WO2020060314A1 (ko) 인장부재 정착장치
KR102125243B1 (ko) 기시공된 앵커의 재인장 및 인장력 육안확인 장치 시공 방법
KR200276628Y1 (ko) 인장재 해체형 앵커 구조물
KR101916016B1 (ko) 갱폼 낙하의 연속적 방지 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847467

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847467

Country of ref document: EP

Kind code of ref document: A1