WO2019039550A1 - 積層体およびその製造方法 - Google Patents

積層体およびその製造方法 Download PDF

Info

Publication number
WO2019039550A1
WO2019039550A1 PCT/JP2018/031179 JP2018031179W WO2019039550A1 WO 2019039550 A1 WO2019039550 A1 WO 2019039550A1 JP 2018031179 W JP2018031179 W JP 2018031179W WO 2019039550 A1 WO2019039550 A1 WO 2019039550A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretched film
mass
laminate
meth
film
Prior art date
Application number
PCT/JP2018/031179
Other languages
English (en)
French (fr)
Inventor
直人 福原
向尾 良樹
祥晃 青木
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2019537681A priority Critical patent/JP7177776B2/ja
Publication of WO2019039550A1 publication Critical patent/WO2019039550A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C51/00Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor
    • B29C51/12Shaping by thermoforming, i.e. shaping sheets or sheet like preforms after heating, e.g. shaping sheets in matched moulds or by deep-drawing; Apparatus therefor of articles having inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates

Definitions

  • the present invention relates to a laminate and a method of manufacturing the same.
  • metal plating and painting are expensive and there are problems with environmental health. In addition, it is difficult to obtain a constant appearance because the coating has large variations in thickness, and it has been difficult to provide stable quality.
  • a metal thin film layer is formed on a base film to manufacture a metal-modified decorative film, and instead of painting, a metal-modified decorative film is used as an adherend There is a method of bonding.
  • Patent Document 1 is composed of a biaxially stretched polyethylene terephthalate film, an acrylic resin film or a polycarbonate resin film, and the maximum height average R tm of the back surface is 0.1 to 2.0 ⁇ m, and the haze value is 0
  • a metal tone sheet which has a metal deposition layer containing at least one selected from tin, gold and indium on the back surface of a transparent resin film which is 1 to 4.0%.
  • Patent Document 2 after a transparent thin acrylic film is used as a substrate sheet, a thin metal film layer is formed thereon, and a thin metal film insert film on which a plastic sheet is laminated is preformed into a desired shape.
  • a method for producing a metal thin film insert film molded article in which a metal thin film insert film is inserted into a mold and a molding resin is injected to the plastic sheet side to integrate them.
  • Patent Document 3 a transparent conductive film having a transparent conductive layer on at least one side of a base film having a ring structure in its main chain and having an acrylic resin with a glass transition temperature of 120 ° C. or more as a main component It is disclosed.
  • JP 2008-110518 A Japanese Patent Application Laid-Open No. 10-180795 JP, 2008-179677, A
  • the present invention is made in view of the above-mentioned subject, and aims at providing a layered product which is excellent in punching resistance and metallic glossiness, and a manufacturing method of the layered product concerned.
  • the stretched film contains a UV absorber, and the content of the UV absorber in the stretched film is 0.1 to 10 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin.
  • the laminated body as described in 1] or [2].
  • the laminate of the present invention has a stretched film and a metal layer, and has a total light transmittance of 50% or less.
  • the said stretched film contains (meth) acrylic-type resin, and its haze is 1% or less.
  • the stretched film contains a (meth) acrylic resin.
  • (meth) acrylic resins include poly (methyl methacrylate) and styrene- (methyl methacrylate) resin.
  • (meth) acrylic resin refers to methacrylic resin and / or acrylic resin.
  • the (meth) acrylic resin may be a heat resistant (meth) acrylic resin modified by imide cyclization, lactone cyclization, methacrylic acid modification or the like.
  • the stretched film may contain one or more of these (meth) acrylic resins.
  • the proportion of the structural unit derived from methyl methacrylate in the (meth) acrylic resin is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. Preferably it is 99 mass% or more, especially preferably 100 mass%. That is, the ratio of structural units derived from monomers other than methyl methacrylate is preferably 20% by mass or less, more preferably 10% by mass or less, and still more preferably 5% by mass or less. Preferably it is 1 mass% or less, Especially preferably, it is 0 mass%.
  • methyl methacrylate for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, acrylic acid t-Butyl, amyl acrylate, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, acrylic acid 2-Hydroxyethyl, 2-ethoxyethyl acrylate, glycidyl acrylate, allyl acrylate, cyclohexyl acrylate, norbornyl acrylate, acrylic esters such as isobornyl acrylate; ethyl meth
  • the (meth) acrylic resin preferably has a syndiotacticity (rr) represented by triad of 65% or more, more preferably 70 to 90%, and still more preferably 72 to 85%.
  • a syndiotacticity (rr) represented by triad of 65% or more, more preferably 70 to 90%, and still more preferably 72 to 85%.
  • the syndiotacticity (rr) of the (meth) acrylic resin can be determined by the method described later in the Examples.
  • the stretched film preferably contains 10% by mass or more of a (meth) acrylic resin having a syndiotacticity (rr) of at least 65% in ternary notation, from the viewpoint of heat resistance and surface hardness, and 40% by mass % Or more is more preferable, 50% by mass or more is more preferable, and 55% by mass or more is even more preferable.
  • the content of the (meth) acrylic resin having a syndiotacticity (rr) of 65% or more on the triple display is preferably 70% by mass or less The content is more preferably 50% by mass or less, still more preferably 30% by mass or less.
  • the weight average molecular weight (Mw) of the (meth) acrylic resin is preferably 40000 to 200000, more preferably 60000 to 150000, and still more preferably 70000 to 120000. Further, the molecular weight distribution (the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn), Mw / Mn) of the (meth) acrylic resin is preferably 1.0 to 1.8, more preferably 1.0. To 1.4, particularly preferably 1.03 to 1.3. When a (meth) acrylic resin having a molecular weight (Mw) or a molecular weight distribution (Mw / Mn) within the above range is used, the stretched film is excellent in mechanical strength.
  • Mw and Mw / Mn can be controlled by adjusting the type and / or amount of polymerization initiator used in the production.
  • Mw and Mn are values obtained by converting the chromatogram measured by gel permeation chromatography (GPC) into the molecular weight of standard polystyrene, and can be specifically determined by the method described later in the Examples.
  • the method for producing the (meth) acrylic resin is not particularly limited, and it can be obtained by polymerizing one or more monomers containing preferably 80% by mass or more of methyl methacrylate under suitable conditions.
  • the glass transition temperature (Tg) of the (meth) acrylic resin is preferably 100 ° C. or more, more preferably 110 ° C. or more, still more preferably 120 ° C. or more, particularly preferably from the viewpoint of heat resistance. It is above 122 ° C.
  • the glass transition temperature (Tg) of the (meth) acrylic resin can be determined in accordance with JIS K 7121 (2012), and specifically, it can be determined by the method described later in the Examples.
  • the stretched film may contain a resin other than the (meth) acrylic resin.
  • resins other than (meth) acrylic resins for example, polycarbonate resins such as bisphenol A polycarbonate; polystyrene, styrene-acrylonitrile resin, styrene-maleic anhydride resin, styrene-maleimide resin, styrene thermoplastic elastomer, etc.
  • Aromatic vinyl resin or its hydrogenated substance Amorphous polyolefin, transparent polyolefin with refined crystal phase, polyolefin resin such as ethylene-methyl methacrylate resin, etc.
  • Polyester resin such as modified polyethylene terephthalate, polyethylene naphthalate, polyarylate; polyamide resin; polyimide resin; polyether sulfone resin; triacetyl cell Polyphenylene oxide resins; cellulose resins such as over scan resins such as phenoxy resins.
  • the stretched film may contain only one of these resins, or may contain two or more of them. Among these, the stretched film preferably contains a polycarbonate resin and / or a phenoxy resin. When the stretched film contains a polycarbonate-based resin and / or a phenoxy-based resin, the dimensional change of the film becomes small, the film becomes excellent in stretchability, and the metallic gloss of the laminate becomes even better.
  • the stretched film contains a resin other than a (meth) acrylic resin
  • its content is preferably 20 parts by mass or less, more preferably 10 parts by mass or less, with respect to 100 parts by mass of the (meth) acrylic resin. More preferably, it is 5 parts by mass or less, still more preferably 3 parts by mass or less.
  • the content of the resin other than the (meth) acrylic resin is in the relevant range, the surface hardness and the weather resistance of the laminate become excellent.
  • the stretched film may contain an elastomer.
  • the elastomer include (meth) acrylic elastic particles, (meth) acrylic block copolymers in which an acrylic acid ester polymer block (b1) and a methacrylic acid ester polymer block (b2) are bonded, etc.
  • examples include meta) acrylic elastomers; silicone elastomers; styrene thermoplastic elastomers such as SEPS, SEBS and SIS; olefin elastomers such as IR, EPR and EPDM.
  • One of these elastomers may be used alone, or two or more thereof may be used in combination.
  • (meth) acrylic elastomers are preferable, and (meth) acrylic elastic particles are more preferable, from the viewpoint that the laminate is further excellent in punching resistance and metallic gloss.
  • a stretched film contains a ultraviolet absorber
  • the stretched film contains a (meth) acrylic block copolymer, it is possible to suppress mold stains and roll stains due to the ultraviolet absorber, and to improve continuous productivity.
  • the content of the elastomer in the stretched film is preferably 30 parts by mass or less, more preferably 19 parts by mass or less, still more preferably 9 parts by mass or less, particularly preferably 4 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin It is below.
  • the content of the elastomer is in the above range, the laminate is further excellent in metallic glossiness, and the surface hardness tends to be improved.
  • the content of the elastomer in the stretched film is improved. Is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more.
  • the range of the said content includes the aspect which does not contain an elastomer.
  • the acryl-type elastic polymer which has a structural unit derived from acrylic acid non-cyclic alkylester as a main component is mentioned, for example.
  • the (meth) acrylic elastomer may be composed only of the acrylic elastic polymer, or may be an acrylic elastic polymer, for example, as (meth) acrylic elastic particles described later.
  • the content of the structural unit derived from the non-cyclic acrylic alkyl ester is preferably 50 to 100% by mass, and more preferably 70 to 99.8% by mass.
  • the non-cyclic alkyl group in the acrylic non-cyclic alkyl ester is one having 4 to 8 carbon atoms, and specifically, for example, n-butyl, n-pentyl, n-hexyl, n-heptyl, n -Octyl groups and isomeric groups thereof are preferred.
  • the acrylic elastic polymer may contain a structural unit derived from a monomer other than acrylic acid non-cyclic alkyl ester, and examples of such a monomer include methyl methacrylate and ethyl methacrylate.
  • Alkyl methacrylates such as styrene; styrene-based monomers such as alkyl styrene; unsaturated nitriles such as acrylonitrile and methacrylonitrile; 2-chloroethyl vinyl ether; ethylene glycol (meth) acrylate, ethoxy-diethylene glycol acrylate, methoxy -Triethylene glycol acrylate, 2-ethylhexyl-diglycol acrylate, methoxy-polyethylene glycol acrylate, methoxy dipropylene glycol acrylate, phenoxy diethylene glycol acrylate, fluoro Phenoxy - polyethylene glycol acrylate, alkylene glycol (meth) acrylates such as nonylphenol ethylene oxide adduct acrylate.
  • the acrylic elastic polymer may randomly have a structural unit derived from the above-mentioned acrylic non-cyclic alkyl ester and a structural unit derived from a crosslinkable monomer.
  • the crosslinkable monomer include allyl (meth) acrylate, methallyl (meth) acrylate, diallyl maleate, triethylene glycol diacrylate, polyethylene glycol diacrylate, 1.6-hexanediol diacrylate, and the like.
  • the content of the structural unit derived from the crosslinkable monomer in the acrylic elastic polymer is preferably 0.2 to 30% by mass, more preferably 0.3 to 10% by mass, and still more preferably from the viewpoint of toughness. It is 0.5 to 5% by mass.
  • the (meth) acrylic elastic particle which is a preferred embodiment of the (meth) acrylic elastomer, may be a particle consisting of a single polymer, or a particle in which at least two layers of polymers of different elastic moduli are formed. It may be
  • the (meth) acrylic elastic particle is a polymer containing a structural unit derived from a diene monomer as a main component and / or the above-mentioned acrylic elastic polymer (from the viewpoint of the further punching resistance of the laminate)
  • the core-shell particle has a multilayer structure comprising a layer containing as a main component a structural unit derived from an acrylic non-cyclic alkyl ester and a layer containing another polymer, and the acrylic elastic
  • a core-shell particle of a two-layer structure comprising a layer containing a coalesced layer and a layer containing a methacrylic polymer covering the outer side, or a layer containing a methacrylic polymer and an acrylic elastic polymer
  • the methacrylic polymer constituting the core-shell particles is preferably a polymer containing, as a main component, a structural unit derived from a methacrylic acid non-cyclic alkyl ester.
  • the content of the structural unit derived from the methacrylic non-cyclic alkyl ester is preferably 50 to 100% by mass, more preferably 80 to 100% by mass from the viewpoint of flowability and heat resistance. is there.
  • the methacrylic acid non-cyclic alkyl ester is preferably methyl methacrylate from the viewpoint of flowability and heat resistance, and the methacrylic polymer constituting the core-shell particles contains 80 to 100 mass% of methyl methacrylate units. Is most preferred.
  • the number average particle diameter of the (meth) acrylic elastic particles is preferably 10 to 250 nm, more preferably 20 to 150 nm, and still more preferably 40 to 130 nm.
  • the number average particle diameter of (meth) acrylic elastic particles is based on a photomicrograph obtained by staining a sample formed by melting and kneading (meth) acrylic elastic particles into a methacrylic resin with ruthenium oxide. Can be determined.
  • ruthenium oxide dyes the layer containing the acrylic elastic polymer but does not dye the layer containing the methacrylic polymer
  • the number of core-shell particles of the above-mentioned two-layer structure and the number of core-shell particles of the three-layer structure The average particle size is estimated to correspond to a value not including the thickness of the outermost layer containing the methacrylic polymer.
  • the polymer block There is no particular limitation on the bonding form of (b1) and the polymer block (b2), and for example, a diblock copolymer represented by (b1)-(b2); (b1)-(b2)-(b1) or (b1) b2) a triblock copolymer represented by (b1)-(b2); (b1)-((b2)-(b1) n, (b1)-((b2)-(b1)) n- (B2), (b2)-((b1)-(b2)) n (n is an integer), a multi-block copolymer represented by: ((b1)-(b2)) nX, ((b2) )-(B1)) n-X (X is a coupling residue) etc.
  • the triblock copolymer represented by (b2)-(b1)-(b2) is preferable from the viewpoint of the fluidity of the resin composition at melting and the surface smoothness and haze of the laminate when a triblock copolymer is preferred. Coalescence is more preferred.
  • the two polymer blocks (b2) bonded to both ends of the polymer block (b1) are composed of the types of monomers, the ratio of structural units derived from methacrylic acid ester, the weight average molecular weight and the stereoregularity Each sex may independently be the same or different.
  • the (meth) acrylic block copolymer may further contain other polymer block.
  • the polymer block (b1) which comprises a (meth) acrylic-type block copolymer makes a structural unit derived from an acrylic ester a main structural unit.
  • the proportion of structural units derived from an acrylic ester in the polymer block (b1) is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of the further punching resistance of the laminate. More preferably, it is 90% by mass or more, and particularly preferably 100% by mass.
  • acrylic esters include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, t-butyl acrylate, acrylic Amyl acid, isoamyl acrylate, n-hexyl acrylate, cyclohexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate, isobornyl acrylate, phenyl acrylate, benzyl acrylate, phenoxyethyl acrylate, acrylic acid 2-Hydroxyethyl, 2-methoxyethyl acrylate, glycidyl acrylate, allyl acrylate and the like.
  • a polymer block (b1) can be formed by polymerizing these acrylic acid esters singly or in combination of two or more. Among them, from the viewpoint of economy, further punching resistance and the like, the polymer block (b1) is preferably obtained by polymerizing n-butyl acrylate alone.
  • the polymer block (b1) may contain a structural unit derived from a monomer other than acrylic acid ester, and from the viewpoint of further punching resistance of the laminate, the proportion is preferably 50% by mass or less, and more preferably Preferably it is 30 mass% or less, More preferably, it is 10 mass% or less, Especially preferably, it is 0 mass%.
  • a polymer block (b1) can be formed by copolymerizing with the above-mentioned acrylic acid ester by using monomers other than these acrylic acid ester singly or in combination of two or more kinds.
  • the proportion of the polymer block (b1) in the (meth) acrylic block copolymer is from the viewpoints of transparency, surface hardness of the laminate, molding processability, surface smoothness of the laminate, impact resistance, and heat resistance.
  • it is 60 mass% or less with respect to a total of 100 mass% of a polymer block (b1) and a polymer block (b2), More preferably, it is 57 mass% or less, More preferably, it is 53 mass% or less .
  • it is 30 mass% or more, More preferably, it is 35 mass% or more, More preferably, it is 40 mass% or more.
  • the polymer block (b2) which comprises a (meth) acrylic-type block copolymer makes a structural unit derived from methacrylic acid ester a main structural unit.
  • the proportion of structural units derived from methacrylic acid ester in the polymer block (b2) is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably from the viewpoint of flowability and heat resistance. It is 95% by mass or more, particularly preferably 100% by mass.
  • methacrylic esters include, for example, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, methacrylic Amyl acid, isoamyl methacrylate, n-hexyl methacrylate, cyclohexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate, isobornyl methacrylate, phenyl methacrylate, benzyl methacrylate, phenoxyethyl methacrylate, methacrylic acid 2-Hydroxyethyl, 2-methoxyethyl methacrylate, glycidyl methacrylate, allyl meth
  • methacrylic acid such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate, and isobornyl methacrylate Alkyl esters are preferred, and methyl methacrylate is more preferred.
  • the polymer block (b2) can be formed by polymerizing these methacrylic acid esters singly or in combination of two or more.
  • the polymer block (b2) may contain a structural unit derived from a monomer other than methacrylic acid ester, and in view of flowability and heat resistance, the proportion is preferably 20% by mass or less, more preferably 10 It is at most mass%, more preferably at most 5 mass%, particularly preferably at most 0 mass%.
  • a polymer block (b2) can be formed by copolymerizing the monomers other than these methacrylic acid esters singly or in combination of two or more kinds with the aforementioned methacrylic acid ester.
  • the proportion of the polymer block (b2) in the (meth) acrylic block copolymer is the polymer block from the viewpoints of transparency, surface hardness of the laminate, molding processability, surface smoothness of the laminate, and impact resistance.
  • it is 40 mass% or more with respect to a total of 100 mass% of (b1) and a polymer block (b2), More preferably, it is 43 mass% or more, More preferably, it is 47 mass% or more.
  • the method for producing the (meth) acrylic block copolymer is not particularly limited, and a method according to a known method (for example, WO 2016/121868, JP-A-2017-78168, etc.) may be employed. it can.
  • a method of living polymerizing each polymer block is generally used, and an organic alkali metal compound is used as a polymerization initiator in the presence of a mineral acid salt such as an alkali metal salt or an alkaline earth metal salt.
  • Method of anionic polymerization in an aqueous solution Method of anionic polymerization in an aqueous solution; Method of anionic polymerization in the presence of an organic aluminum compound using an organic alkali metal compound as a polymerization initiator; method of polymerization using an organic rare earth metal complex as a polymerization initiator; ⁇ -halogenated ester compound And radical polymerization in the presence of a copper compound using as an initiator.
  • the method of polymerizing the monomer which comprises each block using a polyvalent radical polymerization initiator and a polyvalent radical chain transfer agent, and producing as a mixture containing a (meth) acrylic-type block copolymer etc. is also mentioned. .
  • the stretched film may contain an additive.
  • the type of additive is not particularly limited.
  • One additive may be used alone, or two or more additives may be used in any ratio.
  • the stretched film preferably contains a polymer processing aid from the viewpoint of enhancing the formability of the stretched film.
  • These additives may be organic compounds or inorganic compounds, but from the viewpoint of dispersibility in the resin composition, organic compounds are preferable.
  • the content of the additive in the stretched film is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and still more preferably 3 parts by mass or less with respect to 100 parts by mass of the (meth) acrylic resin. .
  • the content of the additive is in the above range, a laminate excellent in impact resistance and surface hardness is obtained.
  • the laminate of the present invention has a metal layer, the stretched film is exposed to the incident light and the light reflected by the metal layer, and the deterioration by the light tends to proceed. Therefore, since a stretched film is required to have higher weather resistance than a normal transparent film, it is preferable to include an ultraviolet absorber.
  • the content of the ultraviolet light absorber in the stretched film is preferably 0.1 to 10 parts by mass, more preferably 0.3 to 5 parts by mass, and more preferably 100 parts by mass of the (meth) acrylic resin. Is 0.5 to 3 parts by mass.
  • a laminate excellent in weather resistance and difficult to cause whitening even when stored for a long time can be obtained.
  • a benzophenone series compound, a salicylate type compound, a benzoate type compound, a triazole type compound, a triazine type compound etc. are mentioned, for example.
  • a ultraviolet absorber may be used individually by 1 type, and may use 2 or more types together by arbitrary ratios.
  • triazole compounds and / or triazine compounds are preferable from the viewpoint of long-term stability.
  • it is also preferable to use a light stabilizer and / or an antioxidant together with the ultraviolet light absorber As a light stabilizer, a hindered amine light stabilizer etc. are mentioned, for example.
  • an antioxidant a phenol type antioxidant etc. are mentioned, for example.
  • polymer particles having a particle diameter of 0.05 to 0.5 ⁇ m which can be produced by an emulsion polymerization method, can be used.
  • a stretched film contains a polymer processing aid, when forming a resin composition, thickness accuracy and film forming stability can be improved, and fish eye defects can be reduced.
  • Representative products of polymer processing aids include Kaneace PA series (manufactured by Kaneka), Metabrene (registered trademark) P series (manufactured by Mitsubishi Chemical), Paraloid K series (manufactured by Dow Chemical), etc. .
  • methyl methacrylate and 10 to 20 alkyl acrylates are preferable from the viewpoint of reduction of the fisheye defect of the stretched film and formation stability at the time of film formation, in particular, improvement of formation stability of the film end.
  • a polymer processing aid containing 40% by mass is preferable, and Metabrene (registered trademark) P530A, P550A, and Paraloid K125 are more preferable, and Metabrene (registered trademark) P550A is particularly preferable.
  • the polymer particles constituting the polymer processing aid may be single layer particles consisting of a polymer having a single composition ratio and a single intrinsic viscosity, or two or more types of weights different in composition ratio or intrinsic viscosity It may be a multilayer particle consisting of coalescing. Among these, particles of a two-layer structure having a polymer layer having a low intrinsic viscosity in the inner layer and a polymer layer having a high intrinsic viscosity of 5 dl / g or more in the outer layer are preferable.
  • the intrinsic viscosity is preferably 3 to 6 dl / g.
  • the intrinsic viscosity is too small, the effect of improving formability is low. If the limiting viscosity is too large, the melt flowability of the resin composition tends to be reduced.
  • molding method in particular of the raw film containing the (meth) acrylic-type resin used as the basis of a stretched film is not restrict
  • the melt-extrusion method is mentioned preferably.
  • the melt extrusion method is not particularly limited, and can be performed by a melt extrusion method known in the art, and for example, a T-die method, an inflation method or the like can be used.
  • the molding temperature is preferably 150 to 350 ° C., more preferably 200 to 300 ° C., and still more preferably 240 to 280 ° C.
  • a T-die When forming a raw film by the T-die method, a T-die can be connected to the tip of a known single screw extruder or twin screw extruder to obtain a raw film extruded in the form of a film.
  • the extruder preferably has one or more open vents. By using such an extruder, decomposition products and volatile components can be sucked from the open vent portion, and the quality of the obtained resin composition can be improved.
  • the extruder preferably has a polymer filter to remove foreign matter. Examples of the structure of the polymer filter include a leaf disc type and a candle type.
  • the extruder preferably has a gear pump in order to stabilize the discharge amount of the resin composition. A well-known gear pump can be used.
  • the extruder has an open vent portion, a gear pump and a polymer filter, it is preferable to connect in the order of extruder-gear pump-polymer filter-die from the viewpoint of reducing foreign matter and suppressing vent up.
  • the mirror roll or mirror belt is preferably made of metal. More preferably, the mirror roll is a combination of a metal rigid roll and a metal elastic roll.
  • the linear pressure between the mirror roll or the mirror belt is preferably 10 N / mm or more, more preferably 30 N / mm or more, from the viewpoint of surface smoothness.
  • the surface temperature of the mirror roll or mirror belt is preferably 60 ° C. or more, more preferably 70 ° C. or more, from the viewpoint of surface smoothness, haze, appearance and the like. Moreover, Preferably it is 130 degrees C or less, More preferably, it is 100 degrees C or less.
  • the extruded film-like molten resin is brought into contact with and brought into close contact with the mirror surface roll by the adhesion aiding means from the viewpoint of surface smoothness and thickness uniformity of the drawn film, It is preferable to cool and solidify.
  • the adhesion assisting device include an electrostatic adhesion device, an air knife, an air chamber, a vacuum chamber and the like. Among these, from the viewpoint of manufacturing stability, it is preferable to use an electrostatic adhesion device as the adhesion aiding device.
  • edge pinning and wire pinning are used in combination as the adhesion aiding apparatus, it is preferable to arrange the edge pinning and the wire pinning in this order from the upstream side. Further, it is more preferable that the wire pinning be disposed downstream of the position where the temperature of the molten resin on the mirror roll is the glass transition temperature and further upstream than the position where it is separated from the mirror roll.
  • the thickness of the raw film is preferably 40 to 500 ⁇ m, more preferably 80 to 400 ⁇ m, still more preferably 100 to 300 ⁇ m, and still more preferably 120 to 200 ⁇ m from the viewpoint of productivity.
  • the thickness of the raw film is an average value of 50 mm in the central portion with respect to the entire width of the raw film.
  • the raw film is formed into a film, and then subjected to a stretching process to form a stretched film.
  • the stretched film may be a uniaxially stretched film or a biaxially stretched film, but a biaxially stretched film is preferable from the viewpoint of further enhancing the punching resistance of the laminate.
  • the stretching treatment improves the mechanical strength of the film and improves the punching resistance.
  • the stretching method is not particularly limited, and a simultaneous biaxial stretching method, a sequential biaxial stretching method, a tuber stretching method, a rolling method and the like can be mentioned.
  • the stretching treatment preferably includes a preheating step, a stretching step, and a heat setting step in this order, and more preferably includes a preheating step, a stretching step, a heat setting step, and a relaxation step in this order.
  • the temperature of the raw film is preferably at least the glass transition temperature of the raw film and no higher than 40 ° C. higher than the glass transition temperature, more preferably at least 5 ° C. higher than the glass transition temperature of the raw film
  • the temperature is 30 ° C. higher than the glass transition temperature or less.
  • the temperature (stretching temperature) of the raw film is preferably 5 ° C. or more higher than the glass transition temperature of the raw film and 40 ° C. or more higher than the glass transition temperature, more preferably glass of the raw film
  • the temperature is 10 ° C. higher than the transition temperature and 35 ° C. higher than the glass transition temperature, and more preferably 20 ° C. higher than the glass transition temperature of the raw film and 30 ° C. higher than the glass transition temperature.
  • the temperature is 22 ° C. or more higher than the glass transition temperature of the raw film and 27 ° C. or more higher than the glass transition temperature.
  • the temperature of the raw film in the stretching step is in the relevant range, breakage is unlikely to occur in the stretching step, productivity is improved, and the laminate is excellent in stretchability.
  • the raw film has a plurality of glass transition temperatures, the highest value can be adopted as the reference of the temperature range of the raw film.
  • the stretching ratio is preferably 1.5 to 8.0 times, more preferably 2.0 to 6.0 times, and still more preferably 2.5 to 4.0 times.
  • the punching resistance of a laminated body further improves because a draw ratio is 1.5 times or more.
  • the draw ratio is 8.0 times or less, in particular 4.0 times or less, the laminate is excellent in stretchability, and the laminate is formed by three-dimensional surface decoration molding (Three Dimension Overlay Method: TOM molding) or Even when subjected to insert molding, breakage hardly occurs.
  • a draw ratio means the ratio of the area after extending
  • the drawing speed is preferably 100 to 5000% / min, more preferably 500 to 2000% / min.
  • the stretching speed is in the relevant range, breakage is less likely to occur in the stretching step during the production of the stretched film, and the productivity is improved.
  • the stretching treatment preferably includes a heat setting step after the stretching step.
  • a laminate excellent in stretchability can be obtained.
  • the temperature during heat setting is preferably at least 40 ° C. lower than the glass transition temperature of the raw film and no higher than the glass transition temperature, and more preferably at least 30 ° C. lower than the glass transition temperature of the raw film and higher than the glass transition temperature The temperature is lower than 10 ° C.
  • the stretching treatment preferably further includes a relaxation step after the heat setting step.
  • the relaxation step it is possible to obtain a laminate which is more excellent in stretchability.
  • the relaxation rate is preferably 0.1 to 5%, more preferably 0.5 to 2%.
  • the thickness of the stretched film is preferably 5 to 200 ⁇ m, more preferably 10 to 100 ⁇ m, still more preferably 20 to 80 ⁇ m, still more preferably 30 to 60 ⁇ m from the viewpoint of cost and surface hardness. .
  • the stretched film has a haze of 1% or less, preferably 0.8% or less, more preferably 0.5% or less, and still more preferably 0.4% or less.
  • the haze of the stretched film can be controlled by appropriately adjusting the type and amount of resin and elastomer contained in the stretched film, and the stretching temperature and the stretching ratio.
  • the haze of the stretched film can be determined in accordance with JIS K 7136 (2000), and specifically, can be determined by the method described later in the examples.
  • the dimensional change before and after holding at 85 ° C. for 30 minutes is preferably 0.1% or less, more preferably 0.08% or less, and still more preferably 0.06% or less. More preferably, it is 0.05% or less, and particularly preferably 0.04% or less. Moreover, Preferably it is 0.005% or more, More preferably, it is 0.01% or more, More preferably, it is 0.02% or more.
  • the dimensional change rate of the stretched film is in the range, the laminate is excellent in stretchability, and breakage hardly occurs even if the laminate is subjected to TOM molding or insert molding. Moreover, it is further excellent in punching resistance. The dimensional change rate before and after holding the stretched film at 85 ° C.
  • the dimensional change before and after holding the stretched film at 85 ° C. for 30 minutes can be adjusted by appropriately adjusting the type and amount of the resin and elastomer contained in the stretched film, and the stretching temperature, stretching ratio, heat setting temperature, relaxation rate and the like. It can control.
  • the stretched film can be surface-treated on at least one surface of the stretched film in order to improve the adhesion to a functional layer described later.
  • the surface treatment methods known in the technical field, for example, activation treatment such as corona discharge treatment, plasma treatment, glow discharge treatment, flame treatment, ultraviolet ray irradiation treatment, electron beam irradiation treatment, ozone treatment, etc. are used. be able to.
  • Metal layer As a metal layer which the laminated body of this invention has, what consists of a metal and / or a metal oxide etc. is mentioned, for example.
  • the metal include aluminum, silicon, magnesium, palladium, zinc, tin, nickel, silver, copper, gold, indium, stainless steel, chromium, titanium and the like.
  • metal oxide for example, aluminum oxide, zinc oxide, antimony oxide, indium oxide, calcium oxide, cadmium oxide, silver oxide, gold oxide, gold oxide, chromium oxide, silicon oxide, cobalt oxide, zirconium oxide, tin oxide And titanium oxide, iron oxide, copper oxide, nickel oxide, platinum oxide, palladium oxide, bismuth oxide, magnesium oxide, manganese oxide, manganese oxide, molybdenum oxide, vanadium oxide, barium oxide and the like.
  • metals and / or metal oxides may be used alone or in combination of two or more.
  • the metal layer is at least one selected from the group consisting of indium, aluminum, chromium, gold, silver and tin from the viewpoint of having an excellent metallic luster and a laminate excellent in stretchability. It is preferable to contain a species, and more preferable to contain indium.
  • the total content of the metal and the metal oxide in the metal layer is preferably 90% by mass or more, more preferably 95% by mass or more, still more preferably 99% by mass or more, and still more preferably 99% by mass or more. It is .99 mass% or more, and 100 mass% may be sufficient.
  • the thickness of the metal layer is preferably 10 to 500 nm, more preferably 30 to 300 nm, still more preferably 40 to 250 nm, and still more preferably 50 to 200 nm.
  • the laminate of the present invention has a total light transmittance of 50% or less, preferably 30% or less, more preferably 20% or less, and still more preferably 10% or less. If the total light transmittance exceeds 50%, the laminate may be poor in metallic gloss. On the other hand, in view of the moldability of the laminate, the total light transmittance is preferably 0.1% or more, more preferably 0.5% or more, and still more preferably 1% or more.
  • the total light transmittance of the laminate can be determined in accordance with JIS K 7136 (2000), and specifically, can be determined by the method described later in the examples.
  • the laminate of the present invention preferably has an impact resistance of 2 J or more, more preferably 3 J or more, still more preferably 4 J or more, still more preferably 5 J or more, still more preferably 6 J or more. is there.
  • the impact resistance is in the range, the laminate tends to be further excellent in punching resistance.
  • the impact resistance strength of the laminate can be determined by the method described later in the examples.
  • the laminate is preferably in contact with the stretched film and the metal layer because of its low cost and low environmental load, but may have an anchor layer between the stretched film and the metal layer.
  • the anchor layer By providing the anchor layer between the stretched film and the metal layer, the adhesion between the stretched film and the metal layer can be improved, and when an adhesive layer is provided on the metal layer side of the laminate, The stretched film can be protected from the adhesive and the whitening of the stretched film can be suppressed.
  • the material of the anchor layer is, for example, two-part cured urethane resin, thermosetting urethane resin, melamine resin, cellulose ester resin, chlorine containing rubber resin, chlorine containing vinyl resin, acrylic resin, epoxy resin, Vinyl copolymer resin etc. are mentioned.
  • the anchor layer may be formed by a method such as a gravure coating method, a roll coating method, a coating method such as a comma coating method, a gravure printing method, or a screen printing method.
  • the laminate of the present invention may consist only of the stretched film and the metal layer, but may further have layers other than the stretched film and the metal layer.
  • layers other than a stretched film and a metal layer functional layers, such as a topcoat layer, a hard-coat layer, an anchor layer, an easily bonding layer, a mucoadhesive layer, a printing layer, are mentioned, for example.
  • the position of these layers in the laminate is not particularly limited, but when the metal layer side of the laminate is bonded to the adherend, the topcoat layer and the hardcoat layer are opposite to the metal layer in the stretched film layer Is preferably provided.
  • an anchor layer is provided between a stretched film and a metal layer.
  • the adhesive layer is preferably provided on the side opposite to the stretched film in the metal layer, and the easy adhesive layer is preferably provided between the metal layer and the adhesive layer. It is preferable for the laminate to have these layers, in particular, an adhesive layer, since the stretchability of the laminate is improved.
  • resins such as polyvinyl resin, polyamide resin, polyester resin, acrylic resin, polyurethane resin, polyvinyl acetal resin, polyester urethane resin, cellulose ester resin, alkyd resin and the like are used as a binder
  • resins such as polyvinyl resin, polyamide resin, polyester resin, acrylic resin, polyurethane resin, polyvinyl acetal resin, polyester urethane resin, cellulose ester resin, alkyd resin and the like are used as a binder
  • resins such as polyvinyl resin, polyamide resin, polyester resin, acrylic resin, polyurethane resin, polyvinyl acetal resin, polyester urethane resin, cellulose ester resin, alkyd resin and the like are used as a binder
  • normal printing methods such as an offset printing method, a gravure printing method, the screen-printing method, etc.
  • offset printing and gravure printing are suitable for
  • a heat-sensitive or pressure-sensitive resin suitable for a stretched film can be suitably used, but one containing an acrylic resin, a polystyrene resin, a polyamide resin, etc. is preferable, and one containing an acrylic resin More preferable.
  • the method for forming the adhesive and pressure-sensitive adhesive layer include a gravure coating method, a roll coating method, a coating method such as a comma coating method, a gravure printing method, and a screen printing method.
  • the thickness of the tacky-adhesive layer after drying is preferably 1 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, still more preferably 20 to 100 ⁇ m, from the viewpoint of tackiness and handling. More preferably, it is 30 to 70 ⁇ m.
  • the thickness of the laminate is preferably 5 to 500 ⁇ m, more preferably 10 to 300 ⁇ m, still more preferably 20 to 100 ⁇ m, still more preferably 30 to 60 ⁇ m from the viewpoint of cost and surface hardness. .
  • the manufacturing method of the laminated body of this invention can manufacture by forming a metal layer in the above stretched films.
  • the method for forming the metal layer on the stretched film is not particularly limited, and examples thereof include vacuum deposition, ion plating, sputtering, and chemical vapor deposition.
  • the degree of vacuum is preferably 0.1 Pa or less, and more preferably 0.01 Pa or less, from the viewpoint of improving the thickness accuracy of the metal layer.
  • the molded article of the present invention comprises the laminate and the adherend of the present invention.
  • the laminate of the present invention is provided on the surface of the adherend, and the laminate of the present invention is faced such that the metal layer side of the laminate of the present invention faces the surface of the adherend. It is more preferable to provide.
  • a molded object is excellent in surface smoothness, surface hardness, and gloss of metallic tone by having the layered product of the present invention on the surface of a covering object.
  • a thermoplastic resin, a thermosetting resin, a wood base material, a non-wood base material etc. are mentioned, for example.
  • thermoplastic resin used for the adherend includes, for example, polycarbonate resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, other (meth) acrylic resin, ABS (acrylonitrile-butadiene-styrene copolymer) Combined resin, ethylene vinyl alcohol resin, polyvinyl butyral resin, vinyl acetal resin, styrene thermoplastic elastomer, olefin thermoplastic elastomer, acrylic thermoplastic elastomer, and the like.
  • thermosetting resin an epoxy resin, a phenol resin, a melamine resin etc. are mentioned, for example.
  • a non-wood base material the base material which consists of kenaf fibers, the base material which consists of carbon fibers, etc. are mentioned, for example.
  • the method for producing a molded article is not particularly limited, and examples thereof include a method of heating the laminate of the present invention to vacuum-form, pressure-compact, compression-mold or TOM-mold the surface of an adherend.
  • the laminate of the present invention may be preformed, inserted into a mold, and a molded product may be produced by insert molding or injection molding simultaneous application method in which a molten resin is injection molded on the metal layer side.
  • the applications of the laminate and molded article of the present invention are not particularly limited, and for example, vehicle decorative parts such as bumpers, emblems, vehicle exteriors, vehicle interiors, etc .; building materials parts such as wall materials, window films, window frames, bathroom wall materials Household goods such as dishes, toys, musical instruments, etc .; Home appliance decorative parts such as vacuum cleaner housings, television housings, air conditioner housings, etc .; interior members such as kitchen door facing materials; ship members etc.
  • vehicle decorative parts such as bumpers, emblems, vehicle exteriors, vehicle interiors, etc .
  • building materials parts such as wall materials, window films, window frames, bathroom wall materials Household goods such as dishes, toys, musical instruments, etc .
  • Home appliance decorative parts such as vacuum cleaner housings, television housings, air conditioner housings, etc .
  • interior members such as kitchen door facing materials; ship members etc.
  • the laminate of the present invention is excellent in punching resistance and metallic gloss, it can be suitably used for a molded product which is required to have a design.
  • the laminate of the present invention can be particularly suitably used as a metallic decorative film in metallic decorative applications.
  • the present invention will be more specifically described with reference to examples and comparative examples.
  • the present invention is not limited by the following examples.
  • the present invention includes all aspects in which the above-described matters representing technical characteristics such as characteristic values, forms, manufacturing methods, applications and the like are arbitrarily combined.
  • HLC-8320 Detector Differential Refractive Index Detector Column: Two TSKgel SuperMultipore HZM-M's manufactured by Tosoh Corporation and Super HZ 4000 connected in series were used. Eluent: tetrahydrofuran Eluent flow rate: 0.35 mL / min Column temperature: 40 ° C. Calibration curve: made using data of 10 standard polystyrene
  • Glass transition temperature (Tg) Glass transition temperature (Tg)
  • DSC-50 product number manufactured by Shimadzu Corporation
  • the DSC curve was measured under the conditions of raising the temperature from room temperature (25 ° C.) to 230 ° C. at 10 ° C./min.
  • the midpoint glass transition temperature determined from the DSC curve measured at the second temperature rise was taken as the glass transition temperature in the present invention.
  • the test piece of 40 mm x 5 mm was cut out from the stretched film obtained in the Example.
  • the longitudinal direction of the test piece was a direction parallel to the width direction of the raw film. Both ends in the longitudinal direction of the test piece were held by a pair of film chucks. At this time, the distance between the pair of film chucks was 24 mm.
  • a tensile load of 2 g was applied to the stretched film by a pair of film chucks, and this was attached to a thermomechanical analyzer (Q400EM, manufactured by TA Instruments Co., Ltd.). With the test piece set as described above, the test piece is heated from 25 ° C. to 85 ° C.
  • Total light transmittance The laminate obtained in the example is cut out into 50 mm ⁇ 50 mm and used as a test piece, and the total light transmittance is measured according to JIS K 7136 (2000) using a haze meter (SH7000, manufactured by Nippon Denshoku Kogyo Co., Ltd.) did.
  • the laminate obtained in the example is cut out into 80 mm ⁇ 80 mm to make a test piece, which is set in a film impact tester (NO. 181 film impact tester manufactured by Yasuda Seiki Seisakusho Co., Ltd.) and spherical impact rod (radius 12.7 ⁇ 0.2 mm) was applied to the test piece at a right angle, and the energy [unit: J] required for punching was taken as impact resistance strength.
  • a film impact tester NO. 181 film impact tester manufactured by Yasuda Seiki Seisakusho Co., Ltd.
  • spherical impact rod radius 12.7 ⁇ 0.2 mm
  • the laminate obtained in the example is cut out into 80 mm ⁇ 80 mm and used as a test piece, and the test piece and a 40 mm ⁇ 40 mm punching jig (Thomson blade) are set in a punching device (SDL-200 manufactured by Dumbbell Co., Ltd.) and tested.
  • the pieces were punched into 40 mm ⁇ 40 mm. It was evaluated as A if there were no cracks (wrinkles) in the punched test pieces, and as C if there were cracks.
  • the laminate obtained in the example is cut into a piece of 100 mm ⁇ 100 mm to make a test piece, which is set in a biaxial stretching birefringence measuring apparatus (manufactured by Toto Inc., SDR-563K), temperature 145 ° C., stretching speed 3600% / min and stretching ratio It stretched at 200% conditions.
  • Five test pieces were stretched by the method concerned and evaluated as follows. A: One sheet did not break either. B: One or two pieces were broken. C: 3 or more were broken.
  • the laminate obtained in the example is cut into a piece of 100 mm ⁇ 100 mm to make a test piece, which is set in a biaxial stretching birefringence measuring apparatus (manufactured by Toto Inc., SDR-563K), temperature 145 ° C., stretching speed 3600% / min and stretching ratio It stretched on the conditions of 250%.
  • Five test pieces were stretched by the method concerned and evaluated as follows. A: One sheet did not break either. B: One or two pieces were broken. C: 3 or more were broken.
  • the laminate obtained in the example was placed on a white paper (C2r manufactured by FUJI Xerox Co., Ltd.), and the appearance was visually observed under a fluorescent lamp (200 lux).
  • the polymerization reaction was first started in a batch system.
  • the raw material liquid is supplied from the autoclave to the tank reactor at a flow rate that makes the average residence time 150 minutes while maintaining the temperature at 140 ° C. It switched to the polymerization reaction of the continuous flow system which takes out a reaction liquid from a tank type reactor with a corresponding flow rate. After switching to the continuous flow system, the polymerization conversion in the steady state was 55% by mass.
  • the reaction liquid withdrawn from the tank reactor in a steady state was supplied to a multi-tube heat exchanger with an internal temperature of 230 ° C. and heated at a flow rate at which the average residence time is 2 minutes.
  • the heated reaction solution was introduced into a flash evaporator to remove volatile components mainly composed of unreacted monomers to obtain a molten resin.
  • the molten resin from which the volatile component was removed was supplied to a twin-screw extruder with an internal temperature of 260 ° C., discharged in a strand, and cut by a pelletizer to obtain a pellet-like (meth) acrylic resin (X1). Physical properties of the obtained (meth) acrylic resin (X1) are shown in Table 1.
  • Phenoxy 1 Nippon Steel & Sumikin Chemical Co., Ltd.
  • YP-50S part number
  • MFR 230 ° C., 3.8 kg, 10 minutes; in accordance with JIS K 7210-1 (2014)
  • Mw 55,000
  • Mw / Mn 2.5
  • Methacrylic resin composition (M1) 40 parts by mass of (meth) acrylic resin (X1), 60 parts by mass of (meth) acrylic resin (X2), (meth) of triblock structure obtained with reference to Reference Example 3 of JP-A-2017-78168 1 part by mass of an acrylic block copolymer, 1 part by mass of a phenoxy resin (Phenoxy 1), 1 part by mass of an ultraviolet absorber (manufactured by ADEKA, LA-F70), and a polymer processing aid (manufactured by Mitsubishi Chemical Corporation, metabrene (registered Trademark) P550A) 2 parts by mass are mixed with a Henschel mixer, and kneaded and extruded using a vented twin-screw extruder with a screw diameter of 41 mm set at 260 ° C. to give a methacrylic resin composition having a glass transition temperature Tg of 124 ° C. The pellet of (M1) was obtained.
  • Methacrylic Resin Composition (M2) Henschel mixer: 85 parts by mass of (meth) acrylic resin (X1) and 15 parts by mass of (meth) acrylic block copolymer having a triblock structure obtained by referring to Reference Example 3 of JP-A-2017-78168 The mixture was mixed and extruded using a vented twin-screw extruder with a screw diameter of 41 mm set at 260 ° C. to obtain pellets of a methacrylic resin composition (M2) having a glass transition temperature Tg of 118 ° C.
  • Methacrylic resin composition (M3) 70 parts by mass of (meth) acrylic resin (X3) consisting of 99% by mass of methyl methacrylate and 1% by mass of methyl acrylate, obtained with reference to Reference Examples 1 and 2 of WO 2016/139950, and International 30 parts by mass of (meth) acrylic elastic particles of a three-layer structure having a particle diameter of 0.23 ⁇ m measured by a dynamic light scattering method, obtained by referring to Reference Example 1 of Publication No. 2014/167868
  • the mixture was mixed by a mixer, and the mixture was kneaded and extruded using a vented twin-screw extruder with a screw diameter of 41 mm set at 260 ° C. to obtain pellets of a methacrylic resin composition (M3) having a glass transition temperature Tg of 114 ° C.
  • Methacrylic resin composition (M4) 80 parts by mass of (meth) acrylic resin (X1), 20 parts by mass of (meth) acrylic resin (X2), (meth) of triblock structure obtained by referring to Reference Example 3 of JP-A-2017-78168 1 part by mass of acrylic block copolymer, 0.8 parts by mass of polycarbonate resin (manufactured by Sumika Polycarbonate Co., Ltd., SD-POLYCA 401-40), 2.5 parts by mass of phenoxy resin (Phenoxy 1), UV absorber (manufactured by ADEKA) , 1 part by weight of LA-F70, and 2 parts by weight of polymer processing aid (Mitsubishi Chemical Co., Ltd., Metabrene (registered trademark) P550A) by a Henschel mixer, and the two with a screw diameter of 41 mm and a diameter of 41 mm.
  • the pellets of the methacrylic resin composition (M4) having a glass transition temperature Tg of 122 ° C
  • Example 1 (Production of stretched film)
  • the pellet-like methacrylic resin composition (M1) was melted at 270 ° C. in a ⁇ 65 mm vented single-screw extruder connected to a T-die, and extruded into a sheet from a 700 mm wide T-die.
  • the distance from the die discharge part to contact of the molten thermoplastic resin composition with the cast roll is 30 mm, and the extruded thermoplastic resin composition is electrostatically applied (edge pinning, voltage 4 V, contact point with the cast roll)
  • the film was brought into close contact with a 225 mm diameter cast roll at a position 5 mm in the vertical direction and 10 mm on the T die side and cooled to form a raw film having a thickness of 130 ⁇ m.
  • a raw film according to a tenter simultaneous biaxial stretching machine was introduced and preheated at 147 ° C.
  • simultaneous biaxial stretching of 3.25 times (1.80 times in the longitudinal direction and 1.80 times in the width direction) at 147 ° C. was performed on the raw film. At this time, the stretching speed was 1000% / min in both the longitudinal direction and the width direction.
  • the film was cooled to 105 ° C. and heat fixed for 1 minute to obtain a 40 ⁇ m stretched film.
  • a 50 nm-thick indium layer is formed on the obtained stretched film by vacuum deposition using a vacuum deposition apparatus (VE-2030, a resistance heating method manufactured by Vacuum Device Co., Ltd.), and a laminate which is a metal-modified decorative film I got At this time, a basket heater (92% alumina) was used for resistance heating, and indium having a purity of 99.99% and a particle size of 1 mm was used.
  • the deposition conditions were a vacuum degree of 7 ⁇ 10 ⁇ 3 Pa and a speed of 0.8 ⁇ / sec for 10 minutes.
  • the evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • the obtained laminate was cut into 210 mm ⁇ 300 mm to make a test piece. Further, a clip case made of polystyrene resin (manufactured by Plus, CP-500, width 76 mm ⁇ depth 62 mm ⁇ height 40 mm) was used as an adherend. The adherend and the test piece are set in a TOM forming apparatus (Nuffing Vacuum Co., Ltd., NGF-0406T) so that the metal layer of the test piece faces the convex side of the adherend, and the preheating temperature is 130 ° C. TOM molding was performed under the condition of a pressure difference of 300 kPa to obtain a molded body. In the molded body, the laminate was not broken, and the molded body had a beautiful metallic luster.
  • Example 2 A laminate was produced in the same manner as in Example 1 except that the thickness of the indium layer was changed to 40 nm in the production of the laminate of Example 1. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • Example 3 A laminate was produced in the same manner as in Example 1 except that the thickness of the indium layer was changed to 30 nm in the production of the laminate of Example 1. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster, but the color of indium was light as a whole.
  • Example 4 In producing the stretched film of Example 1, a laminate was produced in the same manner as in Example 1 except that heat setting was not performed. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • Example 5 In the production of the raw film of Example 1, the thickness of the raw film is changed to 180 ⁇ m, and in the production of a stretched film, the draw ratio is 4.50 times (longitudinal direction 2.12 times and width direction 2.12 times A laminate was produced in the same manner as in Example 1 except that it was changed to). The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • Example 6 (Production of laminate) In the production of the raw film of Example 1, the thickness of the raw film is changed to 250 ⁇ m, and in the production of a stretched film, the draw ratio is 6.25 times (2.50 in the longitudinal direction and 2.50 in the width direction) A laminate was produced in the same manner as in Example 1 except that it was changed to). The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • the adherend and the test piece are set in a TOM forming apparatus (Nuffing Vacuum Co., Ltd., NGF-0406T) so that the metal layer of the test piece faces the convex side of the adherend, and the preheating temperature is 130 ° C.
  • TOM molding was performed under the condition of a pressure difference of 300 kPa to obtain a molded body. In the molded body, the laminate was not broken, and the molded body had a beautiful metallic luster.
  • Example 7 Example 1 except that the methacrylic resin composition (M1) is changed to the (meth) acrylic resin (X1) and the preheating temperature and the stretching temperature are changed to 145 ° C. in the production of the stretched film of Example 1 A laminate was produced in the same manner as in. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • Example 8 A laminate was produced in the same manner as in Example 7 except that the preheating temperature and the stretching temperature were changed to 135 ° C., and the heat setting temperature was changed to 95 ° C. in Example 7. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • Example 9 A laminate was produced in the same manner as in Example 1 except that the methacrylic resin composition (M1) was changed to the methacrylic resin composition (M4) in the production of the stretched film of Example 1.
  • the evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • Example 10 In the production of the stretched film of Example 1, the methacrylic resin composition (M1) was changed to a methacrylic resin composition (M4), the stretching temperature was further changed to 150 ° C., and the stretching ratio was changed to 5.30. A laminate was manufactured in the same manner as Example 1 except for the above. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, it had a beautiful metallic luster.
  • Comparative Example 1 In the production of the original film of Example 1, the electrostatic application was changed to sandwiching with a metal elastic roll, the thickness of the original film was changed to 40 ⁇ m, and in the production of a stretched film, stretching was not performed. A laminate was produced in the same manner as in Example 1. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the film side, it had a beautiful metallic luster.
  • Example 7 except that in the production of the raw film of Example 7, the (meth) acrylic resin (X1) was changed to the methacrylic resin composition (M2) and the thickness of the raw film was changed to 98 ⁇ m.
  • a laminate was produced in the same manner as in. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, the reflected light appeared to be distorted and the metallic gloss was lost.
  • Example 7 except that the (meth) acrylic resin (X1) was changed to the methacrylic resin composition (M3) and the thickness of the raw film was changed to 98 ⁇ m in the production of the raw film of Example 7.
  • a laminate was produced in the same manner as in. The evaluation results are shown in Table 2. When the appearance of the obtained laminate was observed from the stretched film side, the reflected light appeared blurry and blurred, and the metallic gloss was lost.
  • the laminates obtained in Examples 1 to 10 have a layer of a stretched film having a haze of 1% or less as compared with Comparative Examples 1 to 3, and the total light transmittance is 50% or less. And the metallic luster was excellent.
  • the laminates obtained in Examples 1 to 5, 7, 9 and 10 are excellent in 200% stretchability
  • the laminates obtained in Examples 1 to 3, 7, 9 and 10 are excellent in 250% stretchability. Since it is used, it is particularly suitable for drawing and other three-dimensional shaping, and bonding to a three-dimensional adherend.
  • the laminates obtained in Examples 1, 2 and 4 to 10 had a beautiful metallic luster, and the color of indium appeared dark as a whole.
  • the laminate obtained in Comparative Example 1 did not have a layer of a stretched film, resulting in poor punching resistance. In the laminates obtained in Comparative Examples 2 and 3, since the haze of the stretched film was more than 1%, the metallic gloss was lost.
  • the laminate of the present invention is excellent in punching resistance and metallic gloss, and can be used as a metallic decorative film or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)

Abstract

延伸フィルムおよび金属層を有し、全光線透過率が50%以下である積層体であって、前記延伸フィルムは(メタ)アクリル系樹脂を含み、ヘーズが1%以下である、積層体。延伸フィルムにおけるエラストマーの含有量が(メタ)アクリル系樹脂100質量部に対して30質量部以下であることが好ましい。延伸フィルムは、85℃で30分間保持した前後の寸法変化率が0.1%以下であることが好ましい。延伸フィルムが紫外線吸収剤を含み、延伸フィルムにおける紫外線吸収剤の含有量が(メタ)アクリル系樹脂100質量部に対して0.1~10質量部であることが好ましい。

Description

積層体およびその製造方法
 本発明は積層体およびその製造方法に関する。
 従来、樹脂製の自動車のホイールキャップ、バンパー、エンブレムなどに対して金属光沢を付与するには、樹脂製の部材に直接金属メッキなどをした後、透明な艶塗料を塗装することが一般的な方法であった。
 しかしながら、金属メッキおよび塗装はコストが高く、また環境衛生の点に問題があった。また、塗装は厚みのばらつきが大きいため一定した外観が得にくく、安定した品質を提供することが困難であった。このような問題を解決するものとして、金属メッキの代わりに、基材フィルムに金属薄膜層を形成して金属調加飾フィルムを製造し、塗装の代わりに金属調加飾フィルムを被着体に貼合する方法がある。
 例えば特許文献1には、二軸延伸ポリエチレンテレフタレート系フィルム、アクリル系樹脂フィルムまたはポリカーボネート系樹脂フィルムからなり、かつ裏面の最大高さ平均Rtmが0.1~2.0μmで、ヘーズ値が0.1~4.0%である透明樹脂フィルムの裏面に、錫、金およびインジウムの中から選ばれる少なくとも1種を含む金属蒸着層を有する金属調シートが開示されている。
 また、特許文献2には、透明なアクリルフィルムを基体シートとし、その上に金属薄膜層を形成し、さらにその上にプラスチックシートを積層した金属薄膜インサートフィルムを、所望の形状に予備成形した後、金属薄膜インサートフィルムを金型内に挿入し、プラスチックシート側に成形樹脂を射出して一体化する金属薄膜インサートフィルム成形品の製造方法が開示されている。
 また、特許文献3には、主鎖に環構造を有し、ガラス転移温度が120℃以上のアクリル樹脂を主成分とする基材フィルムの少なくとも片面に、透明導電層を有する透明導電性フィルムが開示されている。
特開2008-110518号公報 特開平10-180795号公報 特開2008-179677号公報
 しかしながら、従来のアクリルフィルム層および金属層を有する積層体は、被着体に貼合した後、所望の形状に打ち抜いて余った部分を切り取る際に、切り取り面からクラック(罅)および/または割れが生じていた。また、用いるアクリルフィルムによっては金属調の光沢が損なわれる場合があった。さらに、特許文献3に開示されるような透明導電性フィルムは透明性が高く、金属調の光沢に乏しいため、金属調加飾フィルムとしては不適当であった。
 本発明は、上記課題に鑑み為されたものであって、耐打ち抜き性および金属調の光沢に優れる積層体および当該積層体の製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、以下の態様を包含する本発明を完成するに至った。すなわち、本発明は下記[1]~[12]に関する。
[1]延伸フィルムおよび金属層を有し、全光線透過率が50%以下である積層体であって、前記延伸フィルムは(メタ)アクリル系樹脂を含み、ヘーズが1%以下である、積層体。
[2]前記延伸フィルムはエラストマーを含み、前記延伸フィルムにおける前記エラストマーの含有量が前記(メタ)アクリル系樹脂100質量部に対して30質量部以下である、上記[1]に記載の積層体。
[3]前記延伸フィルムは紫外線吸収剤を含み、前記延伸フィルムにおける前記紫外線吸収剤の含有量が前記(メタ)アクリル系樹脂100質量部に対して0.1~10質量部である、上記[1]または[2]に記載の積層体。
[4]前記延伸フィルムは、85℃で30分間保持した前後の寸法変化率が0.1%以下である、上記[1]~[3]のいずれかに記載の積層体。
[5]前記延伸フィルムの厚さが5~200μmである、上記[1]~[4]のいずれかに記載の積層体。
[6]前記金属層が、インジウム、アルミニウム、クロム、金、銀および錫からなる群より選ばれる少なくとも1種を含む、上記[1]~[5]のいずれかに記載の積層体。
[7]前記金属層の厚さが10~500nmである、上記[1]~[6]のいずれかに記載の積層体。
[8]耐衝撃強度が4J以上である、上記[1]~[7]のいずれかに記載の積層体。
[9]前記延伸フィルムと前記金属層とが接する、上記[1]~[8]のいずれかに記載の積層体。
[10]厚さが5~500μmである、上記[1]~[9]のいずれかに記載の積層体。
[11]上記[1]~[10]のいずれかに記載の積層体からなる金属調加飾フィルム。
[12]上記[1]~[10]のいずれかに記載の積層体および被着体を有する成形体。
[13]上記[1]~[10]のいずれかに記載の積層体の製造方法であって、(メタ)アクリル系樹脂を含む原反フィルムを1.5~8.0倍に延伸して前記延伸フィルムを製造する工程、および、前記延伸フィルムに金属層を形成する工程を有する、積層体の製造方法。
 本発明によれば、耐打ち抜き性および金属調の光沢に優れる積層体および当該積層体の製造方法を提供できる。
 以下、本発明を適用した実施形態の一例について説明する。本明細書において特定する数値は、実施形態または実施例に開示した方法により求められる値である。なお、本発明の趣旨に合致する限り、他の実施形態も本発明の範疇に含まれる。
 本発明の積層体は、延伸フィルムおよび金属層を有し、全光線透過率が50%以下である。そして、前記延伸フィルムは(メタ)アクリル系樹脂を含み、ヘーズが1%以下である。
(延伸フィルム)
 延伸フィルムは(メタ)アクリル系樹脂を含む。(メタ)アクリル系樹脂としてはポリメタクリル酸メチル、スチレン-メタクリル酸メチル樹脂等が挙げられる。なお、本明細書において(メタ)アクリル系樹脂とはメタクリル系樹脂および/またはアクリル系樹脂を指す。(メタ)アクリル系樹脂は、イミド環化、ラクトン環化、メタクリル酸変性などにより改質した耐熱性(メタ)アクリル系樹脂であってもよい。また、延伸フィルムはこれらの(メタ)アクリル系樹脂を1種または2種以上含んでもよい。
 (メタ)アクリル系樹脂におけるメタクリル酸メチルに由来する構造単位の割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、よりさらに好ましくは99質量%以上であり、特に好ましく100質量%である。つまり、メタクリル酸メチル以外の単量体に由来する構造単位の割合が、好ましくは20質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、よりさらに好ましくは1質量%以下であり、特に好ましくは0質量%である。
 係るメタクリル酸メチル以外の単量体としては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸t-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-へキシル、アクリル酸2-エチルへキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-エトキシエチル、アクリル酸グリシジル、アクリル酸アリル、アクリル酸シクロへキシル、アクリル酸ノルボルニル、アクリル酸イソボルニル等のアクリル酸エステル;メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-へキシル、メタクリル酸2-エチルへキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-エトキシエチル、メタクリル酸グリシジル、メタクリル酸アリル、メタクリル酸シクロへキシル、メタクリル酸ノルボルニル、メタクリル酸イソボルニル等のメタクリル酸メチル以外のメタクリル酸エステル;アクリル酸、メタクリル酸、無水マレイン酸、マレイン酸、イタコン酸等の不飽和カルボン酸;エテン、プロピレン、1-ブテン、イソブテン、1-オクテン等のオレフィン;ブタジエン、イソプレン、ミルセン等の共役ジエン;スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン等の芳香族ビニル化合物;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。これらの単量体は1種を用いてもよいし、2種以上を併用してもよい。
 (メタ)アクリル系樹脂は、三連子表示のシンジオタクティシティ(rr)が好ましくは65%以上、より好ましくは70~90%、さらに好ましくは72~85%である。シンジオタクティシティ(rr)が65%以上の場合、得られる積層体の表面硬度および耐熱性が高まる。(メタ)アクリル系樹脂のシンジオタクティシティ(rr)は、実施例において後述する方法により求めることができる。
 延伸フィルムは、耐熱性および表面硬度の観点から、三連子表示のシンジオタクティシティ(rr)が65%以上である(メタ)アクリル系樹脂を、10質量%以上含むことが好ましく、40質量%以上含むことがより好ましく、50質量%以上含むことがさらに好ましく、55質量%以上含むことがよりさらに好ましい。一方、成形性と製品コストの観点からは、三連子表示のシンジオタクティシティ(rr)が65%以上である(メタ)アクリル系樹脂の含有量は、70質量%以下であることが好ましく、50質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。
 (メタ)アクリル系樹脂の重量平均分子量(Mw)は、好ましくは40000~200000、より好ましくは60000~150000、さらに好ましくは70000~120000である。また、(メタ)アクリル系樹脂の分子量分布(数平均分子量(Mn)に対する重量平均分子量(Mw)の比、Mw/Mn)は、好ましくは1.0~1.8、より好ましくは1.0~1.4、特に好ましくは1.03~1.3である。係る範囲内の分子量(Mw)または分子量分布(Mw/Mn)を有する(メタ)アクリル系樹脂を用いると、延伸フィルムが力学強度に優れるものとなる。MwおよびMw/Mnは、製造時に使用する重合開始剤の種類および/または量を調整することによって制御できる。
 MwおよびMnは、ゲルパーミエーションクロマトグラフィ(GPC)で測定したクロマトグラムを標準ポリスチレンの分子量に換算した値であり、具体的には実施例において後述する方法により求めることができる。
 (メタ)アクリル系樹脂の製造方法は特に限定されず、メタクリル酸メチルを好ましくは80質量%以上含有する1種または複数種の単量体を、適した条件で重合することで得られる。
 (メタ)アクリル系樹脂のガラス転移温度(Tg)は、耐熱性の観点から、好ましくは100℃以上であり、より好ましくは110℃以上であり、さらに好ましくは120℃以上であり、特に好ましくは122℃以上である。(メタ)アクリル系樹脂のガラス転移温度(Tg)は、JIS K 7121(2012)に準拠して求めることができ、具体的には実施例において後述する方法により求めることができる。
 延伸フィルムは(メタ)アクリル系樹脂以外の樹脂を含んでもよい。(メタ)アクリル系樹脂以外の樹脂としては、例えば、ビスフェノールA型ポリカーボネート等のポリカーボネート系樹脂;ポリスチレン、スチレン-アクリロニトリル樹脂、スチレン-無水マレイン酸樹脂、スチレン-マレイミド樹脂、スチレン系熱可塑エラストマー等の芳香族ビニル系樹脂またはその水素添加物;非晶性ポリオレフィン、結晶相を微細化した透明なポリオレフィン、エチレン-メタクリル酸メチル樹脂等のポリオレフィン系樹脂;ポリエチレンテレフタレート、シクロヘキサンジメタノールやイソフタル酸などで部分変性されたポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアリレート等のポリエステル系樹脂;ポリアミド系樹脂;ポリイミド系樹脂;ポリエーテルサルホン系樹脂;トリアセチルセルロース樹脂等のセルロース系樹脂;ポリフェニレンオキサイド系樹脂;フェノキシ系樹脂などが挙げられる。延伸フィルムはこれらの樹脂を1種のみ含んでもよいし、2種以上含んでもよい。これらの中でも延伸フィルムはポリカーボネート系樹脂および/またはフェノキシ系樹脂を含むことが好ましい。延伸フィルムがポリカーボネート系樹脂および/またはフェノキシ系樹脂を含むことで、フィルムの寸法変化率が小さくなり延伸性も優れたフィルムになり、積層体の金属調の光沢もさらに良好となる。
 延伸フィルムが(メタ)アクリル系樹脂以外の樹脂を含む場合、その含有量は、(メタ)アクリル系樹脂100質量部に対して好ましくは20質量部以下であり、より好ましくは10質量部以下であり、さらに好ましくは5質量部以下であり、よりさらに好ましくは3質量部以下である。(メタ)アクリル系樹脂以外の樹脂の含有量が係る範囲にあることで、積層体の表面硬度および耐候性が優れたものとなる。
 延伸フィルムはエラストマーを含んでもよい。エラストマーとしては、例えば、(メタ)アクリル系弾性体粒子、アクリル酸エステル重合体ブロック(b1)とメタクリル酸エステル重合体ブロック(b2)とが結合した(メタ)アクリル系ブロック共重合体等の(メタ)アクリル系エラストマー;シリコーン系エラストマー;SEPS、SEBS、SIS等のスチレン系熱可塑性エラストマー;IR、EPR、EPDM等のオレフィン系エラストマーなどが挙げられる。これらのエラストマーは1種を単独で用いてもよいし、2種以上を併用してもよい。これらの中でも、積層体が耐打ち抜き性および金属調の光沢にさらに優れるという点から、(メタ)アクリル系エラストマーが好ましく、(メタ)アクリル系弾性体粒子がより好ましい。また、延伸フィルムが紫外線吸収剤を含有する場合には、エラストマーとして(メタ)アクリル系ブロック共重合体を含むことが好ましい。延伸フィルムが(メタ)アクリル系ブロック共重合体を含むことで、紫外線吸収剤による金型汚れやロール汚れを抑制でき、連続生産性を向上させることができる。
 延伸フィルムにおけるエラストマーの含有量は、(メタ)アクリル系樹脂100質量部に対して好ましくは30質量部以下、より好ましくは19質量部以下、さらに好ましくは9質量部以下、特に好ましくは4質量部以下である。エラストマーの含有量が係る範囲にあることで、積層体が金属調の光沢にさらに優れ、表面硬度が向上する傾向となる。一方積層体の耐打ち抜き性を向上させ、紫外線吸収剤を含有する場合に紫外線吸収剤による金型汚れやロール汚れを抑制して連続生産性を向上させる観点からは、延伸フィルムにおけるエラストマーの含有量は、好ましくは0.1質量部以上、より好ましくは0.5質量部以上である。
 なお、上記含有量の範囲はエラストマーを含まない態様を包含する。
 (メタ)アクリル系エラストマーの例を挙げると、例えば、アクリル酸非環状アルキルエステルに由来する構造単位を主成分として含むアクリル系弾性重合体が挙げられる。(メタ)アクリル系エラストマーは当該アクリル系弾性重合体のみからなっていてもよいし、例えば後述する(メタ)アクリル系弾性体粒子のように、アクリル系弾性重合体を含むものであってもよい。当該アクリル系弾性重合体において、アクリル酸非環状アルキルエステルに由来する構造単位の含有量は、好ましくは50~100質量%であり、より好ましくは70~99.8質量%である。当該アクリル酸非環状アルキルエステルにおける非環状アルキル基は、炭素数4~8のもの、具体的には、例えばn-ブチル基、n-ペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基およびこれらの異性体基などが好ましい。また、当該アクリル系弾性重合体はアクリル酸非環状アルキルエステル以外の単量体に由来する構造単位を含んでいてもよく、このような単量体としては、例えば、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸アルキルエステル;スチレン、アルキルスチレン等のスチレン系単量体;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル;2-クロロエチルビニルエーテル;(メタ)アクリル酸エチレングリコール、エトキシ-ジエチレングリコールアクリレート、メトキシ-トリエチレングリコールアクリレート、2-エチルヘキシル-ジグリコールアクリレート、メトキシ-ポリエチレングリコールアクリレート、メトキシジプロピレングリコールアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシ-ポリエチレングリコールアクリレート、ノニルフェノールエチレンオキサイド付加物アクリレート等のアルキレングリコール(メタ)アクリレートなどが挙げられる。
 アクリル系弾性重合体は、上記のアクリル酸非環状アルキルエステルに由来する構造単位と架橋性単量体に由来する構造単位とをランダムに有するものであってもよい。当該架橋性単量体としては、例えば、(メタ)アクリル酸アリル、(メタ)アクリル酸メタリル、マレイン酸ジアリル、トリエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、1.6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレートなどを挙げることができる。アクリル系弾性重合体における架橋性単量体に由来する構造単位の含有率は、靭性の観点から、好ましくは0.2~30質量%、より好ましくは0.3~10質量%、さらに好ましくは0.5~5質量%である。
 (メタ)アクリル系エラストマーの好ましい一態様である(メタ)アクリル系弾性体粒子は、単一重合体からなる粒子であってもよいし、異なる弾性率の重合体が少なくとも2つ層を形成した粒子であってもよい。(メタ)アクリル系弾性体粒子は、積層体の更なる耐打ち抜き性の観点から、ジエン系単量体に由来する構造単位を主成分として含む重合体および/または前述のアクリル系弾性重合体(アクリル酸非環状アルキルエステルに由来する構造単位を主成分として含む重合体)を含有する層と他の重合体を含有する層とからなる多層構造のコアシェル粒子であることが好ましく、アクリル系弾性重合体を含有する層とその外側を覆うメタクリル系重合体を含有する層とからなる2層構造のコアシェル粒子、または、メタクリル系重合体を含有する層と、その外側を覆うアクリル系弾性重合体を含有する層と、そのさらに外側を覆うメタクリル系重合体を含有する層とからなる3層構造のコアシェル粒子であることがより好ましく、耐熱性の観点から、3層構造のコアシェル粒子であることがさらに好ましい。
 コアシェル粒子を構成するメタクリル系重合体は、メタクリル酸非環状アルキルエステルに由来する構造単位を主成分として含む重合体であることが好ましい。当該メタクリル系重合体において、メタクリル酸非環状アルキルエステルに由来する構造単位の含有量は流動性および耐熱性の観点から、好ましくは50~100質量%であり、より好ましくは80~100質量%である。当該メタクリル酸非環状アルキルエステルは、流動性および耐熱性の観点から、メタクリル酸メチルであることが好ましく、コアシェル粒子を構成するメタクリル系重合体は、メタクリル酸メチル単位を80~100質量%含有することが最も好ましい。
 (メタ)アクリル系弾性体粒子は、その数平均粒径が、好ましくは10~250nm、より好ましくは20~150nm、さらに好ましくは40~130nmである。(メタ)アクリル系弾性体粒子の数平均粒径が係る範囲にあることで、積層体が耐打ち抜き性および金属調の光沢にさらに優れ、延伸したときに白化が生じにくくなる。なお、(メタ)アクリル系弾性体粒子の数平均粒径は、(メタ)アクリル系弾性体粒子をメタクリル系樹脂に溶融混練してなる試料を酸化ルテニウムで染色して観察される顕微鏡写真に基づいて決定することができる。ここで、酸化ルテニウムはアクリル系弾性重合体を含有する層を染色するが、メタクリル系重合体を含有する層を染色しないので、上述の2層構造のコアシェル粒子や3層構造のコアシェル粒子の数平均粒径は、最外側にあるメタクリル系重合体を含有する層の厚さを含まない値に相当すると推定される。
 (メタ)アクリル系弾性体粒子の製造方法に特に制限はなく、公知の手法(例えば、国際公開第2016/121868号、国際公開第2014/167868号等)に準じた方法により製造することができる。
 (メタ)アクリル系エラストマーの他の一態様であるアクリル酸エステル重合体ブロック(b1)とメタクリル酸エステル重合体ブロック(b2)とが結合した(メタ)アクリル系ブロック共重合体において、重合体ブロック(b1)と重合体ブロック(b2)の結合形態に特に制限はなく、例えば(b1)-(b2)で表現されるジブロック共重合体;(b1)-(b2)-(b1)または(b2)-(b1)-(b2)で表現されるトリブロック共重合体;(b1)-((b2)-(b1))n、(b1)-((b2)-(b1))n-(b2)、(b2)-((b1)-(b2))n(nは整数)等で表現されるマルチブロック共重合体;((b1)-(b2))n-X、((b2)-(b1))n-X(Xはカップリング残基)等で表現されるスターブロック共重合体などが挙げられる。生産性の観点から、(b1)-(b2)で表現されるジブロック共重合体、(b2)-(b1)-(b2)または(b1)-(b2)-(b1)で表現されるトリブロック共重合体が好ましく、溶融時の樹脂組成物の流動性、並びに積層体の表面平滑性およびヘーズの観点から、(b2)-(b1)-(b2)で表現されるトリブロック共重合体がより好ましい。この場合、重合体ブロック(b1)の両末端に結合する2つの重合体ブロック(b2)は、構成する単量体の種類、メタクリル酸エステルに由来する構造単位の割合、重量平均分子量および立体規則性の其々が独立に、同一であっても異なっていてもよい。また、(メタ)アクリル系ブロック共重合体は他の重合体ブロックをさらに含有してもよい。
 (メタ)アクリル系ブロック共重合体を構成する重合体ブロック(b1)は、アクリル酸エステルに由来する構造単位を主たる構成単位とするものである。重合体ブロック(b1)におけるアクリル酸エステルに由来する構造単位の割合は、積層体の更なる耐打ち抜き性の観点から、好ましくは50質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは90質量%以上であり、特に好ましくは100質量%である。
 係るアクリル酸エステルとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸t-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸シクロヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ペンタデシル、アクリル酸ドデシル、アクリル酸イソボルニル、アクリル酸フェニル、アクリル酸ベンジル、アクリル酸フェノキシエチル、アクリル酸2-ヒドロキシエチル、アクリル酸2-メトキシエチル、アクリル酸グリシジル、アクリル酸アリルなどが挙げられる。これらのアクリル酸エステルを1種単独でまたは2種以上を組み合わせて重合することによって、重合体ブロック(b1)を形成できる。中でも、経済性、更なる耐打ち抜き性などの観点から、重合体ブロック(b1)はアクリル酸n-ブチルを単独で重合したものが好ましい。
 重合体ブロック(b1)はアクリル酸エステル以外の単量体に由来する構造単位を含んでもよく、積層体の更なる耐打ち抜き性の観点から、その割合は好ましくは50質量%以下であり、より好ましくは30質量%以下であり、さらに好ましくは10質量%以下であり、特に好ましくは0質量%である。
 係るアクリル酸エステル以外の単量体としては、例えば、メタクリル酸エステル、不飽和カルボン酸、芳香族ビニル化合物、オレフィン、共役ジエン、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。これらのアクリル酸エステル以外の単量体を1種単独でまたは2種以上併用して前述のアクリル酸エステルと共重合することで重合体ブロック(b1)を形成できる。
 (メタ)アクリル系ブロック共重合体における重合体ブロック(b1)の割合は、透明性、積層体の表面硬度、成形加工性、積層体の表面平滑性、耐衝撃性、耐熱性の観点から、重合体ブロック(b1)と重合体ブロック(b2)の合計100質量%に対して、好ましくは60質量%以下であり、より好ましくは57質量%以下であり、さらに好ましくは53質量%以下である。また、好ましくは30質量%以上であり、より好ましくは35質量%以上であり、さらに好ましくは40質量%以上である。
 (メタ)アクリル系ブロック共重合体を構成する重合体ブロック(b2)は、メタクリル酸エステルに由来する構造単位を主たる構成単位とするものである。重合体ブロック(b2)におけるメタクリル酸エステルに由来する構造単位の割合は、流動性および耐熱性の観点から、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、さらに好ましくは95質量%以上であり、特に好ましくは100質量%である。
 係るメタクリル酸エステルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸t-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸シクロヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシル、メタクリル酸イソボルニル、メタクリル酸フェニル、メタクリル酸ベンジル、メタクリル酸フェノキシエチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-メトキシエチル、メタクリル酸グリシジル、メタクリル酸アリルなどが挙げられる。これらの中でも、透明性、耐熱性を向上させる観点から、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸シクロヘキシル、メタクリル酸イソボルニルなどのメタクリル酸アルキルエステルが好ましく、メタクリル酸メチルがより好ましい。これらのメタクリル酸エステルを1種単独でまたは2種以上を組み合わせて重合することによって、重合体ブロック(b2)を形成できる。
 重合体ブロック(b2)はメタクリル酸エステル以外の単量体に由来する構造単位を含んでもよく、流動性および耐熱性の観点から、その割合は好ましくは20質量%以下であり、より好ましくは10質量%以下であり、さらに好ましくは5質量%以下であり、特好ましくは0質量%である。
 係るメタクリル酸エステル以外の単量体としては、例えば、アクリル酸エステル、不飽和カルボン酸、芳香族ビニル化合物、オレフィン、共役ジエン、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、酢酸ビニル、ビニルピリジン、ビニルケトン、塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどが挙げられる。これらのメタクリル酸エステル以外の単量体を1種単独でまたは2種以上を併用して前述のメタクリル酸エステルと共重合することで重合体ブロック(b2)を形成できる。
 (メタ)アクリル系ブロック共重合体における重合体ブロック(b2)の割合は、透明性、積層体の表面硬度、成形加工性、積層体の表面平滑性、耐衝撃性の観点から、重合体ブロック(b1)と重合体ブロック(b2)の合計100質量%に対して、好ましくは40質量%以上であり、より好ましくは43質量%以上であり、さらに好ましくは47質量%以上である。また、好ましくは70質量%以下であり、より好ましくは65質量%以下であり、さらに好ましくは60質量%以下である。
 (メタ)アクリル系ブロック共重合体の製造方法は特に限定されず、公知の手法(例えば、国際公開第2016/121868号、特開2017-78168号公報等)に準じた方法を採用することができる。例えば、各重合体ブロックを構成する単量体をリビング重合する方法が一般に使用され、有機アルカリ金属化合物を重合開始剤として用いてアルカリ金属塩またはアルカリ土類金属塩などの鉱酸塩の存在下でアニオン重合する方法;有機アルカリ金属化合物を重合開始剤として用いて有機アルミニウム化合物の存在下でアニオン重合する方法;有機希土類金属錯体を重合開始剤として用いて重合する方法;α-ハロゲン化エステル化合物を開始剤として用いて銅化合物の存在下でラジカル重合する方法などが挙げられる。また、多価ラジカル重合開始剤や多価ラジカル連鎖移動剤を用いて、各ブロックを構成するモノマーを重合させ、(メタ)アクリル系ブロック共重合体を含有する混合物として製造する方法なども挙げられる。
 延伸フィルムは添加剤を含んでもよい。添加剤の種類は特に限定されず、例えば、紫外線吸収剤、赤外線吸収剤、高分子加工助剤、光安定剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、顔料、染料、艶消し剤、充填剤、耐衝撃助剤、可塑剤などが挙げられる。添加剤は1種を単独で用いてもよく、2種以上を任意の比率で併用してもよい。延伸フィルムは、延伸フィルムの成形性を高める観点から、高分子加工助剤を含むことが好ましい。これらの添加剤は有機化合物であってもよいし、無機化合物であってもよいが、樹脂組成物中での分散性の観点から、有機化合物が好ましい。
 延伸フィルムにおける添加剤の含有量は、(メタ)アクリル系樹脂100質量部に対して好ましくは10質量部以下であり、より好ましくは5質量部以下であり、さらに好ましくは3質量部以下である。添加剤の含有量が係る範囲にあることで、耐衝撃性や表面硬度に優れる積層体となる。
 ここで、単層の透明フィルムが加飾フィルム等として使用されるとき、通常、一方の面からのみ光が照射される。他方、本発明の積層体は金属層を有するため、延伸フィルムは、入射した光と金属層で反射された光に曝され、光による劣化が進行しやすい。よって、延伸フィルムは、通常の透明フィルムよりもさらに高い耐候性が求められるため、紫外線吸収剤を含むことが好ましい。延伸フィルムにおける紫外線吸収剤の含有量は、(メタ)アクリル系樹脂100質量部に対して好ましくは0.1~10質量部であり、より好ましくは0.3~5質量部であり、さらに好ましくは0.5~3質量部である。紫外線吸収剤の含有量が係る範囲にあることで、耐候性に優れ、長期間保管しても白化が生じにくい積層体が得られる。紫外線吸収剤としては、例えば、ベンゾフェノン系化合物、サリシレート系化合物、ベンゾエート系化合物、トリアゾール系化合物およびトリアジン系化合物等が挙げられる。紫外線吸収剤は1種を単独で用いてもよく、2種以上を任意の比率で併用してもよい。これらの中でも、長期安定性の観点から、トリアゾール系化合物および/またはトリアジン系化合物が好ましい。また、さらに耐候性を高める観点から、紫外線吸収剤に光安定剤および/または酸化防止剤を併用することも好ましい。光安定剤としては、例えばヒンダードアミン系光安定剤などが挙げられる。酸化防止剤としては、例えばフェノール系酸化防止剤などが挙げられる。
 高分子加工助剤としては、乳化重合法によって製造することができる、0.05~0.5μmの粒子径を有する重合体粒子を用いることができる。延伸フィルムが高分子加工助剤を含むことで、樹脂組成物を成形する際、厚さ精度および製膜安定性が向上し、フィッシュアイ欠点を低減できる。高分子加工助剤の代表的な商品としては、カネエースPAシリーズ(カネカ社製)、メタブレン(登録商標)Pシリーズ(三菱ケミカル社製)、パラロイドKシリーズ(ダウ・ケミカル社製)などが挙げられる。これらの中でも、延伸フィルムのフィッシュアイ欠点の低減、製膜時の成形安定性、特にフィルム端部の成形安定性向上という観点から、メタクリル酸メチルを60~90質量%、アクリル酸アルキルを10~40質量%含有する高分子加工助剤が好ましく、メタブレン(登録商標)P530A、P550A、パラロイドK125がより好ましく、メタブレン(登録商標)P550Aが特に好ましい。
 高分子加工助剤を構成する重合体粒子は、単一組成比および単一極限粘度の重合体からなる単層粒子であってもよいし、また組成比または極限粘度の異なる2種以上の重合体からなる多層粒子であってもよい。この中でも、内層に低い極限粘度を有する重合体層を有し、外層に5dl/g以上の高い極限粘度を有する重合体層を有する2層構造の粒子が好ましい。
 高分子加工助剤は、単層粒子である場合、極限粘度が3~6dl/gであることが好ましい。極限粘度が小さすぎると成形性の改善効果が低い。極限粘度が大きすぎると樹脂組成物の溶融流動性の低下を招きやすい。
 延伸フィルムの基となる(メタ)アクリル系樹脂を含む原反フィルムの成形方法は特に制限されないが、例えば、溶融押出法が好ましく挙げられる。溶融押出法は特に制限されず、当該技術分野において知られている溶融押出法によって行うことができ、例えば、Tダイ法、インフレーション法などを用いることができる。このとき、成形温度は、150~350℃であることが好ましく、200~300℃であることがより好ましく、240~280℃であることがさらに好ましい。
 Tダイ法によって原反フィルムを成形する場合、公知の単軸押出機または二軸押出機の先端部にTダイを接続し、フィルム状に押出された原反フィルムを得ることができる。
 押出機は、1個以上の開放ベント部を有することが好ましい。このような押出機を用いることで、開放ベント部から分解物や揮発成分を吸引することができ、得られた樹脂組成物の品質を向上できる。また、押出機は、異物を除去するためにポリマーフィルターを有することが好ましい。ポリマーフィルターの構造としては、例えばリーフディスク型およびキャンドル型等が挙げられる。さらに、押出機は、樹脂組成物の吐出量を安定化させるためにギアポンプを有することが好ましい。ギアポンプとしては公知のものを使用することができる。押出機が開放ベント部、ギアポンプおよびポリマーフィルターを有する場合、異物を低減し、且つベントアップを抑制する観点から、押出機-ギアポンプ-ポリマーフィルター-ダイの順番で接続することが好ましい。また、押出機における樹脂組成物の劣化を防ぐため、押出機内に窒素を通じながら成形することが好ましい。
 原反フィルムを製造する一実施形態として、延伸フィルムの表面平滑性および厚さ均一性の観点から、押し出されたフィルム状溶融樹脂を、鏡面ロールまたは鏡面ベルトの間に引き取り挟圧することが好ましい。鏡面ロールまたは鏡面ベルトは、いずれも金属製であることが好ましい。鏡面ロールは金属剛体ロールおよび金属弾性ロールの組合せであることがより好ましい。鏡面ロールまたは鏡面ベルト間の線圧は、表面平滑性の観点から、好ましくは10N/mm以上であり、より好ましく30N/mm以上である。鏡面ロールまたは鏡面ベルトの表面温度は、表面平滑性、ヘーズ、外観などの観点から、好ましくは60℃以上であり、より好ましくは70℃以上である。また、好ましくは130℃以下であり、より好ましくは100℃以下である。
 また、原反フィルムを製造する他の実施形態として、押し出されたフィルム状溶融樹脂は、延伸フィルムの表面平滑性および厚さ均一性の観点から、密着補助手段により鏡面ロールに接触かつ密着させ、冷却、固化させることが好ましい。密着補助装置としては、例えば静電密着装置、エアナイフ、エアチャンバー、バキュームチャンバーなどが挙げられる。これらのうち、製造安定性の観点から、密着補助装置として静電密着装置を用いることが好ましい。
 密着補助装置としてエッジピニングとワイヤーピニングを併用する場合、エッジピニングとワイヤーピニングを、上流側からこの順で配置することが好ましい。また、ワイヤーピニングは、鏡面ロール上の溶融樹脂の温度がガラス転移温度となる位置を含めこれより下流側であって、鏡面ロールから剥離する位置より上流側に配置することがより好ましい。
 原反フィルムの厚さは、生産性の観点から、好ましくは40~500μmであり、より好ましくは80~400μmであり、さらに好ましくは100~300μm、よりさらに好ましくは120~200μmである。ここで、原反フィルムの厚さとは、原反フィルムの全幅に対して中心部分50mmの平均値とする。
 原反フィルムは、フィルム状に成形された後、延伸処理を施され、延伸フィルムとなる。延伸フィルムは一軸延伸フィルムであってもよいし、二軸延伸フィルムであってもよいが、積層体の耐打ち抜き性をさらに高める観点から、二軸延伸フィルムが好ましい。延伸処理によってフィルムの機械的強度が向上し、耐打ち抜き性が向上する。延伸方法は特に限定されず、同時二軸延伸法、逐次二軸延伸法、チュブラー延伸法、圧延法などが挙げられる。係る延伸処理は、予熱工程、延伸工程、熱固定工程をこの順番で有することが好ましく、予熱工程、延伸工程、熱固定工程、弛緩工程をこの順番で有することがより好ましい。
 予熱工程において、原反フィルムの温度は好ましくは原反フィルムのガラス転移温度以上かつガラス転移温度より40℃高い温度以下であり、より好ましくは原反フィルムのガラス転移温度より5℃高い温度以上かつガラス転移温度より30℃高い温度以下である。予熱工程における原反フィルムの温度が係る範囲にあることで、延伸フィルム製造時の延伸工程において破断が生じにくくなり、生産性が向上し、かつ積層体が延伸性に優れる。原反フィルムが複数のガラス転移温度を有する場合、最も高い値を上記原反フィルムの温度範囲の基準として採用することができる。
 延伸工程において、原反フィルムの温度(延伸温度)は好ましくは原反フィルムのガラス転移温度より5℃高い温度以上かつガラス転移温度より40℃高い温度以下であり、より好ましくは原反フィルムのガラス転移温度より10℃高い温度以上かつガラス転移温度より35℃高い温度以下であり、さらに好ましくは原反フィルムのガラス転移温度より20℃高い温度以上かつガラス転移温度より30℃高い温度以下である。特に好ましくは、原反フィルムのガラス転移温度より22℃高い温度以上、かつ当該ガラス転移温度より27℃高い温度以下である。延伸工程における原反フィルムの温度が係る範囲にあることで、係る延伸工程において破断が生じにくくなり、生産性が向上し、かつ積層体が延伸性に優れる。原反フィルムが複数のガラス転移温度を有する場合、最も高い値を上記原反フィルムの温度範囲の基準として採用することができる。
 延伸工程において、延伸倍率は好ましくは1.5~8.0倍であり、より好ましくは2.0~6.0倍であり、さらに好ましくは2.5~4.0倍である。延伸倍率が1.5倍以上であることで、積層体の耐打ち抜き性がさらに向上する。また、延伸倍率が8.0倍以下、特には4.0倍以下であることで、積層体が延伸性に優れ、積層体を三次元表面加飾成形(Three dimension Overlay Method:TOM成形)やインサート成形に供しても破断が生じにくくなる。なお、延伸倍率とは、延伸前の面積に対する延伸後の面積の比を意味する。
 延伸工程において、延伸の速度は好ましくは100~5000%/分であり、より好ましくは500~2000%/分である。延伸速度が係る範囲にあることで、延伸フィルム製造時の延伸工程において破断が生じにくくなり、かつ生産性が向上する。
 延伸処理は延伸工程の後に熱固定工程を有することが好ましい。熱固定によって、延伸性に優れる積層体を得ることができる。熱固定時の温度は好ましくは原反フィルムのガラス転移温度より40℃低い温度以上かつガラス転移温度以下であり、より好ましくは原反フィルムのガラス転移温度より30℃低い温度以上かつガラス転移温度より10℃低い温度以下である。
 延伸処理は熱固定工程の後に弛緩工程をさらに有することが好ましい。弛緩工程によって、延伸性により優れる積層体を得ることができる。弛緩率は好ましくは0.1~5%であり、より好ましくは0.5~2%である。
 延伸フィルムの厚さは、コストや表面硬度の観点から、好ましくは5~200μmであり、より好ましくは10~100μmであり、さらに好ましくは20~80μmであり、よりさらに好ましくは30~60μmである。
 延伸フィルムはヘーズが1%以下であり、好ましくは0.8%以下であり、より好ましくは0.5%以下であり、さらに好ましくは0.4%以下である。延伸フィルムのヘーズが1%を超えると金属調の光沢に乏しい積層体となるおそれがある。延伸フィルムのヘーズは、延伸フィルムが含む樹脂やエラストマーの種類および量、並びに延伸温度や延伸倍率を適切に調整することで制御できる。延伸フィルムのヘーズはJIS K 7136(2000)に準拠して求めることができ、具体的には実施例において後述する方法により求めることができる。
 延伸フィルムは、85℃で30分間保持した前後の寸法変化率が好ましくは0.1%以下であり、より好ましくは0.08%以下であり、さらに好ましくは0.06%以下であり、よりさらに好ましくは0.05%以下であり、特に好ましくは0.04%以下である。また、好ましくは0.005%以上であり、より好ましくは0.01%以上であり、さらに好ましくは0.02%以上である。延伸フィルムの寸法変化率が係る範囲にあると、積層体が延伸性に優れ、積層体をTOM成形やインサート成形に供しても破断が生じにくくなる。また、耐打ち抜き性にさらに優れる。延伸フィルムを85℃で30分間保持した前後の寸法変化率は、応力・歪制御型熱機械分析装置を用いて求めることができ、具体的には実施例において後述する方法により求めることができる。延伸フィルムを85℃で30分間保持した前後の寸法変化率は、延伸フィルムが含む樹脂やエラストマーの種類および量、並びに延伸温度や延伸倍率、熱固定温度、弛緩率などを適切に調整することで制御できる。
 延伸フィルムは、後述する機能層との接着力を向上させるために、延伸フィルムの少なくとも一方の面に表面処理を行うことができる。係る表面処理としては、当該技術分野において知られている方法、例えば、コロナ放電処理、プラズマ処理、グロー放電処理、火炎処理、紫外線照射処理、電子線照射処理、オゾン処理などの活性化処理を用いることができる。
(金属層)
 本発明の積層体が有する金属層としては、例えば、金属および/または金属酸化物からなるものなどが挙げられる。上記金属としては、例えば、アルミニウム、珪素、マグネシウム、パラジウム、亜鉛、錫、ニッケル、銀、銅、金、インジウム、ステンレス鋼、クロム、チタンなどが挙げられる。また、上記金属酸化物としては、例えば、酸化アルミニウム、酸化亜鉛、酸化アンチモン、酸化インジウム、酸化カルシウム、酸化カドミウム、酸化銀、酸化金、酸化クロム、珪素酸化物、酸化コバルト、酸化ジルコニウム、酸化錫、酸化チタン、酸化鉄、酸化銅、酸化ニッケル、酸化白金、酸化パラジウム、酸化ビスマス、酸化マグネシウム、酸化マンガン、酸化モリブデン、酸化バナジウム、酸化バリウムなどが挙げられる。これらの金属および/または金属酸化物はそれぞれ単独で用いてもよいし、2種以上の混合物として用いてもよい。これらの中で、優れた金属調の光沢を有し、また積層体が延伸性に優れるという観点から、金属層は、インジウム、アルミニウム、クロム、金、銀および錫からなる群より選ばれる少なくとも1種を含むことが好ましく、インジウムを含むことがより好ましい。金属層における金属および金属酸化物の合計の含有量は、好ましくは、90質量%以上であり、より好ましくは95質量%以上であり、さらに好ましくは99質量%以上であり、よりさらに好ましくは99.99質量%以上であり、100質量%であってもよい。
 金属層の厚さは好ましくは10~500nmであり、より好ましくは30~300nmであり、さらに好ましくは40~250nmであり、よりさらに好ましくは50~200nmである。金属層の厚さが係る範囲にあることで、積層体の金属調の光沢がさらに優れ、また積層体をTOM成形およびインサート成形で延伸しても美麗な金属調の光沢を維持でき、本発明の積層体を有する成形体が金属調の光沢に優れる。
(積層体)
 本発明の積層体は全光線透過率が50%以下であり、好ましくは30%以下であり、より好ましくは20%以下であり、さらに好ましくは10%以下である。全光線透過率が50%を超えると金属調の光沢に乏しい積層体となるおそれがある。一方で、積層体の成形性からは、全光線透過率は、好ましくは0.1%以上であり、より好ましくは0.5%以上であり、さらに好ましくは1%以上である。積層体の全光線透過率は、JIS K 7136(2000)に準拠して求めることができ、具体的には実施例において後述する方法により求めることができる。
 本発明の積層体は、耐衝撃強度が好ましくは2J以上であり、より好ましくは3J以上であり、さらに好ましくは4J以上であり、よりさらに好ましくは5J以上であり、よりさらに好ましくは6J以上である。耐衝撃性が係る範囲にあることで、積層体が耐打ち抜き性にさらに優れる傾向となる。積層体の耐衝撃強度は実施例において後述する方法により求めることができる。
 積層体は、低コストおよび低環境負荷であることなどから、延伸フィルムと金属層が接することが好ましいが、延伸フィルムと金属層の間にアンカー層を有してもよい。延伸フィルムと金属層の間にアンカー層を有することで、延伸フィルムと金属層の密着性を向上させることができ、また積層体の金属層側に粘接着剤層を設ける場合には、粘接着剤から延伸フィルムを保護し、延伸フィルムの白化を抑制することができる。アンカー層の材質としては、例えば、2液性硬化ウレタン樹脂、熱硬化ウレタン樹脂、メラミン系樹脂、セルロースエステル系樹脂、塩素含有ゴム系樹脂、塩素含有ビニル系樹脂、アクリル系樹脂、エポキシ系樹脂、ビニル系共重合体樹脂などが挙げられる。アンカー層の形成方法としては、グラビアコート法、ロールコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などの方法が挙げられる。
 本発明の積層体は延伸フィルムおよび金属層のみからなっていてもよいが、延伸フィルムおよび金属層以外の層をさらに有してもよい。延伸フィルムおよび金属層以外の層としては、例えばトップコート層、ハードコート層、アンカー層、易接着層、粘接着層、印刷層などの機能層が挙げられる。積層体におけるこれらの層の位置は特に限定されないが、積層体の金属層側を被着体に貼合する場合、トップコート層およびハードコート層は延伸フィルムの層において金属層とは逆の面に設けられることが好ましい。また、アンカー層は延伸フィルムと金属層の間に設けられることが好ましい。さらに、粘接着層は金属層において延伸フィルムとは逆の面に設けられることが好ましく、易接着層は金属層と粘接着層の間に設けられることが好ましい。積層体がこれらの層、特に粘接着層を有することで、積層体の延伸性が向上するため好ましい。
 印刷層の材質としては、ポリビニル系樹脂、ポリアミド系樹脂、ポリエステル系樹脂、アクリル系樹脂、ポリウレタン系樹脂、ポリビニルアセタール系樹脂、ポリエステルウレタン系樹脂、セルロースエステル系樹脂、アルキド樹脂などの樹脂をバインダーとし、適切な色の顔料または染料を着色剤として含有する着色インキを用いることが好ましい。印刷層の形成方法としては、例えば、オフセット印刷法、グラビア印刷法、スクリーン印刷法などの通常の印刷法などが挙げられる。特に、多色刷りや階調表現を行うには、オフセット印刷法やグラビア印刷法が適している。また、単色の場合には、グラビアコート法、ロールコート法、コンマコート法などのコート法を採用することもできる。印刷層は、表現したい図柄に応じて、全面的に設ける場合や部分的に設ける場合もある。
 粘接着層としては、延伸フィルムに適した感熱性あるいは感圧性の樹脂を適宜使用できるが、アクリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂などを含むものが好ましく、アクリル系樹脂を含むものがより好ましい。粘接着層の形成方法としては、例えば、グラビアコート法、ロールコート法、コンマコート法などのコート法、グラビア印刷法、スクリーン印刷法などが挙げられる。粘接着層の乾燥後の厚さは、粘接着性および取扱性の観点から、好ましくは1~200μmであり、より好ましくは10~150μmであり、さらに好ましくは20~100μmであり、よりさらに好ましくは30~70μmである。
 積層体の厚さは、コストおよび表面硬度の観点から、好ましくは5~500μmであり、より好ましくは10~300μmであり、さらに好ましくは20~100μmであり、よりさらに好ましくは30~60μmである。
 本発明の積層体の製造方法に特に制限はなく、例えば、上記のような延伸フィルムに金属層を形成することで製造することができる。延伸フィルムに金属層を形成する方法は特に限定されず、例えば、真空蒸着法、イオンプレーティング法、スパッタリング、化学気相堆積などが挙げられる。真空蒸着法を用いる場合、金属層の厚さ精度を向上させる観点から、真空度は0.1Pa以下であることが好ましく、0.01Pa以下であることがより好ましい。
(成形体)
 本発明の成形体は、本発明の積層体および被着体を有する。成形体の好ましい実施形態として、被着体の表面に本発明の積層体が設けられてなり、被着体の表面に本発明の積層体の金属層側が対向するように本発明の積層体を設けることがより好ましい。成形体は、本発明の積層体を被着体の表面に有することで、表面平滑性、表面硬度、および金属調の光沢に優れる。被着体としては、例えば、熱可塑性樹脂、熱硬化性樹脂、木質基材または非木質基材などが挙げられる。
 被着体に用いられる熱可塑性樹脂としては、例えば、ポリカーボネート系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリ塩化ビニル系樹脂、他の(メタ)アクリル系樹脂、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)系樹脂、エチレンビニルアルコール系樹脂、ポリビニルブチラール系樹脂、ビニルアセタール系樹脂、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、アクリル系熱可塑性エラストマーなどが挙げられる。
 熱硬化性樹脂としては、例えば、エポキシ系樹脂、フェノール系樹脂、メラミン系樹脂などが挙げられる。非木質基材としては、例えば、ケナフ繊維からなる基材や炭素繊維からなる基材などが挙げられる。
 成形体の製造方法は特に制限されず、例えば、本発明の積層体を加熱して、被着体の表面に真空成形、圧空成形、圧縮成形またはTOM成形する方法が挙げられる。また、本発明の積層体をプリフォームし、金型に挿入し、金属層側に溶融樹脂を射出成形するインサート成形または射出成形同時貼合法によって成形体を製造することもできる。
(用途)
 本発明の積層体および成形体の用途は特に限定されず、例えば、バンパー、エンブレム、車両外装、車両内装等の車両加飾部品;壁材、ウィンドウフィルム、窓枠、浴室壁材等の建材部品;食器、玩具、楽器等の日用雑貨;掃除機ハウジング、テレビジョンハウジング、エアコンハウジング等の家電加飾部品;キッチンドア表装材等のインテリア部材;船舶部材などが挙げられる。
 中でも、本発明の積層体は、耐打ち抜き性および金属調の光沢に優れるので、意匠性の要求される成形品に好適に使用できる。また、本発明の積層体は、金属調加飾フィルムとして、金属調加飾用途に特に好適に使用できる。
 以下に実施例および比較例を示して本発明をより具体的に説明する。なお、本発明は以下の実施例によって制限されるものではない。また、本発明は、以上までに述べた、特性値、形態、製法、用途などの技術的特徴を表す事項を、任意に組み合わせてなるすべての態様を包含している。
(重合転化率)
 島津製作所社製ガスクロマトグラフ GC-14Aに、カラムとしてGL Sciences Inc.製 Inert CAP 1(df=0.4μm、I.D.=0.25mm、長さ=60m)を繋ぎ、インジェクション温度180℃、検出器温度180℃、カラム温度を60℃で5分間保持、60℃から昇温速度10℃/分で200℃まで昇温して、200℃で10分間保持する条件にて測定し、その結果に基づいて重合転化率を算出した。
(重量平均分子量Mw、重量平均分子量Mw/数平均分子量Mn)
 ゲルパーミエーションクロマトグラフィ(GPC)にて下記の条件でクロマトグラムを測定し、標準ポリスチレンの分子量に換算した値を算出した。ベースラインはGPCチャートの高分子量側のピークの傾きが保持時間の早い方から見てゼロからプラスに変化する点と、低分子量側のピークの傾きが保持時間の早い方から見てマイナスからゼロに変化する点を結んだ線とした。
 GPC装置:東ソー株式会社製、HLC-8320
 検出器:示差屈折率検出器
 カラム:東ソー株式会社製のTSKgel SuperMultipore HZM-Mの2本とSuperHZ4000を直列に繋いだものを用いた。
 溶離剤:テトラヒドロフラン
 溶離剤流量:0.35mL/分
 カラム温度:40℃
 検量線:標準ポリスチレン10点のデータを用いて作成
(三連子表示のシンジオタクティシティ(rr))
 核磁気共鳴装置(Bruker社製、ULTRA SHIELD 400 PLUS)を用いて、溶媒として重水素化クロロホルムを用い、室温(25℃)、積算回数64回の条件にて、H-NMRスペクトルを測定した。そのスペクトルからTMSを0ppmとした際の0.6~0.95ppmの領域の面積Aと、0.6~1.35ppmの領域の面積Aとを計測し、次いで、三連子表示のシンジオタクティシティ(rr)(%)を式:(A/A)×100にて算出した。
(ガラス転移温度(Tg))
 JIS K 7121(2012)に準拠して、示差走査熱量測定装置(島津製作所社製、DSC-50(品番))を用いて、230℃まで一度昇温し、次いで室温(25℃)まで冷却し、その後、室温(25℃)から230℃までを10℃/分で昇温させる条件にてDSC曲線を測定した。2回目の昇温時に測定されるDSC曲線から求められる中間点ガラス転移温度を本発明におけるガラス転移温度とした。
(ヘーズ)
 実施例で得た延伸フィルムを50mm×50mmに切り出して試験片とし、ヘーズメーター(日本電色工業社製、SH7000)を用いて、JIS K 7136(2000)に準拠してヘーズを測定した。
(寸法変化率)
 実施例で得た延伸フィルムから40mm×5mmの試験片を切り出した。ここで、試験片の長手方向は、原反フィルムの幅方向と平行な方向とした。試験片の長手方向の両端部を一対のフィルムチャックで把持した。このとき一対のフィルムチャックの離間距離を24mmとした。一対のフィルムチャックによって延伸フィルムに引張荷重2gをかけ、これを熱機械分析装置(ティーエーインスツルメント社製、Q400EM)に取り付けた。
 上記のように試験片をセットした状態で、試験片を25℃から85℃まで2℃/分の昇温速度で昇温し、85℃に到達した直後の試験片の長さ(LB)を測定した。その後、試験片を85℃で30分間保持し、保持した直後の試験片の長さ(LA)を測定した。そして、ΔLの値として(LA-LB)[単位:mm]の値を求め、下記式(1)で表される寸法変化率[単位:%]を、85℃で30分間保持した前後の寸法変化率とした。
  寸法変化率(%)=ΔL[単位:mm]/24[単位:mm]×100・・・(1)
(全光線透過率)
 実施例で得た積層体を50mm×50mmに切り出して試験片とし、ヘーズメーター(日本電色工業社製、SH7000)を用いて、JIS K 7136(2000)に準拠して全光線透過率を測定した。
(耐衝撃強度)
 実施例で得た積層体を80mm×80mmに切り出して試験片とし、フィルムインパクトテスター(安田精機製作所社製、NO.181フィルムインパクトテスター)にセットして、球状の衝撃槌(半径12.7±0.2mm)を試験片に直角にあて、打ち抜きに要したエネルギー[単位:J]を耐衝撃強度とした。
(耐打ち抜き性)
 実施例で得た積層体を80mm×80mmに切り出して試験片とし、係る試験片および40mm×40mmの打ち抜き治具(トムソン刃)を打ち抜き装置(ダンベル社製、SDL-200)にセットし、試験片を40mm×40mmに打ち抜いた。打ち抜かれた試験片にクラック(罅)が無ければA、クラックがあればCと評価した。
(200%延伸性)
 実施例で得た積層体を100mm×100mmに切り出して試験片とし、二軸延伸複屈折測定装置(ヱトー社製、SDR-563K)にセットし、温度145℃、延伸速度3600%/分かつ延伸倍率200%の条件で延伸した。係る方法で5枚の試験片を延伸し、以下の通り評価した。
 A:1枚も破断しなかった。
 B:1枚または2枚が破断した。
 C:3枚以上が破断した。
(250%延伸性)
 実施例で得た積層体を100mm×100mmに切り出して試験片とし、二軸延伸複屈折測定装置(ヱトー社製、SDR-563K)にセットし、温度145℃、延伸速度3600%/分かつ延伸倍率250%の条件で延伸した。係る方法で5枚の試験片を延伸し、以下の通り評価した。
 A:1枚も破断しなかった。
 B:1枚または2枚が破断した。
 C:3枚以上が破断した。
(外観)
 実施例で得た積層体を白紙(FUJI xerox社製、C2r)上に載せ、蛍光灯下(200ルクス)で外観を目視で観察した。
(製造例1)[(メタ)アクリル系樹脂(X1)の製造]
 撹拌機および採取管が取り付けられたオートクレーブ内を窒素で置換した。これに、蒸留精製されたメチルメタクリレート(MMA)100質量部、2,2’-アゾビス(2-メチルプロピオニトリル)(水素引抜能:1%、1時間半減期温度:83℃)0.0052質量部、およびn-オクチルメルカプタン0.225質量部を入れ、撹拌して原料液を得た。この原料液中に窒素を送り込み、原料液中の溶存酸素を除去した。
 配管を介してオートクレーブに接続された槽型反応器に容量の2/3まで原料液を入れた。温度を140℃に維持した状態で、まずバッチ方式で重合反応を開始させた。重合転化率が55質量%になったところで、温度140℃に維持した状態で、平均滞留時間150分となる流量で原料液をオートクレーブから槽型反応器に供給し、同時に原料液の供給流量に相当する流量で槽型反応器から反応液を抜き出す連続流通方式の重合反応に切り替えた。連続流通方式に切り替えた後、定常状態における重合転化率は55質量%であった。
 定常状態になった槽型反応器から抜き出される反応液を、平均滞留時間2分間となる流量で内温230℃の多管式熱交換器に供給して加温した。次いで加温された反応液をフラッシュ蒸発器に導入し、未反応単量体を主成分とする揮発分を除去して、溶融樹脂を得た。揮発分が除去された溶融樹脂を内温260℃の二軸押出機に供給してストランド状に吐出し、ペレタイザーでカットして、ペレット状の(メタ)アクリル系樹脂(X1)を得た。得られた(メタ)アクリル系樹脂(X1)の物性を表1に示す。
(製造例2)[(メタ)アクリル系樹脂(X2)の製造]
 撹拌翼と三方コックが取り付けられたガラス製反応容器内を窒素で置換した。これに、室温(25℃)下にて、トルエン2.9質量部、1,1,4,7,10,10-ヘキサメチルトリエチレンテトラミン0.0045質量部、濃度0.45Mのイソブチルビス(2,6-ジ-t-ブチル-4-メチルフェノキシ)アルミニウムのトルエン溶液0.097質量部、および濃度1.3Mのsec-ブチルリチウムの溶液(溶媒:シクロヘキサン95質量%、n-ヘキサン5質量%)0.011質量部を仕込んだ。これらの原料に対して、撹拌しながら、20℃にて、蒸留精製されたMMA100質量部を30分かけて滴下した。滴下終了後、20℃で90分間撹拌したところ、溶液の色が黄色から無色に変化した。この時点におけるMMAの重合転化率は100%であった。得られた溶液にトルエン2.7質量部を加えて希釈した。次いで、希釈液をメタノール180質量部に注ぎ入れ、沈澱物を得た。得られた沈殿物を80℃、140Paにて24時間乾燥して、(メタ)アクリル系樹脂(X2)を得た。得られた(メタ)アクリル系樹脂(X2)の物性を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以下のフェノキシ樹脂を用意した。
 Phenoxy1:新日鉄住金化学社製、YP-50S(品番)、MFR(230℃、3.8Kg、10分間;JIS K 7210-1(2014)準拠)=22g/10分、Mw=55000、Mw/Mn=2.5
(製造例3)メタクリル系樹脂組成物(M1)
 (メタ)アクリル系樹脂(X1)40質量部、(メタ)アクリル系樹脂(X2)60質量部、特開2017-78168号公報の参考例3を参照して得たトリブロック構造の(メタ)アクリル系ブロック共重合体1質量部、フェノキシ樹脂(Phenoxy1)1質量部、紫外線吸収剤(ADEKA社製、LA-F70)1質量部、および高分子加工助剤(三菱ケミカル社製、メタブレン(登録商標)P550A)2質量部をヘンシェルミキサーで混合し、260℃に設定したスクリュー径41mmのベント付き二軸押出機を用いて混練押出して、ガラス転移温度Tgが124℃であるメタクリル系樹脂組成物(M1)のペレットを得た。
(製造例4)メタクリル系樹脂組成物(M2)
 (メタ)アクリル系樹脂(X1)85質量部、並びに特開2017-78168号公報の参考例3を参照して得たトリブロック構造の(メタ)アクリル系ブロック共重合体15質量部をヘンシェルミキサーで混合し、260℃に設定したスクリュー径41mmのベント付き二軸押出機を用いて混練押出して、ガラス転移温度Tgが118℃であるメタクリル系樹脂組成物(M2)のペレットを得た。
(製造例5)メタクリル系樹脂組成物(M3)
 国際公開第2016/139950号の参考例1および2を参照して得た、メタクリル酸メチル99質量%およびアクリル酸メチル1質量%からなる(メタ)アクリル系樹脂(X3)70質量部、並びに国際公開第2014/167868号の参考例1を参照して得た、動的光散乱法で測定した粒子径が0.23μmである3層構造の(メタ)アクリル系弾性体粒子30質量部をヘンシェルミキサーで混合し、260℃に設定したスクリュー径41mmのベント付き二軸押出機を用いて混練押出して、ガラス転移温度Tgが114℃であるメタクリル系樹脂組成物(M3)のペレットを得た。
(製造例6)メタクリル系樹脂組成物(M4)
 (メタ)アクリル系樹脂(X1)80質量部、(メタ)アクリル系樹脂(X2)20質量部、特開2017-78168号公報の参考例3を参照して得たトリブロック構造の(メタ)アクリル系ブロック共重合体1質量部、ポリカーボネート樹脂(住化ポリカーボネート社製、SD-POLYCA 401-40)0.8質量部、フェノキシ樹脂(Phenoxy1)2.5質量部、紫外線吸収剤(ADEKA社製、LA-F70)1質量部、および高分子加工助剤(三菱ケミカル社製、メタブレン(登録商標)P550A)2質量部をヘンシェルミキサーで混合し、260℃に設定したスクリュー径41mmのベント付き二軸押出機を用いて混練押出して、ガラス転移温度Tgが122℃であるメタクリル系樹脂組成物(M4)のペレットを得た。
実施例1
(延伸フィルムの製造)
 ペレット状のメタクリル系樹脂組成物(M1)を、Tダイを接続したφ65mmベント付単軸押出機で270℃で溶融し、幅700mmのTダイからシート状に押出した。ダイ吐出部から溶融状態の熱可塑性樹脂組成物がキャストロールに接触するまでの距離を30mmとし、押出された熱可塑性樹脂組成物を静電印加(エッジピニング、電圧4V、キャストロールとの接触点から垂直方向に5mm、かつTダイ側に10mmの位置)により225mm径のキャストロールに密着させ冷却して、厚さ130μmの原反フィルムとした。続いて、テンター式同時二軸延伸機に係る原反フィルムを導入し、147℃で予熱した。次いで係る原反フィルムに147℃で3.25倍(長手方向1.80倍かつ幅方向1.80倍)の同時二軸延伸を行った。このとき、延伸速度は長手方向および幅方向ともに1000%/分とした。その後、105℃まで冷却し、熱固定を1分間行い、40μmの延伸フィルムを得た。
(積層体の製造)
 得られた延伸フィルムに、真空蒸着装置(真空デバイス社製、VE-2030、抵抗加熱方式)を用いて、真空蒸着によって厚さ50nmのインジウム層を形成し、金属調加飾フィルムである積層体を得た。このとき、抵抗加熱にはバスケットヒーター(アルミナ92%)を用い、インジウムには純度99.99%かつ粒度1mmのものを用いた。蒸着条件は、真空度7×10-3Pa、速度0.8Å/secで10分間とした。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
(成形体の製造)
 得られた積層体を210mm×300mmに切り出して試験片とした。また、ポリスチレン樹脂製のクリップケース(プラス社製、CP-500、幅76mm×奥行き62mm×高さ40mm)を被着体とした。TOM成形装置(布施真空社製、NGF-0406T)に、係る被着体と試験片を、被着体の凸側に試験片の金属層が対向するようにセットして、予熱温度130℃かつ圧力差300kPaの条件でTOM成形を行い、成形体を得た。成形体において積層体は破断しておらず、成形体は美麗な金属調の光沢を有していた。
実施例2
 実施例1の積層体の製造において、インジウム層の厚さを40nmに変更したこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
実施例3
 実施例1の積層体の製造において、インジウム層の厚さを30nmに変更したこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していたが、全体的にインジウムの色が薄かった。
実施例4
 実施例1の延伸フィルムの製造において、熱固定を行わなかったこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
実施例5
 実施例1の原反フィルムの製造において、原反フィルムの厚さを180μmに変更し、延伸フィルムの製造において、延伸倍率を4.50倍(長手方向2.12倍かつ幅方向2.12倍)に変更したこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
実施例6
(積層体の製造)
 実施例1の原反フィルムの製造において、原反フィルムの厚さを250μmに変更し、延伸フィルムの製造において、延伸倍率を6.25倍(長手方向2.50倍かつ幅方向2.50倍)に変更したこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
(成形体の製造1)
 得られた積層体を210mm×300mmに切り出して試験片とした。また、ポリスチレン樹脂製のクリップケース(プラス社製、CP-500、幅76mm×奥行き62mm×高さ40mm)を被着体とした。TOM成形装置(布施真空社製、NGF-0406T)に、係る被着体と試験片を、被着体の凸側に試験片の金属層が対向するようにセットして、予熱温度130℃かつ圧力差300kPaの条件でTOM成形を行ったところ、積層体が破断した。
(成形体の製造2)
 得られた積層体を210mm×300mmに切り出し、金属層側に粘着剤(東亞合成社製、アロンタックS-1511X)を塗布し、厚さ50μmの粘着層を形成して試験片とした。また、ポリスチレン樹脂製のクリップケース(プラス社製、CP-500、幅76mm×奥行き62mm×高さ40mm)を被着体とした。TOM成形装置(布施真空社製、NGF-0406T)に、係る被着体と試験片を、被着体の凸側に試験片の金属層が対向するようにセットして、予熱温度130℃かつ圧力差300kPaの条件でTOM成形を行い、成形体を得た。成形体において積層体は破断しておらず、成形体は美麗な金属調の光沢を有していた。
実施例7
 実施例1の延伸フィルムの製造において、メタクリル系樹脂組成物(M1)を(メタ)アクリル系樹脂(X1)に変更し、さらに予熱温度および延伸温度を145℃に変更したこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
実施例8
 実施例7において、予熱温度および延伸温度を135℃、熱固定温度を95℃に変更したこと以外は実施例7と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
実施例9
 実施例1の延伸フィルムの製造において、メタクリル系樹脂組成物(M1)をメタクリル系樹脂組成物(M4)に変更したこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
実施例10
 実施例1の延伸フィルムの製造において、メタクリル系樹脂組成物(M1)をメタクリル系樹脂組成物(M4)に変更し、さらに延伸温度を150℃に変更、延伸倍率を5.30倍に変更したこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、美麗な金属調の光沢を有していた。
比較例1
 実施例1の原反フィルムの製造において、静電印加を金属弾性ロールによる挟持に変更し、原反フィルムの厚さを40μmに変更し、延伸フィルムの製造において、延伸を行わなかったこと以外は実施例1と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観をフィルム側から観察すると、美麗な金属調の光沢を有していた。
比較例2
 実施例7の原反フィルムの製造において、(メタ)アクリル系樹脂(X1)をメタクリル系樹脂組成物(M2)に変更し、原反フィルムの厚さを98μmに変更したこと以外は実施例7と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、反射光がゆらめいて見え、金属調の光沢が損なわれていた。
比較例3
 実施例7の原反フィルムの製造において、(メタ)アクリル系樹脂(X1)をメタクリル系樹脂組成物(M3)に変更し、原反フィルムの厚さを98μmに変更したこと以外は実施例7と同様にして積層体を製造した。評価結果を表2に示す。得られた積層体の外観を延伸フィルム側から観察すると、反射光がぼやけて滲んで見え、金属調の光沢が損なわれていた。
Figure JPOXMLDOC01-appb-T000002
 実施例1~10で得た積層体は、比較例1~3に対し、ヘーズが1%以下である延伸フィルムの層を有し、全光線透過率が50%以下であるため、耐打ち抜き性および金属調の光沢に優れていた。中でも、実施例1~5、7、9および10で得た積層体は200%延伸性に優れ、さらに実施例1~3、7、9および10で得た積層体は250%延伸性に優れていたため、絞り加工やその他立体的な成形、立体的な被着体への貼合において特に好適である。また、実施例1、2および4~10で得た積層体は、美麗な金属調の光沢を有し、かつ全体的にインジウムの色が濃く表れていた。
 比較例1で得た積層体は、延伸フィルムの層を有さないため、耐打ち抜き性が劣る結果となった。
 比較例2および3で得た積層体は、延伸フィルムのヘーズが1%超であるため、金属調の光沢が損なわれていた。
 本発明の積層体は、耐打ち抜き性および金属調の光沢に優れており、金属調加飾フィルムなどとして利用可能である。
 

Claims (13)

  1.  延伸フィルムおよび金属層を有し、全光線透過率が50%以下である積層体であって、前記延伸フィルムは(メタ)アクリル系樹脂を含み、ヘーズが1%以下である、積層体。
  2.  前記延伸フィルムはエラストマーを含み、前記延伸フィルムにおける前記エラストマーの含有量が前記(メタ)アクリル系樹脂100質量部に対して30質量部以下である、請求項1に記載の積層体。
  3.  前記延伸フィルムは紫外線吸収剤を含み、前記延伸フィルムにおける前記紫外線吸収剤の含有量が前記(メタ)アクリル系樹脂100質量部に対して0.1~10質量部である、請求項1または2に記載の積層体。
  4.  前記延伸フィルムは、85℃で30分間保持した前後の寸法変化率が0.1%以下である、請求項1~3のいずれかに記載の積層体。
  5.  前記延伸フィルムの厚さが5~200μmである、請求項1~4のいずれかに記載の積層体。
  6.  前記金属層が、インジウム、アルミニウム、クロム、金、銀および錫からなる群より選ばれる少なくとも1種を含む、請求項1~5のいずれかに記載の積層体。
  7.  前記金属層の厚さが10~500nmである、請求項1~6のいずれかに記載の積層体。
  8.  耐衝撃強度が4J以上である、請求項1~7のいずれかに記載の積層体。
  9.  前記延伸フィルムと前記金属層とが接する、請求項1~8のいずれかに記載の積層体。
  10.  厚さが5~500μmである、請求項1~9のいずれかに記載の積層体。
  11.  請求項1~10のいずれかに記載の積層体からなる金属調加飾フィルム。
  12.  請求項1~10のいずれかに記載の積層体および被着体を有する成形体。
  13.  請求項1~10のいずれかに記載の積層体の製造方法であって、(メタ)アクリル系樹脂を含む原反フィルムを1.5~8.0倍に延伸して前記延伸フィルムを製造する工程、および、前記延伸フィルムに金属層を形成する工程を有する、積層体の製造方法。
     
PCT/JP2018/031179 2017-08-24 2018-08-23 積層体およびその製造方法 WO2019039550A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019537681A JP7177776B2 (ja) 2017-08-24 2018-08-23 積層体およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017160982 2017-08-24
JP2017-160982 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039550A1 true WO2019039550A1 (ja) 2019-02-28

Family

ID=65439844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031179 WO2019039550A1 (ja) 2017-08-24 2018-08-23 積層体およびその製造方法

Country Status (2)

Country Link
JP (1) JP7177776B2 (ja)
WO (1) WO2019039550A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330575A (ja) * 2003-05-07 2004-11-25 Reiko Co Ltd 視認性に優れた金属光沢性エンボス模様表示板
JP2007168377A (ja) * 2005-12-26 2007-07-05 Dainippon Ink & Chem Inc 熱成形用積層シートの成形方法
JP2008110518A (ja) * 2006-10-30 2008-05-15 Riken Technos Corp 金属調シート及びそれを用いた金属調化粧材
JP2009155413A (ja) * 2007-12-26 2009-07-16 Toray Ind Inc 加飾用ポリ乳酸系樹脂シート並びにそれを用いた加飾部材
WO2010113601A1 (ja) * 2009-03-31 2010-10-07 Dic株式会社 加飾成形体の製造方法
JP2012213911A (ja) * 2011-03-31 2012-11-08 Kuraray Co Ltd 複層フィルム
JP2017105125A (ja) * 2015-12-11 2017-06-15 大日本印刷株式会社 印刷物及び該印刷物を用いた容器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633147B (zh) 2013-11-25 2018-08-21 Kuraray Co., Ltd. 丙烯酸樹脂薄膜及其製造方法
CN106414599B (zh) 2014-05-30 2020-12-15 株式会社可乐丽 甲基丙烯酸类树脂组合物
KR102381502B1 (ko) 2014-11-19 2022-03-31 주식회사 쿠라레 아크릴계 필름
CN107406657B (zh) 2015-03-05 2020-05-05 株式会社可乐丽 树脂组合物、膜和它们的制造方法、成型体以及物品
EP3279260B1 (en) 2015-04-03 2020-05-27 Kuraray Co., Ltd. Resin composition and production method therefor, molded body, film, and article
JP7045994B2 (ja) 2016-07-29 2022-04-01 株式会社クラレ メタクリル樹脂組成物とその製造方法、成形体、フィルム、積層フィルム、積層成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004330575A (ja) * 2003-05-07 2004-11-25 Reiko Co Ltd 視認性に優れた金属光沢性エンボス模様表示板
JP2007168377A (ja) * 2005-12-26 2007-07-05 Dainippon Ink & Chem Inc 熱成形用積層シートの成形方法
JP2008110518A (ja) * 2006-10-30 2008-05-15 Riken Technos Corp 金属調シート及びそれを用いた金属調化粧材
JP2009155413A (ja) * 2007-12-26 2009-07-16 Toray Ind Inc 加飾用ポリ乳酸系樹脂シート並びにそれを用いた加飾部材
WO2010113601A1 (ja) * 2009-03-31 2010-10-07 Dic株式会社 加飾成形体の製造方法
JP2012213911A (ja) * 2011-03-31 2012-11-08 Kuraray Co Ltd 複層フィルム
JP2017105125A (ja) * 2015-12-11 2017-06-15 大日本印刷株式会社 印刷物及び該印刷物を用いた容器

Also Published As

Publication number Publication date
JPWO2019039550A1 (ja) 2020-07-30
JP7177776B2 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
JP6324406B2 (ja) アクリル系樹脂フィルム
KR100381695B1 (ko) 아크릴필름을 적층한 성형품 및 아크릴 필름
JP6912461B2 (ja) 多層フィルム
US20020164490A1 (en) Acrylic resin film and laminated film comprising the same
JPH08323934A (ja) アクリルフィルムおよびこれを用いたアクリル積層射出成型品
WO2021193922A1 (ja) アクリル系組成物及び成形体
JP7322002B2 (ja) (メタ)アクリル樹脂組成物、フィルムおよびその製造方法
CN110719843A (zh) 多层膜及其制造方法
JP2022102178A (ja) メタクリル系共重合体を含む樹脂組成物、成形体及びフィルム
JP6571111B2 (ja) 加飾用複層シートおよび立体成型体
JP4695246B2 (ja) アクリル樹脂フィルムの製造方法、積層シートおよび積層射出成形品
JP7177776B2 (ja) 積層体およびその製造方法
JPWO2019198823A1 (ja) 多層フィルムおよびそれを備える成形体
KR101786149B1 (ko) 성형성이 우수한 고광택 인테리어용 장식필름
EP1000978B1 (en) Acrylic resin film and laminated film containing the same
WO2019003531A1 (ja) 熱可塑性樹脂組成物及び熱可塑性樹脂成形体
JP7278810B2 (ja) アクリル系樹脂フィルム及びその製造方法
JP2020104313A (ja) 多層フィルムおよびその製造方法
WO2020218447A1 (ja) 積層フィルム
JP7030691B2 (ja) 熱可塑性重合体組成物、該組成物を用いた多層フィルム及び成形体
JP2004051946A (ja) シートおよびその積層シート
EP3904090A1 (en) Base film for decorative film and decorative film including same
JP2020082729A (ja) 積層フィルム、成形体、及び車載ディスプレイ用前面板
JP2005132911A (ja) アクリル樹脂フィルム、加飾アクリル樹脂フィルム、および、これらを含む積層体
JP2017095617A (ja) 活性エネルギー線硬化性樹脂組成物、積層体および成形体、並びにそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848480

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537681

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848480

Country of ref document: EP

Kind code of ref document: A1