WO2019035300A1 - 車両走行制御装置、および車両走行制御方法、並びにプログラム - Google Patents

車両走行制御装置、および車両走行制御方法、並びにプログラム Download PDF

Info

Publication number
WO2019035300A1
WO2019035300A1 PCT/JP2018/026525 JP2018026525W WO2019035300A1 WO 2019035300 A1 WO2019035300 A1 WO 2019035300A1 JP 2018026525 W JP2018026525 W JP 2018026525W WO 2019035300 A1 WO2019035300 A1 WO 2019035300A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
road surface
unit
route
surface temperature
Prior art date
Application number
PCT/JP2018/026525
Other languages
English (en)
French (fr)
Inventor
丈士 上森
厚史 伊藤
小柳津 秀紀
卓 青木
竜太 佐藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/638,140 priority Critical patent/US11332146B2/en
Priority to CN201880052109.6A priority patent/CN111033590B/zh
Priority to EP18846160.2A priority patent/EP3671686A4/en
Priority to JP2019536445A priority patent/JP7136106B2/ja
Publication of WO2019035300A1 publication Critical patent/WO2019035300A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0023Planning or execution of driving tasks in response to energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/068Road friction coefficient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0011Planning or execution of driving tasks involving control alternatives for a single driving scenario, e.g. planning several paths to avoid obstacles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3626Details of the output of route guidance instructions
    • G01C21/3658Lane guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3697Output of additional, non-guidance related information, e.g. low fuel level
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/20Tyre data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/40Coefficient of friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle for navigation systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J2005/0077Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • G01J5/485Temperature profile

Definitions

  • the present disclosure relates to a vehicle travel control device, a vehicle travel control method, and a program. More specifically, the present invention relates to a vehicle travel control device, a vehicle travel control method, and a program that realize improvement in fuel consumption when the vehicle travels.
  • Patent Document 1 Japanese Patent Laid-Open No. 2016-075503 describes an evaluation device for measuring the relationship between tire temperature and rolling resistance.
  • patent document 2 (Unexamined-Japanese-Patent No. 2012-101762) calculates rolling resistance of a tire based on the tire temperature which the tire temperature detection means with which the vehicle was mounted
  • the present disclosure measures a temperature distribution of a road in a traveling direction of a traveling vehicle, estimates a traveling route with less fuel consumption, controls a vehicle traveling route, and realizes vehicle travel control with improved fuel consumption. It is an object of the present invention to provide a travel control device, a vehicle travel control method, and a program.
  • the first aspect of the present disclosure is A detection unit that analyzes a road surface temperature distribution by analyzing a captured image of a far infrared camera; According to another aspect of the present invention, there is provided a vehicle travel control device including a situation analysis unit that determines a route having the highest road surface temperature as a travel route based on the road surface temperature distribution.
  • a second aspect of the present disclosure is: A vehicle travel control method executed by the vehicle travel control device; A detection step of analyzing a road surface temperature distribution by analyzing a photographed image of the far infrared camera by a detection unit; According to another aspect of the present invention, there is provided a vehicle travel control method in which a situation analysis unit executes a situation analysis step of determining a route having the highest road surface temperature as a travel route based on the road surface temperature distribution.
  • the third aspect of the present disclosure is: It is a program to execute vehicle travel control in the vehicle travel control device, A detection step of causing the detection unit to analyze a road surface temperature distribution by analyzing a captured image of the far infrared camera; The program may cause the situation analysis unit to execute a situation analysis step of determining a route having the highest road surface temperature as a travel route based on the road surface temperature distribution.
  • the program of the present disclosure is, for example, a program that can be provided by a storage medium or a communication medium that provides various program codes in a computer-readable format to an information processing apparatus or computer system capable of executing the program code.
  • a storage medium or a communication medium that provides various program codes in a computer-readable format to an information processing apparatus or computer system capable of executing the program code.
  • a system is a logical set composition of a plurality of devices, and the device of each composition is not limited to what exists in the same case.
  • a configuration is realized in which traveling with enhanced fuel efficiency is possible by detecting the road surface temperature and selecting a region where the road surface temperature is high for traveling. Specifically, for example, the photographed image of the far infrared camera is analyzed to analyze the road surface temperature distribution, and the route with the highest road surface temperature is determined as the traveling route. Furthermore, automatic driving is performed according to the route where the road surface temperature is high. In addition, the distribution state of the road surface temperature and the direction of the route with the highest road surface temperature are displayed on the display unit to make the user (driver) recognize.
  • the situation analysis unit detects a plurality of candidate routes that the vehicle can travel, calculates the average value of the road surface temperatures of the candidate routes, and determines the candidate route having the highest average value as the travel route.
  • the road surface temperature is detected, and a region where the road surface temperature is high is selected to travel, thereby achieving a configuration that enables traveling with improved fuel efficiency.
  • the effects described in the present specification are merely examples and are not limited, and additional effects may be present.
  • FIG. 1 is a diagram illustrating an example of processing executed by a vehicle travel control device of the present disclosure.
  • a vehicle travel control device of the present disclosure is mounted on a vehicle 10 shown in FIG.
  • a far-infrared camera 20 is provided at the front of the car 10 to capture a far-infrared image in the forward direction of the car 10.
  • the far-infrared camera 20 is a camera that captures far-infrared rays having a longer wavelength among infrared rays. Infrared radiation is emitted more often from objects with high temperature. Accordingly, it is possible to detect an object having a high temperature, such as a person even in the dark, etc., and is often used as a surveillance camera or the like. Among them, far infrared rays are more sensitive to heat, and it is possible to identify high temperature portions and low temperature portions based on far infrared images.
  • the far-infrared image is, for example, a gray-scale image according to the temperature distribution. Specifically, the high-temperature portion is white, the low-temperature portion is black, and so on, and the higher the temperature, the whiter the image becomes.
  • the visible light image 30 is an image having a wavelength of about 0.4 ⁇ m to 0.7 ⁇ m, and is a color image such as an RGB image captured by a general camera.
  • Infrared light images have a wavelength of. It is an image consisting of long wavelength light of 0.7 ⁇ m or more.
  • an infrared light imaging camera for photographing an infrared light image can photograph an object generating heat, such as a person, and is used as a surveillance camera or the like.
  • Infrared rays as shown in FIG. Near infrared rays with a wavelength of about 0.7 to 1 ⁇ m, Mid infrared, with a wavelength of about 3 to 5 ⁇ m Far infrared rays with a wavelength of approximately 8 to 14 ⁇ m, It is divided in this way.
  • far-infrared rays are highly sensitive to heat, and it is possible to easily identify high-temperature portions and low-temperature portions based on far-infrared images.
  • an image processing example using a far-infrared image 40 for photographing far-infrared rays having a wavelength of approximately 8 to 14 ⁇ m will be mainly described.
  • the process of the present disclosure is not limited to far-infrared images, and other infrared light images can also be used.
  • the far-infrared camera 20 at the front of the automobile 10 shown in FIG. 1 continuously captures a far-infrared image of the road ahead, which is the traveling direction of the automobile 10.
  • the temperature distribution of the captured subject can be analyzed.
  • the vehicle travel control device of the present disclosure analyzes the far-infrared image of the road photographed by the far-infrared camera 20 to analyze the temperature distribution of the photographed road.
  • a car 10 travels in the left lane of a two-lane road.
  • the far-infrared camera 20 continuously captures far-infrared images of the entire width of the road on which the car 10 can travel, from the left lane to the right lane. For example, imaging of a far-infrared image is performed as a moving image.
  • the vehicle travel control device analyzes the far-infrared image of the road photographed by the far-infrared camera 20, and analyzes the temperature distribution of the photographed road as shown in FIG. 1, for example. For example, analysis results as shown in FIG. 1 can be obtained. That is, as shown in FIG.
  • the left lane area where the automobile 10 is traveling is a high temperature area
  • the middle area of the left lane and the right lane (lane line area) is a low temperature area
  • the right lane is in the middle temperature area, It is possible to acquire such a temperature distribution in area units of the road.
  • the vehicle travel control device determines the route with the highest road surface temperature as the route with the highest fuel efficiency based on the temperature analysis result and determines it as the travel route.
  • the vehicle travel control device performs travel control of the automobile 10 according to the determined travel route.
  • the example shown in FIG. 1 is a car in which the steering wheel operation is automatically performed in the setting of the automatic operation mode.
  • the left lane area where the automobile 10 is currently traveling is the high temperature area, and the tire temperature is maintained at a high temperature by traveling the left lane area as it is, and the rolling resistance is reduced. As a result, it is possible to travel with high fuel efficiency.
  • FIG. 3 is a graph in which the tire temperature is set on the horizontal axis and the rolling resistance coefficient ( ⁇ ) of the tire is set on the vertical axis. As understood from the graph shown in FIG. 3, the higher the temperature of the tire, the smaller the rolling resistance coefficient ( ⁇ ).
  • the rolling resistance (R) of the tire can be calculated by the following equation (Equation 1) using the rolling resistance coefficient ( ⁇ ).
  • R ⁇ mg ⁇ (Equation 1)
  • tire rolling resistance coefficient
  • m vehicle weight
  • g gravitational acceleration
  • the road surface of the left lane area currently being traveled by the automobile 10 is a high temperature area, and the tire temperature is maintained at a high temperature by running the left lane area as it is, thereby reducing the rolling resistance. Running is possible. As a result, driving with good fuel efficiency is realized.
  • the vehicle travel control device determines that the left lane area is the high temperature area and the route with the highest fuel efficiency, selects the left lane as the travel route, and selects the automobile 10 according to the selection result. Run control to set to the left lane.
  • the temperature distribution analysis result based on the captured far-infrared image is also sequentially updated. For example, while the automobile 10 continues traveling in the left lane based on the temperature analysis result shown in FIG. 1, it is assumed that the temperature distribution analysis result based on the far-infrared image is changed as shown in FIG. Do.
  • the example shown in FIG. 4 is an example in which the temperature distribution analysis result based on the far-infrared image is the following analysis result.
  • the left lane area where the car 10 is traveling is a medium temperature area
  • the middle area of the left lane and the right lane (lane line area) is a low temperature area
  • the right lane is a hot area
  • the vehicle travel control device of the automobile 10 performs the following processing. Based on the temperature analysis result, it is determined that the right lane area is the high temperature area and the route with the highest fuel efficiency, this right lane is selected as the travel route, and the vehicle 10 is moved to the right lane according to the selection result Take control.
  • the lane change is performed after confirming the distance between the preceding and succeeding vehicles and confirming that there is a safe inter-vehicle distance.
  • the configuration described with reference to FIGS. 1 and 4 is an example in which the vehicle travel control device of the present disclosure is mounted on a vehicle capable of traveling in the automatic operation mode.
  • the vehicle travel control device of the present disclosure can be mounted not only to a car that can be driven in such an automatic driving mode, but also to a car that does not have the function of the automatic driving mode.
  • a processing example of the vehicle travel control device in the case where the vehicle travel control device of the present disclosure is mounted on a vehicle having no automatic driving mode function will be described with reference to FIG. 5.
  • FIG. 5 is a figure which shows an example of the process which the vehicle travel control apparatus of this indication performs similarly to FIG.
  • the vehicle travel control device of the present disclosure is mounted on a vehicle 10 shown in FIG.
  • a far-infrared camera 20 is provided at the front of the car 10 to capture a far-infrared image in the forward direction of the car 10.
  • a vehicle travel control device mounted on the automobile 10 analyzes a far infrared image of a road captured by the far infrared camera 20.
  • the vehicle travel control device of the automobile 10 shown in FIG. 5 displays the analysis result of the far infrared image on the display unit 50 provided on the automobile.
  • the display unit 50 displays the following temperature distribution information for each road area.
  • the left lane area where the automobile 10 is traveling is a high temperature area
  • the middle area of the left lane and the right lane (lane line area) is a low temperature area
  • the right lane is in the middle temperature area
  • the vehicle travel control device of the automobile 10 shown in FIG. 5 acquires such temperature distribution information in units of areas of the road, and displays the information on the display unit 50.
  • an output color may be set and displayed on the display unit 50 according to the temperature.
  • Output of red setting of high temperature area of left lane area while car 10 is traveling Output of green setting for low temperature area of middle area (lane line area) of left lane and right lane, Set the yellow temperature in the middle temperature area of the right lane,
  • the user can immediately grasp the road surface temperature by performing such color coding and outputting.
  • the vehicle travel control device of the automobile 10 shown in FIG. 5 further selects the route with the highest fuel efficiency as the traveling route based on the temperature analysis result, and the recommended route information 52 is displayed on the display unit 50 of the automobile 10 according to the selection result. indicate.
  • the left lane area where the automobile 10 is traveling is the high temperature area, and the arrow directed in the traveling direction of the left lane is displayed as the recommended route information 52.
  • the driver (driver) of the automobile 10 can select and drive the high temperature area of the road. By performing such traveling processing, it is possible to perform traveling with high fuel efficiency.
  • the high temperature area of the road is selected to perform the automatic driving, and the same road as shown in FIG.
  • the temperature distribution status and the recommended route information may be displayed.
  • FIG. 6 is a block diagram showing an example of a schematic functional configuration of a vehicle control system 100 which is an example of a vehicle travel control device provided in the automobile 10 which executes the above-described processing.
  • the vehicle provided with the vehicle control system 100 is distinguished from other vehicles, it is referred to as the own vehicle or the own vehicle.
  • the vehicle control system 100 includes an input unit 101, a data acquisition unit 102, a communication unit 103, an in-vehicle device 104, an output control unit 105, an output unit 106, a drive system control unit 107, a drive system 108, a body system control unit 109, and a body.
  • the system system 110, the storage unit 111, and the automatic driving control unit 112 are provided.
  • the input unit 101, the data acquisition unit 102, the communication unit 103, the output control unit 105, the drive system control unit 107, the body system control unit 109, the storage unit 111, and the automatic operation control unit 112 are connected via the communication network 121. Connected to each other.
  • the communication network 121 may be, for example, an on-vehicle communication network or bus conforming to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). Become. In addition, each part of the vehicle control system 100 may be directly connected without passing through the communication network 121.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • each unit of the vehicle control system 100 performs communication via the communication network 121
  • the description of the communication network 121 is omitted.
  • the input unit 101 and the automatic driving control unit 112 communicate via the communication network 121, it is described that the input unit 101 and the automatic driving control unit 112 merely communicate.
  • the input unit 101 includes an apparatus used by a passenger for inputting various data and instructions.
  • the input unit 101 includes operation devices such as a touch panel, a button, a microphone, a switch, and a lever, and an operation device and the like that can be input by a method other than manual operation by voice or gesture.
  • the input unit 101 may be a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile device or wearable device corresponding to the operation of the vehicle control system 100.
  • the input unit 101 generates an input signal based on data, an instruction, and the like input by the passenger, and supplies the input signal to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for acquiring data used for processing of the vehicle control system 100 and supplies the acquired data to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for detecting the state of the vehicle.
  • the data acquisition unit 102 includes a gyro sensor, an acceleration sensor, an inertia measurement device (IMU), an operation amount of an accelerator pedal, an operation amount of a brake pedal, a steering angle of a steering wheel, and an engine speed.
  • IMU inertia measurement device
  • a sensor or the like for detecting a motor rotation speed or a rotation speed of a wheel is provided.
  • the data acquisition unit 102 includes various sensors for detecting information outside the vehicle.
  • the data acquisition unit 102 includes an imaging device such as a ToF (Time Of Flight) camera, a visible light camera, a stereo camera, a monocular camera, a (far) infrared camera, and other cameras.
  • the data acquisition unit 102 includes an environment sensor for detecting weather, weather or the like, and an ambient information detection sensor for detecting an object around the vehicle.
  • the environment sensor includes, for example, a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and the like.
  • the ambient information detection sensor is made of, for example, an ultrasonic sensor, a radar, LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), sonar or the like.
  • the data acquisition unit 102 includes various sensors for detecting the current position of the vehicle.
  • the data acquisition unit 102 includes a GNSS receiver or the like which receives a GNSS signal from a Global Navigation Satellite System (GNSS) satellite.
  • GNSS Global Navigation Satellite System
  • the data acquisition unit 102 includes various sensors for detecting information in the vehicle.
  • the data acquisition unit 102 includes an imaging device for imaging a driver, a biological sensor for detecting biological information of the driver, a microphone for collecting sound in a vehicle interior, and the like.
  • the biological sensor is provided, for example, on a seat or a steering wheel, and detects biological information of an occupant sitting on a seat or a driver holding the steering wheel.
  • the communication unit 103 communicates with the in-vehicle device 104 and various devices outside the vehicle, a server, a base station, etc., and transmits data supplied from each portion of the vehicle control system 100, and receives the received data. Supply to each part of 100.
  • the communication protocol supported by the communication unit 103 is not particularly limited, and the communication unit 103 can also support a plurality of types of communication protocols.
  • the communication unit 103 performs wireless communication with the in-vehicle device 104 by wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), WUSB (Wireless USB), or the like. Also, for example, the communication unit 103 may use a Universal Serial Bus (USB), a High-Definition Multimedia Interface (HDMI (registered trademark)), or an MHL (Universal Serial Bus) via a connection terminal (and a cable, if necessary) not shown. Wired communication is performed with the in-vehicle device 104 by Mobile High-definition Link) or the like.
  • USB Universal Serial Bus
  • HDMI High-Definition Multimedia Interface
  • MHL Universal Serial Bus
  • the communication unit 103 may communicate with an apparatus (for example, an application server or control server) existing on an external network (for example, the Internet, a cloud network, or a network unique to an operator) via a base station or an access point. Communicate. Also, for example, using the P2P (Peer To Peer) technology, the communication unit 103 may use a terminal (eg, a pedestrian or a shop terminal, or an MTC (Machine Type Communication) terminal) with a terminal existing near the host vehicle. Communicate. Furthermore, for example, the communication unit 103 may perform vehicle-to-vehicle communication, vehicle-to-infrastructure communication, vehicle-to-home communication, and vehicle-to-pedestrian communication.
  • an apparatus for example, an application server or control server
  • an external network for example, the Internet, a cloud network, or a network unique to an operator
  • the communication unit 103 may use a terminal (eg, a pedestrian or a shop terminal, or an MTC (Machine Type Communication) terminal)
  • V2X communication such as communication is performed.
  • the communication unit 103 includes a beacon receiving unit, receives radio waves or electromagnetic waves transmitted from radio stations installed on roads, and acquires information such as current position, traffic jam, traffic restriction, or required time. Do.
  • the in-vehicle device 104 includes, for example, a mobile device or wearable device owned by the passenger, an information device carried in or attached to the vehicle, and a navigation device for searching for a route to an arbitrary destination.
  • the output control unit 105 controls the output of various information to the passenger of the vehicle or the outside of the vehicle.
  • the output control unit 105 generates an output signal including at least one of visual information (for example, image data) and auditory information (for example, audio data), and supplies the generated output signal to the output unit 106.
  • the output control unit 105 combines image data captured by different imaging devices of the data acquisition unit 102 to generate an overhead image or a panoramic image, and an output signal including the generated image is generated.
  • the output unit 106 is supplied.
  • the output control unit 105 generates voice data including a warning sound or a warning message for danger such as collision, contact, entering a danger zone, and the like, and outputs an output signal including the generated voice data to the output unit 106.
  • Supply for example, the output control unit 105 generates voice data including a warning sound or a warning message for danger such as collision, contact, entering a danger zone, and the like, and outputs an output signal
  • the output unit 106 includes a device capable of outputting visual information or auditory information to the passenger of the vehicle or the outside of the vehicle.
  • the output unit 106 includes a display device, an instrument panel, an audio speaker, headphones, wearable devices such as a glasses-type display worn by a passenger, a projector, a lamp, and the like.
  • the display device included in the output unit 106 has visual information in the driver's field of vision, such as a head-up display, a transmissive display, and a device having an AR (Augmented Reality) display function, in addition to a device having a normal display. It may be an apparatus for displaying.
  • the drive system control unit 107 controls the drive system 108 by generating various control signals and supplying them to the drive system 108. In addition, the drive system control unit 107 supplies a control signal to each unit other than the drive system 108 as necessary, and notifies a control state of the drive system 108, and the like.
  • the drive system 108 includes various devices related to the drive system of the vehicle.
  • the drive system 108 includes a driving force generating device for generating a driving force of an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering mechanism for adjusting a steering angle.
  • a braking system that generates a braking force an antilock brake system (ABS), an electronic stability control (ESC), an electric power steering apparatus, and the like are provided.
  • the body control unit 109 controls the body system 110 by generating various control signals and supplying the control signals to the body system 110.
  • the body system control unit 109 supplies a control signal to each unit other than the body system 110, as required, to notify the control state of the body system 110, and the like.
  • the body system 110 includes various devices of the body system mounted on the vehicle body.
  • the body system 110 includes a keyless entry system, a smart key system, a power window device, a power seat, a steering wheel, an air conditioner, and various lamps (for example, headlamps, back lamps, brake lamps, blinkers, fog lamps, etc.) Etc.
  • the storage unit 111 includes, for example, a read only memory (ROM), a random access memory (RAM), a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, and a magneto-optical storage device. .
  • the storage unit 111 stores various programs, data, and the like used by each unit of the vehicle control system 100.
  • the storage unit 111 is map data such as a three-dimensional high-precision map such as a dynamic map, a global map that covers a wide area with lower accuracy than a high-precision map, and information around the vehicle.
  • map data such as a three-dimensional high-precision map such as a dynamic map, a global map that covers a wide area with lower accuracy than a high-precision map, and information around the vehicle.
  • the autonomous driving control unit 112 performs control regarding autonomous driving such as autonomous traveling or driving assistance. Specifically, for example, the automatic driving control unit 112 can avoid collision or reduce impact of the vehicle, follow-up traveling based on the distance between vehicles, vehicle speed maintenance traveling, collision warning of the vehicle, lane departure warning of the vehicle, etc. Coordinated control is carried out to realize the functions of the Advanced Driver Assistance System (ADAS), including: Further, for example, the automatic driving control unit 112 performs cooperative control for the purpose of automatic driving or the like that travels autonomously without depending on the driver's operation.
  • the automatic driving control unit 112 includes a detection unit 131, a self position estimation unit 132, a situation analysis unit 133, a planning unit 134, and an operation control unit 135.
  • the detection unit 131 detects various types of information necessary for control of automatic driving.
  • the detection unit 131 includes an out-of-vehicle information detection unit 141, an in-vehicle information detection unit 142, and a vehicle state detection unit 143.
  • the external information detection unit 141 performs detection processing of external information of the vehicle based on data or signals from each unit of the vehicle control system 100. For example, the external information detection unit 141 performs detection processing of an object around the host vehicle, recognition processing, tracking processing, and detection processing of the distance to the object.
  • the objects to be detected include, for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings and the like.
  • the outside-of-vehicle information detection unit 141 performs a process of detecting the environment around the vehicle.
  • the surrounding environment to be detected includes, for example, weather, temperature, humidity, brightness, road surface condition and the like.
  • the information outside the vehicle detection unit 141 indicates data indicating the result of the detection process as the self position estimation unit 132, the map analysis unit 151 of the situation analysis unit 133, the traffic rule recognition unit 152, the situation recognition unit 153, and the operation control unit 135. Supply to the emergency situation avoidance unit 171 and the like.
  • the in-vehicle information detection unit 142 performs in-vehicle information detection processing based on data or signals from each unit of the vehicle control system 100.
  • the in-vehicle information detection unit 142 performs a driver authentication process and recognition process, a driver state detection process, a passenger detection process, an in-vehicle environment detection process, and the like.
  • the state of the driver to be detected includes, for example, physical condition, awakening degree, concentration degree, fatigue degree, gaze direction and the like.
  • the in-vehicle environment to be detected includes, for example, temperature, humidity, brightness, smell and the like.
  • the in-vehicle information detection unit 142 supplies data indicating the result of the detection process to the situation recognition unit 153 of the situation analysis unit 133, the emergency situation avoidance unit 171 of the operation control unit 135, and the like.
  • the vehicle state detection unit 143 detects the state of the vehicle based on data or signals from each unit of the vehicle control system 100.
  • the state of the vehicle to be detected includes, for example, speed, acceleration, steering angle, presence / absence of abnormality and contents, state of driving operation, position and inclination of power seat, state of door lock, and other in-vehicle devices. Status etc. are included.
  • the vehicle state detection unit 143 supplies data indicating the result of the detection process to the situation recognition unit 153 of the situation analysis unit 133, the emergency situation avoidance unit 171 of the operation control unit 135, and the like.
  • the self position estimation unit 132 estimates the position and orientation of the vehicle based on data or signals from each part of the vehicle control system 100 such as the external information detection unit 141 and the situation recognition unit 153 of the situation analysis unit 133. Do the processing. In addition, the self position estimation unit 132 generates a local map (hereinafter, referred to as a self position estimation map) used to estimate the self position, as necessary.
  • the self-location estimation map is, for example, a high-accuracy map using a technique such as SLAM (Simultaneous Localization and Mapping).
  • the self position estimation unit 132 supplies data indicating the result of the estimation process to the map analysis unit 151, the traffic rule recognition unit 152, the situation recognition unit 153, and the like of the situation analysis unit 133. In addition, the self position estimation unit 132 stores the self position estimation map in the storage unit 111.
  • the situation analysis unit 133 analyzes the situation of the vehicle and the surroundings.
  • the situation analysis unit 133 includes a map analysis unit 151, a traffic rule recognition unit 152, a situation recognition unit 153, and a situation prediction unit 154.
  • the map analysis unit 151 uses various data or signals stored in the storage unit 111 while using data or signals from each part of the vehicle control system 100 such as the self position estimation unit 132 and the external information detection unit 141 as necessary. Perform analysis processing and construct a map that contains information necessary for automatic driving processing.
  • the map analysis unit 151 is configured of the traffic rule recognition unit 152, the situation recognition unit 153, the situation prediction unit 154, the route planning unit 161 of the planning unit 134, the action planning unit 162, the operation planning unit 163, and the like. Supply to
  • the traffic rule recognition unit 152 uses traffic rules around the vehicle based on data or signals from each unit of the vehicle control system 100 such as the self position estimation unit 132, the outside information detection unit 141, and the map analysis unit 151. Perform recognition processing. By this recognition process, for example, the position and state of signals around the vehicle, the contents of traffic restriction around the vehicle, and the travelable lane are recognized.
  • the traffic rule recognition unit 152 supplies data indicating the result of the recognition process to the situation prediction unit 154 and the like.
  • the situation recognition unit 153 uses data or signals from each unit of the vehicle control system 100 such as the self position estimation unit 132, the outside information detection unit 141, the in-vehicle information detection unit 142, the vehicle state detection unit 143, and the map analysis unit 151. Based on the recognition processing of the situation regarding the vehicle. For example, the situation recognition unit 153 performs recognition processing of the situation of the own vehicle, the situation around the own vehicle, the situation of the driver of the own vehicle, and the like. In addition, the situation recognition unit 153 generates a local map (hereinafter referred to as a situation recognition map) used to recognize the situation around the host vehicle, as necessary.
  • the situation recognition map is, for example, an Occupancy Grid Map.
  • the situation of the vehicle to be recognized includes, for example, the position, posture, movement (for example, speed, acceleration, moving direction, etc.) of the vehicle, and the presence or absence and contents of abnormality.
  • the situation around the vehicle to be recognized includes, for example, the type and position of the surrounding stationary object, the type, position and movement of the surrounding moving object (eg, speed, acceleration, movement direction, etc.) Configuration and road surface conditions, as well as ambient weather, temperature, humidity, brightness, etc. are included.
  • the state of the driver to be recognized includes, for example, physical condition, alertness level, concentration level, fatigue level, movement of eyes, driving operation and the like.
  • the situation recognition unit 153 supplies data (including a situation recognition map, if necessary) indicating the result of the recognition process to the self position estimation unit 132, the situation prediction unit 154, and the like. In addition, the situation recognition unit 153 stores the situation recognition map in the storage unit 111.
  • the situation prediction unit 154 performs prediction processing of the situation regarding the own vehicle based on data or signals from each part of the vehicle control system 100 such as the map analysis unit 151, the traffic rule recognition unit 152, and the situation recognition unit 153. For example, the situation prediction unit 154 performs prediction processing of the situation of the vehicle, the situation around the vehicle, the situation of the driver, and the like.
  • the situation of the subject vehicle to be predicted includes, for example, the behavior of the subject vehicle, the occurrence of an abnormality, the travelable distance, and the like.
  • the situation around the vehicle to be predicted includes, for example, the behavior of the moving object around the vehicle, the change of the signal state, and the change of the environment such as the weather.
  • the driver's condition to be predicted includes, for example, the driver's behavior and physical condition.
  • the situation prediction unit 154 together with data from the traffic rule recognition unit 152 and the situation recognition unit 153, indicates data indicating the result of the prediction process, the route planning unit 161 of the planning unit 134, the action planning unit 162, and the operation planning unit 163. Supply to etc.
  • the route planning unit 161 plans a route to a destination based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. For example, the route planning unit 161 sets a route from the current position to the specified destination based on the global map. In addition, for example, the route planning unit 161 changes the route as appropriate based on traffic jams, accidents, traffic restrictions, conditions such as construction, the physical condition of the driver, and the like. The route planning unit 161 supplies data indicating the planned route to the action planning unit 162 and the like.
  • the action planning part 162 Based on data or signals from each part of the vehicle control system 100 such as the map analyzing part 151 and the situation predicting part 154, the action planning part 162 safely makes the route planned by the route planning part 161 within the planned time. Plan your vehicle's action to drive. For example, the action planning unit 162 performs planning of start, stop, traveling direction (for example, forward, backward, left turn, right turn, change of direction, etc.), travel lane, travel speed, overtaking, and the like. The action plan unit 162 supplies data indicating the planned behavior of the host vehicle to the operation plan unit 163 or the like.
  • the operation planning unit 163 is an operation of the own vehicle for realizing the action planned by the action planning unit 162 based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. Plan.
  • the operation plan unit 163 plans acceleration, deceleration, a traveling track, and the like.
  • the operation planning unit 163 supplies data indicating the planned operation of the vehicle to the acceleration / deceleration control unit 172, the direction control unit 173, and the like of the operation control unit 135.
  • the operation control unit 135 controls the operation of the vehicle.
  • the operation control unit 135 includes an emergency situation avoidance unit 171, an acceleration / deceleration control unit 172, and a direction control unit 173.
  • the emergency situation avoidance unit 171 is based on the detection results of the external information detection unit 141, the in-vehicle information detection unit 142, and the vehicle state detection unit 143, collision, contact, entry into a danger zone, driver's abnormality, vehicle Perform detection processing of an emergency such as an abnormality.
  • the emergency situation avoidance unit 171 detects the occurrence of an emergency situation, it plans the operation of the own vehicle for avoiding an emergency situation such as a sudden stop or a sudden turn.
  • the emergency situation avoidance unit 171 supplies data indicating the planned operation of the host vehicle to the acceleration / deceleration control unit 172, the direction control unit 173, and the like.
  • the acceleration / deceleration control unit 172 performs acceleration / deceleration control for realizing the operation of the own vehicle planned by the operation planning unit 163 or the emergency situation avoidance unit 171. For example, the acceleration / deceleration control unit 172 calculates a control target value of a driving force generator or a braking device for achieving planned acceleration, deceleration, or sudden stop, and drives a control command indicating the calculated control target value. It is supplied to the system control unit 107.
  • the direction control unit 173 performs direction control for realizing the operation of the vehicle planned by the operation planning unit 163 or the emergency situation avoidance unit 171. For example, the direction control unit 173 calculates the control target value of the steering mechanism for realizing the traveling track or the sharp turn planned by the operation plan unit 163 or the emergency situation avoidance unit 171, and performs control indicating the calculated control target value. The command is supplied to the drive system control unit 107.
  • FIG. 7 is a flow chart for explaining the processing sequence executed by the vehicle travel control device.
  • the processing according to the flow shown in FIG. 7 is performed under the control of a control unit (data processing unit) including a CPU having a program execution function according to a program stored in the storage unit of the vehicle travel control device, for example. To be executed.
  • a control unit data processing unit
  • the flow described below is processing to which the vehicle travel control device 100 shown in FIG. 6 is applied. It is an example of processing in the case of performing processing which performs automatic operation by automatic operation mode, and also displays recommendation route information on a display part. The process of each step shown in the flowchart will be sequentially described below.
  • Step S101 First, in step S101, the detection unit 131 of the automatic driving control unit 112 acquires imaging information of a visible light camera.
  • This process is a process executed by the external information detection unit 141 in the detection unit 131 of the automatic driving control unit 112 of the vehicle travel control device 100 shown in FIG.
  • the outside-of-vehicle information detection unit 141 acquires a captured image of the vehicle traveling direction captured by a visible light camera, which is a component of the data acquisition unit 102. For example, a photographed image as shown in FIG. 8 is acquired. As shown in FIG. 8, this captured image is displayed on the display unit (display) 201 that constitutes the output unit 106, and can be observed by the user (driver).
  • the vehicle (self-vehicle) driven by the user (driver) is traveling in the left lane of two lanes, there is a puddle 211 ahead, and the other vehicle is traveling in the right lane Is an image showing a state of
  • Step S102 the outside-of-vehicle information detection unit 141 extracts a road surface area from the captured image in the vehicle traveling direction captured by the visible light camera.
  • region from an image is, for example, nonpatent literature 1 [http: // www. vision. cs. chubu. ac. jp / MPRG / f_group / f133_mishina2013. Use the method described in pdf].
  • Non-Patent Document 1 describes a method of extracting a road surface area from a visible light image using machine learning, and the road surface area is extracted using such a method.
  • Step S103 Next, in step S103, a candidate course is detected.
  • This process is a process executed by the situation recognition unit 153 of the automatic driving control unit 112.
  • the situation recognition unit 153 sets a candidate for a travelable route from the road surface area extracted in step S102.
  • the self position information of the vehicle, the traveling speed information (vehicle state), the obstacle information (vehicle outside information) around the vehicle, and the like are input and extracted in consideration of these input information. It is possible to determine a plurality of safe traveling candidate routes that can be traveled in the road surface area and that the current traveling condition does not rapidly change the course.
  • the self position information of the vehicle is input from the self position estimation unit 132.
  • the traveling speed information (vehicle state) is input from the vehicle state detection unit 143.
  • obstacle information (vehicle outside information) around the vehicle is input from the vehicle outside information detection unit 141.
  • the situation recognition unit 153 sets a plurality of possible course candidates that can be traveled and do not cause a sudden change of course from the current travel state, in consideration of the information input from each processing unit. For example, as shown in FIG. 9, three routes (routes a, b, c) are detected as route candidates.
  • the route candidate (route) information is displayed on the display unit (display) 201 constituting the output unit 106 as shown in FIG. 9 and can be confirmed by the user (driver).
  • Step S104 the road surface temperature information on the candidate course detected in step S103 is analyzed from the acquired image of the (far) infrared camera. This process is executed by the external information detection unit 141 of the detection unit 131.
  • the external information detection unit 141 acquires a photographed image of the road surface in the vehicle traveling direction taken by the (far) infrared camera, which is a component of the data acquisition unit 102, and selects each candidate based on the acquired pixel value of the far infrared image. Analyze the road surface temperature on the track.
  • the far infrared image is, for example, a gray image according to the temperature distribution. Specifically, it is acquired as a monochrome image in which the high temperature part is white, the low temperature part is black, etc.
  • the outside-of-vehicle information detection unit 141 analyzes the road surface temperature on each candidate route based on the pixel value of the far-infrared image.
  • the analysis result is input to the situation recognition unit 153. Furthermore, this analysis result is displayed on the display unit (display) 201 that constitutes the output unit 106, and can be confirmed by the user (driver). For example, as shown in FIG. 10, road surface temperature information is displayed on the display unit (display) 201. In the example shown in FIG. 10, the portion where the water pool 211 is located is a low temperature region, the region of the white line which is a lane dividing line is also a low temperature region, and the right lane is a high temperature region.
  • an output color corresponding to the temperature is set and displayed on the display unit 201.
  • the high temperature area is set as an output of red setting
  • the low temperature area is an output of green setting.
  • the user can immediately grasp the temperature of the road surface area by performing such color coding and outputting.
  • Step S105 The process of step S105 is a process executed by the situation recognition unit 153.
  • the situation recognition unit 153 inputs the road surface temperature information on each candidate route acquired by the outside information detection unit 141 in step S104, and the road surface temperature on each candidate route based on the input road surface temperature information on each candidate route. Calculate the average value of For example, for each candidate route, an average value of road surface temperatures of an area of vehicle width + right and left 2 m ⁇ traveling direction about 30 m to 100 m is calculated.
  • the situation recognition unit 153 inputs the calculated average value of the road surface temperatures on the respective candidate paths to the situation prediction unit 154.
  • step S105 A specific example of the process of step S105 will be described.
  • the average value of the road surface temperature of the area of is calculated respectively.
  • the above-described area for calculating the average temperature is an example, and the area for calculating the average temperature is preferably determined in consideration of, for example, the speed of the vehicle, the detection area of the road surface temperature, and the like.
  • Step S106 The process of step S106 is also a process executed by the situation recognition unit 153.
  • step S106 it is determined whether the calculation of the average road surface temperature in step S105 has been completed for all the candidate routes extracted in step S103. When the calculation of the average road surface temperature is not completed for all the candidate routes, the process returns to step S105, and the average road surface temperature calculation processing is performed for the unprocessed candidate routes. If the calculation of the average road surface temperature is completed for all the candidate routes, the process proceeds to step S107.
  • Step S107 The process of step S107 is a process performed by the situation prediction unit 154. Finally, in step S107, the situation prediction unit 154 determines a course having the highest average value of the temperatures on the candidate courses as the traveling course. The determined traveling route is transmitted to the planning unit 134, and control of the vehicle is finally performed. Specifically, travel control is executed so as to travel along the determined route.
  • the planning unit 134 outputs control data for causing the vehicle to travel along the route with the highest road surface temperature to the operation control unit 135 that executes the automatic driving of the vehicle.
  • the operation control unit 135 performs operation control of the vehicle for traveling along a route with the highest road surface temperature.
  • the determined traveling route (route) information is displayed on the display unit (display) 201 constituting the output unit 106 as shown in FIG. 11, and can be confirmed by the user (driver).
  • the example shown in FIG. 11 is an example in which the route b in the routes a to c shown in FIG. 9 is selected.
  • the route b is a route which travels in a region where the frost road surface temperature is higher.
  • the process according to the flow shown in FIG. 7 is repeatedly and continuously executed while the vehicle is traveling. By continuously executing this process, it is possible to continuously select a region where the road surface temperature is high for traveling, and to improve the fuel consumption when the vehicle is traveling.
  • the road surface temperature changes depending on the road surface condition (pave material, moisture, etc.), the presence or absence of a vehicle ahead, and the like. For example, if there is a puddle on the track, that part will usually be cooler than the surroundings.
  • the configuration of the present disclosure it is possible to select a path avoiding a water pool and improve fuel consumption.
  • the road surface temperature differs depending on the pavement material. For example, a white line has a low road surface temperature. If the configuration of the present disclosure is applied, it is possible to avoid such an area with low road surface temperature, to select a road surface with a higher temperature to travel, and to improve fuel efficiency.
  • the vehicle travel control device of the present disclosure continuously measures the road surface temperature in the traveling direction when the vehicle travels, performs travel route setting so as to select a region where the road surface temperature is high, and follows the set route. It becomes possible to drive the vehicle, and fuel consumption can be reliably improved.
  • a detection unit that analyzes the photographed image of the far infrared camera and analyzes the road surface temperature distribution
  • a vehicle travel control device having a situation analysis unit that determines a route having the highest road surface temperature as a travel route based on the road surface temperature distribution.
  • the vehicle travel control device further includes: The vehicle travel control device according to (1), further including: a planning unit that outputs control data for causing the vehicle to travel along the route with the highest road surface temperature to an operation control unit that performs automatic driving of the vehicle.
  • the situation analysis unit Detect multiple possible travel paths of the vehicle, The vehicle travel control device according to (1) or (2), wherein an average value of road surface temperatures of each of the candidate routes is calculated, and a candidate route having the highest average value is determined as a travel route.
  • the situation analysis unit Detect multiple possible travel paths of the vehicle, The vehicle travel control device according to (1) or (2), wherein the maximum value or the median value of the road surface temperature of each of the candidate routes is calculated, and the candidate route having a high maximum value or a high median value is determined as a travel route.
  • the situation analysis unit At least one of the vehicle's own position information, traveling speed information, and obstacle information around the vehicle is input, and a course judged to be safe traveling based on the input information is detected as the candidate course (3) or (4) The vehicle travel control device according to the above.
  • the detection unit The road surface area is extracted from the captured image of the traveling direction of the vehicle captured by the visible light camera, The vehicle travel control device according to any one of (1) to (5), which analyzes the temperature distribution of the road surface included in the extracted road surface area.
  • the vehicle travel control device further includes: The vehicle travel control device according to any one of (1) to (6), further including: a display unit configured to display direction information of a route having the highest road surface temperature.
  • the display unit is The vehicle travel control device according to (7), which displays information indicating the temperature distribution of the road surface temperature.
  • the display unit is The vehicle travel control device according to (8), wherein the information indicating the temperature distribution of the road surface temperature is displayed as information in which an output color corresponding to the temperature is set.
  • a vehicle travel control method executed by the vehicle travel control device A detection step of analyzing a road surface temperature distribution by analyzing a photographed image of the far infrared camera by a detection unit;
  • a vehicle travel control method wherein a situation analysis unit executes a situation analysis step of determining a route with the highest road surface temperature as a travel route based on the road surface temperature distribution.
  • a program for executing vehicle travel control in a vehicle travel control device A detection step of causing the detection unit to analyze a road surface temperature distribution by analyzing a captured image of the far infrared camera; A program causing a situation analysis unit to execute a situation analysis step of determining a route having the highest road surface temperature as a travel route based on the road surface temperature distribution.
  • the series of processes described in the specification can be performed by hardware, software, or a combined configuration of both.
  • the program recording the processing sequence is installed in memory in a computer built into dedicated hardware and executed, or the program is executed on a general-purpose computer capable of executing various processing. It is possible to install and run.
  • the program can be recorded in advance on a recording medium.
  • the program can be installed from a recording medium to a computer, or can be installed in a recording medium such as a built-in hard disk by receiving a program via a network such as a LAN (Local Area Network) or the Internet.
  • LAN Local Area Network
  • a system is a logical set configuration of a plurality of devices, and the devices of each configuration are not limited to those in the same housing.
  • a configuration is realized that enables traveling with improved fuel efficiency by detecting the road surface temperature and selecting a region where the road surface temperature is high for traveling. Be done. Specifically, for example, the photographed image of the far infrared camera is analyzed to analyze the road surface temperature distribution, and the route with the highest road surface temperature is determined as the traveling route. Furthermore, automatic driving is performed according to the route where the road surface temperature is high. In addition, the distribution state of the road surface temperature and the direction of the route with the highest road surface temperature are displayed on the display unit to make the user (driver) recognize.
  • the situation analysis unit detects a plurality of candidate routes that the vehicle can travel, calculates the average value of the road surface temperatures of the candidate routes, and determines the candidate route having the highest average value as the travel route.
  • the road surface temperature is detected, and a region where the road surface temperature is high is selected to travel, thereby achieving a configuration that enables traveling with improved fuel efficiency.

Abstract

路面温度を検出し、路面温度の高い領域を選択して走行させることで燃費を高めた走行を可能とした構成を実現する。遠赤外線カメラの撮影画像を解析して路面温度分布を解析し、最も路面温度の高い進路を走行ルートに決定する。さらに、路面温度の高い進路に従った自動運転を実行する。また、路面温度の分布状況や、最も路面温度の高い進路の方向を表示部に表示し、ユーザ(運転者)に認識させる。例えば、状況分析部が、車両の走行可能な複数の候補進路を検出し、候補進路各々の路面温度の平均値を算出し、最も平均値の高い候補進路を走行ルートに決定する。

Description

車両走行制御装置、および車両走行制御方法、並びにプログラム
 本開示は、車両走行制御装置、および車両走行制御方法、並びにプログラムに関する。さらに詳細には、車両走行時の燃費向上を実現する車両走行制御装置、および車両走行制御方法、並びにプログラムに関する。
 自動車走行時のタイヤ温度と燃費には相関があることが知られている。
 例えば特許文献1(特開2016-075503号公報)には、タイヤ温度と転がり抵抗との関係を測定する評価装置についての記載がある。
 また、特許文献2(特開2012-101762号公報)は、車両に装着したタイヤ温度検出手段が検出したタイヤ温度に基づいてタイヤの転がり抵抗を算出し、自動車の出発地から目的地までのルートの走行距離と、算出した転がり抵抗から消費エネルギーを算出してドライバに提示する装置を開示している。
特開2016-075503号公報 特開2012-101762号公報
http://www.vision.cs.chubu.ac.jp/MPRG/f_group/f133_mishina2013.pdf
 上記2つの特許文献に記載の技術は、いずれもタイヤ自体の温度を計測して、タイヤ温度から転がり抵抗や燃費を推定する構成である。
 しかし、上記文献を含め、その他の文献にも道路温度を計測して燃費を推定して、車両制御を行う構成については開示されていない。
 タイヤ温度は、走行中の路面の温度により大きな影響を受け、道路の温度に応じてタイヤ温度が変化し、その変化により燃費が変動することが考えられる。
 本開示は、走行車両の進行方向の道路の温度分布を計測して、より燃費の少ない走行ルートを推定して、車両走行ルートの制御を行い、燃費を向上させた車両走行制御を実現する車両走行制御装置、および車両走行制御方法、並びにプログラムを提供することを目的とする。
 本開示の第1の側面は、
 遠赤外線カメラの撮影画像を解析して路面温度分布を解析する検出部と、
 前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析部を有する車両走行制御装置にある。
 さらに、本開示の第2の側面は、
 車両走行制御装置において実行する車両走行制御方法であり、
 検出部が、遠赤外線カメラの撮影画像を解析して路面温度分布を解析する検出ステップと、
 状況分析部が、前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析ステップを実行する車両走行制御方法にある。
 さらに、本開示の第3の側面は、
 車両走行制御装置において車両走行制御を実行させるプログラムであり、
 検出部に、遠赤外線カメラの撮影画像を解析して路面温度分布を解析させる検出ステップと、
 状況分析部に、前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析ステップを実行させるプログラムにある。
 なお、本開示のプログラムは、例えば、様々なプログラム・コードを実行可能な情報処理装置やコンピュータ・システムに対して、コンピュータ可読な形式で提供する記憶媒体、通信媒体によって提供可能なプログラムである。このようなプログラムをコンピュータ可読な形式で提供することにより、情報処理装置やコンピュータ・システム上でプログラムに応じた処理が実現される。
 本開示のさらに他の目的、特徴や利点は、後述する本開示の実施例や添付する図面に基づくより詳細な説明によって明らかになるであろう。なお、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
 本開示の一実施例の構成によれば、路面温度を検出し、路面温度の高い領域を選択して走行させることで燃費を高めた走行を可能とした構成が実現される。
 具体的には、例えば、遠赤外線カメラの撮影画像を解析して路面温度分布を解析し、最も路面温度の高い進路を走行ルートに決定する。さらに、路面温度の高い進路に従った自動運転を実行する。また、路面温度の分布状況や、最も路面温度の高い進路の方向を表示部に表示し、ユーザ(運転者)に認識させる。例えば、状況分析部が、車両の走行可能な複数の候補進路を検出し、候補進路各々の路面温度の平均値を算出し、最も平均値の高い候補進路を走行ルートに決定する。
 本構成により、路面温度を検出し、路面温度の高い領域を選択して走行させることで燃費を高めた走行を可能とした構成が実現される。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、また付加的な効果があってもよい。
本開示の車両走行制御装置の実行する処理の概要について説明する図である。 可視光画像と遠赤外線画像について説明する図である。 タイヤ温度と転がり抵抗係数との対応関係について説明する図である。 本開示の車両走行制御装置の実行する処理の概要について説明する図である。 本開示の車両走行制御装置の実行する処理の概要について説明する図である。 本開示の車両走行制御装置の構成例について説明する図である。 本開示の車両走行制御装置の実行する処理のシーケンスについて説明するフローチャートを示す図である。 本開示の車両走行制御装置の実行する処理、および表示部の表示例について説明する図である。 本開示の車両走行制御装置の実行する処理、および表示部の表示例について説明する図である。 本開示の車両走行制御装置の実行する処理、および表示部の表示例について説明する図である。 本開示の車両走行制御装置の実行する処理、および表示部の表示例について説明する図である。
 以下、図面を参照しながら本開示の車両走行制御装置、および車両走行制御方法、並びにプログラムの詳細について説明する。なお、説明は以下の項目に従って行なう。
 1.車両走行制御装置の実行する処理の概要について
 2.車両走行制御装置の構成例について
 3.車両走行制御装置の実行する処理のシーケンスについて
 4.本開示の構成のまとめ
  [1.車両走行制御装置の実行する処理の概要について]
 まず、図1以下を参照して本開示の車両走行制御装置の実行する処理の概要について説明する。
 図1は、本開示の車両走行制御装置の実行する処理の一例を示す図である。
 図1に示す自動車10に本開示の車両走行制御装置が装着されている。自動車10の前部に遠赤外線カメラ20が備えられ、自動車10の進行方向である前方の遠赤外線画像を撮影する。
 遠赤外線カメラ20は、赤外線の中でも、より波長の長い遠赤外線を撮影するカメラである。
 赤外線は、温度の高い物体からより多く発せられる。従って、暗闇等においても人等、温度の高い物体の検出等が可能であり、監視カメラ等によく用いられる。
 その中でも遠赤外線は、熱に対してより高感度であり、遠赤外線画像に基づいて、温度の高い部分、低い部分を見極めることが可能となる。
 遠赤外線画像は、例えば温度分布に応じた濃淡画像となる。具体的には、高温部分は白、低温部分は黒等、温度が高いほど白くなるモノクロ画像となる。
 可視光画像や遠赤外線画像によって撮影される波長の例について、図2を参照して説明する。
 図2に示すように、可視光画像30は、波長が約0.4μm~0.7μmの範囲の画像であり、一般的なカメラで撮影されるRGB画像等のカラー画像である。
 赤外光画像は、波長が.0.7μm以上の長波長光からなる画像である。赤外光画像を撮影する赤外光画像撮影カメラは、前述したように、熱を発生する物体、例えば人物等を撮影することが可能であり、監視カメラ等に利用される。
 赤外線は、図2に示すように、
 波長が約0.7~1μmの近赤外線、
 波長が約3~5μmの中赤外線、
 波長が約8~14μmの遠赤外線、
 このように区分される。
 前述したように、遠赤外線は、熱に対して高感度であり、遠赤外線画像に基づいて、温度の高い部分、低い部分を、容易に見極めることが可能となる。
 以下に説明する実施例では、主に波長が約8~14μmの遠赤外線を撮影する遠赤外線画像40を利用した画像処理例について説明する。
 ただし、本開示の処理は、遠赤外線画像に限らず、その他の赤外光画像を利用することも可能である。
 図1に戻り、本開示の車両走行制御装置の実行する処理の一例にのについて説明する。
 図1に示す自動車10前部の遠赤外線カメラ20は、自動車10の進行方向である前方の道路の遠赤外線画像を、継続的に撮影する。
 前述したように、遠赤外線カメラ20によって撮影される遠赤外線画像を解析することで、撮影された被写体の温度分布を解析することができる。
 本開示の車両走行制御装置は、遠赤外線カメラ20によって撮影される道路の遠赤外線画像を解析することで、撮影された道路の温度分布を解析する。
 例えば、図1に示すように、自動車10は、2車線の道路の左車線を走行している。
 遠赤外線カメラ20は、左車線から、右車線まで、自動車10の走行可能な道路の幅全体の遠赤外線画像を連続的に撮影する。例えば動画像として遠赤外線画像の撮影を実行する。
 車両走行制御装置は、遠赤外線カメラ20によって撮影される道路の遠赤外線画像を解析し、たとえば図1に示すように、撮影された道路の温度分布を解析する。
 例えば、図1に示すような解析結果を得ることができる。すなわち、図1に示すように、
 自動車10が走行中の左車線領域が高温領域、
 左車線と右車線の中間領域(車線ライン領域)が低温領域、
 右車線が中温領域、
 このような道路の領域単位の温度分布を取得することができる。
 車両走行制御装置は、この温度解析結果に基づいて、最も路面温度の高いルートを、最も燃費のよいルートと判断して走行ルートに決定する。車両走行制御装置はこの決定した走行ルートに従って、自動車10の走行制御を行う。
 なお、図1に示す例は、自動運転モードの設定で、自動的にハンドル操作が行われる車である。
 図1に示す例では、自動車10が現在、走行中の左車線領域が高温領域であり、この左車線領域をそのまま走行することで、タイヤ温度が高温に保持され、転がり抵抗を低下させた走行が可能となり、結果として燃費のよい走行が可能となる。
 なお、タイヤ温度と、タイヤの転がり抵抗係数との関係は、既に知られており、例えば図3に示すグラフに従った関係を有する。
 図3は、横軸にタイヤ温度、縦軸にタイヤの転がり抵抗係数(μ)を設定したグラフである。
 図3に示すグラフから理解されるように、タイヤの温度が高いほど、転がり抵抗係数(μ)は小さくなる。
 タイヤの転がり抵抗(R)は、転がり抵抗係数(μ)を用いて以下の式(式1)によって算出できる。
  R=μmg・・・・(式1)
 なお、上記(式1)において、
 μ:タイヤの転がり抵抗係数
 m:車両重量
 g:重力加速度
 である。
 上記(式1)から理解されるように、転がり抵抗係数(μ)が小さいほど、タイヤの転がり抵抗(R)は小さくなる。
 また、図3に示すグラフに示されるように、転がり抵抗係数(μ)は温度が高いほど小さくなる。従って、自動車においては、タイヤ温度が高いほど、タイヤの転がり抵抗(R)を小さくすることができ、高燃費での走行を行うことが可能となる。
 図1に示す例では、自動車10が現在、走行中の左車線領域の路面が高温領域であり、この左車線領域をそのまま走行することで、タイヤ温度が高温に保持され、転がり抵抗を低下させた走行が可能となる。結果として燃費のよい走行が実現される。
 車両走行制御装置は、この温度解析結果に基づいて、左車線領域が高温領域であり、最も燃費のよいルートであると判断し、この左車線を走行ルートとして選択し、選択結果に従って、自動車10を左車線に設定するように走行制御を行う。
 なお、遠赤外線カメラ20による遠赤外線画像の撮影と、路面の領域単位の温度分布解析は、継続的に実行される。
 従って、撮影される遠赤外線画像に基づく温度分布解析結果も逐次、更新されることになる。
 例えば、自動車10が、図1に示す温度解析結果に基づいて、左車線の走行を継続している間に、遠赤外線画像に基づく温度分布解析結果が、図4に示すように変更されたと想定する。
 図4に示す例は、遠赤外線画像に基づく温度分布解析結果が、以下のような解析結果である例である。
 自動車10が走行中の左車線領域が中温領域、
 左車線と右車線の中間領域(車線ライン領域)が低温領域、
 右車線が高温領域、
 遠赤外線画像に基づく温度分布解析結果が、図4に示す道路領域単位の温度分布であった場合、自動車10の車両走行制御装置は、以下の処理を行う。
 温度解析結果に基づいて、右車線領域が高温領域であり、最も燃費のよいルートであると判断し、この右車線を走行ルートとして選択し、選択結果に従って、自動車10を右車線に移動させる走行制御を行う。
 なお、車線変更は、前後の車両との間隔を確認し、安全な車間距離があることの確認後に行われる。
 図1や、図4を参照して説明した構成は、自動運転モードでの走行が可能な自動車に本開示の車両走行制御装置を搭載した例である。
 本開示の車両走行制御装置は、このような自動運転モードでの運転可能な自動車に限らず、自動運転モードの機能を持たない自動車においても装着可能である。
 図5を参照して、自動運転モード機能を持たない自動車に本開示の車両走行制御装置を搭載した場合の車両走行制御装置の処理例について説明する。
 図5に示す図は、図1と同様、本開示の車両走行制御装置の実行する処理の一例を示す図である。
 図5に示す自動車10に本開示の車両走行制御装置が装着されている。自動車10の前部に遠赤外線カメラ20が備えられ、自動車10の進行方向である前方の遠赤外線画像を撮影する。
 自動車10に装着された車両走行制御装置は、遠赤外線カメラ20によって撮影される道路の遠赤外線画像を解析する。
 図5に示す自動車10の車両走行制御装置は、この遠赤外線画像の解析結果を自動車に備え付けられた表示部50に表示する。
 図5に示すように、表示部50には、以下の道路領域別の温度分布情報が表示される。
 自動車10が走行中の左車線領域が高温領域、
 左車線と右車線の中間領域(車線ライン領域)が低温領域、
 右車線が中温領域、
 図5に示す自動車10の車両走行制御装置は、このような道路の領域単位の温度分布情報を取得し、表示部50に表示する。
 なお、表示部50には温度に応じた出力色を設定して表示する構成としてもよい。
 図5に示すように、
 自動車10が走行中の左車線領域の高温領域を赤色設定の出力、
 左車線と右車線の中間領域(車線ライン領域)の低温領域を緑色設定の出力、
 右車線の中温領域を黄色設定の出力、
 このような色分けをして出力することでユーザ(運転者)は、即座に路面温度を把握することができる。
 図5に示す自動車10の車両走行制御装置は、さらに、温度解析結果に基づいて、最も燃費のよいルートを走行ルートとして選択し、選択結果に従って、自動車10の表示部50に推薦ルート情報52を表示する。
 図に示す例では、自動車10が走行中の左車線領域が高温領域であり、この左車線の進行方向に向けた矢印を推薦ルート情報52として表示する。
 自動車10の運転者(ドライバ)はこの表示部50に表示された情報、すなわち推薦ルート情報52に従ってハンドルを操作することで、道路の高温領域を選択して走行することが可能となる。
 このような走行処理を行うことで、燃費のよい走行を行うことができる。
 なお、図1、図4を参照して説明した自動運転モード機能を有する自動車においても、道路の高温領域を選択して自動運転を行うとともに、自動車の表示部に図5に示すと同様の道路温度分布状況や推薦ルート情報を表示する設定としてもよい。
 自動運転を行うとともに、情報表示を行うことで、ドライバ(運転者)は、表示部に表示される推薦ルートに従って走行がなされることを事前に把握することが可能となり、走行車線の変更等が行われることを事前に把握することが可能となる。
  [2.車両走行制御装置の構成例について]
 次に、図6を参照して車両走行制御装置の一構成例について説明する。
 図6は、上述した処理を実行する自動車10に備えられた車両走行制御装置の一例である車両制御システム100の概略的な機能の構成例を示すブロック図である。
 なお、以下、車両制御システム100が設けられている車両を他の車両と区別する場合、自車又は自車両と称する。
 車両制御システム100は、入力部101、データ取得部102、通信部103、車内機器104、出力制御部105、出力部106、駆動系制御部107、駆動系システム108、ボディ系制御部109、ボディ系システム110、記憶部111、及び、自動運転制御部112を備える。入力部101、データ取得部102、通信部103、出力制御部105、駆動系制御部107、ボディ系制御部109、記憶部111、及び、自動運転制御部112は、通信ネットワーク121を介して、相互に接続されている。通信ネットワーク121は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、又は、FlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークやバス等からなる。なお、車両制御システム100の各部は、通信ネットワーク121を介さずに、直接接続される場合もある。
 なお、以下、車両制御システム100の各部が、通信ネットワーク121を介して通信を行う場合、通信ネットワーク121の記載を省略するものとする。例えば、入力部101と自動運転制御部112が、通信ネットワーク121を介して通信を行う場合、単に入力部101と自動運転制御部112が通信を行うと記載する。
 入力部101は、搭乗者が各種のデータや指示等の入力に用いる装置を備える。例えば、入力部101は、タッチパネル、ボタン、マイクロフォン、スイッチ、及び、レバー等の操作デバイス、並びに、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等を備える。また、例えば、入力部101は、赤外線若しくはその他の電波を利用したリモートコントロール装置、又は、車両制御システム100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部101は、搭乗者により入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム100の各部に供給する。
 データ取得部102は、車両制御システム100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、車両制御システム100の各部に供給する。
 例えば、データ取得部102は、自車の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。
 また、例えば、データ取得部102は、自車の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ToF(Time Of Flight)カメラ、可視光カメラ、ステレオカメラ、単眼カメラ、(遠)赤外線カメラ、及び、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部102は、天候又は気象等を検出するための環境センサ、及び、自車の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、超音波センサ、レーダ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。
 さらに、例えば、データ取得部102は、自車の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。
 また、例えば、データ取得部102は、車内の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、運転者を撮像する撮像装置、運転者の生体情報を検出する生体センサ、及び、車室内の音声を集音するマイクロフォン等を備える。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座っている搭乗者又はステアリングホイールを握っている運転者の生体情報を検出する。
 通信部103は、車内機器104、並びに、車外の様々な機器、サーバ、基地局等と通信を行い、車両制御システム100の各部から供給されるデータを送信したり、受信したデータを車両制御システム100の各部に供給したりする。なお、通信部103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部103が、複数の種類の通信プロトコルをサポートすることも可能である
 例えば、通信部103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、又は、WUSB(Wireless USB)等により、車内機器104と無線通信を行う。また、例えば、通信部103は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又は、MHL(Mobile High-definition Link)等により、車内機器104と有線通信を行う。
 さらに、例えば、通信部103は、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)との通信を行う。また、例えば、通信部103は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、又は、MTC(Machine Type Communication)端末)との通信を行う。さらに、例えば、通信部103は、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、自車と家との間(Vehicle to Home)の通信、及び、歩車間(Vehicle to Pedestrian)通信等のV2X通信を行う。また、例えば、通信部103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制又は所要時間等の情報を取得する。
 車内機器104は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、自車に搬入され若しくは取り付けられる情報機器、及び、任意の目的地までの経路探索を行うナビゲーション装置等を含む。
 出力制御部105は、自車の搭乗者又は車外に対する各種の情報の出力を制御する。例えば、出力制御部105は、視覚情報(例えば、画像データ)及び聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部106に供給することにより、出力部106からの視覚情報及び聴覚情報の出力を制御する。具体的には、例えば、出力制御部105は、データ取得部102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像又はパノラマ画像等を生成し、生成した画像を含む出力信号を出力部106に供給する。また、例えば、出力制御部105は、衝突、接触、危険地帯への進入等の危険に対する警告音又は警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部106に供給する。
 出力部106は、自車の搭乗者又は車外に対して、視覚情報又は聴覚情報を出力することが可能な装置を備える。例えば、出力部106は、表示装置、インストルメントパネル、オーディオスピーカ、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。
 駆動系制御部107は、各種の制御信号を生成し、駆動系システム108に供給することにより、駆動系システム108の制御を行う。また、駆動系制御部107は、必要に応じて、駆動系システム108以外の各部に制御信号を供給し、駆動系システム108の制御状態の通知等を行う。
 駆動系システム108は、自車の駆動系に関わる各種の装置を備える。例えば、駆動系システム108は、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。
 ボディ系制御部109は、各種の制御信号を生成し、ボディ系システム110に供給することにより、ボディ系システム110の制御を行う。また、ボディ系制御部109は、必要に応じて、ボディ系システム110以外の各部に制御信号を供給し、ボディ系システム110の制御状態の通知等を行う。
 ボディ系システム110は、車体に装備されたボディ系の各種の装置を備える。例えば、ボディ系システム110は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、パワーシート、ステアリングホイール、空調装置、及び、各種ランプ(例えば、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカ、フォグランプ等)等を備える。
 記憶部111は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイス等を備える。記憶部111は、車両制御システム100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部111は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、及び、自車の周囲の情報を含むローカルマップ等の地図データを記憶する。
 自動運転制御部112は、自律走行又は運転支援等の自動運転に関する制御を行う。具体的には、例えば、自動運転制御部112は、自車の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、自車の衝突警告、又は、自車のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行う。また、例えば、自動運転制御部112は、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行う。自動運転制御部112は、検出部131、自己位置推定部132、状況分析部133、計画部134、及び、動作制御部135を備える。
 検出部131は、自動運転の制御に必要な各種の情報の検出を行う。検出部131は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143を備える。
 車外情報検出部141は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の外部の情報の検出処理を行う。例えば、車外情報検出部141は、自車の周囲の物体の検出処理、認識処理、及び、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、車外情報検出部141は、自車の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、及び、路面の状態等が含まれる。車外情報検出部141は、検出処理の結果を示すデータを自己位置推定部132、状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153、並びに、動作制御部135の緊急事態回避部171等に供給する。
 車内情報検出部142は、車両制御システム100の各部からのデータ又は信号に基づいて、車内の情報の検出処理を行う。例えば、車内情報検出部142は、運転者の認証処理及び認識処理、運転者の状態の検出処理、搭乗者の検出処理、及び、車内の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる車内の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。車内情報検出部142は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
 車両状態検出部143は、車両制御システム100の各部からのデータ又は信号に基づいて、自車の状態の検出処理を行う。検出対象となる自車の状態には、例えば、速度、加速度、舵角、異常の有無及び内容、運転操作の状態、パワーシートの位置及び傾き、ドアロックの状態、並びに、その他の車載機器の状態等が含まれる。車両状態検出部143は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
 自己位置推定部132は、車外情報検出部141、及び、状況分析部133の状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の位置及び姿勢等の推定処理を行う。また、自己位置推定部132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部132は、推定処理の結果を示すデータを状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153等に供給する。また、自己位置推定部132は、自己位置推定用マップを記憶部111に記憶させる。
 状況分析部133は、自車及び周囲の状況の分析処理を行う。状況分析部133は、マップ解析部151、交通ルール認識部152、状況認識部153、及び、状況予測部154を備える。
 マップ解析部151は、自己位置推定部132及び車外情報検出部141等の車両制御システム100の各部からのデータ又は信号を必要に応じて用いながら、記憶部111に記憶されている各種のマップの解析処理を行い、自動運転の処理に必要な情報を含むマップを構築する。マップ解析部151は、構築したマップを、交通ルール認識部152、状況認識部153、状況予測部154、並びに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
 交通ルール認識部152は、自己位置推定部132、車外情報検出部141、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車の周囲の交通ルールの認識処理を行う。この認識処理により、例えば、自車の周囲の信号の位置及び状態、自車の周囲の交通規制の内容、並びに、走行可能な車線等が認識される。交通ルール認識部152は、認識処理の結果を示すデータを状況予測部154等に供給する。
 状況認識部153は、自己位置推定部132、車外情報検出部141、車内情報検出部142、車両状態検出部143、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の認識処理を行う。例えば、状況認識部153は、自車の状況、自車の周囲の状況、及び、自車の運転者の状況等の認識処理を行う。また、状況認識部153は、必要に応じて、自車の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)とされる。
 認識対象となる自車の状況には、例えば、自車の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無及び内容等が含まれる。認識対象となる自車の周囲の状況には、例えば、周囲の静止物体の種類及び位置、周囲の動物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成及び路面の状態、並びに、周囲の天候、気温、湿度、及び、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。
 状況認識部153は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部132及び状況予測部154等に供給する。また、状況認識部153は、状況認識用マップを記憶部111に記憶させる。
 状況予測部154は、マップ解析部151、交通ルール認識部152及び状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、自車に関する状況の予測処理を行う。例えば、状況予測部154は、自車の状況、自車の周囲の状況、及び、運転者の状況等の予測処理を行う。
 予測対象となる自車の状況には、例えば、自車の挙動、異常の発生、及び、走行可能距離等が含まれる。予測対象となる自車の周囲の状況には、例えば、自車の周囲の動物体の挙動、信号の状態の変化、及び、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動及び体調等が含まれる。
 状況予測部154は、予測処理の結果を示すデータを、交通ルール認識部152及び状況認識部153からのデータとともに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
 ルート計画部161は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、目的地までのルートを計画する。例えば、ルート計画部161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部161は、渋滞、事故、通行規制、工事等の状況、及び、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部161は、計画したルートを示すデータを行動計画部162等に供給する。
 行動計画部162は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、ルート計画部161により計画されたルートを計画された時間内で安全に走行するための自車の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、及び、追い越し等の計画を行う。行動計画部162は、計画した自車の行動を示すデータを動作計画部163等に供給する
 動作計画部163は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、行動計画部162により計画された行動を実現するための自車の動作を計画する。例えば、動作計画部163は、加速、減速、及び、走行軌道等の計画を行う。動作計画部163は、計画した自車の動作を示すデータを、動作制御部135の加減速制御部172及び方向制御部173等に供給する。
 動作制御部135は、自車の動作の制御を行う。動作制御部135は、緊急事態回避部171、加減速制御部172、及び、方向制御部173を備える。
 緊急事態回避部171は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、車両の異常等の緊急事態の検出処理を行う。緊急事態回避部171は、緊急事態の発生を検出した場合、急停車や急旋回等の緊急事態を回避するための自車の動作を計画する。緊急事態回避部171は、計画した自車の動作を示すデータを加減速制御部172及び方向制御部173等に供給する。
 加減速制御部172は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための加減速制御を行う。例えば、加減速制御部172は、計画された加速、減速、又は、急停車を実現するための駆動力発生装置又は制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
 方向制御部173は、動作計画部163又は緊急事態回避部171により計画された自車の動作を実現するための方向制御を行う。例えば、方向制御部173は、動作計画部163又は緊急事態回避部171により計画された走行軌道又は急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
  [3.車両走行制御装置の実行する処理のシーケンスについて]
 次に、図7に示すフローチャートを参照して車両走行制御装置の実行する処理シーケンスについて説明する。
 図7は、車両走行制御装置の実行する処理シーケンスを説明するフローチャートである。なお、図7に示すフローに従った処理は、例えば、車両走行制御装置の記憶部に格納されたプログラムに従ってプログラム実行機能を有するCPU等を備えた制御部(データ処理部)の制御の下で実行される。
 なお、以下において説明するフローは、図6に示す車両走行制御装置100を適用した処理である。
 自動運転モードによる自動運転を行い、さらに、表示部に推薦ルート情報を表示する処理を行う場合の処理例である。
 以下、フローチャートに示す各ステップの処理について、順次、説明する。
  (ステップS101)
 まず、ステップS101において、自動運転制御部112の検出部131は、可視光カメラの撮影情報を取得する。
 この処理は、図6に示す車両走行制御装置100の自動運転制御部112の検出部131内の車外情報検出部141の実行する処理である。
 車外情報検出部141は、データ取得部102の構成要素である可視光カメラが撮影した車両進行方向の撮影画像を取得する。
 例えば、図8に示すような、撮影画像を取得する。
 この撮影画像は、図8に示すように、出力部106を構成する表示部(ディスプレイ)201に表示され、ユーザ(運転者)が観察することができる。
 図8に示す画像の例は、ユーザ(運転者)の運転する車両(自車両)は、2車線の左車線を走行しており、前方に水たまり211があり、右車線に他車両が走行している状態を示す画像である。
  (ステップS102)
 次に、車外情報検出部141は、ステップS102において、可視光カメラが撮影した車両進行方向の撮影画像から路面領域を抽出する。
 なお、画像から、路面領域を抽出する方法は、例えば、非特許文献1[http://www.vision.cs.chubu.ac.jp/MPRG/f_group/f133_mishina2013.pdf]に記載された方法を用いる。
 上記非特許文献1には、可視光画像から機械学習を用いて路面領域を抽出する方法について記載されており、このような方法を用いて路面領域を抽出する。
  (ステップS103)
 次に、ステップS103において、候補となる進路を検出する。
 この処理は、自動運転制御部112の状況認識部153が実行する処理である。
 状況認識部153は、ステップS102で抽出された路面領域から走行可能な進路の候補を設定する。
 なお、この進路候補検出処理に際しては、車両の自己位置情報、走行速度情報(車両状態)、車両周辺の障害物情報(車外情報)などを入力して、これらの入力情報を考慮して、抽出された路面領域で走行が可能であり、かつ現在の走行状態から急激な進路変更にならないような安全走行可能な進路の候補を複数、決定する。
 なお、車両の自己位置情報は、自己位置推定部132から入力する。また、走行速度情報(車両状態)は、車両状態検出部143から入力する。また、車両周辺の障害物情報(車外情報)は、車外情報検出部141から入力する。
 状況認識部153は、これらの各処理部から入力する情報を考慮して、走行可能であり、かつ現在の走行状態から急激な進路変更にならないような進路の候補を複数設定する。
 例えば図9に示すように、進路候補として3つのルート(ルートa,b,c)が検出される。
 この進路候補(ルート)情報は、図9に示すように、出力部106を構成する表示部(ディスプレイ)201に表示され、ユーザ(運転者)が確認することができる。
  (ステップS104)
 次に、ステップS104において、ステップS103で検出された候補進路上の路面温度情報を(遠)赤外線カメラの取得画像から解析する。
 この処理は、検出部131の車外情報検出部141が実行する。
 車外情報検出部141は、データ取得部102の構成要素である(遠)赤外線カメラが撮影した車両進行方向の路面の撮影画像を取得し、取得した遠赤外線画像の画素値に基づいて、各候補進路上の路面温度を解析する。
 前述したように、遠赤外線画像は、例えば温度分布に応じた濃淡画像である。具体的には、高温部分は白、低温部分は黒等、温度が高いほど白くなるモノクロ画像として取得される。車外情報検出部141は、この遠赤外線画像の画素値に基づいて、各候補進路上の路面温度を解析する。
 この解析結果は、状況認識部153に入力される。
 さらに、この解析結果は、出力部106を構成する表示部(ディスプレイ)201に表示され、ユーザ(運転者)が確認することができる。
 例えば図10に示すように、路面温度情報を表示部(ディスプレイ)201に表示する。
 図10に示す例は、水たまり211のある部分が低温領域、車線の区分ラインである白線ラインの領域も低温領域、右車線が高温領域となっている。
 なお、表示部201には温度に応じた出力色を設定して表示することが好ましい。
 例えば、図10に示すように、高温領域を赤色設定の出力、低温領域を緑色設定の出力とする設定である。
 このような色分けをして出力することでユーザ(運転者)は、即座に路面の領域単位の温度を把握することができる。
  (ステップS105)
 ステップS105の処理は、状況認識部153の実行する処理である。
 状況認識部153は、ステップS104で車外情報検出部141が取得した各候補進路上の路面温度情報を入力し、入力した各候補進路上の路面温度情報に基づいて、各候補進路上の路面温度の平均値を算出する。
 例えば、各候補進路について、車幅+左右2m×進行方向30m~100m程度の面積の路面温度の平均値をそれぞれ算出する。
 状況認識部153は、算出した各候補進路上の路面温度の平均値を状況予測部154に入力する。
 ステップS105の処理の具体例について説明する。
 例えば図9に示すように、進路候補として3つのルート(ルートa,b,c)が検出された場合、各ルートa,b,c各々について、車幅+左右2m×進行方向30m~100m程度の面積の路面温度の平均値をそれぞれ算出する。
 なお、上述した平均温度を算出する面積は一例であり、平均温度を算出する領域は、例えば、車の速度、路面温度の検出領域等を考慮して決定することが好ましい。
  (ステップS106)
 ステップS106の処理も、状況認識部153の実行する処理である。
 ステップS106では、ステップS105における平均路面温度の算出が、ステップS103で抽出された候補進路全てについて完了したかを判定する。
 平均路面温度の算出が、候補進路全てについて完了していない場合は、ステップS105に戻り、未処理の候補進路についての平均路面温度算出処理を行う。
 平均路面温度の算出が、候補進路全てについて完了した場合は、ステップS107に進む。
  (ステップS107)
 ステップS107の処理は、状況予測部154の実行する処理である。
 最後に、ステップS107において、状況予測部154は、候補進路上の温度の平均値がもっとも高い進路を走行進路として決定する。
 決定した走行進路は、計画部134に伝えられ、最終的に車両の制御が行われる。
 具体的には、決定した進路に従って走行するように走行制御が実行される。
 すなわち、計画部134は、最も路面温度の高い進路に従った走行を行わせるための制御データを車両の自動運転を実行する動作制御部135に出力する。
 動作制御部135は、最も路面温度の高い進路に従った走行を行わせるための車両の動作制御を実行する。
 なお、決定した走行進路(ルート)情報は、図11に示すように、出力部106を構成する表示部(ディスプレイ)201に表示され、ユーザ(運転者)が確認することができる。
 図11に示す例は、図9に示すルートa~c中のルートbを選択した例である。
 図10に示す各候補進路上の温度分布から理解されるように、ルートbは、もっと霜路面温度の高い領域を走行するルートである。
 このような走行ルートを選択することで、路面温度の高い部分の走行が可能となり、結果としてタイヤの転がり抵抗が低減し、燃費効率の高い走行が可能となる。
 なお、図7に示すフローに従った処理は、車両の走行中、繰り返し継続的に実行される。
 この処理を継続して実行することで、継続して路面温度の高い領域を選択して走行することが可能となり、車両走行時の燃費向上が実現される。
 路面温度は、路面状態(舗装の材料や乾湿等)や前方車両の有無などで変化する。
例えば、進路上に水たまりがあった場合、通常その部分は周辺より温度が低くなる。
 本開示の構成を適用すれば、水たまりを避けた進路が選択され、燃費を向上させることできる。また、例えば、路面の一部の舗装材料が異なる場合、舗装材料によって路面温度が異なる。例えば白色のラインは、路面温度が低くなる。本開示の構成を適用すれば、このような路面温度の低い領域を避け、より温度が高い路面を選択して走行させることが可能となり、燃費を向上させることできる。
 また、例えば、前方を走行する車両が存在する場合、車両熱(タイヤ摩擦熱、車両輻射熱、車両誘発顕熱など)によって、路面温度が高く変化することが知られている。本開示の構成を適用すれば、前方を走行する車両が存在する場合、この車両を追従するルート選択が行われて、燃費を向上させた走行が可能となる。
 このように、本開示の車両走行制御装置では、車両の走行時に継続して進行方向の路面温度を計測して、路面温度の高い領域を選択するように走行ルート設定を行い、設定ルートに従って車両を走行させることが可能となり、燃費を確実に向上させることが可能となる。
 なお、上述した実施例では、各候補進路の路面温度の平均値を、各候補進路の評価値として算出して比較する例を説明したが、例えば評価値として各候補進路の路面温度の最大値や中央値などを用いる構成としてもよい。
  [4.本開示の構成のまとめ]
 以上、特定の実施例を参照しながら、本開示の実施例について詳解してきた。しかしながら、本開示の要旨を逸脱しない範囲で当業者が実施例の修正や代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、限定的に解釈されるべきではない。本開示の要旨を判断するためには、特許請求の範囲の欄を参酌すべきである。
 なお、本明細書において開示した技術は、以下のような構成をとることができる。
 (1) 遠赤外線カメラの撮影画像を解析して路面温度分布を解析する検出部と、
 前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析部を有する車両走行制御装置。
 (2) 前記車両走行制御装置は、さらに、
 前記最も路面温度の高い進路に従った走行を行わせるための制御データを車両の自動運転を実行する動作制御部に出力する計画部を有する(1)に記載の車両走行制御装置。
 (3) 前記状況分析部は、
 車両の走行可能な複数の候補進路を検出し、
 前記候補進路各々の路面温度の平均値を算出し、最も平均値の高い候補進路を走行ルートに決定する(1)または(2)に記載の車両走行制御装置。
 (4) 前記状況分析部は、
 車両の走行可能な複数の候補進路を検出し、
 前記候補進路各々の路面温度の最大値、または中央値を算出し、最大値、または中央値の高い候補進路を走行ルートに決定する(1)または(2)に記載の車両走行制御装置。
 (5) 前記状況分析部は、
 車両の自己位置情報、走行速度情報、車両周辺の障害物情報の少なくともいずれかを入力して、入力情報に基づいて安全走行可能と判断した進路を前記候補進路として検出する(3)または(4)に記載の車両走行制御装置。
 (6) 前記検出部は、
 可視光カメラが撮影した車両進行方向の撮影画像から路面領域を抽出し、
 抽出した路面領域に含まれる路面の温度分布を解析する(1)~(5)いずれかに記載の車両走行制御装置。
 (7) 前記車両走行制御装置は、さらに、
 前記最も路面温度の高い進路の方向情報を表示する表示部を有する(1)~(6)いずれかに記載の車両走行制御装置。
 (8) 前記表示部は、
 路面温度の温度分布を示す情報の表示を行う(7)に記載の車両走行制御装置。
 (9) 前記表示部は、
 路面温度の温度分布を示す情報を、温度に応じた出力色を設定した情報として表示する(8)に記載の車両走行制御装置。
 (10) 車両走行制御装置において実行する車両走行制御方法であり、
 検出部が、遠赤外線カメラの撮影画像を解析して路面温度分布を解析する検出ステップと、
 状況分析部が、前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析ステップを実行する車両走行制御方法。
 (11) 車両走行制御装置において車両走行制御を実行させるプログラムであり、
 検出部に、遠赤外線カメラの撮影画像を解析して路面温度分布を解析させる検出ステップと、
 状況分析部に、前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析ステップを実行させるプログラム。
 また、明細書中において説明した一連の処理はハードウェア、またはソフトウェア、あるいは両者の複合構成によって実行することが可能である。ソフトウェアによる処理を実行する場合は、処理シーケンスを記録したプログラムを、専用のハードウェアに組み込まれたコンピュータ内のメモリにインストールして実行させるか、あるいは、各種処理が実行可能な汎用コンピュータにプログラムをインストールして実行させることが可能である。例えば、プログラムは記録媒体に予め記録しておくことができる。記録媒体からコンピュータにインストールする他、LAN(Local Area Network)、インターネットといったネットワークを介してプログラムを受信し、内蔵するハードディスク等の記録媒体にインストールすることができる。
 なお、明細書に記載された各種の処理は、記載に従って時系列に実行されるのみならず、処理を実行する装置の処理能力あるいは必要に応じて並列的にあるいは個別に実行されてもよい。また、本明細書においてシステムとは、複数の装置の論理的集合構成であり、各構成の装置が同一筐体内にあるものには限らない。
 以上、説明したように、本開示の一実施例の構成によれば、路面温度を検出し、路面温度の高い領域を選択して走行させることで燃費を高めた走行を可能とした構成が実現される。
 具体的には、例えば、遠赤外線カメラの撮影画像を解析して路面温度分布を解析し、最も路面温度の高い進路を走行ルートに決定する。さらに、路面温度の高い進路に従った自動運転を実行する。また、路面温度の分布状況や、最も路面温度の高い進路の方向を表示部に表示し、ユーザ(運転者)に認識させる。例えば、状況分析部が、車両の走行可能な複数の候補進路を検出し、候補進路各々の路面温度の平均値を算出し、最も平均値の高い候補進路を走行ルートに決定する。
 本構成により、路面温度を検出し、路面温度の高い領域を選択して走行させることで燃費を高めた走行を可能とした構成が実現される。
 10・・自動車、20・・遠赤外線カメラ、30・・可視光画像、40・・遠赤外線画像、50・・表示部、52・・推薦ルート情報、100・・車両走行制御装置、101・・入力部、102・・データ取得部、103・・通信部、104・・車内機器、105・・出力制御部、106・・出力部、107・・駆動系制御部、108・・駆動系システム、109・・ボディ系制御部、110・・ボディ系システム、111・・記憶部、112・・自動運転制御部、131・・検出部、132・・自己位置推定部、133・・状況分析部、134・・計画部、135・・動作制御部、141・・車外情報検出部、142・・車内情報検出部、143・・車両状態検出部、151・・マップ解析部、152・・交通ルール認識部、153・・状況認識部、154・・状況予測部、161・・ルート計画部、162・・行動計画部、163・・動作計画部、171・・緊急事態回避部、172・・加減速制御部、173・・方向制御部、201・・表示部、

Claims (11)

  1.  遠赤外線カメラの撮影画像を解析して路面温度分布を解析する検出部と、
     前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析部を有する車両走行制御装置。
  2.  前記車両走行制御装置は、さらに、
     前記最も路面温度の高い進路に従った走行を行わせるための制御データを車両の自動運転を実行する動作制御部に出力する計画部を有する請求項1に記載の車両走行制御装置。
  3.  前記状況分析部は、
     車両の走行可能な複数の候補進路を検出し、
     前記候補進路各々の路面温度の平均値を算出し、最も平均値の高い候補進路を走行ルートに決定する請求項1に記載の車両走行制御装置。
  4.  前記状況分析部は、
     車両の走行可能な複数の候補進路を検出し、
     前記候補進路各々の路面温度の最大値、または中央値を算出し、最大値、または中央値の高い候補進路を走行ルートに決定する請求項1に記載の車両走行制御装置。
  5.  前記状況分析部は、
     車両の自己位置情報、走行速度情報、車両周辺の障害物情報の少なくともいずれかを入力して、入力情報に基づいて安全走行可能と判断した進路を前記候補進路として検出する請求項3に記載の車両走行制御装置。
  6.  前記検出部は、
     可視光カメラが撮影した車両進行方向の撮影画像から路面領域を抽出し、
     抽出した路面領域に含まれる路面の温度分布を解析する請求項1に記載の車両走行制御装置。
  7.  前記車両走行制御装置は、さらに、
     前記最も路面温度の高い進路の方向情報を表示する表示部を有する請求項1に記載の車両走行制御装置。
  8.  前記表示部は、
     路面温度の温度分布を示す情報の表示を行う請求項7に記載の車両走行制御装置。
  9.  前記表示部は、
     路面温度の温度分布を示す情報を、温度に応じた出力色を設定した情報として表示する請求項8に記載の車両走行制御装置。
  10.  車両走行制御装置において実行する車両走行制御方法であり、
     検出部が、遠赤外線カメラの撮影画像を解析して路面温度分布を解析する検出ステップと、
     状況分析部が、前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析ステップを実行する車両走行制御方法。
  11.  車両走行制御装置において車両走行制御を実行させるプログラムであり、
     検出部に、遠赤外線カメラの撮影画像を解析して路面温度分布を解析させる検出ステップと、
     状況分析部に、前記路面温度分布に基づいて、最も路面温度の高い進路を走行ルートに決定する状況分析ステップを実行させるプログラム。
PCT/JP2018/026525 2017-08-18 2018-07-13 車両走行制御装置、および車両走行制御方法、並びにプログラム WO2019035300A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/638,140 US11332146B2 (en) 2017-08-18 2018-07-13 Vehicle traveling control device, vehicle traveling control method, and program
CN201880052109.6A CN111033590B (zh) 2017-08-18 2018-07-13 车辆行驶控制设备、车辆行驶控制方法以及程序
EP18846160.2A EP3671686A4 (en) 2017-08-18 2018-07-13 VEHICLE MOVEMENT CONTROL DEVICE AND METHOD, AND PROGRAM
JP2019536445A JP7136106B2 (ja) 2017-08-18 2018-07-13 車両走行制御装置、および車両走行制御方法、並びにプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017157820 2017-08-18
JP2017-157820 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019035300A1 true WO2019035300A1 (ja) 2019-02-21

Family

ID=65362279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026525 WO2019035300A1 (ja) 2017-08-18 2018-07-13 車両走行制御装置、および車両走行制御方法、並びにプログラム

Country Status (5)

Country Link
US (1) US11332146B2 (ja)
EP (1) EP3671686A4 (ja)
JP (1) JP7136106B2 (ja)
CN (1) CN111033590B (ja)
WO (1) WO2019035300A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110533909A (zh) * 2019-09-10 2019-12-03 重庆大学 一种基于交通环境的驾驶行为分析方法及系统
SE1950963A1 (en) * 2019-08-23 2021-02-24 Scania Cv Ab Method and control device for controlling driving of a vehicle along a road
WO2021069503A1 (en) * 2019-10-09 2021-04-15 Volkswagen Aktiengesellschaft Multi-sensory measuring system and method for transportation vehicle operating systems
WO2021142781A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Local navigation assisted by vehicle-to-everything (v2x)
WO2021156537A1 (en) * 2020-02-04 2021-08-12 Roadcloud Oy Determining and using path specific rolling resistance data for controlling vehicles
US20220198200A1 (en) * 2020-12-22 2022-06-23 Continental Automotive Systems, Inc. Road lane condition detection with lane assist for a vehicle using infrared detecting device

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7023817B2 (ja) * 2018-09-19 2022-02-22 本田技研工業株式会社 表示システム、表示方法、およびプログラム
US11142209B2 (en) * 2019-02-12 2021-10-12 Ford Global Technologies, Llc Vehicle road friction control
JP7201657B2 (ja) * 2020-12-28 2023-01-10 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
US11482007B2 (en) * 2021-02-10 2022-10-25 Ford Global Technologies, Llc Event-based vehicle pose estimation using monochromatic imaging
US11892314B2 (en) * 2021-05-17 2024-02-06 International Business Machines Corporation Thermally efficient route selection
CN113665591B (zh) * 2021-09-28 2023-07-11 上海焱眼鑫睛智能科技有限公司 无人驾驶控制方法、装置、设备及介质
SE2250514A1 (en) * 2022-04-29 2023-10-30 Scania Cv Ab Control device and method for predicting rolling resistance
CN116215322B (zh) * 2022-12-14 2024-02-02 深圳禄华科技有限公司 一种新能源汽车的辅助温控方法、系统、设备及介质
CN117173897B (zh) * 2023-11-03 2024-01-26 浪潮智慧科技(青岛)有限公司 一种基于物联网技术的路面交通监测调控方法及系统
CN117392858B (zh) * 2023-12-04 2024-03-19 华睿交通科技股份有限公司 基于多元信息的交通热感摄像系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516623A (ja) * 1991-07-10 1993-01-26 Nissan Motor Co Ltd 車両用車輪
JP2010115100A (ja) * 2008-10-10 2010-05-20 Aisin Aw Co Ltd 走行支援装置、走行支援方法及びコンピュータプログラム
JP2010163131A (ja) * 2009-01-19 2010-07-29 Sumitomo Electric Ind Ltd 路面状況判別装置
JP2012101762A (ja) 2010-11-12 2012-05-31 Toyota Motor Corp 走行支援装置
JP2012230067A (ja) * 2011-04-27 2012-11-22 Clarion Co Ltd ナビゲーション装置、ナビゲーションシステムおよびナビゲーション方法
US20140062725A1 (en) * 2012-08-28 2014-03-06 Commercial Vehicle Group, Inc. Surface detection and indicator
US20150344037A1 (en) * 2012-12-19 2015-12-03 Audi Ag Method and device for predictive determination of a parameter value of a surface on which a vehicle can drive
JP2016075503A (ja) 2014-10-03 2016-05-12 住友ゴム工業株式会社 タイヤの転がり抵抗の評価用方法
JP2016162172A (ja) * 2015-03-02 2016-09-05 富士重工業株式会社 車両の制御装置及び車両の制御方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04368265A (ja) * 1991-06-14 1992-12-21 Akebono Brake Res & Dev Center Ltd 自動ブレーキ装置
JPH08263784A (ja) * 1995-03-23 1996-10-11 Honda Motor Co Ltd 道路状況認識装置
DE10121192A1 (de) * 2000-05-09 2001-11-15 Denso Corp Klimaanlage mit kontaktfreiem Temperatursensor
JP2003176519A (ja) * 2001-12-12 2003-06-24 Nec Corp 融雪剤散布システムとその方法
US6759949B2 (en) * 2002-05-23 2004-07-06 Visteon Global Technologies, Inc. Image enhancement in far infrared camera
JP4368265B2 (ja) 2004-08-03 2009-11-18 シャープ株式会社 表示装置用フレーム、バックライトユニット及び表示装置
DE112007003473B4 (de) * 2007-05-07 2017-04-06 Fujitsu Limited Nachtsichtgerät
JP4554653B2 (ja) 2007-08-08 2010-09-29 クラリオン株式会社 経路探索方法、経路探索システムおよびナビゲーション装置
CN102182137A (zh) * 2011-02-25 2011-09-14 广州飒特电力红外技术有限公司 路面缺陷检测系统及方法
EP2765046B1 (en) * 2011-10-03 2020-02-12 Toyota Jidosha Kabushiki Kaisha Driving assistance system for vehicle
JP5774770B2 (ja) * 2012-03-12 2015-09-09 本田技研工業株式会社 車両周辺監視装置
JP5529910B2 (ja) * 2012-03-12 2014-06-25 本田技研工業株式会社 車両周辺監視装置
CN103164962B (zh) 2013-01-23 2014-11-26 山东交通学院 一种山区公路急弯路段实时车速预警方法
CN103413441B (zh) * 2013-06-26 2015-12-23 广东惠利普路桥信息工程有限公司 道路天气状况监控方法
CN203364978U (zh) 2013-07-24 2013-12-25 辽宁金洋集团信息技术有限公司 交通运行车辆非接触温度监测仪
DE102013021797A1 (de) 2013-12-23 2015-06-25 Hella Kgaa Hueck & Co. Verfahren zur Abgabe eines Warnhinweises auf einen gefährlichen Fahrbahnzustand und Vorrichtung
US9921584B2 (en) * 2014-04-03 2018-03-20 General Electric Company Route examination system and method
JP6442942B2 (ja) * 2014-09-11 2018-12-26 株式会社デンソー ドライバ状態判定装置
CN105252973B (zh) 2015-10-16 2017-04-05 北汽福田汽车股份有限公司 用于汽车的温度监控方法、装置及设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0516623A (ja) * 1991-07-10 1993-01-26 Nissan Motor Co Ltd 車両用車輪
JP2010115100A (ja) * 2008-10-10 2010-05-20 Aisin Aw Co Ltd 走行支援装置、走行支援方法及びコンピュータプログラム
JP2010163131A (ja) * 2009-01-19 2010-07-29 Sumitomo Electric Ind Ltd 路面状況判別装置
JP2012101762A (ja) 2010-11-12 2012-05-31 Toyota Motor Corp 走行支援装置
JP2012230067A (ja) * 2011-04-27 2012-11-22 Clarion Co Ltd ナビゲーション装置、ナビゲーションシステムおよびナビゲーション方法
US20140062725A1 (en) * 2012-08-28 2014-03-06 Commercial Vehicle Group, Inc. Surface detection and indicator
US20150344037A1 (en) * 2012-12-19 2015-12-03 Audi Ag Method and device for predictive determination of a parameter value of a surface on which a vehicle can drive
JP2016075503A (ja) 2014-10-03 2016-05-12 住友ゴム工業株式会社 タイヤの転がり抵抗の評価用方法
JP2016162172A (ja) * 2015-03-02 2016-09-05 富士重工業株式会社 車両の制御装置及び車両の制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3671686A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE1950963A1 (en) * 2019-08-23 2021-02-24 Scania Cv Ab Method and control device for controlling driving of a vehicle along a road
SE544257C2 (en) * 2019-08-23 2022-03-15 Scania Cv Ab Method and control device for controlling driving of a vehicle along a road
CN110533909A (zh) * 2019-09-10 2019-12-03 重庆大学 一种基于交通环境的驾驶行为分析方法及系统
CN110533909B (zh) * 2019-09-10 2020-11-06 重庆大学 一种基于交通环境的驾驶行为分析方法及系统
WO2021069503A1 (en) * 2019-10-09 2021-04-15 Volkswagen Aktiengesellschaft Multi-sensory measuring system and method for transportation vehicle operating systems
WO2021142781A1 (en) * 2020-01-17 2021-07-22 Qualcomm Incorporated Local navigation assisted by vehicle-to-everything (v2x)
WO2021156537A1 (en) * 2020-02-04 2021-08-12 Roadcloud Oy Determining and using path specific rolling resistance data for controlling vehicles
US20220198200A1 (en) * 2020-12-22 2022-06-23 Continental Automotive Systems, Inc. Road lane condition detection with lane assist for a vehicle using infrared detecting device

Also Published As

Publication number Publication date
JPWO2019035300A1 (ja) 2020-10-01
EP3671686A1 (en) 2020-06-24
CN111033590B (zh) 2022-09-09
US11332146B2 (en) 2022-05-17
CN111033590A (zh) 2020-04-17
JP7136106B2 (ja) 2022-09-13
US20200172110A1 (en) 2020-06-04
EP3671686A4 (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP7136106B2 (ja) 車両走行制御装置、および車両走行制御方法、並びにプログラム
CN111386701B (zh) 图像处理装置和图像处理方法
WO2019111702A1 (ja) 情報処理装置、情報処理方法、およびプログラム
US20200241549A1 (en) Information processing apparatus, moving apparatus, and method, and program
US20220169245A1 (en) Information processing apparatus, information processing method, computer program, and mobile body device
CN111758017A (zh) 信息处理装置、信息处理方法、程序及移动体
WO2019181284A1 (ja) 情報処理装置、移動装置、および方法、並びにプログラム
US11501461B2 (en) Controller, control method, and program
JPWO2019069581A1 (ja) 画像処理装置及び画像処理方法
US11014494B2 (en) Information processing apparatus, information processing method, and mobile body
US11200795B2 (en) Information processing apparatus, information processing method, moving object, and vehicle
US11377101B2 (en) Information processing apparatus, information processing method, and vehicle
US11590985B2 (en) Information processing device, moving body, information processing method, and program
WO2019082670A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
WO2020009060A1 (ja) 情報処理装置及び情報処理方法、コンピュータプログラム、並びに移動体装置
JPWO2019082669A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
WO2019107143A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
WO2020129687A1 (ja) 車両制御装置、車両制御方法、プログラム、及び、車両
CN112534297A (zh) 信息处理设备和信息处理方法、计算机程序、信息处理系统以及移动设备
JP2019045364A (ja) 情報処理装置、自己位置推定方法、及び、プログラム
WO2019111549A1 (ja) 移動体、測位システム、測位プログラム及び測位方法
WO2019097884A1 (ja) 情報処理装置と管理装置および方法とプログラム
KR20180073042A (ko) 차량 운전 보조장치 및 이를 포함하는 차량
WO2020090250A1 (ja) 画像処理装置と画像処理方法およびプログラム
WO2023171401A1 (ja) 信号処理装置、信号処理方法、および記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019536445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018846160

Country of ref document: EP

Effective date: 20200318