WO2019037783A1 - 超声除栓系统 - Google Patents

超声除栓系统 Download PDF

Info

Publication number
WO2019037783A1
WO2019037783A1 PCT/CN2018/102300 CN2018102300W WO2019037783A1 WO 2019037783 A1 WO2019037783 A1 WO 2019037783A1 CN 2018102300 W CN2018102300 W CN 2018102300W WO 2019037783 A1 WO2019037783 A1 WO 2019037783A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
thrombus
ultrasonic
balloon
sheath
Prior art date
Application number
PCT/CN2018/102300
Other languages
English (en)
French (fr)
Inventor
蔡改贫
罗小燕
占鹏飞
程铁栋
陈浩华
陈慧明
Original Assignee
蔡改贫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔡改贫 filed Critical 蔡改贫
Priority to US16/490,819 priority Critical patent/US11540848B2/en
Publication of WO2019037783A1 publication Critical patent/WO2019037783A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/221Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/3203Fluid jet cutting instruments
    • A61B17/32037Fluid jet cutting instruments for removing obstructions from inner organs or blood vessels, e.g. for atherectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • A61B2017/22014Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement the ultrasound transducer being outside patient's body; with an ultrasound transmission member; with a wave guide; with a vibrated guide wire
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22054Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation with two balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22065Functions of balloons
    • A61B2017/22067Blocking; Occlusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22079Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with suction of debris
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system

Definitions

  • the invention belongs to a medical device used in an interventional surgical method, and relates to a device for crushing and extracting and depositing blood vessel deposits, and in particular to an ultrasonic decoupling system.
  • thrombosis there are often thrombosis in the cerebral arteries and veins of the human body.
  • thrombolytic treatments such as drug thrombolysis, surgical thrombectomy and mechanical thrombectomy.
  • Drug-induced thrombolysis is to dissolve the thrombus by injecting the thrombolytic drug directly or indirectly to clear the blocked blood vessel; another method of thrombolysis is to introduce the thrombolytic drug directly into the thrombus through the catheter. This thrombolytic method is prone to side effects of bleeding, especially in patients who are at risk of visceral or cerebral hemorrhage. Thrombolytic therapy should be contraindicated.
  • Surgical treatment is to open a mouth at the site of the thrombus and remove the thrombus from the incision.
  • the mechanical interventional thrombectomy method is to introduce the thrombectomy device into the vein by minimally invasive surgery, and the thrombectomy device is contacted with the thrombus by contrast and X-ray, and the thrombus is directly broken or removed, or the thrombus is taken through the thrombus.
  • this method has a small wound surface and less influence on the veins at the thrombus deposition site.
  • the patents related to mechanical crushing and removing bolts mainly include: thrombus breaking and thrombectomy device (CN201110098919.5) discloses a bolt removing device capable of entering a blood vessel of a human body, breaking and effectively removing the blood clot.
  • This patent solves the problem that the fine guide wire is easily bent when passing through the thrombus, and it is difficult to align with the center position of the thrombus, which is easy to damage the blood vessel, and the safety of the bolt is improved.
  • the thrombus fragments are difficult to be fully captured and excreted.
  • the thrombus breaking device (CN200420049312.3) discloses a kind of medical equipment that converts acoustic energy into mechanical energy, and breaks the blood clot by vibration to achieve the purpose of helping thrombus removal.
  • this patent only provides in vitro adjuvant therapy during the thrombectomy process. Because during the bolting or breaking process, it is easy for the small fragments of the thrombus to be trapped, and remains inside the venous blood, and enters the circuit static/arteries and organs, causing embolism or functional failure of other veins and organs.
  • Thrombectomy and its preparation method and use method discloses a thrombectomy device which is composed of a delivery catheter, a guide wire rod, a guide wire head, a distal/near end basket and the like.
  • the resector and the basket are placed into the blood vessel by means of X-rays. After the thrombus is passed through, the basket is released and the thrombus is removed and loosened, and the blood is flushed into the basket for collection.
  • the thrombus will flow through the basket into the posterior end of the blood vessel, which will easily cause secondary embolization at the distal end of the blood vessel; in addition, the basket is easy to collect when thrombus is collected. Damage to the intima of the blood vessel.
  • a partially blocked thrombus scraper (CN201010238525.0) discloses a device for sealing, breaking and scraping a thrombus.
  • the two blocked balloons are opened after passing through the thrombus, and the thrombus between the balloons is discharged from the blood vessel after being rotated by the scraping wire, broken and scraped off.
  • the balloon passes through the thrombus, it will produce a thrombus fragment that may cause secondary embolization at the distal end of the blood vessel; in addition, the tying wire will directly damage the intima of the blood vessel.
  • a thrombectomy system (CN201510108393.2) discloses a mechanical thrombectomy device consisting of a thrombectomy device, a balloon guiding catheter and a delivery microcatheter.
  • the balloon In the removal of the plug, the balloon is first opened to perform proximal protection, and then the retractor in the contracted state is opened after passing through the thrombus; the thrombus is separated from the blood vessel by pulling and removed, and collected and discharged.
  • the resector passes through the thrombus, it will produce a thrombus fragment that may cause secondary embolization at the distal end of the vessel; in addition, the movement of the resector will also cause direct damage to the intima of the vessel.
  • Intravascular ultrasound diagnosis and photoacoustic treatment device and treatment method thereof discloses a combination of ultrasonic imaging technology and photoacoustic treatment technology, which can help identify cardiovascular wall morphology through three-dimensional ultrasound imaging of blood vessels. Tube size, as well as cardiovascular clots, plaque size and distribution; to ablate thrombus and break plaque by controlling the intensity, wavelength and pulse width of the laser. Due to the uncertainty of the size and position of the plugs and plaques in the cardiovascular system, it is difficult to remove small-sized plugs by laser thrombolysis and broken plaque.
  • the object of the present invention is to overcome the shortcomings of prior art drug thrombolysis, surgical thrombectomy and mechanical interventional thrombectomy, and to adapt to the actual needs, design an ultrasonic decoupling system, effectively break the thrombus, and can thrombe The debris is completely excreted, achieving high efficiency and safety in removing the plug.
  • An ultrasonic de-plugging system comprising a front sheath tube and a rear sheath tube that can be inserted into a blood vessel and are relatively independent, the front end of the front sheath tube being sheathed with a front sealing balloon, the front end of the rear sheath tube being externally
  • the sleeve has a rear sealing balloon, and the front sealing balloon and the rear sealing balloon are respectively located on two sides of the blood vessel in the blood vessel and form a crushing cavity therebetween; the front sealing balloon And the rear sealing balloon is expanded or contracted in the blood vessel by external force to squeeze or relax to block or open the front and rear sides of the thrombus, and the inner portion of the rear sheath tube is coaxially penetrated
  • the core tube is provided with a breaker for breaking the thrombus, and a rear end of the rear sheath tube is provided with a drain pipe communicating with the core tube.
  • the front sheath tube and the rear sheath tube respectively comprise an inner tube closed at both ends and hollow, and an outer tube sleeved outside the inner tube, the front sealing balloon and the rear sealing ball
  • the capsules are respectively disposed outside the respective inner tubes
  • the outer tube includes a distal end tube of the thrombus and a proximal tube of the thrombus, and the anterior sealing balloon and the posterior sealing balloon are respectively disposed on the distal end of the thrombus
  • the outer tube is external to the outer tube of the thrombus;
  • the outer tube of the distal end of the thrombus is provided with a balloon expansion and contraction nut, the outer end of the balloon expansion and contraction nut and the inner tube a static connection of the tube, the inner end of the balloon expansion and contraction nut is matched with the outer tube of the distal end of the thrombus by a thread;
  • the front sealing balloon is axially pressed by the distal end of the thrombus or Release to achieve expansion and contraction
  • the two ends of the anterior sealing balloon are respectively fixedly connected with the distal end of the thrombus of the anterior sheath tube and the proximal tube of the thrombus, and the two ends of the occlusion balloon are respectively and the posterior
  • the distal end of the thrombus of the sheath tube and the proximal tube of the thrombus are fixedly connected;
  • the frame of the anterior occlusion balloon and the posterior occlusion balloon are elastic mesh-woven mesh frames, the grid The outer portion of the frame is covered with a closed elastic film.
  • a radial gap is disposed between the core tube and the inner tube wall of the rear sheath tube, and a plurality of sets of ribs are distributed in the inner tube of the rear sheath tube, and each set of the ribs includes three or more, evenly Distributed on the inner cylindrical surface of the inner tube and parallel to the axis of the inner tube; the over-flow area formed by the convex rib and the outer cylindrical surface of the core tube and the inner cylindrical surface of the inner tube is not less than The overcurrent area of the core tube.
  • the ultrasonic plug removal system includes a liquid supply system for supplying a thrombus disrupting medium to the breaker, and an ultrasonic excitation system for using the liquid supply system
  • the thrombogenic disrupting medium provided forms a high velocity pulse jet.
  • the ultrasonic decoupling system comprises a supply tube of a thrombus disrupting medium
  • the ultrasonic excitation system comprising an ultrasonic generator, an ultrasonic transducer, a horn and an oscillating chamber connected in sequence, the inlet of the oscillating chamber and The liquid supply system is connected, an outlet of the oscillating chamber is connected to a supply tube of the thrombus disrupting medium, and a supply tube of the thrombus disrupting medium is connected to the core tube.
  • the oscillating cavity is a variable-section cavity
  • the oscillating cavity is a continuous large cylindrical section, a vertebral body contraction section, a vertebral body contraction two section, a small cylindrical hole section and a bell mouth nozzle from the inlet end to the outlet end.
  • each set of the small through holes being evenly distributed along the circumferential direction of the large cylindrical section, and the axis of the small through hole is spatially spiraled Tangent to the upper oscillating cavity, and the helix angle ⁇ is 0-90°;
  • the busbar of the vertebral body contraction is a circular arc curve;
  • the axial length of the small cylindrical hole segment is larger than the vertebral body contraction
  • the axial length of the bell nozzle, the axial length of the bell nozzle is smaller than the axial length of the section of the cone.
  • the horn is a unidirectional reducing axis, which includes a large cylindrical section, a cone constricted section and a small cylindrical section in order from the outside to the inside; the generatrix of the cone constricted section is a logarithmic curve.
  • the thrombus disrupting medium is pulsed water
  • an outlet of the oscillating chamber is connected to a pulse water supply tube
  • the pulse water supply tube is connected to the core tube
  • a front end of the core tube is disposed at the a plurality of jet orifices on the wall of the front end of the core tube, a plurality of the jet orifices forming the breaker, the pulsed water being sprayed through the breaker to crush the thrombus.
  • a plurality of the jet holes are arranged in a layered manner on the wall surface of the core tube in a circumferential direction according to an arrangement of straight holes and inclined holes, and an axis of the straight holes is perpendicular to a wall surface of the core tube.
  • An angle ⁇ between the axis of the inclined hole and the axial direction of the core tube is 0-90°, and the jet hole is distributed on a wall surface 1 to 20 mm away from the front end of the core tube, and a total of 8-20 is provided.
  • the liquid supply system includes a supply pump and a pressure/flow controller, the supply pump being coupled to an input of the pressure/flow controller.
  • the ultrasonic detachable system includes a suction system including a suction pump and a fragmentation suction control device, the fragmentation suction control device being coupled to the drainage tube through a communication tube.
  • the ultrasonic decoupling system includes a fragmentation monitoring control device, a crushing zone pressure monitoring device, and an X-ray probe located outside the crushing chamber, the bolting monitoring control device being coupled to the X-ray probe,
  • the crushing zone pressure monitoring device is a micro pressure sensor, and the crushing zone pressure monitoring device is connected between the pressure/flow controller and the valve body of the oscillating chamber.
  • the ultrasonic plug removal system includes a plug removal control CPU, and the plug removal control CPU and the ultrasonic generator, the fragment plug suction control device, the pressure/flow controller, and the bolt The monitoring control device and the crushing zone pressure monitoring device are connected.
  • the rear sheath tube By designing the rear sheath tube into a multi-layered nested structure, it has both a channel for transporting a high-pressure pulsed liquid medium to the crushing zone, and a channel for sucking the broken thrombus out of the body;
  • the ellipsoidal structure balloon can be designed to expand and contract, and the balloon is fixed to the front and rear sheath tubes respectively, which can be used for constructing the closure of the bolt. Broken area to achieve near and far end protection;
  • ultrasonic vibration technology By combining high-pressure jet technology with ultrasonic vibration technology, high-frequency, micro-vibration can be generated in the liquid medium, and a high-energy pulse jet capable of cutting the thrombus can be generated, which can cause thrombus in the body.
  • Safe and efficient ultra-fine crushing technology in addition, according to the mechanical characteristics of the thrombus, determine the working pressure and flow rate of the pulsed liquid medium, the vibration frequency and amplitude of the liquid medium; including ultrasonic generator, transducer and oscillator Ultrasonic vibration system can make ultrasonic vibration of high pressure water, which can make the thrombus fully and quickly broken;
  • thrombus suction system including a suction pump and a drainage control system to combine the crushed blood clots with the size and size of the thrombus and the pressure and flow rate of the fluid supply system, for sucking and discharging the broken thrombus in vitro;
  • the design includes a pressure sensor, an X-ray probe, a pressure monitoring device for the bolting area and a sensing and control system for the crusher particle size monitoring device to realize the ultrasonic vibration system and the liquid supply system for the bolting Control of the working parameters of the bolting suction system.
  • FIG. 1 is a schematic view showing the overall structure of an embodiment of an ultrasonic plug removal system according to the present invention
  • Figure 2 is a schematic enlarged view of the front sheath tube
  • Figure 3 is a schematic enlarged view of the rear sheath tube
  • Figure 4 is a partial enlarged schematic view of the breaker
  • Figure 5 is a partial cross-sectional enlarged view showing the radial position of the core tube and the inner tube in the rear sheath tube;
  • Figure 6 is a schematic structural view of an oscillating chamber
  • Fig. 7 is a schematic structural view of a horn.
  • 1 is the front sheath tube
  • 101 is the inner tube of the front sheath tube
  • 102 is the ring
  • 103 is the balloon expansion and contraction nut
  • 104 is the distal end of the thrombus of the front sheath tube
  • 105 is the front sealing balloon
  • 106 is the front
  • 2 is the blood vessel
  • 3 is the thrombus
  • 4 is the crushing cavity
  • 5 is the posterior sheath
  • 501 is the breaker
  • 502 is the core tube
  • 503 is the proximal end of the thrombus of the posterior sheath.
  • 504 is the posterior balloon
  • 505 is the distal end of the thrombus of the posterior sheath
  • 506 is the balloon expansion and contraction nut
  • 507 is the ring
  • 508 is the inner tube of the rear sheath tube
  • 509 is the small nut
  • 510 is the ring
  • 511 is the discharge pipe
  • 512 is the jet hole
  • 513 is the convex rib
  • 6 is the pulse water supply pipe
  • 7 is the liquid supply system
  • 701 is the liquid supply pump
  • 702 is the pressure/flow controller
  • 8 is the ultrasonic excitation system
  • 801 For the ultrasonic generator, 802 is an ultrasonic transducer
  • 803 is a horn
  • 8301 is a large cylinder segment
  • 8302 is a cone contraction segment
  • 8303 is a small cylinder segment
  • 804 is an oscillating cavity
  • 8401 is a small through hole.
  • Embodiment See Figures 1-7.
  • the invention discloses an ultrasonic de-plugging system, comprising a front sheath tube 1 and a rear sheath tube 5 which can be inserted into the blood vessel 2 and are relatively independent.
  • the front end of the front sheath tube 1 is externally fitted with a front sealing balloon 105.
  • the front end of the rear sheath tube 5 is provided with a rear sealing balloon 504, and the front sealing balloon 105 and the rear sealing balloon 504 are respectively located on both sides of the thrombus 3 in the blood vessel 2 and are broken between the two.
  • the front sealing balloon 105 and the rear sealing balloon 504 are expanded or contracted in the blood vessel 2 by external force to squeeze or loosen to block or open the front and rear sides of the thrombus 3, the rear sheath tube 5
  • the inside of the core tube 502 is coaxially inserted, the front end of the core tube 502 is a breaker 501 for breaking a blood clot, and the rear end of the rear sheath tube 5 is provided with a drain pipe communicating with the core tube 502. 511.
  • the invention belongs to a medical device used in an interventional surgical method, and is a device for crushing and extracting and depositing a deposit in a blood vessel.
  • the anterior sheath 1 is placed first into the front end of the thrombus 3 in the blood vessel 2, and the anterior sealing balloon 105 is inflated to block the front end of the blood vessel 2 until it fits against the inner wall of the blood vessel 2, and then the posterior sheath is attached.
  • the tube 5 is placed at the rear end of the thrombus 3, and the rear sealing balloon 504 is inflated until it adheres to the inner wall of the blood vessel 2; the thrombus 3 is blocked between the two balloons, and the closed region is the crushing chamber 4 .
  • the breaker 501 breaks the thrombus, and the broken thrombus fragments are discharged through the drain tube 511.
  • the ultrasonic decoupling system of the present invention further includes an ultrasonic excitation system 8 and a supply tube for a thrombus disrupting medium, the ultrasonic excitation system 8 including An ultrasonic generator 801, an ultrasonic transducer 802, a horn 803, and an oscillating chamber 804 are connected, and an outlet of the oscillating chamber 804 is connected to a supply tube of a thrombus disrupting medium, and a supply tube and a core tube 502 of the thrombogenic medium connection.
  • the ultrasonic generator 801 is used to generate ultrasonic waves, and the ultrasonic transducer 802 converts the input electric power into mechanical power (i.e., ultrasonic waves) and transmits it, while consuming a small portion of the power itself.
  • the oscillating cavity 804 is a variable-section cavity, and the oscillating cavity 804 is a continuous large cylindrical section 8406, a vertebral body contraction section 8405, a vertebral body contraction two section 8402, a small cylindrical hole section 8403, and a bell mouth from the inlet end to the outlet end.
  • the nozzle 8404 has a plurality of small through holes 8401 distributed in the cavity wall surface of the large cylindrical section 8406. Each set of small through holes is uniformly distributed along the circumferential direction of the large cylindrical section 8406, and the axis of the small through hole 8401 is spatially spiraled and upper.
  • the horn 803 is a unidirectional reducing shaft, and includes a large cylindrical section 8301, a cone-contracted section 8302, and a small cylindrical section 8303 in order from the outside to the inside; the generatrix of the cone-contracting section 8302 is a logarithmic curve.
  • the horn is an important part of the ultrasonic excitation system. Its main function in the vibration system is to amplify the mass displacement or velocity of the mechanical vibration and concentrate the ultrasonic energy on a small area (ie, energy gathering). Therefore, it is also called ultrasonic shift lever or ultrasonic concentrator.
  • the variator 803 improves the shape factor of the horn by adopting the variable diameter structure design, and increases the amplification factor of the amplitude of the horn.
  • the structural shape of each section of the oscillating cavity is determined according to the displacement of the smallest end (end) of the horn. After many tests and calculations, it is determined according to the force-displacement relationship of the complex section.
  • the thrombus disrupting medium of the present invention is water, and it is expected that other medium may be used instead of water as the crushing medium, such as a gas stream.
  • the outlet of the oscillating chamber 804 is connected to the pulse water supply pipe 6, and the pulse water supply pipe 6 is connected to the core tube 502.
  • the front end of the core tube 502 is provided with a plurality of jet holes distributed on the front wall surface of the core tube 502. 512, the plurality of jet holes 512 form a breaker 501, and the pulsed water is sprayed through the breaker 501 to crush the thrombus.
  • the cross section of the oscillating chamber is changed from large to small, mainly in the case of the same pulse water flow rate, so that the pulse water is higher than the axial flow velocity in the oscillating chamber.
  • the size of each section is determined by the kinetic energy that the pulsed water should reach.
  • an eddy current field will be formed in the oscillating cavity, which can reduce the pressure loss caused by the small cross-sectional area of the oscillating cavity; the spiral angle should be such that the liquid water can be in the oscillating cavity. It can be determined by the principle that the eddy current can be formed and the axial flow velocity can be the fastest.
  • the helix angle ⁇ is 0 to 90°, and the general range is 30° to 60°, and the optimum value is 45°.
  • the jet hole 512 is arranged on the wall surface of the core tube 502 in a layered manner according to the arrangement of the straight hole and the inclined hole in each circumference, that is, a layer of straight holes and a layer of inclined holes, and the like, the axis and the core of the straight hole
  • the tube wall surface is perpendicular, the angle ⁇ between the axis of the inclined hole and the axial direction of the core tube is 0-90°, and the jet hole 512 is distributed on the wall surface 1-20 mm from the front end of the core tube 502, and a total of 8 ⁇ 20 layers.
  • the structure is arranged in a layered interval between the straight hole and the oblique hole, and the thrombus impact can be impacted from different angles, and the water column sprayed in different directions forms a turbulent flow, and the thrombus can be broken into smaller particles more uniformly, avoiding the same direction.
  • the size of the thrombus caused by the water column is different, and some of the slightly larger particles are not easily broken again, and are not easily discharged from the drain pipe 511.
  • the front sheath tube 1 and the rear sheath tube 5 each include an inner tube that is closed at both ends and is hollow.
  • the front sealing balloon 105 and the rear sealing balloon 504 are respectively set in the respective inner tubes.
  • the inner tube of the front sheath tube 1 and the rear sheath tube 5 of the present invention is provided with an outer tube
  • 101 is an inner tube of the front sheath tube
  • 508 is an inner tube of the rear sheath tube
  • the outer tube is divided into a distal end of the thrombus Outer tube
  • proximal end of thrombus in the figure
  • 104, 106 are the distal end of the thrombus of the anterior sheath 1 and the proximal end of the thrombus, respectively
  • 503, 505 are the proximal sheath of the posterior sheath and thrombus Remote outer tube.
  • the front sealing balloon 105 and the rear sealing balloon 504 are both disposed outside the inner tube between the two outer tubes; the distal end of the thrombus is provided with a balloon expansion and contraction nut, which is marked as 103, 506, the outer end of the balloon expansion and contraction nut is statically connected to the inner tube, the inner end of the balloon expansion and contraction nut and the distal end of the thrombus outer tube are matched by a thread; the front sealing balloon 105 passes The distal end of the thrombus is axially squeezed or released to achieve expansion and contraction.
  • the anterior sheath 1 is first placed into the front end of the thrombus 3 in the blood vessel 2, and the balloon expansion and contraction nut 103 on the first sheath is rotated to enable the distal end outer tube 104 of the anterior sheath 1 to
  • the inner tube 101 is moved toward the proximal end of the thrombus, so that the front sealing balloon 105 is inflated until the front sealing balloon 105 supports the blood vessel 2 and fits against the inner wall to achieve proximal protection; the rear sheath tube 5 is placed
  • the posterior end of the thrombus 3, the balloon on the sheath after the rotation expands and contracts the nut 506, so that the distal end of the thrombus of the posterior sheath can be moved along the inner tube 508 of the posterior sheath to the proximal end of the thrombus, thereby allowing the posterior closure
  • the balloon 504 is inflated until it conforms to the inner wall of the blood vessel 2, preventing the small thrombus fragments from flowing
  • the water supply system is turned on, and the pulsed water flows through the crusher 501 via the pulse water supply tube 6 through the jet hole 512.
  • the ejection 3 breaks up the thrombus 3, and the crushed thrombus fragments are all discharged from the drain tube 511 through the suction system 10.
  • the two ends of the anterior sealing balloon 105 are respectively fixedly connected with the distal extremity tube 104 of the anterior sheath tube 1 and the proximal tube 106 of the thrombus, and the two ends of the capsular balloon 504 are respectively far from the thrombus of the posterior sheath tube 5.
  • the outer end tube 505 and the proximal end tube 503 of the thrombus are fixedly connected; the frame of the front sealing balloon 105 and the rear sealing balloon 504 are elastic mesh-woven mesh frames 14 , and the mesh frame The outer portion of 14 is covered with a closed elastic film 15.
  • Elastic wire braided mesh front and rear sealing balloon and covered by elastic film, so that when the balloon expansion and contraction nut is loosened, the elastic film is relaxed, but still has a spherical frame structure, which needs When the thrombus is blocked before and after, the balloon is tightened slightly, and the balloon is squeezed to deform it.
  • the structure of the front and rear sealing balloon is not limited thereto, and a simple inflatable structure can be used to connect the front and rear sealing balloon with the inflatable structure.
  • An annular groove is defined in the outer ends of the balloon expansion and contraction nuts 103 and 506.
  • the balloon expansion and contraction nuts are fixedly connected to the respective inner tubes through the rings 102 and 510 disposed in the annular groove; the right end of the core tube 502 is outside.
  • the outer end of the small nut 509 is also provided with an annular groove, which is fixedly connected with the core tube 502 through a ring 510 disposed in the annular groove, and the other end is threadedly engaged with the inner tube 508 of the rear sheath tube;
  • the balloon expansion and contraction nut 103, 506 and the small nut 509 are both hollow cylindrical structures with a bottom, and an annular groove is arranged at the bottom of the column.
  • the respective rings are embedded in the annular groove, and the ring exists between the ring and the annular groove.
  • a radial gap is disposed between the core tube 502 and the inner tube wall of the rear sheath tube 5.
  • the inner tube 508 of the rear sheath tube is distributed with a plurality of sets of ribs 513, and each group of ribs should have three or more It is distributed on the inner cylindrical surface of the inner tube 508 and is parallel to the axis of the inner tube; the over-flow area formed by the convex rib and the outer cylindrical surface of the core tube 502 and the inner cylindrical surface of the inner tube 508 is not less than the over-flow area of the core tube 502.
  • the ultrasonic de-plugging system further includes a liquid supply system 7, a plug removal control CPU 9, a suction system 10, a debris stop monitoring control device 11, a crushing zone pressure monitoring device 12, and an X-ray probe 13 located outside the crushing chamber 3;
  • the liquid system 7 includes a liquid supply pump 701 and a pressure/flow controller 702; the liquid supply pump 701 is coupled to an input of the pressure/flow controller 702; the suction system includes a suction pump 1001 and a bolt suction control device 1002.
  • the crushing plug suction control device 1002 is connected to the drain pipe 511 through the communication pipe 1003; the plug removing control CPU 9 is respectively connected with the ultrasonic generator 801, the crushing pin suction control device 1002, the pressure/flow controller 702, and the bolt
  • the monitoring control device 11 and the crushing zone pressure monitoring device 12 are connected; the crushing plug monitoring and controlling device 11 is connected to an X-ray probe 13 located outside the crushing chamber, and the crushing zone pressure monitoring device 12 is a micro pressure sensor, the crushing zone
  • the pressure monitoring device 12 is coupled between the pressure/flow controller 702 and the valve body 8407 of the oscillating chamber 804.
  • the core tube 502 By rotating the small nut 509 of the sheath 5, the core tube 502 can be moved to the proximal end of the thrombus in the inner tube 508 to move toward the position of the thrombus 3; when the breaker 501 approaches the thrombus 3, the liquid supply system 7 is removed by the plug Control CPU coordination, supply liquid to the breaker 501 according to the set supply pressure and flow rate; at the same time, the ultrasonic generator 801 will generate a high frequency electric pulse of 15-20 KHz, and the horn 803 is obtained by the ultrasonic transducer 802. Frequency and micro-mechanical vibration, this mechanical vibration will excite the high-pressure liquid medium in the oscillating cavity 804 to resonate, and transform into a pulse jet of 15-20 KHz.
  • the high-speed enters the rear sheath tube 5
  • the end of the core tube is ejected from the jet hole 512 of the breaker 501 to impact, cut, break and separate the thrombus deposited in the blood vessel, so that the thrombus becomes a small piece and is suspended in the liquid medium in the crushing chamber 4. .
  • the plug-free control CPU coordinates the shredder suction control device 1002 of the suction system 10 to supply the liquid flow rate as the working flow rate of the suction pump 1001. It can not only ensure the fluid supply requirement for thrombus crushing, but also discharge the broken thrombus fragments out of the blood vessel, and ensure that no vacuum zone appears in the blood vessel during the plug removal process.
  • the actual pressure signal of the liquid medium in the thrombus crushing zone is obtained in real time by the micro pressure sensor of the crushing zone pressure monitoring device 12, and transmitted to the plug removing control CPU through the micro pressure sensor, and is fed back to the liquid supply system 7 after being compared with the predetermined pressure parameter.
  • the pressure/flow controller 702 adjusts the output pressure of the liquid supply system, which not only ensures the pressure requirement of the pulse jet of the broken thrombus, but also ensures the pressure safety of the crushing zone.
  • image information such as the position, size and clogging of the thrombus 3 is obtained before the thrombus is broken; in the ultrasonication process, the particle size of the broken thrombus and the image of the thrombus removal are obtained, the image information Displayed after the CPU is processed by the de-bolling control. Based on the above image information, until all blood clots or plaques in the blood vessels are removed, the blood vessels are patency.
  • the present invention Compared with other sputum plug devices, the present invention has the following unique effects: First, the plug-type thrombolysis can be used to flow the broken thrombus fragments to the distal blood vessel to avoid secondary embolism; secondly, ultrasonic excitation technology is adopted.
  • the liquid medium with high-frequency pulse energy can superfinely crush the thrombus, which can completely avoid the blockage of the large-thickness thrombus to the drainage pipe.
  • the fourth is the real-time monitoring of the pressure of the thrombus crushing chamber, the size of the thrombus after the crushing, and the real-time monitoring of the flow and pressure of the liquid supply system and the drainage system. Ensure the safety of the plug removal process and ensure the effectiveness of the plug removal.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Mechanical Engineering (AREA)
  • Surgical Instruments (AREA)

Abstract

一种超声除栓系统,包括能够置入血管(2)中且相对独立的前鞘管(1)和后鞘管(5),所述前鞘管(1)的后端外部套装有前封堵球囊(105),所述后鞘管(5)的前端外部套装有后封堵球囊(504),所述前封堵球囊(105)与所述后封堵球囊(504)分别位于所述血管(2)中的血栓(3)的两侧且二者之间形成破碎腔(4);所述前封堵球囊(105)与所述后封堵球囊(504)经由外力挤压或松弛在所述血管(2)内扩张或收缩以将所述血栓(3)的前后两侧封堵或打开,所述后鞘管(5)的内部设有同轴将其贯穿的芯管(502),所述芯管(502)的前端设有用于破碎所述血栓(3)的破碎器(501),所述后鞘管(5)的后端设有与所述芯管(502)连通的排泄管(511)。

Description

超声除栓系统 技术领域
本发明属于介入式手术方法中使用的一种医疗器械,是一种对血管内的沉积物进行破碎抽取以及排出的器械,具体的说,是涉及一种超声除栓系统。
背景技术
人体的脑动脉、静脉常有血栓形成,目前对于血栓病变主要有药物性溶栓、外科手术法取血栓和机械式取栓的治疗方法。
药物性溶栓是将溶栓药物通过静注,直接或间接地使血栓溶解,从而疏通被阻塞的血管;另一种溶栓方法是通过导管将溶栓药物直接引入到血栓所在位置。这种溶栓方法容易发生出血的副作用,特别是引起内脏或脑出血危险的病人,应禁忌做溶栓治疗。
外科手术治疗是在有血栓的部位开一切口,并从该切口取出血栓。但手术从静脉取血栓难度大,而且手术过程中产生的残余血栓碎屑会进入肺部,引起肺部栓塞。
机械介入式取栓方法是通过微创手术将取栓器械引入静脉,利用造影和X光透视,将取栓装置接触血栓,并直接对血栓实施破碎除栓,或穿过血栓进行取栓。与溶栓和外科手术取栓相比,这种方法创伤面小,对血栓沉积部位的静脉影响较小。
与机械式破碎除栓有关的专利主要有:血栓破碎取栓器(CN201110098919.5)公开了一种能够进入人体血管,将血栓破碎并有效取出的取栓器械。该专利解决因细微导丝在穿过血栓时容易弯曲,难于对准血栓的中心位置穿过,容易对血管造成损伤的问题,提高了取栓的安全 性。但导丝在穿过血栓,以及金属网在对血栓进行破碎的过程中,血栓碎片难于被全部捕捉并排出体外。
血栓破碎装置(CN200420049312.3)公开了一种属于医疗设备范围的将声能转变成机械能,以震动方式破碎血栓,达到帮助血栓清除的目的。但该专利仅是在除栓过程中提供体外辅助治疗。因在取栓或破碎过程中,容易使血栓出现细小碎片难于被捕获,而残留在静脉血液内部,并进入盘路静/动脉和脏器,导致其他静脉、脏器发生栓塞或功能衰竭。
血栓切除及其制备方法、使用方法(CN201010262495.7)公开了一种血栓切除器,它是由输送导管、导丝杆、导丝头、远端/近端网篮等组成。使用时借助X射线将切除器、网篮置入血管,在穿过血栓后将网篮释放打开,血栓被切除松动,被血流冲入网篮收集。因切除器和网篮在穿过血栓时将导致血栓破裂,血栓碎块将流过网篮进入血管的后端,容易造成血管远端的二次栓塞;此外,网篮在收集血栓时,容易损伤血管的内膜。
局部封堵式血栓刮除器(CN201010238525.0)公开了一种对血栓实施封堵、破碎和刮脱的装置。在除栓时,两个封堵球囊在穿过血栓后打开,球囊之间的血栓在经刮栓丝球旋转、破碎刮脱后,从血管内排出。球囊在穿过血栓时,将产生可能造成血管远端二次栓塞的血栓碎块;此外,刮栓丝球将对血管内膜产生直接损伤。
一种血栓切除系统(CN201510108393.2)公开了一种由血栓切除器、球囊导引导管和输送微导管组成的机械取栓装置。在除栓时,先涨开球囊实施近端保护,再将处于收缩状态的切除器穿过血栓后涨开;通过拉动切除使血栓从血管分离,并收集排出体外。切除器在穿过血栓时,将产生可能造成血管远端二次栓塞的血栓碎块;此外,切除器的移动也会对血管内膜产生直接损伤。
血管内超声诊断与光声治疗装置及其治疗方法(CN201110414195.0)公开了一种采用超声成像技术与光声治疗技术相结合,通过血管的三维超 声成像,能够帮助识别心血管的管壁形态、管腔尺寸,以及心血管内凝块、斑块大小及其分布;通过控制激光的强度、波长和脉宽消融血栓、破碎斑块。因心血管内的栓块、斑块的大小和位置均存在不确定性,采用激光融栓和破碎斑块难于除去小尺寸的栓块。
发明内容
本发明的目的在于克服现有技术药物溶栓、外科手术取栓和机械介入式取栓等存在的不足,适应现实需要,设计一种超声除栓系统,对血栓进行有效破碎,并能够将血栓碎片全部排出体外,实现除栓的高效性和安全性。
为了实现本发明的目的,采用如下技术方案:
一种超声除栓系统,包括能够置入血管中且相对独立的前鞘管和后鞘管,所述前鞘管的后端外部套装有前封堵球囊,所述后鞘管的前端外部套装有后封堵球囊,所述前封堵球囊与所述后封堵球囊分别位于所述血管中的血栓的两侧且二者之间形成破碎腔;所述前封堵球囊与所述后封堵球囊经由外力挤压或松弛在所述血管内扩张或收缩以将所述血栓的前后两侧封堵或打开,所述后鞘管的内部设有同轴将其贯穿的芯管,所述芯管的前端设有用于破碎所述血栓的破碎器,所述后鞘管的后端设有与所述芯管连通的排泄管。
优选地,所述前鞘管和所述后鞘管均包括两端封闭且中空的内管和套装在所述内管外的外管,所述前封堵球囊与所述后封堵球囊分别套装在各自内管的外部,所述外管包括血栓远端外管和血栓近端外管,所述前封堵球囊与所述后封堵球囊均套装于所述血栓远端外管与所述血栓近端外管之间的所述内管外部;所述血栓远端外管处均套装有球囊胀缩螺母,所述球囊胀缩螺母的外端与所述内管静连接,所述球囊胀缩螺母的内端与所述血栓远端外管通过螺纹匹配套装;所述前封堵球囊通过所述血栓远端外管对 其进行轴向挤压或释放实现胀缩。
优选地,所述前封堵球囊的两端分别与所述前鞘管的血栓远端外管、血栓近端外管固定连接,所述后封堵球囊的两端分别与所述后鞘管的血栓远端外管、血栓近端外管固定连接;所述前封堵球囊与所述后封堵球囊的框架均为弹性金属丝编织的网格状框架,所述网格状框架的外部包覆有密闭的弹性薄膜。
优选地,所述芯管与所述后鞘管的内管壁之间设有径向间隙,所述后鞘管的内管内分布若干组凸筋,每组所述凸筋包括三条以上,均匀分布于所述内管的内圆柱表面且与所述内管的轴线平行;所述凸筋与所述芯管的外圆柱面、所述内管的内圆柱面形成的过流面积不小于所述芯管的过流面积。
优选地,所述超声除栓系统包括供液系统和超声激振系统,所述供液系统用于向所述破碎器提供血栓破碎介质,所述超声激振系统用于使所述供液系统提供的所述血栓破碎介质形成高速脉冲射流。
优选地,所述超声除栓系统包括血栓破碎介质的供应管,所述超声激振系统包括依次连接的超声波发生器、超声波换能器、变幅杆和振荡腔,所述振荡腔的入口与所述供液系统连接,所述振荡腔的出口与所述血栓破碎介质的供应管连接,所述血栓破碎介质的供应管与所述芯管连接。
优选地,所述振荡腔为变截面腔体,所述振荡腔从入口端到出口端依次为连贯的大圆柱段、椎体收缩一段、椎体收缩二段、小圆柱孔段和喇叭口喷嘴,在所述大圆柱段的腔体壁面分布有若干组小通孔,每组所述小通孔沿所述大圆柱段的圆周方向均匀分布,且所述小通孔的轴线以空间螺旋线与上部振荡腔相切,且螺旋升角β为0~90°;所述椎体收缩二段的母线为圆弧曲线;所述小圆柱孔段的轴向长度大于所述椎体收缩二段、所述喇叭口喷嘴的轴向长度,所述喇叭口喷嘴的轴向长度小于所述椎体收缩一段的轴向长度。
优选地,所述变幅杆是单向变径轴,从外向内依次包括大圆柱体段、锥体收缩段和小圆柱体段;所述锥体收缩段的母线为对数曲线。
优选地,所述血栓破碎介质为脉冲水,所述振荡腔的出口与脉冲水供应管连接,所述脉冲水供应管与所述芯管连接,所述芯管的前端设有分布于所述芯管前端壁面上的多个射流孔,多个所述射流孔形成所述破碎器,所述脉冲水经所述破碎器喷出将所述血栓击碎。
优选地,多个所述射流孔在所述芯管的壁面上以各圆周按照直孔与斜孔的排列规律分层依次间隔布置,所述直孔的轴线与所述芯管的壁面垂直,所述斜孔的轴线与所述芯管的轴线方向的夹角α为0~90°,所述射流孔在距所述芯管前端1~20mm的壁面上分布,且共设有8~20层。
优选地,所述供液系统包括供液泵和压力/流量控制器,所述供液泵与所述压力/流量控制器的输入端连接。
优选地,所述超声除栓系统包括抽吸系统,所述抽吸系统包括抽吸泵和碎栓抽吸控制装置,所述碎栓抽吸控制装置通过连通管与所述排泄管连接。
优选地,所述超声除栓系统包括碎栓监测控制装置、破碎区压力监测装置以及位于所述破碎腔外部的X光探头,所述碎栓监测控制装置与所述X光探头连接,所述破碎区压力监测装置为微压力传感器,所述破碎区压力监测装置连接于所述压力\流量控制器和所述振荡腔的阀体之间。
优选地,所述超声除栓系统包括除栓控制CPU,所述除栓控制CPU分别与所述超声发生器、所述碎栓抽吸控制装置、所述压力/流量控制器、所述碎栓监测控制装置、所述破碎区压力监测装置连接。
本发明的有益效果:
(1)采用前后鞘管以及两个封堵球囊的结构将血栓两端进行封堵,然后用破碎器将血栓破碎,破碎后的血栓从排泄管排出,结构新颖,除栓效果好;
(2)通过将后鞘管设计为多层嵌套式结构,使其既具有将高压脉冲液态介质输送到破碎区的通道,还具有将碎后血栓抽吸排出体外的通道;
(3)通过将金属丝网与弹性薄膜进行有效复合,设计成可以胀缩的椭球型结构球囊,并使球囊分别与前、后鞘管固接,能够用于构建碎栓的封闭破碎区,实现近、远端保护;
(4)通过将高压射流技术与超声波激振技术进行有机结合,能够使液态介质产生高频、微幅振动,并产生能够对血栓实施切割的高能级脉冲射流,这种脉冲射流能够对体内血栓进行安全、高效的超细破碎技术;另外还能够根据血栓的机械特性,确定脉冲液态介质的工作压力、流量,液态介质的振动频率和振幅;包括超声波发生器、换能器和振荡器在内的超声振动系统能够使高压水产生超声振动,这种脉动射流使血栓能够得到充分、快速破碎;
(5)采用具有对数曲线的变幅杆,沿高度和圆周方向多点对称式分布的脉冲射流输入孔的振荡腔结构,以及具有二次加速效应的变直径结构的射流输出孔;
(6)根据除栓破碎力需求,设计包括供液泵和压力/流量控制器的供液系统;并与碎栓超声振动系统的振荡器连接,实现高压水的持续供应;
(7)结合血栓的碎后粒级大小情况以及供液系统的压力和流量,设计包括抽吸泵和排栓控制系统的碎栓抽吸系统,用于将碎后的血栓块抽吸并排出体外;
(8)结合超声碎栓工作要求,设计包括压力传感器、X光探头、碎栓区压力监测装置以及碎栓粒度监测装置的传感检测与控制系统,实现对碎栓超声振动系统、供液系统、碎栓抽吸系统工作参数的控制。
附图说明
图1为本发明超声除栓系统的一种实施方式的整体结构示意图;
图2为前鞘管的放大结构示意图;
图3为后鞘管的放大结构示意图;
图4为破碎器的局部放大结构示意图;
图5为后鞘管中的芯管与内管的径向位置局部剖视放大结构图;
图6为振荡腔的结构示意图;
图7为变幅杆的结构示意图。
附图标记说明
1为前鞘管,101为前鞘管的内管,102为环,103为球囊胀缩螺母,104为前鞘管的血栓远端外管,105为前封堵球囊,106为前鞘管的血栓近端外管,2为血管,3为血栓,4为破碎腔,5为后鞘管,501为破碎器,502为芯管,503为后鞘管的血栓近端外管,504为后封堵球囊,505为后鞘管的血栓远端外管,506为球囊胀缩螺母,507为环,508为后鞘管的内管,509为小螺母,510为环,511为排泄管,512为射流孔,513为凸筋,6为脉冲水供应管,7为供液系统,701为供液泵,702为压力\流量控制器,8为超声激振系统,801为超声波发生器,802为超声波换能器,803为变幅杆,8301为大圆柱体段、8302为锥体收缩段、8303为小圆柱体段、804为振荡腔,8401为小通孔,8402为椎体收缩二段,8403为小圆柱孔段,8404为喇叭口喷嘴,8405为椎体收缩一段,8406为大圆柱段,8407为阀体,9为除栓控制CPU,10为抽吸系统,1001为抽吸泵,1002为碎栓抽吸控制装置,1003为连通管,11为碎栓监测控制装置,12为破碎区压力监测装置,13为X光探头,14为网格状框架,15为弹性薄膜。
具体实施方式
实施例:参见图1-图7。
本发明公开了一种超声除栓系统,包括能够置入血管2中且相对独立 的前鞘管1和后鞘管5,所述前鞘管1的后端外部套装有前封堵球囊105,后鞘管5的前端外部套装有后封堵球囊504,所述前封堵球囊105与后封堵球囊504分别位于血管2中的血栓3的两侧且二者之间形成破碎腔4;所述前封堵球囊105与后封堵球囊504经由外力挤压或松弛在血管2内扩张或收缩以将血栓3的前后两侧封堵或打开,所述后鞘管5的内部设有同轴将其贯穿的芯管502,所述芯管502的前端为用于破碎血栓的破碎器501,所述后鞘管5的后端设有与芯管502连通的排泄管511。
本发明属于介入式手术方法中使用的一种医疗器械,是一种对血管内的沉积物进行破碎抽取以及排出的器械。
在发现血栓的位置后,将前鞘管1先置入血管2中血栓3的前端,前封堵球囊105膨胀将血管2前端封堵,直至与血管2的内壁贴合,然后将后鞘管5置入血栓3的后端,使后封堵球囊504膨胀,直至与血管2的内壁贴合;血栓3就被封堵在两个球囊之间,该封闭区域即为破碎腔4。在前鞘管1、后鞘管5均置入到血管2中,并完成对血栓3的封堵后,破碎器501将血栓破碎,经破碎后的血栓碎片经由排泄管511排出。
作为一种优选的实施方式,也是本发明的发明点之一,本发明所述的超声除栓系统还包括超声激振系统8和血栓破碎介质的供应管,所述超声激振系统8包括依次连接的超声波发生器801、超声波换能器802、变幅杆803和振荡腔804,所述振荡腔804的出口与血栓破碎介质的供应管连接,所述血栓破碎介质的供应管与芯管502连接。
超声波发生器801用于产生超声波,超声波换能器802是将输入的电功率转换成机械功率(即超声波)再传递出去,而自身消耗很少的一部分功率。
所述振荡腔804为变截面腔体,振荡腔804从入口端到出口端依次为连贯的大圆柱段8406、椎体收缩一段8405、椎体收缩二段8402、小圆柱孔段8403和喇叭口喷嘴8404,在大圆柱段8406的腔体壁面分布有若干组小 通孔8401,每组小通孔沿大圆柱段8406的圆周方向均匀分布,且小通孔8401的轴线以空间螺旋线与上部振荡腔相切,且螺旋升角β为0~90°;所述椎体收缩二段8402的母线为圆弧曲线;所述小圆柱孔段8403的轴向长度大于椎体收缩二段8402、喇叭口喷嘴8404的轴向长度,所述喇叭口喷嘴8404的轴向长度小于椎体收缩一段8405的轴向长度。
所述变幅杆803是单向变径轴,从外向内依次包括大圆柱体段8301、锥体收缩段8302和小圆柱体段8303;所述锥体收缩段8302的母线为对数曲线。
变幅杆是超声激振系统中一个重要的组成部分,它在振动系统中的主要作用是把机械振动的质点位移或速度放大,并将超声能量集中在较小的面积上(即聚能),因此也称超声变速杆或超声聚能器。变幅杆803通过采用变径结构设计,提高了变幅杆的形状因数,增加了变幅杆振幅的放大系数。而振荡腔每段的结构形状,是根据变幅杆最小端(末端)需要获得的位移大小,经过多次试验及测算,根据复杂截面杆件力-位移关系确定的。
优选的,本发明所述血栓破碎介质为水,可以预料的是,可采用其他介质来替代水做破碎介质,比如气流。所述振荡腔804的出口与脉冲水供应管6连接,所述脉冲水供应管6与芯管502连接,所述芯管502的前端设有分布于芯管502前端壁面上的多个射流孔512,多个射流孔512形成破碎器501,脉冲水经破碎器501喷出将血栓击碎。
因变幅杆在振荡腔内,液态水经过振荡腔时,高频振动的变幅杆将对液态水产生激振作用,使液态水获得交替变化机械能而成为脉冲水,这种具有交替变化机械能的脉冲水可以对血栓进行切割分离。
自椎体收缩一段8405至椎体收缩二段8402方向,振荡腔的截面由大变小,主要是在脉冲水流量相同的情况下提高流速,使脉冲水以高于振荡腔内的轴向流速进入小圆柱孔段8403的圆柱孔;当脉冲水经过最左端的喇叭口喷嘴8404是一内锥孔时,会出现拉瓦尔效应,也就是脉冲水将继续加 速,从而获得更大的动能,以利于对血栓破碎。每段截面大小是根据脉冲水应达到的动能而确定。
脉冲水以一定螺旋角进入振荡腔后,将在振荡腔内形成涡流场,可以减少脉冲水因振荡腔的截面积变小而产生的压力损失;螺旋角度大小应以液态水能够在振荡腔内既能形成涡流,又能使轴向流速最快为原则来确定。螺旋升角β为0~90°,一般范围取值为30°~60°,最佳取值为45°。
所述射流孔512在芯管502壁面上以各圆周按照直孔与斜孔的排列规律分层依次间隔布置,即一层直孔一层斜孔以此类推,所述直孔的轴线与芯管壁面垂直,所述斜孔的轴线与芯管的轴线方向的夹角α为0~90°,所述射流孔512在距芯管502前端1~20mm的壁面上分布,且共设有8~20层。
采用直孔与斜孔分层间隔布置的结构,可以从不同角度对血栓冲击,且不同方向喷出的水柱形成扰流,能够较为均匀的将血栓破碎为较小的颗粒,避免了同一方向的水柱造成的血栓破碎大小不一,有些稍大颗粒既不容易再次破碎,又不容易从排泄管511排出。
作为一种优选的实施方式,所述前鞘管1、后鞘管5均包括两端封闭且中空的内管,前封堵球囊105与后封堵球囊504分别套装在各自内管的外部,本发明的前鞘管1、后鞘管5的内管外套装有外管,101为前鞘管的内管,508为后鞘管的内管,所述外管分为血栓远端外管、血栓近端外管,图中,104、106分别为前鞘管1的血栓远端外管和血栓近端外管,503、505分别为后鞘管的血栓近端外管和血栓远端外管。所述前封堵球囊105与后封堵球囊504均套装于两段外管之间的内管外部;所述血栓远端外管处均套装有球囊胀缩螺母,图中标记为103、506,所述球囊胀缩螺母的外端与内管静连接,所述球囊胀缩螺母的内端与血栓远端外管通过螺纹匹配套装;所述前封堵球囊105通过血栓远端外管对其进行轴向挤压或释放实现胀缩。
在发现血栓的位置后,将前鞘管1先置入血管2中血栓3的前端,旋转前1鞘管上的球囊胀缩螺母103,使前鞘管1的血栓远端外管104能够沿 内管101向血栓近端移动,从而使前封堵球囊105膨胀,直至前封堵球囊105将血管2撑起并与其内壁贴合,实现近端保护;将后鞘管5置入血栓3的后端,旋转后鞘管上的球囊胀缩螺母506,使后鞘管的血栓远端外管505能够沿后鞘管的内管508向血栓近端移动,从而使后封堵球囊504膨胀,直至与血管2的内壁贴合,防止细小的血栓碎块流向远端;血栓就被封堵在两个球囊之间。在前鞘管1、后鞘管5均置入到血管2中,并完成对血栓3的封堵后,开启供水系统,脉冲水经由脉冲水供应管6流经破碎器501后经射流孔512喷出将血栓3击碎,击碎后的血栓碎片经由抽吸系统10抽吸从排泄管511全部排出。
前封堵球囊105的两端分别与前鞘管1的血栓远端外管104、血栓近端外管106固定连接,后封堵球囊504的两端分别与后鞘管5的血栓远端外管505、血栓近端外管503固定连接;所述前封堵球囊105与后封堵球囊504的框架均为弹性金属丝编织的网格状框架14,所述网格状框架14的外部包覆有密闭的弹性薄膜15。弹性金属丝编织的网格状的前、后封堵球囊,且由弹性薄膜包覆,使得球囊涨缩螺母松开时,弹性薄膜为松弛态,但是仍然具有一个球状的框架结构,需要将血栓前后进行封堵时,只要稍微将球囊涨缩螺母旋紧,挤压球囊使其发生变形即可。当然,前、后封堵球囊的结构也并非局限于此,可采用简单的充气式结构,将前后封堵球囊与充气结构连通即可。
所述球囊胀缩螺母103、506的外端内均设一环形槽,球囊胀缩螺母通过设置于环形槽中的环102、510与各自的内管固定连接;芯管502的右端外套装有小螺母509,所述小螺母509的外端也设一环形槽,通过设置于环形槽中的环510与芯管502固定连接,另一端通过螺纹与后鞘管的内管508配合;所述球囊胀缩螺母103、506和小螺母509均为带底的中空圆柱状结构,在圆柱状的底部设有环形槽,各自的环镶嵌于环形槽中,环与环形槽之间存在一定间隙。所述芯管502与后鞘管5的内管壁之间设有径向间隙, 所述的后鞘管的内管508内分布若干组凸筋513,每组凸筋应有三条以上,均匀分布于内管508的内圆柱表面且与内管的轴线平行;凸筋与芯管502的外圆柱面、内管508的内圆柱面形成的过流面积不小于芯管502的过流面积。
所述超声除栓系统还包括供液系统7、除栓控制CPU9、抽吸系统10、碎栓监测控制装置11、破碎区压力监测装置12以及位于破碎腔3的外部的X光探头13;供液系统7包括供液泵701和压力/流量控制器702;供液泵701与压力/流量控制器702的输入端连接;所述抽吸系统包括抽吸泵1001和碎栓抽吸控制装置1002,所述碎栓抽吸控制装置1002通过连通管1003与排泄管511连接;所述除栓控制CPU9分别与超声发生器801、碎栓抽吸控制装置1002、压力/流量控制器702、碎栓监测控制装置11、破碎区压力监测装置12连接;所述碎栓监测控制装置11与位于破碎腔外部的X光探头13连接,所述破碎区压力监测装置12为微压力传感器,所述破碎区压力监测装置12连接于压力\流量控制器702和振荡腔804的阀体8407之间。
在前鞘管1、后鞘管5均置入到血管中,并完成对血栓的封堵后,通过除栓控制CPU9,分别开启超声激振系统8、供液系统7、抽吸系统10和碎栓监测控制装置11。
通过旋转后鞘管5的小螺母509,使芯管502能够在内管508内向血栓近端移动,从而向血栓3所在位置移动;当破碎器501接近血栓3时,供液系统7经除栓控制CPU协调,按照设定的供液压力和流量向破碎器501供液;同时,超声发生器801将产生15-20KHz的高频电脉冲,通过超声波换能器802使变幅杆803获得高频、微幅机械振动,这种机械振动将激发振荡腔804内的高压液态介质产生共振,并转变成15-20KHz的脉冲射流从振荡腔的排放口经二次加速后高速进入后鞘管5的芯管末端,并从破碎器501的射流孔512中喷出,对沉积在血管内的血栓进行冲击、切割、破碎和分离,使血栓成为细小碎片,悬浮于破碎腔4内的液态介质中。
在高速脉冲射流从破碎器501流出,对血栓3实施破碎的同时,经除栓控制CPU协调抽吸系统10的碎栓抽吸控制装置1002,以供液流量作为抽吸泵1001的工作流量,既可保证血栓破碎所需的供液要求,将碎后的血栓碎块排出血管外,又能保证除栓过程中血管内不出现真空区。
通过破碎区压力监测装置12的微压力传感器实时获取血栓破碎区液态介质的实际压力信号,通过微压力传感器传输到除栓控制CPU,在与预定的压力参数比对后,反馈到供液系统7中的压力\流量控制器702,对供液系统输出压力进行调定,既能保证破碎血栓的脉冲射流的压力要求,也能保证破碎区的压力安全。
通过X光探头13,借助造影剂,在血栓破碎前获取血栓3的位置、大小及堵塞等图像信息;在超声破碎过程中,获取碎后血栓粒径大小,以及血栓清理的图像,上述图像信息经除栓控制CPU处理后显示。以上述图像信息为依据,直至清除血管内的所有血栓或斑块,使血管通畅为止。
本发明与其它棑栓装置相比较,具有以下独特效果:一是采取封堵式除栓,可以将破碎后的血栓碎片流向远端血管,避免造成二次栓塞;二是采用超声激振技术,以获得高频脉冲能量的液态介质对血栓实施超细破碎,可完全避免大块血栓对排泄管道的堵塞;三是通过合理控制液态介质的振动强度,既能有效切割血栓,又可有效避免硬质器件对血管内膜的碰触产生的直接创伤;四是通过传感检测系统对血栓破碎腔的压力、血栓碎后粒级,以及供液系统与排泄系统流量、压力的实时监测,不仅能够保证除栓过程的安全性,又能保证除栓的有效性。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种超声除栓系统,其特征在于,包括能够置入血管(2)中且相对独立的前鞘管(1)和后鞘管(5),所述前鞘管(1)的后端外部套装有前封堵球囊(105),所述后鞘管(5)的前端外部套装有后封堵球囊(504),所述前封堵球囊(105)与所述后封堵球囊(504)分别位于所述血管(2)中的血栓(3)的两侧且二者之间形成破碎腔(4);所述前封堵球囊(105)与所述后封堵球囊(504)经由外力挤压或松弛在所述血管(2)内扩张或收缩以将所述血栓(3)的前后两侧封堵或打开,所述后鞘管(5)的内部设有同轴将其贯穿的芯管(502),所述芯管(502)的前端设有用于破碎所述血栓(3)的破碎器(501),所述后鞘管(5)的后端设有与所述芯管(502)连通的排泄管(511)。
  2. 根据权利要求1所述的超声除栓系统,其特征在于,所述前鞘管(1)和所述后鞘管(5)均包括两端封闭且中空的内管和套装在所述内管外的外管,所述前封堵球囊(105)与所述后封堵球囊(504)分别套装在各自内管的外部,所述外管包括血栓远端外管和血栓近端外管,所述前封堵球囊(105)与所述后封堵球囊(504)均套装于所述血栓远端外管与所述血栓近端外管之间的所述内管外部;所述血栓远端外管处均套装有球囊胀缩螺母,所述球囊胀缩螺母的外端与所述内管静连接,所述球囊胀缩螺母的内端与所述血栓远端外管通过螺纹匹配套装;所述前封堵球囊(105)通过所述血栓远端外管对其进行轴向挤压或释放实现胀缩。
  3. 根据权利要求2所述的超声除栓系统,其特征在于,所述前封堵球囊(105)的两端分别与所述前鞘管(1)的血栓远端外管(104)、血栓近端外管(106)固定连接,所述后封堵球囊(504)的两端分别与所述后鞘管(5)的血栓近端外管(503)、血栓远端外管(505)固定连接;所述前 封堵球囊(105)与所述后封堵球囊(504)的框架均为弹性金属丝编织的网格状框架(14),所述网格状框架(14)的外部包覆有密闭的弹性薄膜(15)。
  4. 根据权利要求2所述的超声除栓系统,其特征在于,所述芯管(502)与所述后鞘管(5)的内管壁之间设有径向间隙,所述后鞘管(5)的内管(508)内分布若干组凸筋(513),每组所述凸筋(513)包括三条以上,均匀分布于所述内管(508)的内圆柱表面且与所述内管(508)的轴线平行;所述凸筋(513)与所述芯管(502)的外圆柱面、所述内管(508)的内圆柱面形成的过流面积不小于所述芯管(502)的过流面积。
  5. 根据权利要求1-4中任意一项所述的超声除栓系统,其特征在于,所述超声除栓系统包括供液系统(7)和超声激振系统(8),所述供液系统(7)用于向所述破碎器(501)提供血栓破碎介质,所述超声激振系统(8)用于使所述供液系统(7)提供的所述血栓破碎介质形成高速脉冲射流。
  6. 根据权利要求5所述的超声除栓系统,其特征在于,所述超声除栓系统包括血栓破碎介质的供应管,所述超声激振系统(8)包括依次连接的超声波发生器(801)、超声波换能器(802)、变幅杆(803)和振荡腔(804),所述振荡腔(804)的入口与所述供液系统(7)连接,所述振荡腔(804)的出口与所述血栓破碎介质的供应管连接,所述血栓破碎介质的供应管与所述芯管(502)连接。
  7. 根据权利要求6所述的超声除栓系统,其特征在于,所述振荡腔(804)为变截面腔体,所述振荡腔(804)从入口端到出口端依次为连贯的大圆柱段(8406)、椎体收缩一段(8405)、椎体收缩二段(8402)、小圆柱孔段(8403)和喇叭口喷嘴(8404),在所述大圆柱段(8406)的腔体壁面分布有若干组 小通孔(8401),每组所述小通孔(8401)沿所述大圆柱段(8406)的圆周方向均匀分布,且所述小通孔(8401)的轴线以空间螺旋线与上部振荡腔内圆柱面(8406)相切,且螺旋升角β为0~90°;所述椎体收缩二段(8402)的母线为圆弧曲线;所述小圆柱孔段(8403)的轴向长度大于所述椎体收缩二段(8402)、所述喇叭口喷嘴(8404)的轴向长度,所述喇叭口喷嘴(8404)的轴向长度小于所述椎体收缩一段(8405)的轴向长度。
  8. 根据权利要求6所述的超声除栓系统,其特征在于,所述变幅杆(803)是单向变径轴,从外向内依次包括大圆柱体段(8301)、锥体收缩段(8302)和小圆柱体段(8303);所述锥体收缩段(8302)的母线为对数曲线。
  9. 根据权利要求6所述的超声除栓系统,其特征在于,所述血栓破碎介质为脉冲水,所述振荡腔(804)的出口与脉冲水供应管(6)连接,所述脉冲水供应管(6)与所述芯管(502)连接,所述芯管(502)的前端设有分布于所述芯管(502)前端壁面上的多个射流孔(512),多个所述射流孔(512)形成所述破碎器(501),所述脉冲水经所述破碎器(501)喷出将所述血栓(3)击碎。
  10. 根据权利要求9所述的超声除栓系统,其特征在于,多个所述射流孔(512)在所述芯管(502)的壁面上以各圆周按照直孔与斜孔的排列规律分层依次间隔布置,所述直孔的轴线与所述芯管(502)的壁面垂直,所述斜孔的轴线与所述芯管(502)的轴线方向的夹角α为0~90°,所述射流孔(512)在距所述芯管(502)前端1~20mm的壁面上分布,且共设有8~20层。
  11. 根据权利要求6所述的超声除栓系统,其特征在于,所述供液系 统(7)包括供液泵(701)和压力/流量控制器(702),所述供液泵(701)与所述压力/流量控制器(702)的输入端连接。
  12. 根据权利要求11所述的超声除栓系统,其特征在于,所述超声除栓系统包括抽吸系统(10),所述抽吸系统(10)包括抽吸泵(1001)和碎栓抽吸控制装置(1002),所述碎栓抽吸控制装置(1002)通过连通管(1003)与所述排泄管(511)连接。
  13. 根据权利要求12所述的超声除栓系统,其特征在于,所述超声除栓系统包括碎栓监测控制装置(11)、破碎区压力监测装置(12)以及位于所述破碎腔(4)外部的X光探头(13),所述碎栓监测控制装置(11)与所述X光探头(13)连接,所述破碎区压力监测装置(12)为微压力传感器,所述破碎区压力监测装置(12)连接于所述压力\流量控制器(702)和所述振荡腔(804)的阀体(8407)之间。
  14. 根据权利要求13所述的超声除栓系统,其特征在于,所述超声除栓系统包括除栓控制CPU(9),所述除栓控制CPU(9)分别与所述超声发生器(801)、所述碎栓抽吸控制装置(1002)、所述压力/流量控制器(702)、所述碎栓监测控制装置(11)、所述破碎区压力监测装置(12)连接。
PCT/CN2018/102300 2017-08-25 2018-08-24 超声除栓系统 WO2019037783A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/490,819 US11540848B2 (en) 2017-08-25 2018-08-24 Ultrasonic thrombus removing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710741614.9 2017-08-25
CN201710741614.9A CN107348990B (zh) 2017-08-25 2017-08-25 超声除栓系统

Publications (1)

Publication Number Publication Date
WO2019037783A1 true WO2019037783A1 (zh) 2019-02-28

Family

ID=60288276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102300 WO2019037783A1 (zh) 2017-08-25 2018-08-24 超声除栓系统

Country Status (3)

Country Link
US (1) US11540848B2 (zh)
CN (1) CN107348990B (zh)
WO (1) WO2019037783A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114514048A (zh) * 2019-07-30 2022-05-17 叶秩光 涡漩导管溶血栓系统及其溶血栓方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107348990B (zh) * 2017-08-25 2020-04-07 蔡改贫 超声除栓系统
KR102274982B1 (ko) * 2018-05-28 2021-07-09 전남대학교산학협력단 기계적 혈전절제술을 위한 가이드-와이어 결합 나선형 마이크로로봇 시스템
CN109953799A (zh) * 2019-03-22 2019-07-02 苏州思维医疗科技有限公司 一种超声球囊导管组件、导管系统及使用方法
CN109998634B (zh) * 2019-05-19 2024-03-26 常州市三润医疗器械科技有限公司 血栓清除系统
CN109998636B (zh) * 2019-05-19 2024-03-26 常州市三润医疗器械科技有限公司 一种血栓清除系统的血栓清除装置
CN113796923A (zh) * 2020-06-12 2021-12-17 苏州天鸿盛捷医疗器械有限公司 一种血栓处理平台
CN112807058B (zh) * 2021-02-03 2022-05-17 清华大学 介入式超声溶栓装置
CN113331908A (zh) * 2021-03-16 2021-09-03 上海玮沐医疗科技有限公司 一种双球囊超声导管的血栓抽吸系统及其应用
CN113181547B (zh) * 2021-04-23 2022-03-18 清华大学 具有超声溶栓功能的心脏泵
US11679194B2 (en) * 2021-04-27 2023-06-20 Contego Medical, Inc. Thrombus aspiration system and methods for controlling blood loss
CN113397652B (zh) * 2021-05-06 2022-07-22 深圳脉动医学技术有限公司 一种心血管手术用微创血管栓塞清除装置
CN113995470A (zh) * 2021-10-26 2022-02-01 广东博迈医疗科技股份有限公司 医用介入式抽吸导管
CN114305584B (zh) * 2021-12-29 2023-12-22 北京泰杰伟业科技股份有限公司 一种用于脑静脉窦取栓的导管系统
CN115446007B (zh) * 2022-09-28 2023-08-11 南京工程学院 一种高压射流与空化射流组合的清洁系统
CN115420809B (zh) * 2022-11-07 2023-04-07 山东汇科工程检测有限公司 一种检测金属材料性能的超声相控阵检测装置
CN115634010B (zh) * 2022-12-02 2023-04-04 北京华通集智医疗器械有限公司 超声溶栓装置及超声溶栓系统
CN116173386A (zh) * 2023-03-21 2023-05-30 深圳市赛禾医疗技术有限公司 冲击波球囊导管
CN116492107B (zh) * 2023-06-26 2023-09-12 中国医学科学院阜外医院 一种用于肺栓塞的易输送血管过滤器
CN117084753B (zh) * 2023-10-19 2024-01-05 长沙金维医疗科技有限公司 一种双通道血栓抽吸导管

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398792B1 (en) * 1999-06-21 2002-06-04 O'connor Lawrence Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use
US20040204670A1 (en) * 2003-04-08 2004-10-14 Flowcardia, Inc., A Delaware Corporation Ultrasound catheter devices and methods
CN1771880A (zh) * 2004-11-09 2006-05-17 富士能株式会社 内窥镜装置及其操作方法
US20140046244A1 (en) * 2012-08-13 2014-02-13 Covidien Lp Apparatus and methods for clot disruption and evacuation
CN103767760A (zh) * 2012-08-13 2014-05-07 柯惠有限合伙公司 用于凝块瓦解和排出的设备和方法
CN107348990A (zh) * 2017-08-25 2017-11-17 江西理工大学 超声除栓系统
CN107397575A (zh) * 2017-08-25 2017-11-28 江西理工大学 用于血栓破碎系统的鞘管
CN107510491A (zh) * 2017-08-25 2017-12-26 江西理工大学 血栓破碎装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2689901Y (zh) 2004-04-20 2005-04-06 曲锰 血栓破碎装置
CN2751913Y (zh) * 2004-10-12 2006-01-18 宋玉霞 超声波换能器
US20110160624A1 (en) * 2007-07-13 2011-06-30 Bacoustics, Llc Apparatus for creating a therapeutic solution and debridement with ultrasound energy
CN201454227U (zh) * 2009-05-29 2010-05-12 牛君 超声波自清洗过滤器
CN102335022B (zh) 2010-07-27 2013-01-09 上海理工大学 局部封堵式血栓刮除器
CN101912289B (zh) 2010-08-25 2012-05-30 成正辉 血栓切除器及其制备方法
CN102743207B (zh) 2011-04-20 2014-12-24 首都医科大学宣武医院 血栓破碎取栓器
CN202345895U (zh) * 2011-10-13 2012-07-25 朱海林 船舶海洋生物附着物超声清垢器
CN102512206B (zh) 2011-12-13 2014-04-09 苏州生物医学工程技术研究所 血管内超声超声诊断与光声治疗装置及其治疗方法
EP3967266B1 (en) * 2012-11-15 2023-07-12 Nfinium Vascular Technologies, LLC Temporary vascular scaffold and scoring device
CN105025968A (zh) * 2012-12-04 2015-11-04 安乔斯里德公司 囊导管及其使用方法
US10433868B2 (en) * 2014-12-27 2019-10-08 Rex Medical, L.P. Artherectomy device
CN104622538A (zh) 2015-03-12 2015-05-20 湖南瑞康通科技发展有限公司 一种血栓切除系统
US9763684B2 (en) * 2015-04-02 2017-09-19 Med-Sonics Corporation Devices and methods for removing occlusions from a bodily cavity
US10226263B2 (en) * 2015-12-23 2019-03-12 Incuvate, Llc Aspiration monitoring system and method
JP6921112B2 (ja) * 2016-01-04 2021-08-18 コルフロウ セラピューティクス アーゲー Mvoを治療するためのシステムおよび方法
JP6806764B2 (ja) * 2016-02-15 2021-01-06 テルモ株式会社 医療デバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6398792B1 (en) * 1999-06-21 2002-06-04 O'connor Lawrence Angioplasty catheter with transducer using balloon for focusing of ultrasonic energy and method for use
US20040204670A1 (en) * 2003-04-08 2004-10-14 Flowcardia, Inc., A Delaware Corporation Ultrasound catheter devices and methods
CN1771880A (zh) * 2004-11-09 2006-05-17 富士能株式会社 内窥镜装置及其操作方法
US20140046244A1 (en) * 2012-08-13 2014-02-13 Covidien Lp Apparatus and methods for clot disruption and evacuation
CN103767760A (zh) * 2012-08-13 2014-05-07 柯惠有限合伙公司 用于凝块瓦解和排出的设备和方法
CN107348990A (zh) * 2017-08-25 2017-11-17 江西理工大学 超声除栓系统
CN107397575A (zh) * 2017-08-25 2017-11-28 江西理工大学 用于血栓破碎系统的鞘管
CN107510491A (zh) * 2017-08-25 2017-12-26 江西理工大学 血栓破碎装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114514048A (zh) * 2019-07-30 2022-05-17 叶秩光 涡漩导管溶血栓系统及其溶血栓方法

Also Published As

Publication number Publication date
US20190388109A1 (en) 2019-12-26
US11540848B2 (en) 2023-01-03
CN107348990B (zh) 2020-04-07
CN107348990A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
WO2019037783A1 (zh) 超声除栓系统
CN107510491B (zh) 血栓破碎装置
CN107397575B (zh) 用于血栓破碎系统的鞘管
US20060206028A1 (en) Apparatus and method for ablating deposits from blood vessel
US20070239182A1 (en) Thrombus removal device
US6508782B1 (en) Thrombolysis device
US20050143660A1 (en) Method for removing plaque from blood vessels using ultrasonic energy
US20230346416A1 (en) Thrombus removal systems and associated methods
CN103417261A (zh) 颅内血管取栓装置
CN106955141A (zh) 取栓支架及取栓装置
CN103417258A (zh) 颅内血管取栓装置
CN105615942B (zh) 一种定点碎石装置及粉碎方法
EP4351452A1 (en) Thrombus removal systems and associated methods
US20220096108A1 (en) Anti-clogging during calculi evacuation
CN105214199A (zh) 局部封堵回流式血栓吸除器
WO2024097710A1 (en) Clot visualization and workflows utilizing real-time imaging for thrombus removal systems and methods
EP4351451A1 (en) Thrombus removal systems and associated methods
CN115634010B (zh) 超声溶栓装置及超声溶栓系统
WO2024044511A2 (en) Thrombus removal systems and associated methods
WO2024114764A1 (zh) 超声溶栓装置、超声溶栓系统及溶栓方法
WO2023220633A2 (en) Thrombus removal systems and associated methods
WO2020220485A1 (zh) 一种鞘管帽及具有鞘管帽的内窥镜导引鞘
WO2024097711A1 (en) Thrombectomy system and method of removing thrombus
WO2023178212A2 (en) Thrombus removal systems and associated methods
WO2024044671A1 (en) Thrombus removal systems and associated methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847397

Country of ref document: EP

Kind code of ref document: A1