WO2019039509A1 - 組成物、成形体の製造方法及び成形体 - Google Patents

組成物、成形体の製造方法及び成形体 Download PDF

Info

Publication number
WO2019039509A1
WO2019039509A1 PCT/JP2018/030989 JP2018030989W WO2019039509A1 WO 2019039509 A1 WO2019039509 A1 WO 2019039509A1 JP 2018030989 W JP2018030989 W JP 2018030989W WO 2019039509 A1 WO2019039509 A1 WO 2019039509A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
coordination
substance
composition
organic substance
Prior art date
Application number
PCT/JP2018/030989
Other languages
English (en)
French (fr)
Inventor
篤 生駒
野村 茂樹
アルツゲ ラシカ ダサナヤケ
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2019537654A priority Critical patent/JP7377106B2/ja
Priority to CN201880059672.6A priority patent/CN111094228B/zh
Priority to US16/640,202 priority patent/US12031014B2/en
Publication of WO2019039509A1 publication Critical patent/WO2019039509A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27NMANUFACTURE BY DRY PROCESSES OF ARTICLES, WITH OR WITHOUT ORGANIC BINDING AGENTS, MADE FROM PARTICLES OR FIBRES CONSISTING OF WOOD OR OTHER LIGNOCELLULOSIC OR LIKE ORGANIC MATERIAL
    • B27N3/00Manufacture of substantially flat articles, e.g. boards, from particles or fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C63/00Compounds having carboxyl groups bound to a carbon atoms of six-membered aromatic rings
    • C07C63/14Monocyclic dicarboxylic acids
    • C07C63/15Monocyclic dicarboxylic acids all carboxyl groups bound to carbon atoms of the six-membered aromatic ring
    • C07C63/261,4 - Benzenedicarboxylic acid
    • C07C63/28Salts thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters

Definitions

  • the present invention relates to a composition, a method for producing a molded body, and a molded body.
  • the present application claims priority based on Japanese Patent Application No. 2017-159394 filed on Aug. 22, 2017, and Japanese Patent Application No. 2017-184667 filed on September 26, 2017. , The contents of which are incorporated herein.
  • Metal organic framework (Metal Organic Framework; hereinafter referred to as “MOF”) is a crystalline formed through coordination bond and self-assembly of metal ion and organic bridging ligand (polydentate ligand) Porous material, having uniform micropores and high specific surface area.
  • MOFs metal ion and organic bridging ligand
  • various MOFs such as gas separation, gas storage, sensors, DDS (drug delivery system), electromagnetic wave shields, selective catalysts, dielectrics, porous single metal precursors, porous metal oxide precursors, etc.
  • the organic bridging ligand a compound having a rigid molecular structure such as 1,4-benzenedicarboxylic acid is usually used. It has also been proposed to use a polymer as the organic crosslinking ligand (Non-Patent Document 1, Patent Document 1).
  • MOF metal-ion-oxide-semiconductor
  • a solvothermal method also referred to as a hydrothermal method
  • MOF can be obtained only as microcrystalline particles of a micro size or less, or as a thin film by precipitation and condensation, and the formability is poor.
  • Non-patent Document 2 A method has been proposed in which triethylamine is added in synthesizing MOF from Zn (NO 3 ) 2 and 1,4-benzenedicarboxylic acid (Non-patent Document 2).
  • the reaction can proceed in an atmospheric pressure environment, and the productivity of MOF is increased.
  • the reaction proceeds rapidly, it is difficult to control the crystal formation rate, and the MOF can be obtained only as microcrystalline particles of micro size or less, and the formability is poor.
  • MOF in the form of microcrystalline particles is blended with a binder and molded to obtain a molded body containing MOF
  • the MOF breaks during blending or molding, the MOF and the binder do not mix uniformly, and the blended MOF from resin
  • the resin covers the porous surface, which easily peels off, problems such as the inability to utilize the porous function occur.
  • the present invention is a composition capable of producing MOFs without a high pressure environment such as a solvothermal method, and being storable as a moldable material, a method of producing a molded article using the composition, and a molded article Intended to be provided.
  • composition according to [1], wherein the stimulus is at least one selected from the group consisting of heat, light, water and oxygen.
  • the coordination accelerator (C) is a basic substance which is solid at 25 ° C. and has a pKa of 1 to 20.
  • the coordination accelerator (C) is selected from the group consisting of amine-borane complex, dicyandiamide, hydrazide, imine, oxazolidine, pyridine, tertiary amine in crystalline state at room temperature, ketoprofenamine salt, calcium oxide, and iron
  • the organic substance (B) is a polymer having a main chain site and a pendant site bonded to the main chain site, wherein the pendant group comprises the metal coordination site [1] to [12] ]
  • composition according to [13], wherein the main chain site contains any one or more of a polyether structure, a polyolefin structure, a polyester structure, a polythiol structure and a polyamide structure.
  • substance (A) is at least one selected from the group consisting of elemental metals and metal compounds having a valence of 1 to 5 of metals. object.
  • a polymer having a constituent unit having one metal coordination part capable of forming a crystal by coordinating to the metal atom, a monomer having one of the metal coordination parts, and the metal coordination The composition according to any one of [1] to [15], further comprising at least one organic substance (D) selected from the group consisting of organic substances having no part.
  • the method for producing a molded article of [20], wherein the stimulus is at least one selected from the group consisting of heat, light, water and oxygen.
  • Coordination accelerator which reacts with or stimulates the coordination of the metal coordination part of the organic substance (B) to the metal atom of the substance (A) with a crystal formed by (C), And molded articles.
  • a first aspect of the present invention is a composition containing a substance (A), an organic substance (B) and a coordination accelerator (C) (hereinafter also referred to as composition I).
  • the substance (A) is a substance containing at least one metal atom selected from the group consisting of zinc, cobalt, niobium, zirconium, cadmium, copper, nickel, chromium, vanadium, titanium, molybdenum, magnesium, iron and aluminum (however, , Excluding metal organic structures).
  • the organic substance (B) is an organic substance having two or more metal coordination parts capable of forming a crystal by coordinating to the metal atom of the substance (A).
  • the metal coordination part of the organic substance (B) is at least one selected from the group consisting of a carboxy group and a metal organic structure part.
  • the coordination accelerator (C) is a substance that can react or undergo phase transition upon stimulation to promote coordination of the metal coordination part of the organic substance (B) to the metal atom of the substance (A).
  • Composition I may further contain any one or more of an organic substance (D), a liquid medium (E), a resin (F), and other components (G), as necessary.
  • Organic substance (D) is a polymer having a constituent unit having one metal coordination part capable of forming a crystal by coordinating to the metal atom of substance (A), a single amount having one of the metal coordination parts And at least one organic substance selected from the group consisting of an organic substance having no metal coordination part (however, except for the organic substance (B) and the resin (F) described later).
  • the resin (F) is a resin capable of holding the liquid medium (E).
  • “-” indicating a numerical range means that numerical values described before and after that are included as the lower limit value and the upper limit value.
  • the substance (A) is at least one metal atom selected from the group consisting of zinc, cobalt, niobium, zirconium, cadmium, copper, nickel, chromium, vanadium, titanium, molybdenum, magnesium, iron and aluminum (hereinafter referred to as metal atom) Also described as ⁇ ).
  • the metal atom ⁇ contained in the substance (A) may be one kind or two or more kinds.
  • the metal atom ⁇ is preferably one having 1 to 5 valences when ionized, and more preferably 1 to 4 valences.
  • the substance (A) may be a single metal or a metal compound.
  • the metal in each of the metal simple substance and the metal compound is at least one selected from the group consisting of zinc, cobalt, niobium, zirconium, cadmium, copper, nickel, chromium, vanadium, titanium, molybdenum, magnesium, iron and aluminum.
  • the metal compound include metal salts such as nitrates, carbonates, halides and sulfates, metal oxides, metal hydroxides and the like.
  • the metal salt may be a hydrate.
  • the substance (A) include zinc, zirconium, chromium, aluminum, Zn (NO 3 ) 2 ⁇ 6H 2 O, Al (NO 3 ) 2 ⁇ 9H 2 O and the like.
  • the substance (A) is preferably at least one selected from the group consisting of an elemental metal and a metal compound having a monovalent to pentavalent metal valence in terms of stability in the environment under air.
  • a metal in these single metals and metal compounds at least one selected from the group consisting of zinc, zirconium and chromium is preferable.
  • the substance (A) contained in the composition I may be one kind or two or more kinds.
  • Organic substance (B) has two or more at least one metal coordination part (hereinafter also referred to as a metal coordination part ⁇ ) selected from the group consisting of a carboxy group and an MOF site.
  • a crystal form (MOF) is produced
  • Two or more metal coordination parts ⁇ possessed by the organic substance (B) may be identical to or different from each other.
  • the MOF site in the metal coordination portion ⁇ is not particularly limited, and may be a known MOF.
  • MOFs comprising a plurality of metal, metal oxides, metal clusters or metal oxide cluster structural units are known, but are not limited thereto.
  • the metal can be selected from transition metals and beryllium. More specific examples include Zn, Cd, Hg, Be, Cu, Zr, Cr, Mo, V, Ti, Co and the like. Multiple metal structural units can be linked by organic bridging ligands to form a porous structure.
  • the organic bridging ligand which links adjacent metal structural units is an organic compound having two or more metal coordination parts which can be coordinated to a metal, for example, 1,3,5-tris (4-carboxyphenyl) Benzene (BTB), 1,4-benzenedicarboxylic acid (BDC), 2,5-dihydroxy-1,4-benzenedicarboxylic acid (DOBDC), cyclobutyl-1,4-benzenedicarboxylic acid (CB BDC), 2-amino -1,4-benzenedicarboxylic acid (H2N BDC), tetrahydropyrene-2,7-dicarboxylic acid (HPDC), terphenyl dicarboxylic acid (TPDC), 2,6-naphthalenedicarboxylic acid (2,6-NDC), pyrene -2,7-dicarboxylic acid (PDC), biphenyl dicarboxylic acid (BPDC), any dicarboxylic acid having a phenyl compound 3,3
  • MOF-177 including a structure represented by Zn 4 O (1,3,5-benzenetribenzoate) 2 ; Zn 4 O (1,4-benzene) also known as IRMOF-I MOF-5 including the structure represented by dicarboxylate) 3 ; MOF-74 (Mg) including the structure represented by Mg 2 (2,5-dihydroxy-1,4-benzenedicarboxylate); Zn 2 A structure represented by MOF-74 (Zn) represented by (2,5-dihydroxy-1,4-benzenedicarboxylate); Cu 2 (3,3 ', 5,5'-biphenyl tetracarboxylate) IRMOF-6 including the structure represented by Zn 4 O (cyclobutyl 1,4 benzene dicarboxylate);; MOF-505 containing Zn 4 O (2-amino-1,4 Benzenjika Containing Zn 4 O (terphenyl dicarboxylate) 3 or Zn 4 O (structure represented
  • the organic substance (B) preferably has an aromatic ring having one or more metal coordination parts ⁇ in view of coordination ability and rigidity, and has an aromatic ring having two or more metal coordination parts ⁇ More preferable.
  • the metal coordination part (beta) which the said aromatic ring has is one
  • the said aromatic ring which the organic substance (B) has is two or more.
  • the metal coordination portion ⁇ possessed by the aromatic ring is two or more, one or two or more aromatic rings may be possessed by each organic substance (B).
  • crystallization body improves, so that there are many metal coordination parts (beta), when there are too many metal coordination parts (beta), a crystal body may become brittle.
  • the number of metal coordination sites ⁇ may be three or less. That is, the metal coordination portion ⁇ can be appropriately adjusted within the range of 1 to 3 from the viewpoint of balancing the rigidity and the brittleness of the crystal.
  • metal coordination part (beta) which the said aromatic ring has the point of coordination ability WHEREIN: A carboxy group is preferable.
  • a dicarboxy benzene ring, a tricarboxy benzene ring etc. are mentioned, for example.
  • the carboxy group not bound to the aromatic ring has weak metal coordination.
  • a carboxy group which is not bonded to an aromatic ring usually does not form a crystal even when it is coordinated to the metal atom ⁇ .
  • the carboxy group that does not form a crystal does not correspond to the metal coordination portion ⁇ .
  • the organic substance (B) may be a polymer or a monomer (non-polymer).
  • the polymer for example, a polymer having a main chain site and a pendant site bonded to the main chain site, a polymer containing a metal coordination portion ⁇ in the pendant site, a main chain site, and at the end of the main chain site
  • the polymer etc. which contain the metal coordination part (beta) are mentioned. From the viewpoint of formability, a polymer having a main chain site and a pendant site bonded to the main chain site, and including a metal coordination site ⁇ in the pendant site is preferred.
  • the structure of the main chain site is not particularly limited, and examples thereof include a polyether structure, a polyolefin structure, a polyester structure, a polythiol structure, a polyamide structure and the like.
  • the main chain site may have any one of these structures or two or more.
  • the aromatic ring may be contained in the main chain site or may be contained in the pendant site.
  • the polymer containing the metal coordination part ⁇ at the pendant site can be obtained, for example, by a method using a monomer having the metal coordination part ⁇ as a monomer for forming the polymer.
  • a monomer containing metal coordination part (beta) the non-polymer mentioned later, etc. are mentioned, for example.
  • the polymer containing the MOF site at the pendant site can also be obtained by the polymerization reaction of the pendant site of the polymer and the MOF.
  • organic substance (B) which is a polymer examples include polyether having a structural unit represented by the following formula (b1), polyethylene, polyamide and the like.
  • the number of metal coordination parts ⁇ possessed by the polymer is, for example, preferably 2 or more, and more preferably 2 to 4 per structural unit constituting the polymer.
  • n an integer of 5 to 8.
  • non-polymer organic substance (B) examples include 1,3,5-tris (4-carboxyphenyl) benzene, 1,3,5-benzenetricarboxylic acid, 1,4-benzenedicarboxylic acid, 5-Dihydroxy-1,4-benzenedicarboxylic acid, cyclobutyl-1,4-benzenedicarboxylic acid, 2-amino-1,4-benzenedicarboxylic acid, tetrahydropyrene-2,7-dicarboxylic acid, terphenyldicarboxylic acid, 2 And 6,6-naphthalenedicarboxylic acid, pyrene-2,7-dicarboxylic acid, biphenyldicarboxylic acid, 3,3 ', 5,5'-biphenyltetracarboxylic acid and the like.
  • the number of metal coordination parts ⁇ possessed by the non-polymer may be, for example, 2 to 4.
  • the molecular weight of the organic substance (B) can be appropriately selected in consideration of moldability and the like.
  • the molecular weight of the organic substance (B) is preferably 100 or more from the viewpoint of moldability.
  • the molecular weight of the organic substance (B) is more preferably 100 to 10000, and still more preferably 100 to 1000.
  • the molecular weight of the organic substance (B) is more preferably 100 to 100,000, and still more preferably 100 to 10,000.
  • the molecular weight of the polymer is a weight average molecular weight measured by GPC (gel permeation chromatography).
  • the organic substance (B) contained in the composition I may be one kind or two or more kinds. It is preferable that the organic substance (B) contains at least a polymer in that the moldability of the composition I is more excellent. A polymer and a non-polymer may be used in combination.
  • the content of the polymer in the organic substance (B) is preferably 10 to 100% by mass, and more preferably 50 to 100% by mass, with respect to the total mass of the organic substance (B).
  • the coordination accelerator (C) reacts or phase transitions upon stimulation. In addition, after the reaction or phase transition, coordination of the metal coordination portion ⁇ to the metal atom ⁇ can be promoted.
  • the “reaction” of the coordination accelerator (C) includes the reaction with the self molecule alone and the reaction with other substances.
  • Phase transition is typically changing from solid to liquid. From the viewpoint of productivity, at least one selected from the group consisting of heat, light, water, and oxygen is preferable as a stimulus for causing reaction or phase transition of the coordination accelerator (C). The stimulation will be described in detail later.
  • the stimulation to cause reaction or phase transfer of the coordination accelerator (C) may be one or two or more. Examples of thermal reaction or phase transition include decomposition and dissolution in self molecules. As an example of the reaction or phase transition by light, decomposition at a self molecule can be mentioned. Examples of water reaction or phase transition include hydration and oxidation. Oxidation is an example of a reaction or phase transition with oxygen.
  • Examples of the coordination promoter (C) include amine-borane complex, dicyandiamide, hydrazide, imine, oxazolidine, pyridine, tertiary amine, ketoprofenamine salt, calcium oxide, iron and the like.
  • at least one member selected from the group consisting of dicyandiamide, hydrazide, imine, and ketoprofenamine salt is more preferable.
  • amine constituting the amine-borane complex examples include triethylamine and the like.
  • room temperature is a temperature within 15 ⁇ 15 ° C.
  • tertiary amines in a crystalline state at room temperature include dimethylpalmitylamine, dimethylstearylamine and the like.
  • ketoprofenamine salt examples include ketoprofen triethylamine salt and the like.
  • the coordination accelerator (C) is preferably a solid at 25 ° C. in that it is difficult to promote coordination of the metal coordination portion ⁇ to the metal atom ⁇ during storage of the composition.
  • the coordination accelerator (C) preferably has a pKa of 1 to 20, more preferably a pKa of 5 to 20, in terms of catalytic ability.
  • pKa is a value at 25 ° C.
  • the reactivity is more excellent when the pKa is at least the above lower limit value. When the pKa is less than or equal to the above upper limit, the reactivity is more excellent. Therefore, as the coordination accelerator (C), a substance which is solid at 25 ° C. and has a pKa of 1 to 20 is preferable, and a substance which is solid at 25 ° C. and has a pKa of 5 to 20 is more preferable.
  • Organic substance (D) is a polymer (D1) having a structural unit having one metal coordination part capable of coordinating to the metal atom ⁇ , a monomer (D2) having one metal coordination part, the metal It may be any of organic substances (D3) having no coordination moiety.
  • a metal coordination part of organic substance (D) the thing similar to metal coordination part (beta) of organic substance (B) is mentioned.
  • the organic substance (D1) may be a polymer or a monomer.
  • the structure of the main chain portion of the polymer is not particularly limited, and examples thereof include a polyether structure, a polyolefin structure, a polyester structure, a polythiol structure, a polyamide structure and the like.
  • the main chain site may have any one of these structures or two or more.
  • Specific examples of the organic substance (D) include polymers having polyacrylic acid in the main chain, monocarboxylic acids such as acrylic acid, and epoxy resins.
  • the liquid medium (E) functions as a solvent or dispersion medium to enhance the formability of the composition I.
  • the liquid medium (E) is retained by the resin (F) to form a gel.
  • the liquid medium (E) is typically a liquid that volatilizes under temperature conditions within 50 to 200 ° C. and a volume loss from the composition is observed.
  • Examples of the liquid medium (E) include organic solvents such as dimethylformamide, water and the like. One of these liquid media (E) may be used alone, or two or more thereof may be used in combination.
  • the resin (F) is a resin capable of holding the liquid medium (E).
  • the composition I contains the resin (F)
  • the composition I can be gelled by the liquid medium (E).
  • the gel composition I can be easily formed by a method such as extrusion or coater.
  • Specific examples of the resin (F) include polyacrylic acid, polyacrylate, polyester, isobutylene-isoprene copolymer (butyl rubber), polystyrene and the like. One of these resins (F) may be used alone, or two or more thereof may be used in combination.
  • resin (F) is a polymer which does not have a metal coordination part.
  • the molecular weight of the resin (F) can be appropriately selected in consideration of moldability and the like.
  • the molecular weight of the resin (F) is preferably 10,000 or more, more preferably 20,000 to 3,000,000, and still more preferably 50,000 to 300,000 in terms of moldability.
  • the molecular weight of the resin (F) is a weight average molecular weight measured by GPC (gel permeation chromatography).
  • the other component (G) is a component which does not correspond to any of the substance (A), the organic substance (B), the coordination accelerator (C), the organic substance (D), the liquid medium (E) and the resin (F) .
  • component (G) for example, resin as an additive such as a plasticizer (however, except organic substance (B), coordination accelerator (C) and resin (F)) (for example, polyvinyl isobutyl ether etc.), inorganic A filler and its surface treatment agent etc. are mentioned.
  • a plasticizer for example, except organic substance (B), coordination accelerator (C) and resin (F)
  • inorganic A filler and its surface treatment agent etc. are mentioned.
  • One of these components may be used alone, or two or more thereof may be used in combination.
  • composition I a zinc compound as the substance (A) and an organic substance having an aromatic ring having two or more carboxy groups as the organic substance (B) (for example, terephthalic acid, a structural unit represented by the formula (b1) (Polyethers), and dicyandiamide as a coordination accelerator (C).
  • organic substance (B) for example, terephthalic acid, a structural unit represented by the formula (b1) (Polyethers), and dicyandiamide as a coordination accelerator (C).
  • Such compositions can generate crystals by heat.
  • composition I comprises a zinc compound as the substance (A), an organic substance having an aromatic ring having two or more carboxy groups as the organic substance (B), and a ketoprofenamine salt as the coordination accelerator (C) It is a composition.
  • Such compositions can produce crystals by light.
  • composition I is a zinc compound as the substance (A), an organic substance having an aromatic ring having two or more carboxy groups as the organic substance (B), calcium oxide and iron as the coordination accelerator (C) It is a composition containing either one or both and pyridine. Such compositions can produce crystals with oxygen or moisture.
  • the content of the substance (A) in the composition I is preferably 20 to 80% by mass, and more preferably 30 to 70% by mass, with respect to the total amount of the composition I.
  • the content of the substance (A) is in the above range, the ratio of the obtained crystals becomes higher.
  • the content of the organic substance (B) in the composition I is preferably 10 to 50% by mass, more preferably 30 to 50% by mass, with respect to the total amount of the composition I.
  • the content of the organic substance (B) is in the above range, the ratio of the obtained crystals becomes higher.
  • the content of the coordination accelerator (C) is preferably 0.1 to 50% by mass, and more preferably 1 to 33% by mass, relative to the total amount of the composition I.
  • the effect of promoting the coordination of the metal coordination portion ⁇ to the metal atom ⁇ is sufficiently exhibited when the content of the coordination accelerator (C) is not less than the above lower limit, and is not more than the above upper limit, The crystal ratio to the total amount can be increased, and the function of the molded body is more excellent.
  • the content of the organic substance (D) in the composition I is preferably 0% by mass or more and less than 50% by mass, and more preferably 0 to 10% by mass, with respect to the total amount of the composition I.
  • the content of the organic substance (D) is equal to or less than the above upper limit, the moldability is more excellent.
  • the content of the liquid medium (E) in the composition I is preferably 0 to 99% by mass, more preferably 0 to 1% by mass, with respect to the total amount of the composition I.
  • the moldability of the composition I is more excellent in content of a liquid medium (E) being more than 0 mass%.
  • the content of the liquid medium (E) is preferably 10 to 99% by mass, more preferably 30 to 85% by mass, with respect to the total amount of the composition I.
  • the content of the liquid medium (E) is preferably 5 to 80% by mass, more preferably 10 to 65% by mass, relative to the total amount of the composition I.
  • the liquid solvent (E) can be dried.
  • the drying temperature and time are not particularly limited.
  • the amount of the liquid solvent (E) remaining in the composition I (molded product) after drying is preferably 0 to 10% by mass, and more preferably 0.1 to 3% by mass, with respect to the total amount of the composition I.
  • chipping of the cut surface may be difficult to occur when cutting or the like.
  • the content of the resin (F) is preferably 0 to 50% by mass, and more preferably 0 to 30% by mass, with respect to the total amount of the composition I.
  • the content of the resin (F) is equal to or less than the above upper limit, the ratio of the crystal after application of the stimulus becomes large, and the function of the molded body is more excellent.
  • the content of the resin (F) is more than 0% by mass, the effect of gelling the composition I is sufficiently exhibited.
  • the content of the other component (G) in the composition I is preferably 0 to 10% by mass, and more preferably 0 to 1% by mass, with respect to the total mass of the composition I.
  • the content of the other component (G) is less than or equal to the above upper limit, the ratio of crystals after applying a stimulus is increased, and the function of the molded article is more excellent.
  • a part of the metal coordination part of the organic substance (B) may be coordinated with a part of the metal atom ⁇ of the substance (A) to form a crystal (MOF).
  • 99 mass% or less is preferable with respect to the total mass of the composition I, and, as for content of the crystal body which the metal coordination part (beta) coordinates to the metal atom (alpha) in the composition I, 50 mass% or less is more preferable 10 mass% or less is further preferable, and 1 mass% or less is particularly preferable.
  • the lower limit of the content of the crystal in the composition I is not particularly limited, and may be 0% by mass.
  • the content of the crystalline substance can be measured by XRD (X-ray diffraction method). The content of the crystal can be adjusted by the ratio of the constituent materials of the composition (I) and the intensity of stimulation.
  • any of substance (A), organic substance (B), coordination accelerator (C), and, if necessary, organic substance (D), liquid medium (E), resin (F), and other components (G) There is a method of mixing one or more.
  • a mixing means of each component kneading
  • a liquid medium (E) is not used, you may mix uniformly each component of a granular (powder) with a well-known method.
  • the order of mixing of the components is not particularly limited.
  • the conditions at the time of mixing the coordination accelerator (C) are conditions under which the coordination accelerator (C) does not react or undergo phase transition.
  • All the components may be mixed at one time under the condition that the coordination accelerator (C) does not react or undergo phase transition.
  • a part or all of the components other than the coordination promoter (C) is mixed, the obtained mixture, the coordination promoter (C), and the remaining components as necessary, the coordination promoter (C) It may mix on the conditions which do not react or phase transition.
  • a mixture of components other than the coordination accelerator (C) is prepared in advance, and just before the preparation of a molded product (Y) described later, only the coordination accelerator (C) is added to the mixture of the other components. May be
  • the conditions under which the coordination accelerator (C) does not react or undergo phase transition can be appropriately selected according to the type of coordination accelerator (C).
  • mixing may be performed under a lower temperature environment than the temperature at which the reaction or phase transition occurs.
  • the low temperature environment may be, for example, a temperature of -50 ° C. or less at which the coordination promoter (C) reacts or phase transitions.
  • the coordination accelerator (C) When the coordination accelerator (C) is reacted or phase-transformed by light, it may be mixed in a light-shielded environment.
  • the coordination accelerator (C) When the coordination accelerator (C) is reacted or phase-transformed by water, it may be mixed in a low humidity environment, for example, an environment with a relative humidity of 5% RH or less.
  • a low humidity environment for example, an environment with a relative humidity of 5% RH or less.
  • mixing may be performed in a low oxygen or oxygen-free environment, for example, in an inert gas atmosphere such as nitrogen gas or argon gas.
  • MOF can be generated even under a high pressure environment as in the solvothermal method. Yes, and can be stored as a moldable material.
  • the metal coordination part ⁇ of the organic substance (B) is difficult to coordinate to the metal atom ⁇ of the substance (A) unless it is in a high pressure environment in a closed space as used for the synthesis of MOF in the solvothermal method.
  • the coordination accelerator (C) does not promote coordination of the metal coordination portion ⁇ to the metal atom ⁇ before reacting or phase transition by stimulation.
  • the composition I can be preserved without forming crystals by placing the composition I in an environment in which the coordination accelerator (C) does not react or undergo phase transition.
  • the composition I can be shape
  • phase transition of the coordination accelerator (C) metal coordination to the metal atom ⁇ in the molded body is not necessary even in a high pressure environment in a closed space.
  • the coordination of part ⁇ proceeds to form a crystal.
  • a substance acting as a catalyst promoting the coordination of the metal coordination portion ⁇ to the metal atom ⁇ is generated by the reaction of the coordination accelerator (C)
  • the metal coordination portion ⁇ to the metal atom ⁇ Coordination proceeds.
  • the phase of the coordination accelerator (C) changes from solid to liquid, the freedom of movement of each component in the formed body increases, coordination of the metal coordination portion ⁇ to the metal atom ⁇ proceeds, and the crystalline form is formed. Generates.
  • Stimulation can be applied at the time of molding to produce crystals.
  • the stimulus to be applied it is also possible to adjust the amount of the coordination promoter (C) which reacts or causes phase transition to adjust the rate of formation of crystals.
  • C coordination promoter
  • a step of forming composition (I) described above to obtain a formed body (Y) (hereinafter also referred to as a forming step).
  • a molded body (Y) is stimulated to generate a crystal body in which the metal coordination portion ⁇ of the organic substance (B) is coordinated to the metal atom ⁇ of the substance (A), and the molded body containing the crystal body (Z)
  • a step of obtaining (hereinafter also referred to as a crystal formation step), It is a manufacturing method of a forming object containing.
  • Stimulation of the molded product (Y) causes a reaction or phase transition of the coordination accelerator (C), and coordination of the metal coordination portion ⁇ of the organic substance (B) to the metal atom ⁇ of the substance (A) It proceeds to form crystals. Thereby, a molded object (Y) turns into a molded object (Z) containing a crystalline body.
  • the shapes of the molded body (Y) and the molded body (Z) are not particularly limited.
  • it may be in the form of film, porous, honeycomb structure or the like.
  • molding the composition I is not specifically limited, A well-known shaping
  • the composition I when the composition I is solid, methods such as press molding, extrusion molding, injection molding and the like can be used.
  • the composition I is liquid or gel, methods such as extrusion molding and die coating can be used.
  • a concavo-convex structure may be formed in advance on the surface of a mold used for molding so that a compact having the concavo-convex structure on the surface may be obtained.
  • the concavo-convex structure for example, a shape in which a plurality of convex portions or concave portions are dispersed and disposed, a shape in which a plurality of convex lines or grooves are disposed in parallel (so-called line and space), a corrugated shape and the like can be mentioned.
  • a shape of a convex part or a convex part cylindrical shape, polygonal column shape, hemispherical shape, conical shape, polygonal pyramid shape etc. are mentioned, for example.
  • the following two effects are acquired by having an uneven
  • One is an increase in surface area. What is located in the surface of a molded object, the crystal body (MOF) in a molded object exhibits more functions.
  • the function of the crystal is mainly derived from its porosity. By increasing the surface area, the number of crystals located on the surface can be increased, and the crystals in the formed body can be used more.
  • Another effect is to generate turbulent flow of gas, liquid or the like on the surface of the molded body.
  • the function of the crystal includes adsorption, storage, separation, etc. of gas or liquid.
  • the gas or liquid to be adsorbed, stored or separated passes through the surface of the molded product, the gas or liquid flows as it is if the surface of the molded product is flat, so the gas near the surface of the molded product And the concentration of the liquid may decrease. If there is an uneven structure on the surface, turbulent flow of gas or liquid is generated there, and the gas or liquid near the surface is agitated. As a result, the concentration of the gas or liquid targeted for adsorption, storage, separation, etc. does not decrease on the surface of the molded body, and an effective function expression can be performed.
  • the concavo-convex structure preferably has a shape that achieves a surface area of 1.1 times or more with respect to a plane of the same size in top view.
  • the concavo-convex structure is easily broken.
  • the specific upper limit depends on the physical properties of the resin, it can not be generally determined, but for example, a line and space having a large aspect ratio (height / width) in the height direction to make the surface area more than 10 times the plane.
  • the concavo-convex structure tends to be unstable and weak.
  • the surface area of the concavo-convex structure is preferably 10 times or less of the surface area of the plane of the same size in top view. That is, the surface area of the concavo-convex structure is preferably 1.1 times to 10 times, and more preferably 1.2 times to 3 times the surface area of the plane of the same size in top view.
  • the concavo-convex structure effective for functional expression can be defined by simulation from the direction and speed of the flow of the gas or liquid to be treated, etc. However, the shape in which the plurality of convex portions are dispersed and arranged, the flow direction Line and space are preferred.
  • the concavo-convex structure preferably includes a regular periodic structure in that the flow of gas or liquid is easily spread over the entire surface of the compact.
  • the regular periodic structure is also preferable in terms of ease of manufacture.
  • a plurality of structures (convex portions, concave portions, ridges, grooves, etc.) of the same size are arranged at a constant pitch in a predetermined direction in the plane of the surface of the molded body.
  • the arrangement direction of the plurality of structures may be one direction or two or more directions.
  • the sizes of the plurality of structures constituting the regular periodic structure are selected in accordance with the target gas or liquid. From the viewpoint of formability, the width in the arrangement direction (diameter of convex portion or concave portion, width of convex streak or groove, etc.) is properly within the range of 20 nm to 1 mm.
  • the aspect ratio in the height direction is preferably 10 or less from the viewpoint of durability.
  • the pitch can be, for example, 20 nm to 5 mm.
  • the forming step may be performed under an atmospheric pressure environment or under a pressurized environment.
  • the pressure for carrying out the forming step is preferably 1 to 10000 atm, more preferably 1 to 100 atm. If pressure is below the said upper limit, it is not necessary to use an airtight container like the solvothermal method, and productivity of a molded object (Z) is excellent.
  • the forming step is preferably performed under the condition that the content of the crystalline substance in the obtained molded body (Y) is 99% by mass or less with respect to the total mass of the molded body (Y).
  • content of the said crystal body in a molded object (Y) 50 mass% or less is more preferable, 10 mass% or less is more preferable, 1 mass% or less is especially preferable. It is excellent in moldability as content of the said crystal body in molded object (Y) is below the said upper limit.
  • the lower limit of the content of the crystal in the molded body (Y) is not particularly limited, and may be 0% by mass.
  • the forming step is preferably performed under the condition that the coordination accelerator (C) in the composition I does not react or cause phase transition.
  • the conditions under which the coordination accelerator (C) does not react or undergo phase transition are as described above.
  • the stimulus given to the formed body (Y) in the crystal formation step is a stimulus for reacting or phase-shifting the coordination accelerator (C), and is preferably at least one selected from the group consisting of heat, light, water and oxygen.
  • the stimulation to cause reaction or phase transfer of the coordination accelerator (C) may be one or two or more.
  • the heat may be, for example, 40 to 500 ° C.
  • Examples of the light include ultraviolet light, visible light, infrared light and the like.
  • the irradiation amount of light can be suitably selected according to the kind of light, the kind of coordination accelerator (C), etc., for example, can be made into 1 mJ / cm ⁇ 2 > or more of ultraviolet rays with a wavelength of 360 nm.
  • Examples of combining two or more stimuli include a method of contacting with hot water, a method of exposing to steam, a method of heating or light irradiation in an atmosphere containing oxygen, and the like.
  • the crystal formation step may be performed under an atmospheric pressure environment or under a pressurized environment.
  • the pressure for carrying out the crystal formation step is preferably 1 to 10000 atm, more preferably 1 to 100 atm. If pressure is below the said upper limit, it is not necessary to use an airtight container like the solvothermal method, and productivity of a molded object (Z) is excellent.
  • the content of the above-mentioned crystal in the compact (Z) is preferably 0.1 mass% or more. 1 mass% or more is more preferable, 10 mass% or more is further more preferable, and, as for content of the said crystal body in a molded object (Z), 30 mass% or more is especially preferable. It is excellent in the functionality as a porous body as content of the above-mentioned crystal body in a forming object (Z) is more than the above-mentioned lower limit.
  • the upper limit of the content of the above-mentioned crystals in the molded body (Z) is not particularly limited, and may be, for example, 50% by mass.
  • the content of the above-mentioned crystal in the formed body (Z) is preferably 0.1% by mass to 50% by mass.
  • the content of the crystalline substance in the molded body (Z) is more preferably 1% by mass to 50% by mass, further preferably 10% by mass to 50% by mass, and particularly preferably 30% by mass to 50% by mass. 1 mass% or more is preferable, and, as for the difference of content of the said crystal body in molded object (Z), and content of the said crystal body in molded object (Y), 10 mass% or more is more preferable.
  • the obtained formed body (Z) is subjected to washing of the formed body (Z) with a liquid, surface treatment with a coating agent, and surface physics for exposing embedded crystals.
  • Treatment such as surface shaping treatment for forming a concavo-convex structure on the surface of the molded body may be performed.
  • the composition I contains a resin component (organic substance (B), resin (F), etc. which is a polymer), in the compact (Z) obtained in the crystal formation step, a part of the crystal (MOF) is a resin Buried under The surface physical treatment is applied to the molded body (Z) to remove the resin film on the surface layer, whereby the embedded crystal is exposed to the surface, and the function derived from the porosity of the crystal (adsorption function etc. Also described as "MOF function". For example, the gas adsorption function is greatly improved.
  • a resin component organic substance (B), resin (F), etc. which is a polymer
  • the surface physical treatment is not particularly limited as long as it does not damage the molded product, and known methods can be used. In order to expose the crystalline substance, it is only necessary to remove the resin thin film present on the crystalline substance, so a relatively mild surface physical treatment is preferable. Such surface physical treatments include corona treatment, plasma treatment, flame treatment and the like. These treatments can be suitably used to only activate the surface without causing fatal damage to the molded body. However, the surface physical treatment is not limited to these methods, and a physical surface roughening method such as sandblasting, a method of applying a strong electrical stress such as arc discharge, and the like can also be used according to the purpose. It is preferable to set the specific processing conditions by actually processing the formed body and checking it.
  • the molded product obtained by the manufacturing method of the present embodiment preferably has a MOF ratio exposed to the surface (hereinafter also referred to as “surface exposed MOF ratio”) of 5 to 98%.
  • the surface exposed MOF ratio is an index showing the ratio of the portion where the MOF (crystal) is exposed in the surface of the molded body, and is obtained by the following equation (1). If the surface exposure MOF ratio is equal to or more than the above lower limit value, the MOF function is more excellent. When the surface exposure MOF ratio is equal to or less than the above upper limit value, the MOF is less likely to be damaged or dropped, and the durability of the MOF function is excellent.
  • the surface exposed MOF ratio is more preferably 10 to 90%, further preferably 15 to 80%, and particularly preferably 46 to 80%.
  • A shows the quantity (atm%) of the metal atom derived from MOF in the surface of a molded object measured by X-ray photoelectron spectroscopy (hereinafter also referred to as “XPS”)
  • B shows the quantity (atm%) of the metal atom in MOF.
  • the amount A of metal atoms by XPS is a ratio to the total atomic weight (100 atm%) of an atom having an atomic weight of lithium or more, which is measured by XPS. The details of the method of measuring the amount A of metal atoms will be described in Examples described later.
  • the amount B of metal atoms in the MOF is a ratio to the total atomic weight (100 atm%) of an atom having an atomic weight of lithium or more, which constitutes the MOF.
  • the amount B of metal atoms is calculated from the composition formula of MOF.
  • the value of B is a weighted average of the amount of metal atoms of each MOF, with the mass of each MOF as a weight.
  • the surface exposed MOF ratio can be adjusted by the content of the crystal in the formed body, the condition of the surface physical treatment to be applied to the formed body, and the like.
  • the surface exposure MOF ratio can be easily confirmed by performing elemental analysis of the surface of the molded product with an energy dispersive X-ray analysis (EDX) apparatus attached to a scanning electron microscope (SEM).
  • EDX energy dispersive X-ray analysis
  • SEM scanning electron microscope
  • the approximately central portion of the formed body (laminate or sheet) is cut into a square of 10 mm square and a thickness of 5 mm under the following conditions, and used as a measurement sample.
  • a range of 1 ⁇ 2 mm near the center is taken as a measurement target surface, and the amount A (atm%) of metal atoms (Zn or Zr) on the measurement target surface is measured.
  • the surface exposed MOF ratio (%) is calculated by the above equation (1).
  • XPS measurement conditions A wide spectrum and a narrow spectrum of an assumed element are measured using an X-ray source AlK ⁇ (monochrome), and atm% is calculated from these results.
  • the concavo-convex structure formed on the surface of the molded body by the surface shaping process is as described above.
  • the surface shaping processing method ie, the formation method of an uneven structure
  • a general method can be used. For example, a method of pressing a mold having a concavo-convex structure on the surface against the surface of a compact under heating to transfer the concavo-convex structure, a method of laser cutting the surface of the compact, and the like can be mentioned.
  • a nanoimprint technique it is preferable to use a nanoimprint technique.
  • the nanoimprint technology can be broadly classified into thermal nanoimprint technology that heats and presses the mold, photo nanoimprint that molds and hardens the photocurable resin material in a transparent mold, and relief that has good releasability such as silicone.
  • thermal nanoimprint technology that heats and presses the mold
  • photo nanoimprint that molds and hardens the photocurable resin material in a transparent mold
  • relief that has good releasability such as silicone.
  • a microcontact print, etc. in which a molded body is attached and printed on a necessary part, and any method can be suitably used in the present invention.
  • a photocurable resin material the composition containing polymeric components, such as a monomer and an oligomer, and a photoinitiator is mentioned, for example.
  • the polymerizable component may be an organic substance (B).
  • Examples of the organic substance (B) as the polymerizable component include an organic substance having a metal coordination portion ⁇ and a functional group which causes a curing reaction by a photopolymerization initiator.
  • Examples of the functional group that causes a curing reaction by the photopolymerization initiator include a radically polymerizable unsaturated bond.
  • Specific examples of the compound include (meth) acrylic acid esters and styrenic compounds. In particular, for curing, polyfunctional (meth) acrylates having a plurality of polymerizable functional groups, divinylbenzene compounds and the like can be mentioned.
  • the composition I is stimulated, and the metal coordination part ⁇ of the organic substance (B) is coordinated to the metal atom ⁇ of the substance (A)
  • a manufacturing method of a forming object including a process (it is hereafter described also as a forming and crystal formation process.)
  • a forming object (Z) containing a forming object and forming a forming object crystal body.
  • Stimulation of the composition I at the time of molding of the composition I causes a reaction or phase transition of the coordination accelerator (C), and the metal coordination portion ⁇ of the organic substance (B) to the metal atom ⁇ of the substance (A)
  • Coordination proceeds to form crystals.
  • a compact (Z) containing a crystalline body is obtained.
  • molding the composition I can use the well-known shaping
  • the stimulus given to the composition I is, as described above, a stimulus for reacting or phase-shifting the coordination promoter (C), and is preferably at least one selected from the group consisting of heat, light, water and oxygen.
  • the molding and crystal formation process may be performed under an atmospheric pressure environment or may be performed under a pressurized environment.
  • the pressure at the time of performing the molding and crystal formation step is preferably 1 to 10000 atm, and more preferably 1 to 10 atm. If pressure is below the said upper limit, it is not necessary to use an airtight container like the solvothermal method, and productivity of a molded object (Z) is excellent.
  • the content of the above-mentioned crystal in the molded body (Z) is preferably 0.1 mass% or more. More preferable content of the said crystal body in a molded object (Z) is the same as that of the above. 1 mass% or more is preferable, and, as for the difference of content of the said crystal body in molded object (Z), and content of the said crystal body in the composition I before shaping
  • the obtained molded body (Z) is subjected to washing of the molded body (Z) with a liquid, surface processing with a coating agent, and for exposing embedded crystalline bodies.
  • Treatments such as surface physical treatment and surface shaping treatment for forming a concavo-convex structure on the surface of the molded product may be performed.
  • the metal coordination portion ⁇ of the organic substance (B) coordinates to the metal atom ⁇ of the substance (A) Crystal, that is, MOF.
  • the formed body (Z) may or may not contain a coordination accelerator (C).
  • a compact (Z) in which the amount of the coordination promoter (C) is reduced or which does not contain the coordination promoter (C) is obtained.
  • a crystal formed by coordination of the metal coordination portion ⁇ of the organic substance (B) to the metal atom ⁇ of the substance (A), and the coordination accelerator (C) It is a molded object containing and.
  • the molded article of the present embodiment can be obtained by the method for producing a molded article of the second or third aspect described above.
  • the adsorption performance of a molded object can be evaluated using a BET specific surface area as an index.
  • the BET specific surface area is a specific surface area measured by the BET method using nitrogen as an adsorption gas. The measurement can be performed using a BET specific surface area meter (manufactured by Shimadzu Corporation).
  • the resulting molded product can be developed for various applications, specifically, gas separation, gas storage, sensor, DDS (drug delivery system), electromagnetic wave shield, selective catalyst, dielectric, porous single metal precursor
  • a detection system a precursor of a porous metal oxide, a detection system, a capacitor, an electrode and the like can be mentioned.
  • a substance containing at least one metal atom (hereinafter also referred to as metal atom ⁇ 2) selected from the group consisting of zinc, copper, cobalt, chromium, aluminum, niobium, zirconium, cadmium, nickel, vanadium, titanium and molybdenum (hereinafter also referred to as metal atom ⁇ 2) A2), It has two or more stimuli-responsive metal coordination units ⁇ 3 in which a metal coordination unit capable of coordinating to the metal atom ⁇ 2 (hereinafter also referred to as metal coordination unit ⁇ 2) is protected by a protecting group, and the protecting group is a stimulus And an organic substance (B2) which is a deprotectable group when And a composition containing the compound (hereinafter also referred to as a composition II).
  • the substance (A2) may be the same as the substance (A) except that the metal atom ⁇ is a metal atom ⁇ 2.
  • the organic substance (B2) may be the same as the organic substance (B) except that the metal coordination part ⁇ is a metal coordination part ⁇ 2 and the metal coordination part ⁇ 2 is protected by protection.
  • MOF can be generated without using a high pressure environment as in the solvothermal method, and storage as a moldable material is possible. It is.
  • the metal coordination portion ⁇ 2 of the organic substance (B2) is easily coordinated to the metal atom ⁇ 2 of the substance (A2). Therefore, when the metal coordination portion ⁇ 2 is not protected by a protective group, MOF generation rapidly proceeds even in a non-high pressure environment as in the solvothermal method, and can not be stored as a moldable material.
  • the composition II can be molded without generating a crystal.
  • the resulting molded body is stimulated to deprotect the protective group of the stimulus-responsive metal coordination portion ⁇ 3 to form the metal coordination portion ⁇ 2, the molding is performed even in a high pressure environment in a closed space.
  • the coordination of the metal coordination portion ⁇ 2 to the metal atom ⁇ 2 proceeds in the body to form a crystal.
  • Stimulation can be applied at the time of molding to produce crystals.
  • the amount of protecting groups to be deprotected can be adjusted to control the rate of formation of crystals. In this way, a shaped body containing crystals is obtained. Since the crystals are formed after molding or at the time of molding, breakage of the crystals due to a load applied to the crystals at the time of molding can be suppressed. Therefore, the functions of the crystals in the molded body can be sufficiently expressed.
  • the protective group is not particularly limited as long as it can be eliminated by an intended stimulus.
  • metal coordination part (beta) 2 of organic substance (B2) is a carboxy group
  • well-known protecting groups such as a benzyl group, an allyl group, diphenylmethyl group.
  • the introduction of the protective group and the removal of the protective group can be carried out by known methods. For example, the method (WO2009 / 113322) etc. which protect by esterifying a carboxy group with a photocleavable protective group, and deprotect by light irradiation can be employ
  • Composition II also contains at least one component selected from the group consisting of the coordination accelerator (C), the organic substance (D), the liquid medium (E) resin (F) and the other components (G) described above. It may be done. The content of these components may be the same as in the case of composition I.
  • the production of a molded article using composition II can be carried out by the same procedure as the production of a molded article using composition I.
  • the composition II instead of the composition I in the manufacturing method of the second or third aspect, it is possible to obtain a formed body (Z2) containing crystals.
  • Example 1 0.34 g of terephthalic acid was dissolved in 40 g of dimethylformamide, then 1.21 g of zinc nitrate was added, and the solution was stirred until it was completely dissolved. Next, 1 g of epoxy resin was added to this solution and stirred vigorously for 5 minutes, and then 2.0 g of dicyandiamide was added and stirred for 5 minutes to obtain a solution composition. Preparation of the above composition was performed at room temperature. As the epoxy resin, a phenoxy resin (grade name 1256) manufactured by Mitsubishi Chemical Corporation was used. The resulting composition was coated by a coater to a thickness of 100 ⁇ m and dried by heating at 80 ° C. for 5 minutes to obtain a flexible film (shaped body) in the form of a film.
  • the epoxy resin a phenoxy resin (grade name 1256) manufactured by Mitsubishi Chemical Corporation was used.
  • the resulting composition was coated by a coater to a thickness of 100 ⁇ m and dried by heating at 80 ° C. for 5 minutes to obtain
  • Example 2 Example 1 was repeated except that in place of terephthalic acid, polyether of terephthalic acid (weight average molecular weight 1000) (polyether having a constitutional unit represented by the above formula (b1)) was used instead of terephthalic acid. The same operation was performed to obtain a solution-like composition, and a film-like flexible film (molded body) was obtained. No microcrystals were found in this film. The film was heated at 180 ° C. for 30 minutes to obtain a film-like film in which white crystallites were observed.
  • polyether of terephthalic acid weight average molecular weight 1000
  • polyether having a constitutional unit represented by the above formula (b1) was used instead of terephthalic acid.
  • the same operation was performed to obtain a solution-like composition, and a film-like flexible film (molded body) was obtained. No microcrystals were found in this film.
  • the film was heated at 180 ° C. for 30 minutes to obtain a film-like film in which white crystallites
  • Example 1 The same procedure as in Example 1 is carried out except that dicyandiamide is not added after adding an epoxy resin to the solution and stirring in Example 1, to obtain a solution-like composition, and a film-like flexible film (formed body) Got). No microcrystals were found in this film. The obtained film was heated at 180 ° C. for 30 minutes to obtain a film-like film. No microcrystals were found in this film.
  • Comparative example 2 In Comparative Example 1, an epoxy resin was added to the solution and stirred, and then 2.5 g of triethylamine was added and stirred for 5 minutes to obtain a solution-like composition. White crystallites were observed in this composition. The resulting composition was coated by a coater to a thickness of 100 ⁇ m and dried by heating at 80 ° C. for 5 minutes to obtain a flexible film (shaped body) in the form of a film. White microcrystals were observed in this film. In addition, this film had an uneven distribution of crystals in the film. It is considered that this is because crystallization proceeds in a solution state, crystals can not be sufficiently dispersed in the composition, and the crystals gather in the drying step.
  • Example 3 The same procedure as in Example 1 is carried out except that 0.33 g of diphenyl is used instead of terephthalic acid in Example 1 to obtain a solution-like composition, and a film-like flexible film (molded body) I got This film was almost the same as in Example 1, and no microcrystalline was observed. When the obtained film was heated at 180 ° C. for 30 minutes, there was no change in the film.
  • Example 4 The same procedure as in Example 1 is carried out except that rhenium oxide (VII) is used instead of zinc nitrate in Example 1 to obtain a solution-like composition, and a film-like flexible film (formed body) Got). This film was the same as in Example 1, and no microcrystalline was observed. When the obtained film was heated at 180 ° C. for 30 minutes, there was no change in the film.
  • VII rhenium oxide
  • Example 3 The same procedure as in Example 1 is carried out except that the drying conditions are changed and the amount of dimethylformamide remaining in the dried membrane is 10% with respect to the total mass of the membrane in Example 1 The following composition was obtained to obtain a film-like flexible film (molded body). This film was a flexible film substantially similar to that of Example 1, and no microcrystalline was observed. The obtained film was heated at 180 ° C. for 30 minutes to obtain a film-like film in which white crystallites were observed.
  • Example 4 In Example 3, except that 0.2 g of polyacrylic acid was added before solvent drying, the same operation as in Example 3 was carried out to obtain a solution-like composition, and a film-like flexible film (formed body) Got). This film was a flexible film substantially similar to that of Example 3, and no crystallite was observed. The obtained film was heated at 180 ° C. for 30 minutes to obtain a film-like film in which white crystallites were observed.
  • Example 5 The same procedure as in Example 1 is carried out except that ketoprofen triethylamine salt is added instead of dicyandiamide in Example 1, to obtain a solution-like composition, and a film-like flexible film (molded body) is obtained.
  • the This film was a flexible film substantially similar to that of Example 1, and no microcrystalline was observed.
  • the film obtained was irradiated with ultraviolet light (mercury lamp, 20 J / cm 2 ) to obtain a film-like film in which white crystallites were observed.
  • Example 6 The same procedure as in Example 1 is carried out except that 1 g of calcium oxide and 1.25 g of pyridine are added instead of dicyandiamide in Example 1, to obtain a solution-like composition, and a film-like flexible film ( A molded body was obtained. After formation of the film, the obtained film was sandwiched between release films. This film was a flexible film substantially similar to that of Example 1, and no microcrystalline was observed. The release film was peeled off from the obtained film and allowed to stand at room temperature for 1 day to obtain a film-like film in which white microcrystals were observed.
  • Example 7 The same procedure as in Example 6 is carried out except that 1 g of iron powder and 1.25 g of pyridine are added instead of calcium oxide and pyridine in Example 6, to obtain a solution-like composition, and a release film is used. A sandwiched film-like flexible film (molded body) was obtained. This film was a flexible film substantially similar to that of Example 6, and no crystallites were observed. The release film was peeled off from the obtained film and allowed to stand at room temperature for 1 day to obtain a film-like film in which white microcrystals were observed.
  • Table 1 shows the composition and the presence or absence of crystal formation of the films (molded articles) obtained in the above Examples 1 to 7 and Comparative Examples 1 to 4 and the presence or absence of crystals formation on the molded articles after stimulation.
  • Example 8 A metal roll having a line and space structure with a pitch of 20 ⁇ m and a depth of 10 ⁇ m on the surface is pressed against the film-like flexible film (formed body) obtained in Example 1 to obtain a formed film with a shaped surface.
  • the Microscopic observation confirmed that a line and space having a pitch of about 20 ⁇ m and a depth of about 10 ⁇ m was formed on the surface of the formed film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Forests & Forestry (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

亜鉛、コバルト、ニオブ、ジルコニウム、カドミウム、銅、ニッケル、クロム、バナジウム、チタン、モリブデン、マグネシウム、鉄及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子を含む物質(A)(ただし、金属有機構造体を除く。)と、前記金属原子に配位して結晶体を生成可能な金属配位部を2つ以上有し、前記金属配位部が、カルボキシ基、及び金属有機構造体部位からなる群から選ばれる少なくとも1種である有機物(B)と、刺激により反応又は相転移し、前記物質(A)の金属原子への前記有機物(B)の金属配位部の配位を促進可能となる配位促進剤(C)と、を含む組成物。

Description

組成物、成形体の製造方法及び成形体
 本発明は、組成物、成形体の製造方法及び成形体に関する。
 本願は、2017年8月22日に、日本に出願された特願2017-159394号、及び2017年9月26日に、日本に出願された特願2017-184667号に基づき優先権を主張し、その内容をここに援用する。
 金属有機構造体(Metal Organic Framework;以下、「MOF」とも記す。)は、金属イオンと有機架橋配位子(多座配位子)との配位結合及び自己集合を経て形成される結晶性の多孔質物質であり、均一なミクロ孔と高い比表面積を有する。近年、MOFについてガス分離、ガス貯蔵、センサ、DDS(ドラッグデリバリーシステム)、電磁波シールド、選択的触媒、誘電体、さらにポーラスな単一金属の前駆体、ポーラスな金属酸化物の前駆体等の様々な用途への利用が検討されている。
 有機架橋配位子としては通常、1,4-ベンゼンジカルボン酸等の剛直な分子構造の化合物が用いられている。有機架橋配位子としてポリマーを用いることも提案されている(非特許文献1、特許文献1)。
 金属イオンと有機架橋配位子との組み合わせによって配位結合の生じやすさは異なる。配位結合が生じにくい場合、MOFの合成にはソルボサーマル法(水熱法ともいう。)が汎用されている。
 しかし、ソルボサーマル法では、密閉空間における高圧環境が必要になるため、MOFの生産性が低い。また、MOFをマイクロサイズ以下の微結晶粒子、又は沈殿及び凝縮による薄層フィルムとしてしか得られず、成形性に乏しい。
 Zn(NO及び1,4-ベンゼンジカルボン酸からMOFを合成する際にトリエチルアミンを加える手法が提案されている(非特許文献2)。トリエチルアミンを加えることにより、大気圧環境で反応を進行させることができ、MOFの生産性が高まる。
 しかし、この手法では、反応が急激に進行するため、結晶生成速度をコントロールすることが難しく、MOFをマイクロサイズ以下の微結晶粒子としてしか得られず、成形性に乏しい。
 MOFを含む成形体を得るために、微結晶粒子状のMOFをバインダとブレンドし成形すると、ブレンド時又は成形時にMOFが破損する、MOFとバインダとが均一に混ざらない、ブレンドしたMOFが樹脂から容易に剥離してしまう、多孔質表面を樹脂が覆うことにより、多孔質の機能を利用できない等の問題が生じる。
米国特許出願公開第2016/0361702号明細書
Angew. Chem. Int. Ed. 2015, 54, 6152-6157 Microporous and Mesoporous Materials 58 (2003) 105-114
 本発明は、ソルボサーマル法のような高圧環境でなくてもMOFを生成可能であり、かつ成形可能な材料として保存が可能である組成物、これを用いた成形体の製造方法及び成形体を提供することを目的とする。
 本発明は以下の態様を有する。
 〔1〕亜鉛、コバルト、ニオブ、ジルコニウム、カドミウム、銅、ニッケル、クロム、バナジウム、チタン、モリブデン、マグネシウム、鉄及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子を含む物質(A)(ただし、金属有機構造体を除く。)と、前記金属原子に配位して結晶体を生成可能な金属配位部を2以上有し、前記金属配位部が、カルボキシ基、及びMOF部位からなる群から選ばれる少なくとも1種である有機物(B)と、刺激により反応又は相転移し、前記物質(A)の金属原子への前記有機物(B)の金属配位部の配位を促進可能となる配位促進剤(C)と、を含む組成物。
 〔2〕前記刺激が、熱、光、水及び酸素からなる群から選ばれる少なくとも1種である〔1〕の組成物。
 〔3〕前記配位促進剤(C)は、25℃において固体であり、pKaが1~20である塩基性物質である、〔1〕又は〔2〕の組成物。
 〔4〕前記配位促進剤(C)は、アミン-ボラン錯体、ジシアンジアミド、ヒドラジド、イミン、オキサゾリジン、ピリジン、室温で結晶状態の三級アミン、ケトプロフェンアミン塩、酸化カルシウム、及び鉄からなる群から選ばれる少なくとも1種である〔1〕~〔3〕のいずれかの組成物。
 〔5〕前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体の含有量が99質量%以下である〔1〕~〔4〕のいずれかの組成物。
 〔6〕前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体の含有量が50質量%以下である〔1〕~〔4〕のいずれかの組成物。
 〔7〕前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体の含有量が10質量%以下である〔1〕~〔4〕のいずれかの組成物。
 〔8〕前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体の含有量が1質量%以下である〔1〕~〔4〕のいずれかの組成物。
 〔9〕前記有機物(B)が、前記金属配位部を1つ以上有する芳香環を有する〔1〕~〔8〕のいずれかの組成物。
 〔10〕前記有機物(B)が、前記金属配位部を2つ以上有する芳香環を有する〔1〕~〔8〕のいずれかの組成物。
 〔11〕前記金属配位部がカルボキシ基である〔10〕の組成物。
 〔12〕前記有機物(B)の分子量が100以上である〔1〕~〔11〕のいずれかの組成物。
 〔13〕前記有機物(B)が、主鎖部位と、前記主鎖部位に結合したペンダント部位とを有し、前記ペンダント部位に前記金属配位部を含む重合体である〔1〕~〔12〕のいずれかの組成物。
 〔14〕前記主鎖部位が、ポリエーテル構造、ポリオレフィン構造、ポリエステル構造、ポリチオール構造及びポリアミド構造のいずれか1つ以上の構造を含む〔13〕の組成物。
 〔15〕前記物質(A)が、金属単体、及び金属の価数が1~5価である金属化合物からなる群から選ばれる少なくとも1種である〔1〕~〔14〕のいずれかの組成物。
 〔16〕前記金属原子に配位して結晶体を生成可能な金属配位部を1つ有する構成単位を有する重合体、前記金属配位部を1つ有する単量体、及び前記金属配位部を有しない有機物からなる群から選ばれる少なくとも1種の有機物(D)をさらに含む〔1〕~〔15〕のいずれかの組成物。
 〔17〕液状媒体(E)をさらに含む〔1〕~〔16〕のいずれかの組成物。
 〔18〕液状媒体(E)の含有量が99質量%以下である〔17〕の組成物。
 〔19〕液状媒体(E)を保持可能な樹脂(F)をさらに含む〔17〕または〔18〕の組成物。
 〔20〕〔1〕~〔19〕のいずれかの組成物を成形し、成形体(Y)を得る工程と、
 前記成形体(Y)に刺激を与え、前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体を生成させ、前記結晶体を含む成形体(Z)を得る工程と、を含む成形体の製造方法。
 〔21〕前記刺激が、熱、光、水及び酸素からなる群から選ばれる少なくとも1種である〔20〕の成形体の製造方法。
 〔22〕前記成形体(Y)中の前記結晶体の含有量が99質量%以下である〔20〕又は〔21〕の成形体の製造方法。
 〔23〕前記成形体(Z)を得る工程において、前記成形体(Z)中の前記結晶体の含有量を0.1質量%以上とする〔20〕~〔22〕のいずれかの成形体の製造方法。
 〔24〕〔1〕~〔19〕のいずれかの組成物を成形しつつ、前記組成物に刺激を与え、前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体を生成させ、前記結晶体を含む成形体(Z)を得る工程を含む成形体の製造方法。
 〔25〕亜鉛、コバルト、ニオブ、ジルコニウム、カドミウム、銅、ニッケル、クロム、バナジウム、チタン、モリブデン、マグネシウム、鉄及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子を含む物質(A)(ただし、金属有機構造体を除く。)の前記金属原子に、カルボキシ基、及びMOF部位からなる群から選ばれる少なくとも1種の金属配位部を2つ以上有する有機物(B)の前記金属配位部が配位してなる結晶体と、刺激により反応又は相転移し、前記物質(A)の金属原子への前記有機物(B)の金属配位部の配位を促進可能となる配位促進剤(C)と、
を含む成形体。
 本発明によれば、ソルボサーマル法のような高圧環境でなくてもMOFを生成可能であり、かつ成形可能な材料として保存が可能である組成物、これを用いた成形体の製造方法及び成形体を提供できる。
〔組成物〕
 本発明の第1の態様は、物質(A)と有機物(B)と配位促進剤(C)とを含む組成物(以下、組成物Iとも記す。)である。
 物質(A)は、亜鉛、コバルト、ニオブ、ジルコニウム、カドミウム、銅、ニッケル、クロム、バナジウム、チタン、モリブデン、マグネシウム、鉄及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子を含む物質(ただし、金属有機構造体を除く。)である。
 有機物(B)は、物質(A)の金属原子に配位して結晶体を生成可能な金属配位部を2つ以上有する有機物である。有機物(B)の金属配位部は、カルボキシ基、及び金属有機構造体部位からなる群から選ばれる少なくとも1種である。
 配位促進剤(C)は、刺激により反応又は相転移し、前記物質(A)の金属原子への前記有機物(B)の金属配位部の配位を促進可能となる物質である。
 組成物Iは、必要に応じて、有機物(D)、液状媒体(E)、樹脂(F)、及びその他の成分(G)のいずれか1つ以上をさらに含むことができる。
 有機物(D)は、物質(A)の金属原子に配位して結晶体を生成可能な金属配位部を1つ有する構成単位を有する重合体、前記金属配位部を1つ有する単量体、及び前記金属配位部を有しない有機物からなる群から選ばれる少なくとも1種の有機物である(ただし、有機物(B)及び後述する樹脂(F)を除く。)。
 樹脂(F)は、液状媒体(E)を保持可能な樹脂である。
 なお、本明細書及び特許請求の範囲において、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
 <物質(A)>
 物質(A)は、亜鉛、コバルト、ニオブ、ジルコニウム、カドミウム、銅、ニッケル、クロム、バナジウム、チタン、モリブデン、マグネシウム、鉄及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子(以下、金属原子αとも記す。)を含む。物質(A)に含まれる金属原子αは1種でもよく2種以上でもよい。
 金属原子αとしては、イオン化したときの価数が1~5価であるものが好ましく、1~4価であるものがより好ましい。
 物質(A)は、金属単体であってもよく、金属化合物であってもよい。金属単体及び金属化合物それぞれにおける金属は、亜鉛、コバルト、ニオブ、ジルコニウム、カドミウム、銅、ニッケル、クロム、バナジウム、チタン、モリブデン、マグネシウム、鉄及びアルミニウムからなる群から選ばれる少なくとも1種である。金属化合物としては、硝酸塩、炭酸塩、ハロゲン化物塩、硫酸塩等の金属塩、金属酸化物、金属水酸化物等が挙げられる。金属塩は水和物であってもよい。
 物質(A)の具体例としては、亜鉛、ジルコニウム、クロム、アルミニウム、Zn(NO・6HO、Al(NO・9HO等が挙げられる。
 物質(A)としては、空気下の環境での安定性の点で、金属単体、及び金属の価数が1~5価である金属化合物からなる群から選ばれる少なくとも1種が好ましい。これらの金属単体及び金属化合物における金属としては、亜鉛、ジルコニウム、及びクロムからなる群から選ばれる少なくとも1種が好ましい。
 組成物Iに含まれる物質(A)は1種でもよく2種以上でもよい。
 <有機物(B)>
 有機物(B)は、カルボキシ基、及びMOF部位からなる群から選ばれる少なくとも1種の金属配位部(以下、金属配位部βとも記す。)を2つ以上有する。2つ以上の金属配位部βが金属原子αに配位することで、結晶体(MOF)が生成する。有機物(B)が有する2つ以上の金属配位部βは互いに同一であってもよく異なっていてもよい。
 金属配位部βのうちMOF部位としては、特に限定されず、公知のMOFであってよい。MOFには、複数の金属、金属酸化物、金属クラスタ又は金属酸化物クラスタ構造単位を備えたMOFが知られているが、これらに限定されるものではない。金属は、遷移金属及びベリリウムから選択することができる。より具体的な例としては、Zn、Cd、Hg、Be、Cu、Zr、Cr、Mo、V、Ti、Co等が挙げられる。
 複数の金属構造単位を有機架橋配位子で結合して、多孔質構造を形成することができる。隣接する金属構造単位同士を結合する有機架橋配位子は、金属に配位可能な金属配位部を2つ以上有する有機化合物であり、例えば1,3,5-トリス(4-カルボキシフェニル)ベンゼン(BTB)、1,4-ベンゼンジカルボン酸(BDC)、2,5-ジヒドロキシ-1,4-ベンゼンジカルボン酸(DOBDC)、シクロブチル-1,4-ベンゼンジカルボン酸(CB BDC)、2-アミノ-1,4-ベンゼンジカルボン酸(H2N BDC)、テトラヒドロピレン-2,7-ジカルボン酸(HPDC)、テルフェニルジカルボン酸(TPDC)、2,6-ナフタレンジカルボン酸(2,6-NDC)、ピレン-2,7-ジカルボン酸(PDC)、ビフェニルジカルボン酸(BPDC)、フェニール化合物を有する任意のジカルボン酸、3,3’,5,5’-ビフェニルテトラカルボン酸、イミダゾール、ベンズイミダゾール、2-ニトロイミダゾール、シクロベンズイミダゾール、イミダゾール-2-カルボキシアルデヒド、4-シアノイミダゾール、6-メチルベンズイミダゾール、6-ブロモベンズイミダゾール等が挙げられる。
 MOFの具体例としては、ZnO(1,3,5-ベンゼントリベンゾエート)で表される構造を含むMOF-177;IRMOF-Iとしても知られる、ZnO(1,4-ベンゼンジカルボキシレート)で表される構造を含むMOF-5;Mg(2,5-ジヒドロキシ-1,4-ベンゼンジカルボキシレート)で表される構造を含むMOF-74(Mg);Zn(2,5-ジヒドロキシ-1,4-ベンゼンジカルボキシレート)で表されるMOF-74(Zn);Cu(3,3’,5,5’-ビフェニルテトラカルボキシレート)で表される構造を含むMOF-505;ZnO(シクロブチル1,4-ベンゼンジカルボキシレート)で表される構造を含むIRMOF-6;ZnO(2-アミノ1,4ベンゼンジカルボキシレート)で表される構造を含むIRMOF-3;ZnO(テルフェニルジカルボキシレート)又はZnO(テトラヒドロピレン2,7-ジカルボキシレート)で表される構造を含むIRMOF-11;ZnO(2,6ナフタレンジカルボキシレート)で表される構造を含むIRMOF-8;Zn(ベンズイミダゾレート)(2-ニトロイミダゾレート)で表される構造を含むZIF-68;Zn(シクロベンズイミダゾレート)(2-ニトロイミダゾレート)で表される構造を含むZIF-69;Zn(ベンズイミダゾレート)で表される構造を含むZIF-7;Co(ベンズイミダゾレート)で表される構造を含むZIF-9;Zn(ベンズイミダゾレート)で表される構造を含むZIF-11;Zn(イミダゾレート-2-カルボキシアルデヒド)で表される構造を含むZIF-90;Zn(4-シアノイミダゾレート)(2-ニトロイミダゾレート)で表されるZIF-82;Zn(イミダゾレート)(2-ニトロイミダゾレート)で表されるZIF-70;Zn(6-メチルベンズイミダゾレート)(2-ニトロイミダゾレート)で表されるZIF-79;及びZn(6-ブロモベンズイミダゾレート)(2-ニトロイミダゾレート)で表されるZIF-81等が挙げられる。
 金属原子αと金属配位部βとの好ましい組み合わせの例として、金属原子αがZnであり、金属配位部βがカルボキシ基及びMOF部位のいずれかである組み合わせ、金属原子αがAlであり、金属配位部βがカルボキシ基及びMOF部位のいずれかである組み合わせ、金属原子αがZrであり、金属配位部βがカルボキシ基及びMOF部位のいずれかである組み合わせ等が挙げられる。
 有機物(B)は、配位能及び剛直性の点で、金属配位部βを1つ以上有する芳香環を有することが好ましく、金属配位部βを2つ以上有する芳香環を有することがより好ましい。上記芳香環が有する金属配位部βが1つである場合、有機物(B)が有する上記芳香環が2つ以上である。上記芳香環が有する金属配位部βが2つ以上である場合、各有機物(B)が有する上記芳香環は1つでもよく2つ以上でもよい。なお、金属配位部βが多いほど、得られる結晶体の剛直性が向上するが、金属配位部βが多すぎると結晶体が脆くなる場合がある。そのような場合、金属配位部βを3つ以下としてもよい。即ち、結晶体の剛直性と脆性のバランスをとる観点から、金属配位部βを1~3つの範囲内で適宜調整することができる。
 上記芳香環が有する金属配位部βとしては、配位能の点で、カルボキシ基が好ましい。このような芳香環としては、例えばジカルボキシベンゼン環、トリカルボキシベンゼン環等が挙げられる。
 なお、芳香環に結合していないカルボキシ基は、金属配位性が弱い。また、芳香環に結合していないカルボキシ基(例えばポリアクリル酸のカルボキシ基)は金属原子αに配位したとしても結晶体を生成しないのが通常である。結晶体を生成しないカルボキシ基は、金属配位部βには該当しない。
 有機物(B)は、重合体であってもよく、単量体(非重合体)であってもよい。
 重合体としては、例えば、主鎖部位と主鎖部位に結合したペンダント部位とを有し、ペンダント部位に金属配位部βを含む重合体、主鎖部位を有し、主鎖部位の末端に金属配位部βを含む重合体等が挙げられる。成形性の点で、主鎖部位と主鎖部位に結合したペンダント部位とを有し、ペンダント部位に金属配位部βを含む重合体が好ましい。
 主鎖部位の構造は特に限定されず、例えばポリエーテル構造、ポリオレフィン構造、ポリエステル構造、ポリチオール構造、ポリアミド構造等が挙げられる。主鎖部位はこれらの構造のいずれか1つを有してもよく2つ以上を有してもよい。
 重合体が、金属配位部βを1つ以上有する芳香環を有する場合、該芳香環は、主鎖部位に含まれていてもよく、ペンダント部位に含まれていてもよい。
 ペンダント部位に金属配位部βを含む重合体は、例えば、重合体を形成する単量体として金属配位部βを有する単量体を用いる方法等によって得ることができる。金属配位部βを含む単量体としては、例えば、後述する非重合体等が挙げられる。
 ペンダント部位にMOF部位を含む重合体は、重合体のペンダント部位とMOFとの重合反応によって得ることもできる。
 重合体である有機物(B)の具体例としては、下記式(b1)で表される構成単位を有するポリエーテル、ポリエチレン、ポリアミド等が挙げられる。
 重合体が有する金属配位部βの数は、例えば重合体を構成する構成単位1つ当り2つ以上であることが好ましく、2~4つであることがより好ましい。
Figure JPOXMLDOC01-appb-C000001
 
 ただし、nは5~8の整数を示す。
 非重合体である有機物(B)の具体例としては、1,3,5-トリス(4-カルボキシフェニル)ベンゼン、1,3,5-ベンゼントリカルボン酸、1,4-ベンゼンジカルボン酸、2,5-ジヒドロキシ-1,4-ベンゼンジカルボン酸、シクロブチル-1,4-ベンゼンジカルボン酸、2-アミノ-1,4-ベンゼンジカルボン酸、テトラヒドロピレン-2,7-ジカルボン酸、テルフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、ピレン-2,7-ジカルボン酸、ビフェニルジカルボン酸、3,3’,5,5’-ビフェニルテトラカルボン酸等が挙げられる。
 非重合体が有する金属配位部βの数は、例えば2~4つであってよい。
 有機物(B)の分子量は、成形性等を考慮して適宜選定し得る。
 有機物(B)の分子量は、成形性の点で、100以上が好ましい。
 有機物(B)が非重合体である場合、有機物(B)の分子量は、100~10000がより好ましく、100~1000がさらに好ましい。
 有機物(B)が重合体である場合、有機物(B)の分子量は、100~100000がより好ましく、100~10000がさらに好ましい。
 重合体の分子量は、GPC(ゲルパーミエーションクロマトグラフィ)により測定される重量平均分子量である。
 組成物Iに含まれる有機物(B)は1種でもよく2種以上でもよい。
 組成物Iの成形性がより優れる点で、有機物(B)は少なくとも重合体を含むことが好ましい。重合体と非重合体とを併用してもよい。
 有機物(B)中の重合体の含有量は、有機物(B)の総質量に対し、10~100質量%が好ましく、50~100質量%がより好ましい。
 <配位促進剤(C)>
 配位促進剤(C)は、刺激により反応又は相転移する。また、反応又は相転移した後に金属原子αへの金属配位部βの配位を促進可能となる。
 配位促進剤(C)の「反応」には、自己分子のみでの反応及び他の物質との反応が包含される。「相転移」は、典型的には、固体から液体へ変化することである。
 配位促進剤(C)を反応又は相転移させる刺激としては、生産性の点で、熱、光、水及び酸素からなる群から選ばれる少なくとも1種が好ましい。刺激については後で詳しく説明する。配位促進剤(C)を反応又は相転移させる刺激は1種でもよく2種以上でもよい。
 熱による反応又は相転移の例として、自己分子での分解、溶解が挙げられる。光による反応又は相転移の例として、自己分子での分解が挙げられる。水による反応又は相転移の例として、水和、酸化が挙げられる。酸素による反応又は相転移の例として、酸化が挙げられる。
 配位促進剤(C)としては、アミン-ボラン錯体、ジシアンジアミド、ヒドラジド、イミン、オキサゾリジン、ピリジン、三級アミン、ケトプロフェンアミン塩、酸化カルシウム、鉄等が挙げられる。
 上記の中でも、反応温度を比較的低くできる点で、アミン-ボラン錯体、ジシアンジアミド、ヒドラジド、イミン、オキサゾリジン、ピリジン、室温で結晶状態の三級アミン、ケトプロフェンアミン塩、酸化カルシウム、及び鉄からなる群から選ばれる少なくとも1種が好ましく、ジシアンジアミド、ヒドラジド、イミン、及びケトプロフェンアミン塩からなる群から選ばれる少なくとも1種がより好ましい。アミン-ボラン錯体を構成するアミンの具体例としては、トリエチルアミン等が挙げられる。本明細書において「室温」は15±15℃以内の温度である。室温で結晶状態の三級アミンの具体例としては、ジメチルパルミチルアミン、ジメチルステアリルアミン等が挙げられる。ケトプロフェンアミン塩の具体例としては、ケトプロフェントリエチルアミン塩等が挙げられる。
 配位促進剤(C)は、組成物の保存時に金属原子αへの金属配位部βの配位を促進しにくい点で、25℃において固体であることが好ましい。
 配位促進剤(C)は、触媒能の点で、pKaが1~20であることが好ましく、pKaが5~20であることがより好ましい。pKaは、25℃における値である。pKaが上記下限値以上であると、反応性がより優れる。pKaが上記上限値以下であると、反応性がより優れる。
 したがって、配位促進剤(C)としては、25℃において固体であり、pKaが1~20である物質が好ましく、25℃において固体であり、pKaが5~20である物質がより好ましい。
 <有機物(D)>
 組成物Iが有機物(D)を含む場合、組成物及びこれを用いた成形体をより強靭にすることができ、さらに設計性に富ませることができる。
 有機物(D)は、金属原子αに配位可能な金属配位部を1つ有する構成単位を有する重合体(D1)、前記金属配位部を1つ有する単量体(D2)、前記金属配位部を有しない有機物(D3)のいずれであってもよい。
 有機物(D)の金属配位部としては、有機物(B)の金属配位部βと同様のものが挙げられる。
 重合体(D1)において、金属配位部を1つ有する構成単位の具体例としては、アクリル酸単位、メタクリル酸単位、等が挙げられる。なお、重合体(D1)は、金属配位部を2つ以上有する構成単位を有しない。
 有機物(D3)は、有機物(B)と同様、重合体であってもよく、単量体であってもよい。重合体の主鎖部位の構造は特に限定されず、例えばポリエーテル構造、ポリオレフィン構造、ポリエステル構造、ポリチオール構造、ポリアミド構造等が挙げられる。主鎖部位はこれらの構造のいずれか1つを有してもよく2つ以上を有してもよい。
 有機物(D)の具体例としては、ポリアクリル酸を主鎖にもつ重合体、アクリル酸等のモノカルボン酸、エポキシ樹脂等が挙げられる。
 <液状媒体(E)>
 液状媒体(E)は、溶媒又は分散媒として機能し、組成物Iの成形性を高める。組成物Iが樹脂(F)を含む場合には、液状媒体(E)は、樹脂(F)に保持されてゲルを形成する。
 液状媒体(E)は、典型的には、50~200℃以内の温度条件下にて揮発し、組成物からの体積減少が認められる液体である。
 液状媒体(E)としては、例えばジメチルホルムアミド等の有機溶剤、水等が挙げられる。これらの液状媒体(E)はいずれか1種を単独で用いてもよく2種以上を併用してもよい。
 <樹脂(F)>
 樹脂(F)は、液状媒体(E)を保持可能な樹脂である。組成物Iが樹脂(F)を含む場合、液状媒体(E)によって組成物Iをゲル状にすることができる。ゲル状の組成物Iは、押し出し、コーター等の方法によって容易に成形できる。
 樹脂(F)の具体例としては、ポリアクリル酸、ポリアクリレート、ポリエステル、イソブチレン-イソプレン共重合体(ブチルゴム)、ポリスチレン等が挙げられる。これらの樹脂(F)はいずれか1種を単独で用いてもよく2種以上を併用してもよい。
 尚、樹脂(F)は、金属配位部を有しない重合体である。
 樹脂(F)の分子量は、成形性等を考慮して適宜選定し得る。
 樹脂(F)の分子量は、成形性の点で、1万以上が好ましく、2万~300万がより好ましく、5万~30万がさらに好ましい。
 樹脂(F)の分子量は、GPC(ゲルパーミエーションクロマトグラフィ)により測定される重量平均分子量である。
 <その他の成分(G)>
 その他の成分(G)は、物質(A)、有機物(B)、配位促進剤(C)、有機物(D)、液状媒体(E)及び樹脂(F)のいずれにも該当しない成分である。
 成分(G)としては、例えば可塑剤等の添加剤としての樹脂(ただし、有機物(B)、配位促進剤(C)及び樹脂(F)を除く)(例えば、ポリビニルイソブチルエーテル等)、無機フィラー及びその表面処理剤等が挙げられる。これらの成分はいずれか1種を単独で用いてもよく2種以上を併用してもよい。
 組成物Iの好ましい一態様は、物質(A)として亜鉛化合物、有機物(B)としてカルボキシ基を2つ以上有する芳香環を有する有機物(例えばテレフタル酸、前記式(b1)で表される構成単位を有するポリエーテル)、配位促進剤(C)としてジシアンジアミドを含む組成物である。かかる組成物は、熱によって結晶体を生成させ得る。
 組成物Iの好ましい他の一態様は、物質(A)として亜鉛化合物、有機物(B)としてカルボキシ基を2つ以上有する芳香環を有する有機物、配位促進剤(C)としてケトプロフェンアミン塩を含む組成物である。かかる組成物は、光によって結晶体を生成させ得る。
 組成物Iの好ましい他の一態様は、物質(A)として亜鉛化合物、有機物(B)としてカルボキシ基を2つ以上有する芳香環を有する有機物、配位促進剤(C)として酸化カルシウム及び鉄のいずれか一方又は両方とピリジンとを含む組成物である。かかる組成物は、酸素又は水分によって結晶体を生成させ得る。
 <各成分の含有量>
 組成物I中、物質(A)の含有量は、組成物Iの全量に対し、20~80質量%が好ましく、30~70質量%がより好ましい。物質(A)の含有量が上記範囲内であると、得られる結晶体の比率がより高くなる。
 組成物I中、有機物(B)の含有量は、組成物Iの全量に対し、10~50質量%が好ましく、30~50質量%がより好ましい。有機物(B)の含有量が上記範囲内であると、得られる結晶体の比率がより高くなる。
 組成物I中、配位促進剤(C)の含有量は、組成物Iの全量に対し、0.1~50質量%が好ましく、1~33質量%がより好ましい。配位促進剤(C)の含有量が上記下限値以上であると、金属原子αへの金属配位部βの配位を促進する効果が充分に発揮され、上記上限値以下であると、全量に対する結晶比率を高めることが出来、成形体の機能がより優れる。
 組成物I中、有機物(D)の含有量は、組成物Iの全量に対し、0質量%以上50質量%未満が好ましく、0~10質量%がより好ましい。有機物(D)の含有量が上記上限値以下であると、成形性がより優れる。
 組成物I中、液状媒体(E)の含有量は、組成物Iの全量に対し、0~99質量%が好ましく、0~1質量%がより好ましい。液状媒体(E)の含有量が上記上限値以下であると、安全性により優れる。液状媒体(E)の含有量が0質量%超であると、組成物Iの成形性がより優れる。
組成物Iを塗布成形する場合は、組成物Iの粘度が低いことが好ましい。よってその場合、液状媒体(E)の含有量は、組成物Iの全量に対し、10~99質量%が好ましく、30~85質量%がより好ましい。
組成物Iを押出成形や射出成形する場合は、液状媒体(E)の含有量は、組成物Iの全量に対し、5~80質量%が好ましく、10~65質量%がより好ましい。
上記塗布成形や射出成形後に、液状溶媒(E)を乾燥させることができる。乾燥温度及び時間などは特に限定されない。乾燥後の組成物I(成形体)に残留する液状溶媒(E)は、組成物Iの全量に対し、0~10質量%が好ましく、0.1~3質量%がより好ましい。組成物I(成形体)に微量の液状溶媒(E)が残留すると、切断等を行う際に切断面の欠けなどが生じ難くなる場合がある。
 組成物I中、樹脂(F)の含有量は、組成物Iの全量に対し、0~50質量%が好ましく、0~30質量%がより好ましい。樹脂(F)の含有量が上記上限値以下であると、刺激を付与した後の結晶体の比率が大きくなり、成形体の機能がより優れる。樹脂(F)の含有量が0質量%超であると、組成物Iをゲル化する効果が充分に発揮される。
 組成物I中、その他の成分(G)の含有量は、組成物Iの総質量に対し、0~10質量%が好ましく、0~1質量%がより好ましい。その他の成分(G)の含有量が上記上限値以下であると、刺激を付与した後の結晶体の比率が大きくなり、成形体の機能がより優れる。
 組成物Iにおいては、物質(A)の金属原子αの一部に有機物(B)の金属配位部の一部が配位して結晶体(MOF)を形成していてもよい。
 組成物I中、金属原子αに金属配位部βが配位してなる結晶体の含有量は、組成物Iの総質量に対し、99質量%以下が好ましく、50質量%以下がより好ましく、10質量%以下がさらに好ましく、1質量%以下が特に好ましい。上記結晶体の含有量が上記上限値以下であると、成形性に優れる。
 組成物I中の上記結晶体の含有量の下限は特に限定されず、0質量%であってもよい。
 上記結晶体の含有量は、XRD(X線回折法)により測定できる。
 上記結晶体の含有量は、組成物(I)の構成材料の比率、刺激の強度によって調整できる。
 組成物Iの製造方法としては、特に限定されない。例えば物質(A)と有機物(B)と配位促進剤(C)と、必要に応じて有機物(D)、液状媒体(E)、樹脂(F)、及びその他の成分(G)のいずれか1つ以上を混合する方法が挙げられる。各成分の混合手段としては、例えばミキサーによる混練等が挙げられる。なお、液状媒体(E)を使用しない場合、粒状(粉体)の各成分を公知の方法により均一に混合してもよい。各成分の混合順序は特に限定されない。
 配位促進剤(C)を混合している際の条件は、配位促進剤(C)が反応又は相転移しない条件とする。配位促進剤(C)が反応又は相転移しない条件で全成分を一括して混合してもよい。配位促進剤(C)以外の成分の一部又は全部を混合し、得られた混合物と、配位促進剤(C)と、必要に応じて残りの成分を、配位促進剤(C)が反応又は相転移しない条件で混合してもよい。また、配位促進剤(C)以外の成分の混合物を予め調整しておき、後述する成形体(Y)を製造する直前に、配位促進剤(C)のみを他の成分の混合物に加えてもよい。
 配位促進剤(C)が反応又は相転移しない条件は、配位促進剤(C)の種類に応じて適宜選定し得る。
 例えば、配位促進剤(C)が熱により反応又は相転移する場合には、反応又は相転移する温度よりも低温環境下で混合すればよい。上記低温環境は、例えば配位促進剤(C)が反応又は相転移する温度-50℃以下であってよい。
 配位促進剤(C)が光により反応又は相転移する場合には、遮光環境下で混合すればよい。
 配位促進剤(C)が水により反応又は相転移する場合には、低湿度環境下、例えば相対湿度5%RH以下の環境下で混合すればよい。
 配位促進剤(C)が酸素により反応又は相転移する場合には、低酸素又は無酸素環境下、例えば窒素ガス、アルゴンガス等の不活性ガス雰囲気下で混合すればよい。
 以上説明した組成物Iにあっては、物質(A)と有機物(B)と配位促進剤(C)とを含むため、ソルボサーマル法のような高圧環境でなくてもMOFを生成可能であり、かつ成形可能な材料として保存が可能である。
 有機物(B)の金属配位部βは、ソルボサーマル法でのMOFの合成に用いられているような密閉空間における高圧環境でなければ物質(A)の金属原子αに配位しにくい。配位促進剤(C)は、刺激により反応又は相転移する前は、金属原子αへの金属配位部βの配位を促進しない。
 配位促進剤(C)が反応又は相転移していない状態では、金属原子αへの金属配位部βの配位、それに伴う結晶体(MOF)の生成は、進まないか進んでもわずかである。そのため、配位促進剤(C)が反応又は相転移しない環境下に組成物Iを置くことで、結晶体を生成させることなく組成物Iを保存できる。
 また、組成物Iを成形する際の成形条件を、配位促進剤(C)が反応又は相転移させない条件とすることで、結晶体を生成させることなく組成物Iを成形できる。
 成形後、得られた成形体に刺激を加えて配位促進剤(C)を反応又は相転移させると、密閉空間における高圧環境でなくても、成形体中で金属原子αへの金属配位部βの配位が進み、結晶体が生成する。例えば、配位促進剤(C)の反応によって金属原子αへの金属配位部βの配位を促進する触媒として作用する物質が生成すると、その作用によって金属原子αへの金属配位部βの配位が進行する。配位促進剤(C)が固体から液体へと相転移すると、成形体内での各成分の動きの自由度が増し、金属原子αへの金属配位部βの配位が進行し、結晶体が生成する。
 成形時に刺激を加え、結晶体を生成させることもできる。
 加える刺激を調整することによって、反応又は相転移する配位促進剤(C)の量を調整し、結晶体の生成速度を調整することもできる。
 このようにして、結晶体を含む成形体が得られる。成形後又は成形時に結晶体を生成させるため、成形時に結晶体に加わる負荷によって結晶体が破損することを抑制できる。したがって、成形体中の結晶体の機能が十分に発現し得る。
〔成形体の製造方法〕
 本発明の第2の態様は、上述の組成物Iを成形し、成形体(Y)を得る工程(以下、成形工程とも記す。)と、
 成形体(Y)に刺激を与え、物質(A)の金属原子αに有機物(B)の金属配位部βが配位してなる結晶体を生成させ、結晶体を含む成形体(Z)を得る工程(以下、結晶生成工程とも記す。)と、
を含む成形体の製造方法である。
 成形体(Y)に刺激を与えることで、配位促進剤(C)が反応又は相転移し、物質(A)の金属原子αへの有機物(B)の金属配位部βの配位が進行し、結晶体が生成する。これにより、成形体(Y)が、結晶体を含む成形体(Z)となる。
 成形体(Y)及び成形体(Z)の形状は、特に限定されない。例えばフィルム状、多孔質状、ハニカム構造等であってよい。
 組成物Iを成形する方法は特に限定されず、公知の成形方法を用いることができる。例えば、組成物Iが固形である場合には、プレス成形、押し出し成形、射出成形等の方法を用いることができる。組成物Iが液状又はゲル状である場合には、押し出し成形、ダイコート等の方法を用いることができる。
 成形に用いる型の表面に予め凹凸構造を形成しておき、表面に凹凸構造を有する成形体が得られるようにしてもよい。
 凹凸構造としては、例えば、複数の凸部又は凹部が分散配置された形状、複数の凸条又は溝が平行に配置された形状(いわゆるラインアンドスペース)、うねり形状等が挙げられる。凸部又は凸部の形状としては、例えば円柱状、多角柱状、半球状、円錐状、多角錐状等が挙げられる。
 成形体表面に凹凸構造を有することで、以下の二つの効果が得られる。
 一つは表面積の増大である。成形体中の結晶体(MOF)は、成形体の表面に位置しているものが、より機能を発揮する。結晶体の機能は主にその多孔質性に由来する。表面積を増大させることで、表面に位置する結晶体が増え、成形体中の結晶体をより活用することができる。
 もう一つの効果は、成形体の表面に気体や液体等の乱流を生じさせることである。結晶体の機能としては、気体や液体の吸着、貯蔵、分離等がある。吸着、貯蔵、分離等の対象となる気体や液体が成形体の表面を通過する際、成形体の表面が平面であると、気体や液体がそのまま流れていくため、成形体表面付近での気体や液体の濃度が低下しやすい可能性がある。表面に凹凸構造があれば、そこで気体や液体の乱流を生じ、表面付近の気体や液体が撹拌される。これにより、成形体表面で、吸着、貯蔵、分離等の対象となる気体や液体の濃度が低下せず、効果的な機能発現を行うことができる。
 表面積の増大の観点からは、凹凸構造は、上面視で同じ大きさの平面に対して1.1倍以上の表面積を実現する形状であることが好ましい。
 一方で、平面に対して極端に表面積が大きくなると、凹凸構造が壊れやすくなる。具体的な上限は樹脂の物性によるため一概に言えないが、例えば、表面積を平面に対して10倍超にするような、高さ方向のアスペクト比(高さ/幅)の大きいラインアンドスペースを表面に形成すると、凹凸構造は不安定かつ脆弱化しやすい。したがって、凹凸構造の表面積は、上面視で同じ大きさの平面の表面積の10倍以下が好ましい。
 即ち、凹凸構造の表面積は、上面視で同じ大きさの平面の表面積の1.1倍~10倍であることが好ましく、1.2倍~3倍であることがより好ましい。
 機能発現に効果的な凹凸構造は、対象とする気体や液体の流れの方向や速さ等からシミュレーションにより規定することができるが、複数の凸部が分散配置された形状、流れの方向に沿ったラインアンドスペース等が好ましい。
 凹凸構造は、気体や液体の流れを成形体表面全体に行き渡らせやすい点で、規則的周期構造を含むことが好ましい。規則的周期構造は、製造しやすいという面からも好ましい。
 規則的周期構造では、同じ大きさの複数の構造(凸部、凹部、凸条、溝等)が一定のピッチで、成形体表面の面内の一定の方向に配列している。複数の構造の配列方向は1方向でもよく2方向以上でもよい。
 規則的周期構造を構成する複数の構造の大きさは、対象とする気体や液体に応じて選定される。成形性の点では、配列方向における幅(凸部又は凹部の直径、凸条又は溝の幅等)は、20nm~1mmの範囲内が妥当である。高さ方向のアスペクト比は、耐久性の点から、10以下が好ましい。ピッチは、例えば20nm~5mmとすることができる。
 成形工程は、大気圧環境下で行ってもよく、加圧環境下で行ってもよい。
 成形工程を行う際の圧力は、1~10000atmが好ましく、1~100atmがより好ましい。圧力が上記上限値以下であれば、ソルボサーマル法のように密閉容器を使用する必要はなく、成形体(Z)の生産性が優れる。
 成形工程は、得られる成形体(Y)中の上記結晶体の含有量が、成形体(Y)の総質量に対し、99質量%以下となる条件で行うことが好ましい。成形体(Y)中の上記結晶体の含有量は、50質量%以下がより好ましく、10質量%以下がさらに好ましく、1質量%以下が特に好ましい。成形体(Y)中の上記結晶体の含有量が上記上限値以下であると、成形性に優れる。
 成形体(Y)中の上記結晶体の含有量の下限は特に限定されず、0質量%であってよい。
 成形体(Y)中の上記結晶体の含有量と、成形前の組成物I中の上記結晶体の含有量との差は、10質量%以下が好ましく、1質量%以下がより好ましい。
 上記の差を上記上限値以下とする観点から、成形工程は、組成物I中の配位促進剤(C)が反応又は相転移しない条件で行うことが好ましい。配位促進剤(C)が反応又は相転移しない条件については上記のとおりである。
 結晶生成工程において成形体(Y)に与える刺激は、配位促進剤(C)を反応又は相転移させる刺激であり、熱、光、水及び酸素からなる群から選ばれる少なくとも1種が好ましい。配位促進剤(C)を反応又は相転移させる刺激は1種でもよく2種以上でもよい。
 熱としては、例えば40~500℃の熱であってよい。光としては、例えば紫外線、可視光線、赤外線等が挙げられる。光の照射量は、光の種類や配位促進剤(C)の種類などに応じて適宜選択することができ、例えば波長360nmの紫外線1mJ/cm以上とすることができる。2種以上の刺激を組合わせる例として、熱水を接触させる方法、蒸気に暴露する方法、酸素を含む雰囲気下で加熱又は光の照射を行う方法等が挙げられる。
 結晶生成工程は、大気圧環境下で行ってもよく、加圧環境下で行ってもよい。
 結晶生成工程を行う際の圧力は、1~10000atmが好ましく、1~100atmがより好ましい。圧力が上記上限値以下であれば、ソルボサーマル法のように密閉容器を使用する必要はなく、成形体(Z)の生産性が優れる。
 結晶生成工程では、成形体(Z)中の上記結晶体の含有量を0.1質量%以上とすることが好ましい。成形体(Z)中の上記結晶体の含有量は、1質量%以上がより好ましく、10質量%以上がさらに好ましく、30質量%以上が特に好ましい。成形体(Z)中の上記結晶体の含有量が上記下限値以上であると、多孔質体としての機能性に優れる。
 成形体(Z)中の上記結晶体の含有量の上限は特に限定されず、例えば50質量%であってよい。
 即ち、成形体(Z)中の上記結晶体の含有量は、0.1質量%~50質量%とすることが好ましい。成形体(Z)中の上記結晶体の含有量は、1質量%~50質量%がより好ましく、10質量%~50質量%がさらに好ましく、30質量%~50質量%が特に好ましい。
 成形体(Z)中の上記結晶体の含有量と、成形体(Y)中の上記結晶体の含有量との差は、1質量%以上が好ましく、10質量%以上がより好ましい。
 結晶生成工程の後、必要に応じて、得られた成形体(Z)に対し、液体による成形体(Z)の洗浄、コート剤による表面加工、埋もれている結晶体を露出させるための表面物理処理、成形体表面に凹凸構造を形成する表面付形処理等の処理を行ってもよい。
 組成物Iが樹脂成分(重合体である有機物(B)、樹脂(F)等)を含む場合、結晶生成工程で得られる成形体(Z)においては、結晶体(MOF)の一部が樹脂の下に埋もれている。成形体(Z)に対し、表面物理処理を施し、表層の樹脂被膜を取り除くことで、埋もれていた結晶体が表面に露出し、結晶体の多孔質性に由来する機能(吸着機能等。以下、「MOF機能」とも記す。)が充分に発揮されるようになる。例えば、ガス吸着機能が大きく向上する。
 表面物理処理は、成形体にダメージを与えないものであれば特に制限されず、公知の方法を用いることができる。
 結晶体を露出させるためには、結晶体上に存在する樹脂薄膜を除去するだけでよいため、比較的温和な表面物理処理が好ましい。このような表面物理処理としては、コロナ処理、プラズマ処理、火炎処理等が挙げられる。これらの処理は、成形体に致命的なダメージを与えず、表面の活性化のみを行うために好適に用いることができる。
 ただし、表面物理処理はこれらの方法に限定されず、サンドブラストのような物理的な表面粗化法、アーク放電のような強い電気ストレスを加える方法等も、目的に応じて使用できる。
 具体的な処理条件の設定は、実際に成形体の処理を行い、確認しながら実施することか好ましい。
 本態様の製造方法により得られる成形体は、表面に露出しているMOF比率(以下、「表面露出MOF比率」とも記す。)が5~98%であることが好ましい。
 表面露出MOF比率は、成形体表面のうち、MOF(結晶体)が露出している部分が占める割合を示す指標であり、下記式(1)により求められる。表面露出MOF比率が上記下限値以上であれば、MOF機能がより優れる。表面露出MOF比率が上記上限値以下であれば、MOFの破損や脱落が生じにくく、MOF機能の耐久性が優れる。
 表面露出MOF比率は、10~90%がより好ましく、15~80%がさらに好ましく、46~80%が特に好ましい。
 表面露出MOF比率=(A/B)×100  ・・・(1)
 ただし、Aは、X線光電子分光法(以下、「XPS」とも記す。)により測定される成形体表面におけるMOF由来の金属原子の量(atm%)を示し、
 Bは、MOFにおける金属原子の量(atm%)を示す。
 XPSによる金属原子の量Aは、XPSで測定される、リチウム以上の原子量を有する原子の全原子量(100atm%)に対する比率である。金属原子の量Aの測定方法の詳細は、後述する実施例に示す。
 MOFにおける金属原子の量Bは、MOFを構成する、リチウム以上の原子量を有する原子の全原子量(100atm%)に対する比率である。金属原子の量Bは、MOFの組成式から算出される。
 成形体が複数のMOFを含む場合、Bの値は、各MOFの質量を重みとして、各MOFの金属原子の量を加重平均した値とする。
 表面露出MOF比率は、成形体における結晶体の含有量、成形体に施す表面物理処理の条件等によって調整できる。
 走査型電子顕微鏡(SEM)に付属のエネルギー分散型X線分析(EDX)装置により成形体表面の元素分析を行うことで、表面露出MOF比率を簡易に確認することができる。EDXによる値は、必ずしも上記式(1)による値とは一致しないが、上記式(1)による値と同様の傾向を示す。例えばEDXによる値が大きいほど、上記式(1)による値も大きい傾向がある。
 以下に、表面露出MOF比率の具体的な測定方法を例示する。
 XPS装置(Kratos社製)を用い、以下の条件で、成形体(積層体又はシート)の概中央部分を10mm角、厚み5mm以内に切断し、測定サンプルとする。成形体の切断面のうち、中央付近1×2mmの範囲を測定対象面とし、測定対象面の金属原子(Zn又はZr)の量A(atm%)を測定する。この値と、成形体に用いたMOFの金属原子(Zn又はZr)の量B(atm%)から、前記式(1)により表面露出MOF比率(%)を算出する。
 XPS測定条件:X線源AlKα(モノクロ)を用い、ワイドスペクトルと、想定される元素のナロースペクトルを測定、これらの結果よりatm%を算出する。
 表面付形処理によって成形体表面に形成する凹凸構造については上述のとおりである。
 表面付形処理方法、つまり凹凸構造の形成方法に特に制限はなく、一般的な手法を用いることができる。例えば、表面に凹凸構造を有する型を加熱下で成形体表面に押し当てて凹凸構造を転写する方法、成形体表面をレーザー切削加工する方法等が挙げられる。
 ピッチが1μm未満の微細凹凸構造を形成する場合、ナノインプリント技術を用いることが好ましい。ナノインプリント技術は、大きく分類すると、加熱して型を押しつける熱ナノインプリント技術、透明な型に光硬化性樹脂材料を注型して固める光ナノインプリント、シリコーンのような離型性良好な凸版に対象となる成形体を付着させ、必要な部分にプリントするマイクロコンタクトプリントなどがあり、いずれの方法も本発明に好適に用いることができる。
 光硬化性樹脂材料としては、例えば、モノマー、オリゴマー等の重合性成分と、光重合開始剤とを含む組成物が挙げられる。重合性成分は有機物(B)であってもよい。重合性成分としての有機物(B)としては、例えば、金属配位部βと、光重合開始剤によって硬化反応を生じる官能基とを有する有機物が挙げられる。光重合開始剤によって硬化反応を生じる官能基としては、ラジカル重合性の不飽和結合が挙げられる。具体的化合物では、(メタ)アクリル酸エステル、スチレン系化合物が挙げられる。特に、硬化させるためには、重合性官能基を複数持つ多官能(メタ)アクリレート、ジビニルベンゼン系化合物等が挙げられる。
 本発明の第3の態様は、上述の組成物Iを成形しつつ、組成物Iに刺激を与え、物質(A)の金属原子αに有機物(B)の金属配位部βが配位してなる結晶体を生成させ、結晶体を含む成形体(Z)を得る工程(以下、成形・結晶生成工程とも記す。)を含む成形体の製造方法である。
 組成物Iの成形時に組成物Iに刺激を与えることで、配位促進剤(C)が反応又は相転移し、物質(A)の金属原子αへの有機物(B)の金属配位部βの配位が進行し、結晶体が生成する。これにより、結晶体を含む成形体(Z)が得られる。
 組成物Iを成形する方法は、前記と同様、公知の成形方法を用いることができる。
 組成物Iに与える刺激は、前記と同様、配位促進剤(C)を反応又は相転移させる刺激であり、熱、光、水及び酸素からなる群から選ばれる少なくとも1種が好ましい。
 成形・結晶生成工程は、大気圧環境下で行ってもよく、加圧環境下で行ってもよい。
 成形・結晶生成工程を行う際の圧力は、1~10000atmが好ましく、1~10atmがより好ましい。圧力が上記上限値以下であれば、ソルボサーマル法のように密閉容器を使用する必要はなく、成形体(Z)の生産性が優れる。
 成形・結晶生成工程では、成形体(Z)中の上記結晶体の含有量を0.1質量%以上とすることが好ましい。成形体(Z)中の上記結晶体のより好ましい含有量は上記と同様である。
 成形体(Z)中の上記結晶体の含有量と、成形前の組成物I中の上記結晶体の含有量との差は、1質量%以上が好ましく、10質量%以上がより好ましい。
 成形・結晶生成工程の後、必要に応じて、得られた成形体(Z)に対し、液体による成形体(Z)の洗浄、コート剤による表面加工、埋もれている結晶体を露出させるための表面物理処理、成形体表面に凹凸構造を形成する表面付形処理等の処理を行ってもよい。
 上述の第2又は第3の態様の成形体の製造方法により得られる成形体(Z)は、物質(A)の金属原子αに上記有機物(B)の金属配位部βが配位してなる結晶体、つまりMOFを含む。
 成形体(Z)は、配位促進剤(C)を含んでいてもよく、含んでいなくてもよい。洗浄工程を経た場合には、配位促進剤(C)の量が減少した、もしくは配位促進剤(C)を含まない成形体(Z)が得られる。
〔成形体〕
 本発明の第4の態様は、上記物質(A)の金属原子αに、上記有機物(B)の金属配位部βが配位してなる結晶体と、上記配位促進剤(C)と、を含む成形体である。
 本態様の成形体は、上述の第2又は第3の態様の成形体の製造方法により得ることができる。
 なお、成形体の吸着性能は、BET比表面積を指標として評価することができる。BET比表面積は、窒素を吸着ガスとし、BET法により測定される比表面積である。測定は、BET比表面積計(島津製作所製)を用いて行うことができる。
 得られる成型体は各種アプリケーションに展開可能であり、具体的にはガス分離、ガス貯蔵、センサ、DDS(ドラッグデリバリーシステム)、電磁波シールド、選択的触媒、誘電体、ポーラスな単一金属の前駆体とした検知システム、ポーラスな金属酸化物の前駆体として検知システム、キャパシタ、電極等が挙げられる。
〔他の態様〕
 本発明は、上記第1~第4の態様に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、構成の付加、省略、置換、及びその他の変更が可能である。
 本発明の他の一態様として、
 亜鉛、銅、コバルト、クロム、アルミニウム、ニオブ、ジルコニウム、カドミウム、ニッケル、バナジウム、チタン、及びモリブデンからなる群から選ばれる少なくとも1種の金属原子(以下、金属原子α2とも記す。)を含む物質(A2)と、
 金属原子α2に配位可能な金属配位部(以下、金属配位部β2とも記す。)を保護基によって保護した刺激応答性金属配位部β3を2以上有し、前記保護基が、刺激を加えたときに脱保護可能な基である有機物(B2)と、
を含む組成物(以下、組成物IIとも記す。)が挙げられる。
 物質(A2)は、金属原子αが金属原子α2である以外は、物質(A)と同様であってよい。
 有機物(B2)は、金属配位部βが金属配位部β2であり、金属配位部β2が保護で保護されている以外は、有機物(B)と同様であってよい。
 組成物IIにあっては、物質(A2)と有機物(B2)とを含むため、ソルボサーマル法のような高圧環境でなくてもMOFを生成可能であり、かつ成形可能な材料として保存が可能である。
 有機物(B2)の金属配位部β2は、物質(A2)の金属原子α2に配位しやすい。そのため、金属配位部β2が保護基によって保護されていない場合には、ソルボサーマル法のような高圧環境でなくても急速にMOFの生成が進み、成形可能な材料として保存できない。
 金属配位部β2を保護基によって保護した刺激応答性金属配位部β3は、ソルボサーマル法でのMOFの合成に用いられているような密閉空間における高圧環境でも金属原子α2に配位しないか、又は配位しにくい。
 したがって、組成物IIに刺激が加わる前の状態では、金属原子α2への金属配位部β3の配位、それに伴う結晶体(MOF)の生成は、進まないか進んでもわずかである。そのため、刺激応答性金属配位部β3の保護基が脱保護しない環境下に組成物IIを置くことで、結晶体を生成させることなく組成物IIを保存できる。
 また、組成物IIを成形する際の成形条件を、保護基が脱保護しない条件とすることで、結晶体を生成させることなく組成物IIを成形できる。
 成形後、得られた成形体に刺激を加えて刺激応答性金属配位部β3の保護基を脱保護し、金属配位部β2を生成させると、密閉空間における高圧環境でなくても、成形体中で金属原子α2への金属配位部β2の配位が進み、結晶体が生成する。
 成形時に刺激を加え、結晶体を生成させることもできる。
 加える刺激を調整することによって、脱保護する保護基の量を調整し、結晶体の生成速度を調整することもできる。
 このようにして、結晶体を含む成形体が得られる。成形後又は成形時に結晶体を生成させるため、成形時に結晶体に加わる負荷によって結晶体が破損することを抑制できる。したがって、成形体中の結晶体の機能が十分に発現し得る。
 前記保護基としては、意図した刺激により脱離することができるものであれば特に制限はない。例えば、有機物(B2)の金属配位部β2がカルボキシ基の場合、ベンジル基、アリル基、ジフェニルメチル基等の公知の保護基を採用することができる。また、保護基の導入および保護基の脱離の方法は、公知の方法により行うことができる。
 例えば、カルボキシ基を光解離性保護基でエステル化することにより保護し、光照射により脱保護する方法(WO2009/113322)などを採用することができる。
 また、組成物IIは、上記した配位促進剤(C)、有機物(D)、液状媒体(E)樹脂(F)及びその他の成分(G)からなる群より選ばれる少なくとも1つの成分を含有していてもよい。これらの成分の含有量については、組成物Iの場合と同様であってよい。
 組成物IIを用いた成形体の製造は、組成物Iを用いた成形体の製造と同様の手順で実施できる。例えば第2又は第3の態様の製造方法において組成物Iの代わりに組成物IIを用いることで、結晶体を含む成形体(Z2)を得ることができる。
 次に、実施例により本発明をさらに詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。なお、実施例および比較例で使用される化合物、溶媒等は全て市販品を用いた。「室温」は15±15℃以内の温度である。
(結晶形成の有無の評価)
 成形体中の結晶形成の有無は、目視により確認した。
(実施例1)
 ジメチルホルムアミド40gにテレフタル酸0.34gを溶解し、次に硝酸亜鉛1.21gを加え、完溶するまで撹拌し、溶液を得た。次に、この溶液にエポキシ樹脂1gを加えて、5分間激しく撹拌し、次に、ジシアンジアミドを2.0g入れて5分間撹拌し、溶液状の組成物を得た。以上の組成物の調製は、室温にて行った。エポキシ樹脂としては、三菱ケミカル社製のフェノキシ樹脂(グレード名 1256)を使用した。
 得られた組成物をコーターで厚さ100μmになるように塗布し、80℃で5分間加熱乾燥させて、フィルム状の柔軟な膜(成形体)を得た。この膜に微結晶は見られなかった。また、上記乾燥条件では、乾燥後の膜にジメチルホルムアミドは残存していなかった。
 得られた膜を180℃で30分間加熱したところ、白色の微結晶が見られるフィルム状の膜(刺激後成形体)が得られた。
(実施例2)
 実施例1において、テレフタル酸のかわりに、テレフタル酸のポリエーテル(重量平均分子量1000)(前記式(b1)で表される構成単位を有するポリエーテル)を用いたこと以外は、実施例1と同様な操作を行い、溶液状の組成物を得て、フィルム状の柔軟な膜(成形体)を得た。この膜に微結晶は見られなかった。
 この膜を180℃で30分間加熱したところ、白色の微結晶が見られるフィルム状の膜が得られた。
(比較例1)
 実施例1において、溶液にエポキシ樹脂を加え撹拌した後にジシアンジアミドを添加しなかった以外は実施例1と同様な操作を行い、溶液状の組成物を得て、フィルム状の柔軟な膜(成形体)を得た。この膜に微結晶は見られなかった。
 得られた膜を180℃で30分間加熱したところ、フィルム状の膜が得られた。この膜に微結晶は見られなかった。
(比較例2)
 比較例1において、溶液にエポキシ樹脂を加え撹拌した後にトリエチルアミンを2.5g入れ、5分間撹拌して溶液状の組成物を得た。この組成物中に白色微結晶が見られた。
 得られた組成物をコーターで厚さ100μmになるように塗布し、80℃で5分間加熱乾燥させて、フィルム状の柔軟な膜(成形体)を得た。この膜には白色微結晶が見られた。また、この膜は、膜中の結晶体の分布が不均一であった。これは、溶液状態で結晶化が進んだため、組成物中で結晶が十分に分散することが出来ず、かつ乾燥工程時に結晶体同士が集まったためと考えられる。
(比較例3)
 実施例1において、テレフタル酸のかわりにジフェニル0.33gを用いたこと以外は、実施例1と同様な操作を行い、溶液状の組成物を得て、フィルム状の柔軟な膜(成形体)を得た。この膜は実施例1とほぼ同様な膜であり、微結晶は見られなかった。
 得られた膜を180℃で30分間加熱したところ、膜に変化はなかった。
(比較例4)
 実施例1において、硝酸亜鉛のかわりに酸化レニウム(VII)を用いたこと以外は、実施例1と同様な操作を行い、溶液状の組成物を得て、フィルム状の柔軟な膜(成形体)を得た。この膜は実施例1と同様な膜であり、微結晶は見られなかった。
 得られた膜を180℃で30分間加熱したところ、膜に変化はなかった。
(実施例3)
 実施例1において、乾燥条件を変更し、乾燥後の膜に残存するジメチルホルムアミドの量を膜の総質量に対して10%としたこと以外は、実施例1と同様な操作を行い、溶液状の組成物を得て、フィルム状の柔軟な膜(成形体)を得た。この膜は実施例1とほぼ同様な柔軟な膜であり、微結晶は見られなかった。
 得られた膜を180℃で30分間加熱したところ、白色の微結晶が見られるフィルム状の膜が得られた。
(実施例4)
 実施例3において、溶媒乾燥前にポリアクリル酸を0.2g添加したこと以外は、実施例3と同様な操作を行い、溶液状の組成物を得て、フィルム状の柔軟な膜(成形体)を得た。この膜は実施例3とほぼ同様な柔軟な膜であり、微結晶は見られなかった。
 得られた膜を180℃で30分間加熱したところ、白色の微結晶が見られるフィルム状の膜が得られた。
(実施例5)
 実施例1において、ジシアンジアミドのかわりにケトプロフェントリエチルアミン塩を添加したこと以外は、実施例1と同様な操作を行い、溶液状の組成物を得て、フィルム状の柔軟な膜(成形体)を得た。この膜は実施例1とほぼ同様な柔軟な膜であり、微結晶は見られなかった。
 得られた膜に対し、紫外線を照射(水銀ランプ、20J/cm)したところ、白色の微結晶が見られるフィルム状の膜が得られた。
(実施例6)
 実施例1において、ジシアンジアミドのかわりに酸化カルシウム1g及びピリジン1.25gを添加したこと以外は、実施例1と同様な操作を行い、溶液状の組成物を得て、フィルム状の柔軟な膜(成形体)を得た。膜の形成後、得られた膜を離型フィルムで挟んだ。この膜は実施例1とほぼ同様な柔軟な膜であり、微結晶は見られなかった。
 得られた膜から離型フィルムを剥がし、室温で1日静置したところ、白色の微結晶が見られるフィルム状の膜が得られた。
(実施例7)
 実施例6において、酸化カルシウム及びピリジンの代わりに鉄粉1g及びピリジン1.25gを添加したこと以外は、実施例6と同様な操作を行い、溶液状の組成物を得て、離型フィルムで挟まれたフィルム状の柔軟な膜(成形体)を得た。この膜は実施例6とほぼ同様な柔軟な膜であり、微結晶は見られなかった。
 得られた膜から離型フィルムを剥がし、室温で1日静置したところ、白色の微結晶が見られるフィルム状の膜が得られた。
 上記実施例1~7及び比較例1~4で得た膜(成形体)の組成及び結晶形成の有無、並びに刺激後成形体の結晶形成の有無を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 
(実施例8)
 実施例1で得られたフィルム状の柔軟な膜(成形体)に、ピッチ20μm、深さ10μmのラインアンドスペース構造を表面に有する金属ロールを押し当て、表面が付形された成形フィルムを得た。顕微鏡観察により、成形フィルム表面には、ピッチが約20μm、深さが約10μmのラインアンドスペースが形成されていることが確認された。

Claims (25)

  1.  亜鉛、コバルト、ニオブ、ジルコニウム、カドミウム、銅、ニッケル、クロム、バナジウム、チタン、モリブデン、マグネシウム、鉄及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子を含む物質(A)(ただし、金属有機構造体を除く。)と、
     前記金属原子に配位して結晶体を生成可能な金属配位部を2つ以上有し、前記金属配位部が、カルボキシ基、及び金属有機構造体部位からなる群から選ばれる少なくとも1種である有機物(B)と、
     刺激により反応又は相転移し、前記物質(A)の金属原子への前記有機物(B)の金属配位部の配位を促進可能となる配位促進剤(C)と、
    を含む組成物。
  2.  前記刺激が、熱、光、水及び酸素からなる群から選ばれる少なくとも1種である請求項1に記載の組成物。
  3.  前記配位促進剤(C)は、25℃において固体であり、pKaが1~20である請求項1又は2に記載の組成物。
  4.  前記配位促進剤(C)は、アミン-ボラン錯体、ジシアンジアミド、ヒドラジド、イミン、オキサゾリジン、ピリジン、室温で結晶状態の三級アミン、ケトプロフェンアミン塩、酸化カルシウム、及び鉄からなる群から選ばれる少なくとも1種である請求項1~3のいずれか一項に記載の組成物。
  5.  前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体の含有量が99質量%以下である請求項1~4のいずれか一項に記載の組成物。
  6.  前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体の含有量が50質量%以下である請求項1~4のいずれか一項に記載の組成物。
  7.  前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体の含有量が10質量%以下である請求項1~4のいずれか一項に記載の組成物。
  8.  前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体の含有量が1質量%以下である請求項1~4のいずれか一項に記載の組成物。
  9.  前記有機物(B)が、前記金属配位部を1つ以上有する芳香環を有する請求項1~8のいずれか一項に記載の組成物。
  10.  前記有機物(B)が、前記金属配位部を2つ以上有する芳香環を有する請求項1~8のいずれか一項に記載の組成物。
  11.  前記金属配位部がカルボキシ基である請求項10に記載の組成物。
  12.  前記有機物(B)の分子量が100以上である請求項1~11のいずれか一項に記載の組成物。
  13.  前記有機物(B)が、主鎖部位と、前記主鎖部位に結合したペンダント部位とを有し、前記ペンダント部位に前記金属配位部を含む重合体である請求項1~12のいずれか一項に記載の組成物。
  14.  前記主鎖部位が、ポリエーテル構造、ポリオレフィン構造、ポリエステル構造、ポリチオール構造及びポリアミド構造のいずれか1つ以上の構造を含む請求項13に記載の組成物。
  15.  前記物質(A)が、金属単体、及び金属の価数が1~5価である金属化合物からなる群から選ばれる少なくとも1種である請求項1~14のいずれか一項に記載の組成物。
  16.  前記金属原子に配位して結晶体を生成可能な金属配位部を1つ有する構成単位を有する重合体、前記金属配位部を1つ有する単量体、及び前記金属配位部を有しない有機物からなる群から選ばれる少なくとも1種の有機物(D)をさらに含む請求項1~15のいずれか一項に記載の組成物。
  17.  液状媒体(E)をさらに含む請求項1~16のいずれか一項に記載の組成物。
  18.  液状媒体(E)の含有量が99質量%以下である請求項17に記載の組成物。
  19.  液状媒体(E)を保持可能な樹脂(F)をさらに含む請求項17または18に記載の組成物。
  20.  請求項1~19のいずれか一項に記載の組成物を成形し、成形体(Y)を得る工程と、
     前記成形体(Y)に刺激を与え、前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体を生成させ、前記結晶体を含む成形体(Z)を得る工程と、を含む成形体の製造方法。
  21.  前記刺激が、熱、光、水及び酸素からなる群から選ばれる少なくとも1種である請求項20に記載の成形体の製造方法。
  22.  前記成形体(Y)中の前記結晶体の含有量が99質量%以下である請求項20又は21に記載の成形体の製造方法。
  23.  前記成形体(Z)を得る工程において、前記成形体(Z)中の前記結晶体の含有量を0.1質量%以上とする請求項20~22のいずれか一項に記載の成形体の製造方法。
  24.  請求項1~19のいずれか一項に記載の組成物を成形しつつ、前記組成物に刺激を与え、前記物質(A)の金属原子に前記有機物(B)の金属配位部が配位してなる結晶体を生成させ、前記結晶体を含む成形体(Z)を得る工程を含む成形体の製造方法。
  25.  亜鉛、コバルト、ニオブ、ジルコニウム、カドミウム、銅、ニッケル、クロム、バナジウム、チタン、モリブデン、マグネシウム、鉄及びアルミニウムからなる群から選ばれる少なくとも1種の金属原子を含む物質(A)(ただし、金属有機構造体を除く。)の前記金属原子に、カルボキシ基、及び金属有機構造体部位からなる群から選ばれる少なくとも1種の金属配位部を2つ以上有する有機物(B)の前記金属配位部が配位してなる結晶体と、
     刺激により反応又は相転移し、前記物質(A)の金属原子への前記有機物(B)の金属配位部の配位を促進可能となる配位促進剤(C)と、
    を含む成形体。
PCT/JP2018/030989 2017-08-22 2018-08-22 組成物、成形体の製造方法及び成形体 WO2019039509A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019537654A JP7377106B2 (ja) 2017-08-22 2018-08-22 組成物、成形体の製造方法及び成形体
CN201880059672.6A CN111094228B (zh) 2017-08-22 2018-08-22 组合物、成形体的制造方法以及成形体
US16/640,202 US12031014B2 (en) 2017-08-22 2018-08-22 Composition, production method for molded object, and molded object

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017159394 2017-08-22
JP2017-159394 2017-08-22
JP2017-184667 2017-09-26
JP2017184667 2017-09-26

Publications (1)

Publication Number Publication Date
WO2019039509A1 true WO2019039509A1 (ja) 2019-02-28

Family

ID=65439088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030989 WO2019039509A1 (ja) 2017-08-22 2018-08-22 組成物、成形体の製造方法及び成形体

Country Status (4)

Country Link
US (1) US12031014B2 (ja)
JP (1) JP7377106B2 (ja)
CN (1) CN111094228B (ja)
WO (1) WO2019039509A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020436A1 (ja) * 2019-07-30 2021-02-04 国立大学法人山梨大学 ポリマー配位子、結晶性金属有機構造体、結晶性金属有機構造体混合物、成形体、及び結晶性金属有機構造体の製造方法
JP2022528911A (ja) * 2019-04-02 2022-06-16 中▲車▼工▲業▼研究院有限公司 Mof化合物と非貴金属触媒の製造方法
WO2022168987A1 (ja) 2021-02-08 2022-08-11 積水化学工業株式会社 材料、材料の製造方法及び機能性材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115160893B (zh) * 2022-08-03 2023-10-10 重庆工商大学 一种MOFs材料改性环氧复合涂料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531939A (ja) * 2005-02-23 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア ガス状炭化水素貯蔵のための金属−有機骨格材料
JP2010527890A (ja) * 2007-05-21 2010-08-19 財団法人韓国化学研究院 配位的に不飽和な金属部位を有する表面官能基化された多孔性有機無機ハイブリッド材料又はメソポーラス材料の製造及びその触媒的応用
JP2011501739A (ja) * 2007-10-01 2011-01-13 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) 表面修飾した固体無機/有機ハイブリッド
JP2016108342A (ja) * 2014-12-08 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. 超分子金属−有機構造体物質およびその製造方法
WO2016204301A1 (ja) * 2015-06-18 2016-12-22 国立大学法人九州大学 複合材料、フォトンアップコンバージョン材料およびフォトンアップコンバーター
JP2017033214A (ja) * 2015-07-31 2017-02-09 富士フイルム株式会社 タッチパネル部材及びその製造方法、タッチパネル、並びに、タッチパネル表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1689762A4 (en) 2003-12-05 2009-08-05 Univ Michigan METALLO-ORGANIC POLYEDRE
JP5730574B2 (ja) 2007-09-25 2015-06-10 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 食用に適した生体適合性金属有機構造体
EP3031846B1 (en) 2014-12-08 2018-06-06 Samsung Electronics Co., Ltd Multifunctional supramolecular hybrids encompassing hierarchical self-ordering of metal-organic framework nanoparticles and method of preparing same
US10201803B2 (en) 2015-06-09 2019-02-12 The Regents Of The University Of California Polymer-metal organic framework materials and methods of using the same
CN105418923B (zh) * 2016-01-23 2018-01-16 苏州大学 一种改性双马来酰亚胺树脂及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008531939A (ja) * 2005-02-23 2008-08-14 ビーエーエスエフ ソシエタス・ヨーロピア ガス状炭化水素貯蔵のための金属−有機骨格材料
JP2010527890A (ja) * 2007-05-21 2010-08-19 財団法人韓国化学研究院 配位的に不飽和な金属部位を有する表面官能基化された多孔性有機無機ハイブリッド材料又はメソポーラス材料の製造及びその触媒的応用
JP2011501739A (ja) * 2007-10-01 2011-01-13 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) 表面修飾した固体無機/有機ハイブリッド
JP2016108342A (ja) * 2014-12-08 2016-06-20 三星電子株式会社Samsung Electronics Co.,Ltd. 超分子金属−有機構造体物質およびその製造方法
WO2016204301A1 (ja) * 2015-06-18 2016-12-22 国立大学法人九州大学 複合材料、フォトンアップコンバージョン材料およびフォトンアップコンバーター
JP2017033214A (ja) * 2015-07-31 2017-02-09 富士フイルム株式会社 タッチパネル部材及びその製造方法、タッチパネル、並びに、タッチパネル表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SU , JIAN ET AL.: "Structural Induction Effect of a Zwitterion Pyridiniumolate for Metal-Organic Frameworks", INORGANIC CHEMISTRY, vol. 54, no. 13, 5 June 2015 (2015-06-05), pages 6169 - 6175, XP055579230 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022528911A (ja) * 2019-04-02 2022-06-16 中▲車▼工▲業▼研究院有限公司 Mof化合物と非貴金属触媒の製造方法
JP7253074B2 (ja) 2019-04-02 2023-04-05 中▲車▼工▲業▼研究院有限公司 Mof化合物と非貴金属触媒の製造方法
WO2021020436A1 (ja) * 2019-07-30 2021-02-04 国立大学法人山梨大学 ポリマー配位子、結晶性金属有機構造体、結晶性金属有機構造体混合物、成形体、及び結晶性金属有機構造体の製造方法
WO2022168987A1 (ja) 2021-02-08 2022-08-11 積水化学工業株式会社 材料、材料の製造方法及び機能性材料

Also Published As

Publication number Publication date
CN111094228A (zh) 2020-05-01
CN111094228B (zh) 2024-02-09
US20200181366A1 (en) 2020-06-11
JPWO2019039509A1 (ja) 2020-10-01
JP7377106B2 (ja) 2023-11-09
US12031014B2 (en) 2024-07-09

Similar Documents

Publication Publication Date Title
JP7377106B2 (ja) 組成物、成形体の製造方法及び成形体
Sultan et al. CelloMOF: nanocellulose enabled 3D printing of metal–organic frameworks
Zhu et al. Alginate hydrogel: a shapeable and versatile platform for in situ preparation of metal–organic framework–polymer composites
CN1273638C (zh) 制造金属片的方法
Jia et al. Strategic advances in spatiotemporal control of bioinspired phenolic chemistries in materials science
Li et al. Constructing robust 3-dimensionally conformal micropatterns: vulcanization of honeycomb structured polymeric films
Dzhardimalieva et al. Chemistry of polymeric metal chelates
WO1995033688A1 (fr) Fines particules d'oxyde de zinc, procede de production de ces particules et leur utilisation
CN101528783A (zh) 不饱和羧酸改性乙烯醇类聚合物的制造方法及使用其的阻气性膜或阻气性叠层体
KR20180028756A (ko) 항균성 및 제습성을 갖는 이원기능성 은이온 함유 유기금속 골격 복합체, 이의 제조방법, 및 이를 포함하는 자연 분해성 고분자 필름
JP7020833B2 (ja) 成形体及びその製造方法
JPS62148532A (ja) ガスバリア性透明プラスチツクフイルム及びその製造方法
Xue et al. Polyvinyl alcohol/α-zirconium phosphate nanocomposite coatings via facile one-step coassembly
Ye et al. Polymer‐Grafting from MOF Nanosheets for the Fabrication of Versatile 2D Materials
Guo et al. Dynamic borate ester bond-based 3D printing fluorescence polysiloxane with self-healing, antimicrobial, and shape memory
CN109988307A (zh) 液体硅橡胶用的促进剂、液体硅橡胶组合物和液体硅橡胶
JP3984791B2 (ja) 微粒子のイオン交換方法、分散液の製造方法、および成形品の製造方法
CN1482160A (zh) 形成涂料和粘合剂的可固化流体
KR100867984B1 (ko) 나일론 6을 이용한 레이저 소결용 분말, 이의 제조방법 및이를 이용한 성형체
TW201708494A (zh) 防靜電薄片及含有此之包裝材料及電子裝置
JP2023147220A (ja) 金属有機フレームワーク、金属有機フレームワークを含む組成物、該組成物からなる膜及びガス分離膜、金属有機フレームワークの製造方法並びに二酸化炭素吸着材
US20230406709A1 (en) Modified carbon-based materials
TW200530335A (en) Oxygen scavenging composition
JP6623001B2 (ja) 硬化性組成物及びその硬化物
CN114196055A (zh) 一种高氧气阻隔涂布膜及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537654

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847570

Country of ref document: EP

Kind code of ref document: A1