WO2019033990A1 - 供电设备的故障处理方法及装置 - Google Patents

供电设备的故障处理方法及装置 Download PDF

Info

Publication number
WO2019033990A1
WO2019033990A1 PCT/CN2018/099697 CN2018099697W WO2019033990A1 WO 2019033990 A1 WO2019033990 A1 WO 2019033990A1 CN 2018099697 W CN2018099697 W CN 2018099697W WO 2019033990 A1 WO2019033990 A1 WO 2019033990A1
Authority
WO
WIPO (PCT)
Prior art keywords
faulty
module
faulty module
power supply
modules
Prior art date
Application number
PCT/CN2018/099697
Other languages
English (en)
French (fr)
Inventor
蒋正东
肖波
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21196788.0A priority Critical patent/EP3996239B1/en
Priority to EP18846754.2A priority patent/EP3657630B8/en
Publication of WO2019033990A1 publication Critical patent/WO2019033990A1/zh
Priority to US16/790,027 priority patent/US11239756B2/en
Priority to US17/560,860 priority patent/US20220190727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J4/00Circuit arrangements for mains or distribution networks not specified as ac or dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0034Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using reverse polarity correcting or protecting circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to the field of electronic technologies, and in particular, to a fault processing method and apparatus for a power supply device.
  • the inverter power system is widely used in various equipments with high power supply reliability requirements.
  • the inverter power system is used to supply power for loads with high power supply stability requirements.
  • an inverter power supply such as an inverter or an uninterruptible power supply (UPS) is usually used to supply a critical load having a high power supply stability requirement.
  • UPS uninterruptible power supply
  • the embodiment of the invention provides a fault processing method and device for a power supply device, which can improve the stability of the DC/DC circuit, improve the power supply reliability of the DC/DC circuit, and improve the applicability of the inverter power system.
  • the first aspect provides a fault processing method for a power supply device, and the fault processing method is applicable to an inverter power supply system in the power supply device.
  • the inverter power system includes at least two DC-DC modules of DC-DC power supply, and the at least two DC/DC modules are connected in parallel to the same battery, and power is supplied to the load through a DC-to-AC power supply DC/AC.
  • any one of the at least two DC/DC modules includes fuses F1 and F2, relays K1 and K2, inductors L1 and L2, switch modules Q1, Q2 and Q3, and DC bus capacitors C1 and C2.
  • one end of K1 is connected to the positive pole of the battery through F1
  • one end of K2 is connected to the negative pole of the battery through F2
  • the other end of the K1 is connected to the connecting end of Q2 of the Q1 through the L1
  • the K2 The other end is connected to the connection end of the Q2 and the Q3 through the L2
  • one end of the Q1 is connected to one end of the C1
  • the other end of the Q1 is connected to one end of the Q2
  • the other end of the Q2 One end is connected to one end of the Q3, and the other end of the C1 is connected to the other end of the Q3 through the C2,
  • the fault processing method includes:
  • the fault processing method can detect a voltage signal and/or a battery signal in any DC/DC module and determine whether a faulty module exists based on the detected voltage signal and/or battery signal.
  • the voltage signal in the above DC/DC module may include a battery voltage and/or a DC bus voltage and the like.
  • the current signal in the above DC/DC module may include current on the inductor L1 and/or L2, and the like.
  • One end of the K1 is connected to the positive pole of the battery through the F1, and one end of the K2 is connected to the negative pole of the battery through the F2, and one end of the K1 passes through the L1 and one end of the Q1 and the Q2
  • One end of the K2 is connected to one end of the Q2 and one end of the Q3 through the L2
  • one end of the Q1 is connected to one end of the C1
  • one end of the Q1 is connected to one end of the Q2.
  • One end of the Q2 is connected to one end of the Q3, and the other end of the C1 is connected to one end of the Q3 through the C2, wherein the fault processing method includes:
  • the faulty module is faulty for any one of the at least two DC/DC modules Module
  • the faulty component is the C1 or the C2
  • the inverter power system is in a battery discharge mode, turning on the Q2 in the faulty module to enable the F1 and F2 are blown to disconnect the faulty module from other DC/DC modules.
  • the faulty module when any DC/DC module is detected to be faulty, the faulty module is isolated from other DC/DC modules to ensure normal operation of other parallel modules other than the faulty module, and the inverter power supply system is ensured.
  • the normal power supply state improves the power supply reliability of the inverter power system.
  • the fault processing method further includes: if the component with a short circuit fault is C1 or C2, and the inverter power system is in the battery charging mode, disconnect the Q1 and Q3 of the faulty module, and after a preset time interval Pass Q2 of the faulty module so that F1 and F2 of the faulty module are blown to disconnect the faulty module from other DC/DC modules.
  • the faulty power module is in the battery discharge mode or the battery charging mode
  • the faulty module and other DC/DC modules can be detected when any DC/DC module fails. Isolation ensures the normal operation of other parallel modules other than the faulty module, further ensures the power supply stability of the inverter power system, improves the power supply reliability of the inverter power system, and is more applicable.
  • detecting the current state on L1 and L2 may include detecting whether there is current on L1 or L2. If there is a current on L1 and L2 of the faulty module, it is determined that the faulty module Q1 has a short circuit fault.
  • the inverter power system may further turn on the Q1 of the faulty module and detect the current state on the faulty module L1 and L2 when the faulty module Q2 and Q3 are in the disconnected state; When there is current on L1 and L2 of the faulty module, it is determined that the faulty module has a short-circuit fault in Q3.
  • the DC/DC module fails (for example, Q3 short circuit in the DC/DC module), the L1 and L2 of the DC/DC module have current.
  • the normal module (other DC/DC modules) only has current at L1 (at this time, Q1 of other DC/DC modules 2 is in the on state, and both Q2 and Q3 are in the off state, so there is no L2 on other DC/DC modules. Current). Therefore, if there is a current on both L1 and L2 of the faulty module detected, Q3 in the faulty module fails.
  • the detection mode diversity of the faulty component in the faulty module is improved, the convenience of detecting the faulty component in the faulty module is enhanced, and the detection efficiency of the faulty component is improved.
  • the foregoing fault processing method may also turn on the Q2 of the faulty module when the component with a short-circuit fault in the faulty module is Q1 or Q3, so that F1 and F2 of the faulty module are blown to disconnect the faulty module and other DCs. /DC module connection.
  • the isolation of the faulty module is realized, and the normal operation of other modules in the inverter power supply system is ensured, the normal power supply of the inverter power supply system can be ensured, the power supply reliability of the inverter power supply system is improved, and the applicability is higher.
  • the foregoing fault processing method may also disconnect any one or more of K1, K2, Q1, Q2, and Q3 of the faulty module when the component in which the short circuit fault occurs in the faulty module is Q1 or Q3, and then Disconnect the faulty module from the battery to disconnect the faulty module from other DC/DC modules.
  • the operation is simpler, and the isolation of the faulty module is realized. The operation is more flexible.
  • the second aspect provides a power supply device including an inverter power supply system.
  • the inverter power system includes at least two DC/DC modules, and the at least two DC/DC modules are connected in parallel to the same battery, and power the load through a DC-to-AC power supply DC/AC.
  • any one of the at least two DC/DC modules includes fuses F1 and F2, relays K1 and K2, inductors L1 and L2, switch modules Q1, Q2 and Q3, and DC bus capacitors C1 and C2; K1
  • One end of the battery is connected to the positive pole of the battery through F1, one end of K2 is connected to the negative pole of the battery through F2, one end of K1 is connected through one end of L1 and Q1 and one end of Q2, and one end of K2 is connected through one end of L2 and one end of Q2 and one end of Q3.
  • One end of Q1 is connected to one end of C1, one end of Q1 is connected to one end of Q2, one end of Q2 is connected to one end of Q3, and the other end of C1 is connected to one end of Q3 through C2.
  • Any of the at least two DC/DC modules described above includes a detection unit and a control unit.
  • the detecting unit is configured to detect a voltage signal and/or a current signal in any DC/DC module, and determine whether any DC/DC module is faulty according to the detected voltage signal and/or current signal.
  • the detecting unit is further configured to detect a component that fails in the faulty module when detecting that any DC/DC module is faulty.
  • the control unit is configured to: when the detecting unit detects that the faulty component in the faulty module is C1 or C2, and the inverter power supply system is in the battery discharging mode, turn on the Q2 of the faulty module, so that the F1 and F2 of the faulty module are Fuse to disconnect the faulty module from other DC/DC modules.
  • control unit is further configured to: when the detecting unit detects that the faulty component in the faulty module is C1 or C2, and the inverter power supply system is in the battery charging mode, disconnect the faulty module Q1 and Q3, and After the preset time interval, Q2 of the faulty module is turned on, so that F1 and F2 of the faulty module are blown to disconnect the faulty module from other DC/DC modules.
  • the detecting unit is further configured to: when the faulty module Q2 and Q1 are in an off state, turn on the faulty module Q3 and detect the current state on the faulty module L1 and L2; if the faulty module L1 is detected And there is current on L2, it is determined that the faulty module Q1 has a short circuit fault; or when the faulty module Q2 and Q3 are in the open state, the faulty module Q1 is turned on and the current state on the faulty module L1 and L2 is detected; If there is a current on L1 and L2 of the faulty module, it is determined that the faulty module Q3 has a short circuit fault.
  • control unit is further configured to: when the detecting unit detects that the component in the faulty module that is short-circuit fault is Q1 or Q3, turn on the Q2 of the faulty module, so that the faulty modules F1 and F2 are blown to be disconnected. Connection of faulty modules to other DC/DC modules.
  • control unit is further configured to: when the detecting unit detects that the component in the faulty module that is short-circuit fault is Q1 or Q3, disconnect any one of K1, K2, Q1, Q2, and Q3 of the faulty module. Or multiple to disconnect the faulty module from the parallel connection of other DC/DC modules.
  • the inverter power supply system can perform fault detection on each DC/DC module through a logic control module such as a detection unit built in each DC/DC module, and then pass the control unit after detecting the faulty module (or The drive unit) controls the on or off state of the switch module such as Q1, Q2 or Q3 of the faulty module to achieve isolation of the faulty module, ensure the normal operation of other DC/DC modules in the inverter power system, and ensure the inverter
  • the normal power supply of the power system improves the power supply reliability of the inverter power system, and the applicability is higher.
  • FIG. 1 is a schematic structural view of an inverter power supply system
  • FIG. 2 is a schematic diagram of a connection of a power converter according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a fault circuit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of another fault circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a fault processing method of a power supply device according to an embodiment of the present invention.
  • FIG. 1 a schematic structural diagram of an inverter power supply system is shown.
  • the inverter power system mainly includes three parts, including DC/DC module (also called DC/DC power converter), AC to DC power supply AC/DC module (also It is called AC/DC power converter) and DC-to-AC power supply DC/AC module (also called DC/AC power converter).
  • DC/DC module also called DC/DC power converter
  • AC to DC power supply AC/DC module also It is called AC/DC power converter
  • DC-to-AC power supply DC/AC module also called DC/AC power converter
  • Inverter power systems typically have three power ports: a DC (eg, battery) input port, an AC (eg, mains) input port, and an AC output port.
  • the three power ports respectively correspond to the three power converters, wherein the DC input port corresponds to a DC/DC power converter, the AC input port corresponds to an AC/DC power converter, and the AC output port corresponds to a DC/AC power converter.
  • the DC/DC power converter boosts the battery input from the DC input port to a DC high voltage and outputs it to the input of the DC/AC power converter.
  • the input end of the DC/AC power converter is the two ends of the capacitor C, and the voltage across the capacitor C is also called the DC bus voltage.
  • the AC/DC power converter converts the AC input from the AC input port into DC power and completes the input power factor correction, and then outputs it to both ends of the capacitor C, and stores energy through the capacitor C to obtain the DC bus voltage.
  • the DC/AC power converter converts the DC high voltage on the DC bus into AC power and outputs it to the load through the AC output port to supply power to the load.
  • On the DC bus there is a larger capacity filter capacitor C.
  • the AC mains is converted into AC power to the critical load by the AC/DC power converter and DC/AC power converter. powered by.
  • the DC voltage outputted by the battery is boosted to DC high voltage by the DC/DC power converter and output to the DC bus, and then converted into a matching AC power to the critical load through the DC/AC power inverter to achieve the power supply. Uninterrupted power supply requirements for critical loads.
  • the DC bus bar described in the embodiment of the present invention may be a bus bar in the power system of the inverter power source, and is not limited herein.
  • the DC/DC power converter enables bidirectional flow of energy, and there are two modes of operation, including battery discharge mode and battery charging mode.
  • the battery discharge mode the battery outputs a DC voltage, and outputs DC high voltage to the DC bus through the DC/DC, so that the voltage of the DC bus is maintained at a high voltage state.
  • the capacitor C on the DC bus is in an energy storage state.
  • the mains In the normal working mode of the mains supply, the mains outputs DC high voltage to the DC bus through the AC/DC power converter, and the capacitor C on the DC bus stores energy.
  • the capacitor C passes through the DC/DC power converter. Charge the battery to store energy.
  • PWM pulse width modulation
  • the DC/DC power converter is connected to the output of the AC/DC power converter of the AC mains, and the DC voltage is formed by the capacitor C filtering on the DC bus, thereby forming the battery and the mains.
  • the relationship of each other is backup, which meets the requirements of uninterrupted power supply.
  • FIG. 2 is a schematic diagram of a connection of a power converter according to an embodiment of the present invention.
  • two DC/DC power converters are connected in parallel to the same battery pack, and each DC/DC power converter is connected in parallel with a DC/AC power converter to power the load through the DC/AC power converter. .
  • FIG. 2 shows only two DC/DC power converters. In a specific implementation, the number of DC/DC power converters may be determined according to actual application scenarios, and is not limited herein.
  • the DC/DC power converter shown in Figure 2 can also be connected in parallel with the AC/DC power converter.
  • the DC/DC power converter shown in Figure 1 can be connected in parallel for multiple DC/DC power converters. limit.
  • the schematic diagram shown in FIG. 2 is a schematic diagram of the connection of some components of two DC/DC power converters in parallel, and the DC/DC power converter may further include more components, and the connection manner of each component may be DC according to actual application scenarios. /DC power converter function settings, no restrictions here.
  • the embodiment of the present invention will be described by taking the structure of the power converter shown in FIG. 2 as an example.
  • any DC/DC power converter may include fuses F1 and F2, Relays K1 and K2, inductors L1 and L2, switch modules Q1, Q2 and Q3, and DC bus capacitors C1 and C2.
  • K1 is connected to the positive electrode (BAT+) of the battery through F1
  • K2 is connected to the negative electrode (BAT-) of the battery through F2
  • one end of the K1 is connected to the positive electrode of the battery through the F1
  • one end of the K2 passes
  • the F2 is connected to the negative pole of the battery
  • the other end of the K1 is connected to the connection end of the Q2 of the Q1 through the L1
  • the other end of the K2 passes through the L2 and the Q2 and the Q3
  • One end of the Q1 is connected to one end of the C1, the other end of the Q1 is connected to one end of the Q2, and the other end of the Q2 is connected to one end of the Q3, and the other end of the C1 is connected.
  • the C2 is connected to the other end of the Q3, where the fault processing method includes:
  • the above Q1, Q2 or Q3 may be a switch tube of the MOS type or the like, and is not limited herein.
  • the DC/DC power converter 1 and the DC/DC power converter 2 have respective working circuits, a DC/DC power converter 1 and a DC/DC power converter 2 The working circuits are independent of each other and do not affect each other.
  • a component such as a short circuit occurs in a DC/DC power converter 1 during operation of the DC/DC power converter, the normal operation state of the DC/DC power converter 2 will be affected, thereby causing the inverter power system.
  • the power supply is interrupted, which affects the normal operation of critical loads. For example, if a short circuit occurs in C1 of the DC/DC power converter 1, a fault circuit will be formed between the DC/DC power converter 1 and the DC/DC power converter 2, resulting in no damage to the DC/DC power converter 2, etc.
  • the module or device does not work properly, and eventually the output of the inverter power system is interrupted.
  • the DC/DC power converter 1 and the DC/DC power converter 2 share a battery pack and are used in parallel.
  • FIG. 3 is a schematic diagram of a fault circuit according to an embodiment of the present invention.
  • the short circuit current on the path shown in Figure 3 will cause the DC bus voltage of the DC/DC power converter 2 (i.e., the voltage between the C1 positive pole of the DC/DC power converter 2 and the C2 anode) to overvoltage, thereby causing DC/DC.
  • the power converter 2 exits the normal operating mode.
  • each of the DC/DC power converters in the inverter power system may include a detecting unit (also referred to as a fault detecting unit) and a control unit.
  • a detecting unit also referred to as a fault detecting unit
  • the detecting unit is mainly used for detecting a voltage signal and/or a current signal.
  • the detecting unit can be used for detecting the voltage of the battery and the voltage on the DC bus, and the detecting unit can also be used for sampling the inductor current.
  • the voltage between the C1 positive pole and the C2 negative pole of the DC/DC power converter 2 is detected, and if the DC bus voltage of the DC/DC power converter 2 is detected (the C1 positive pole and the C2 negative pole of the DC/DC power converter 2) The voltage between them is overvoltage. Since the battery voltage is divided by the bus capacitance on each power converter, it can be determined that C1 or C2 of the DC/DC power converter 1 is short-circuited.
  • the detection unit can transmit the detected voltage signal and/or battery signal to the processing unit via sensors and/or current sampling lines.
  • the control unit processes the voltage signal and/or the current signal detected by the detecting unit, issues a control signal, and controls the opening and closing of the relay and the switching tube through the driving circuit.
  • control unit may also be referred to as a processing unit, and may specifically be a processor of the inverter power system, for example, a voltage signal and/or a current signal for processing each DC/DC power converter in the inverter power system.
  • Functional modules such as a central processing unit (CPU).
  • the detecting unit in the DC/DC power converter 1 can detect the operating state of each component in the DC/DC power converter 1.
  • the detecting unit in the DC/DC power converter 1 can further detect a failed component in the DC/DC power converter 1 when it detects that the DC/DC power converter 1 is faulty.
  • the DC/DC power converter 1 can also perform driving control of turning on or off Q1, Q2 or Q3 through its built-in control unit (or processing unit or driving unit, etc.)
  • the drive control mode of the inverter power supply system in the implementation mode is not limited herein.
  • the operating mode of the DC/DC power converter 1 may be a battery discharge mode or a battery charging mode.
  • the voltage between the C1 positive pole and the C2 negative pole of the DC/DC power converter 2 is detected, and if the DC bus voltage of the DC/DC power converter 2 is detected (the C1 positive pole and the C2 negative pole of the DC/DC power converter 2) The voltage between them is overvoltage. Since the battery voltage is divided by the bus capacitance on each power converter, it can be determined that C1 or C2 of the DC/DC power converter 1 is short-circuited.
  • the operating mode of the DC/DC power converter 1 is the battery charging mode, and the Q1 and Q3 of the DC/DC power converter 1 are in the conducting phase, in order to avoid DC/ After the failure of C1 of the DC power converter 1 occurs, a fault circuit indicated by a dashed arrow in FIG.
  • the inverter power system can detect DC/ When a short circuit fault occurs in C1 of the DC power converter 1, the Q1 and Q3 of the DC/DC power converter 1 are immediately turned off, the battery charging mode of the DC/DC power converter 1 is terminated, and the DC/DC power converter 1 is made The failure of C1 does not affect the normal operating mode of the DC/DC power converter 2. Further, the inverter power supply system can turn on the Q2 of the DC/DC power converter 1 after a predetermined time interval after the Q1 and Q3 of the DC/DC power converter 1 are turned off, so that the DC/DC power converter 1 Enter the abnormal working mode.
  • the Q2 of the DC/DC power converter 1 is turned on so that the current outputted by the BAT+ terminal of the battery passes through the F1, K1, L1, and Q2 of the DC/DC power converter 1, and is returned to the BAT of the battery by Q2 through L2, K2, and F2.
  • this abnormal mode of operation will cause the current on F1 and F2 of the DC/DC power converter 1 to be too large, which in turn causes F1 and F2 to be blown, thereby converting the DC/DC power converter 1 and the DC/DC power.
  • the parallel modules such as 2 are isolated to ensure the normal operation of other parallel modules such as DC/DC power converters, and ensure the normal power supply state of the inverter power system.
  • the preset time interval between the disconnection of Q1 and Q3 of the DC/DC power converter 1 and the conduction of Q2 may be set according to actual application scenario requirements, and may be greater than or equal to guarantee Q1, Q2, and The shortest time interval (for example, 2us) at which Q3 is not turned on at the same time. In order to prevent the fault detection time of the inverter power system from being too long, the preset time interval is not too long.
  • the specific time can be determined according to the actual application scenario, and no limitation is imposed here.
  • the operating mode of the DC/DC power converter 1 is a battery discharge mode.
  • the current in the DC/DC power converter 1 is from the BAT+ end of the battery. Flow to other components.
  • the inverter power system can be detected.
  • the Q2 of the DC/DC power converter 1 is directly turned on, so that the failure of the C1 of the DC/DC power converter 1 does not affect the DC/DC power converter. 2 normal working mode.
  • the Q2 of the DC/DC power converter 1 is turned on so that the current outputted by the BAT+ terminal of the battery passes through the F1, K1, L1, and Q2 of the DC/DC power converter 1, and is returned to the BAT of the battery by Q2 through L2, K2, and F2.
  • this abnormal mode of operation will cause the current on F1 and F2 of the DC/DC power converter 1 to be too large, which in turn causes F1 and F2 to be blown, thereby converting the DC/DC power converter 1 and the DC/DC power.
  • the parallel modules such as 2 are isolated to ensure the normal operation of other parallel modules such as DC/DC power converters, ensure the normal power supply state of the inverter power system, improve the power supply stability of the inverter power system, and improve the inverter. The suitability of the power system.
  • a fault loop current as shown by the fault path 1 shown in FIG. 4 is formed in the DC/DC power converter 1.
  • 4 is a schematic diagram of another fault circuit provided by an embodiment of the present invention. The fault loop current shown in the fault path 2 shown in FIG. 4 is traveled between the DC/DC power converter 1 and the DC/DC power converter 2, causing the DC/DC power converter 2 (ie, the normal module) to charge. The sampling of the current is not accurate, which will cause the normal module to not charge properly.
  • the impedance of the BAT+ terminal and the BAT- terminal of the battery to the remote common terminal N between the C1 and C2 of the DC/DC power converter 1 will be A change occurs, which in turn causes a voltage asymmetry between the positive and negative stages of the battery of each power supply module (including the DC/DC power converter 2) to form a bias state.
  • the fault detection unit of the inverter power system is triggered to detect the working state of each power supply module.
  • the DC/DC can be turned on first.
  • Q3 of the power converter 1 for example, turns on the Q3 of the DC/DC power converter 1 for 3 us (the duration can be customized according to the actual application scenario requirements).
  • the inverter power supply system can also detect the DC/DC power converter (the DC/DC power conversion module 1 and the DC/DC power conversion module 2, etc., and the DC/DC power conversion module 1 is taken as an example). Whether a failure has occurred. Specifically, current detection on L1 and L2 is performed by turning on Q1 of the DC/DC power converter 1. During the Q1 wave, if the DC/DC power converter 1 fails (for example, the Q3 of the DC/DC power converter 1 is short-circuited), the L1 and L2 of the DC/DC power converter 1 have current.
  • the normal module for example, DC/DC power converter 2
  • the normal module has only L1 current (at this time, Q1 of DC/DC power converter 2 is in an on state, and both Q2 and Q3 are in an off state, so DC/DC power conversion There is no current on L2 of the device 2. Therefore, if it is detected that there is current on both L1 and L2 of the DC/DC power converter 1, it can be determined that a short-circuit fault has occurred in Q3 of the DC/DC power converter 1.
  • the Q2 of the DC/DC power converter 1 is turned on, so that the F1 of the DC/DC power converter 1 is F2 is blown to disconnect the DC/DC power converter 1 from other DC/DC power conversion modules.
  • the relay may also be disconnected, and the DC of the DC/DC power converter 1 is turned off if the relay has no current. /DC and DC/AC lines for isolation failure purposes.
  • the inverter power supply system can perform fault detection on each DC/DC power converter through a logic control module such as a detection unit (or a fault detection unit) built in each DC/DC power converter, and then After detecting the faulty power converter, the drive unit (or control unit) controls the on or off state of the switch module such as Q1, Q2 or Q3 of the faulty power converter to achieve isolation of the faulty power converter and ensure the inverse The normal operation of other power converters in variable power systems. Further, the normal power supply of the inverter power supply system can be ensured, and the power supply reliability of the inverter power supply system can be improved, and the applicability is higher.
  • a logic control module such as a detection unit (or a fault detection unit) built in each DC/DC power converter
  • FIG. 5 is a schematic flowchart diagram of a fault processing method of a power supply device according to an embodiment of the present invention.
  • the fault processing method provided by the embodiment of the present invention is applicable to the inverter power supply system in the power supply device.
  • the structure of the above-mentioned inverter power supply system can be referred to the structural diagrams shown in FIG. 1 to FIG. 4 , and details are not described herein again.
  • the fault processing method provided by the embodiment of the present invention may include the following steps:
  • step S52 Determine whether any module included in the inverter power system is faulty. If the determination result is yes, proceed to step S53, otherwise proceed to step S51.
  • the inverter power supply system can realize the detection of the faulty power converter and the detection of the faulty components in the power converter through the function modules such as the built-in detection unit.
  • the implementations described in the foregoing steps S51-S53 can be referred to the implementations described in the foregoing embodiments, and details are not described herein again.
  • the upper inverter power supply system can realize the control of the components such as the switch module of the faulty power converter through the function module such as the built-in control unit.
  • the components such as the switch module of the faulty power converter
  • the function module such as the built-in control unit.
  • the component in the first module eg, DC/DC power converter 1 where the short circuit fault occurs is C1 or C2
  • the DC/DC power converter 1 is in a battery discharge mode before the fault occurs
  • Q2 of the DC/DC power converter 1 can be directly turned on to fuse the F1 and F2 of the DC/DC power converter 1 to isolate the DC/DC power converter 1 and other power converters.
  • the component of the DC/DC power converter 1 in which the short-circuit fault occurs is Q1 or Q3, the Q2 of the DC/DC power converter 1 can be directly turned on to be blown. F1 and F2 of the DC/DC power converter 1. Further, the connection between the DC/DC power converter 1 and the battery can be directly disconnected to disconnect the DC/DC power converter 1 from other parallel power converters to ensure normal operation of other power converters.
  • the embodiment of the present invention may replace the foregoing step S54 by the following step S54':
  • the DC/DC power converter 1 fails. , Q1 and Q3 of the DC/DC power converter 1 can be disconnected, and Q2 of the DC/DC power converter 1 is turned on after a preset time interval, so that F1 and F2 of the DC/DC power converter 1 are blown.
  • Q1 and Q3 of the DC/DC power converter 1 can be disconnected, and Q2 of the DC/DC power converter 1 is turned on after a preset time interval, so that F1 and F2 of the DC/DC power converter 1 are blown.
  • the inverter power supply system can perform fault detection on each power conversion module through a logic control module such as a detection unit (or a fault detection unit) built in each DC/DC power converter, thereby detecting a fault in the detection.
  • the control unit controls the on or off state of the switch module such as Q1, Q2 or Q3 of the faulty power converter to realize the isolation of the faulty power converter and ensure the inverse
  • the normal operation of other power converters in the variable power system can ensure the normal power supply of the inverter power system, improve the power supply reliability of the inverter power system, and have higher applicability.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Inverter Devices (AREA)

Abstract

本发明实施例公开了一种供电设备的故障处理方法及设备,该方适应于供电设备中的逆变电源系统,该逆变电源系统包括至少DC/DC模块,其中,任一DC/DC模块包括保险F1和F2,继电器K1和K2,电感L1和L2,开关模块Q1、Q2和Q3,以及直流母线电容C1和C2;该故障处理方法包括:若检测到任一DC/DC模块出现故障,则检测故障模块中产生故障的组件;若出现故障的组件为C1或者C2,且该逆变电源系统处于电池放电模式时,则导通故障模块中的Q2,以使故障模块中的F1和F2被熔断,以断开故障模块与其他DC/DC模块的连接。采用本发明实施例,可提高DC/DC模块的电路稳定性,提高逆变电源系统的供电可靠性。

Description

供电设备的故障处理方法及装置 技术领域
本发明涉及电子技术领域,尤其涉及一种供电设备的故障处理方法及装置。
背景技术
逆变电源系统广泛应用于各种供电可靠性要求较高的设备中,逆变电源系统用于为供电稳定性要求较高的负载供电。例如,在通信领域,通常采用逆变器或者不间断电源(Uninterruptible Power System,UPS)等逆变电源系统给供电稳定性要求较高的关键负载供电。
现有技术中,随着逆变电源系统的容量越来越大,逆变电源系统中供电模块的并联使用情况越来越多,其中,多个直流到直流的变换功能电路(或称直流转直流电源,DC/DC)并联使用的情况也大量存在。在逆变电源系统中存在多个供电模块并联使用的场景中,在逆变电源系统的工作过程中若多个供电模块中出现某一个故障模块,则将在多个供电模块中形成故障回路,进而导致其他正常模块无法正常工作,最终导致逆变电源系统的供电输出中断,影响了关键负载的正常工作,设备的供电稳定性低,供电可靠性差。
发明内容
本发明实施例提供一种供电设备的故障处理方法及装置,可提高DC/DC电路的稳定性,提高DC/DC电路的供电可靠性,提高逆变电源系统的适用性。
第一方面提供了一种供电设备的故障处理方法,该故障处理方法适用于供电设备中的逆变电源系统。该逆变电源系统包括至少两个直流转直流电源DC/DC模块,上述至少两个DC/DC模块并联于同一个电池,并通过直流转交流电源DC/AC为负载供电。其中,上述至少两个DC/DC模块中任一DC/DC模块包括保险F1和F2,继电器K1和K2,电感L1和L2,开关模块Q1、Q2和Q3,以及直流母线电容C1和C2。其中,K1的一端通过F1与电池的正极连接,K2的一端通过F2与电池的负极连接,所述K1的另一端通过所述L1与所述Q1所述Q2的连接端连接,所述K2的另一端通过所述L2与所述Q2和所述Q3的连接端连接,所述Q1的一端与所述C1的一端连接,所述Q1的另一端连接所述Q2的一端,所述Q2的另一端与所述Q3的一端连接,所述C1的另一端通过所述C2与所述Q3的另一端连接,其特征在于,所述故障处理方法包括:
该故障处理方法可检测任一DC/DC模块中的电压信号和/或电池信号,并根据检测到的电压信号和/或电池信号确定是否存在故障模块。其中,上述DC/DC模块中的电压信号可包括电池电压和/或直流母线电压等。上述DC/DC模块中的电流信号可包括电感L1和/或L2上的电流等。
所述K1的一端通过所述F1与电池的正极连接,所述K2的一端通过所述F2与电池的负极连接,所述K1的一端通过所述L1与所述Q1的一端和所述Q2的一端连接,所述K2的一端通过所述L2与所述Q2的一端和所述Q3的一端连接,所述Q1的一端与所述C1的一端连接,所述Q1的一端连接所述Q2的一端,所述Q2的一端与所述Q3的一端连接,所述C1的另一端通过所述C2与所述Q3的一端连接,其特征在于,所述故障处理方法包括:
若检测到所述至少两个DC/DC模块中的任一模块出现故障,则确定故障模块中产生故障的组件,所述故障模块为所述至少两个DC/DC模块中的任一出现故障的模块;
若出现故障的组件为所述C1或者所述C2,且所述逆变电源系统处于电池放电模式时,则导通所述故障模块中的所述Q2,以使所述故障模块中的所述F1和所述F2被熔断,以断开所述故障模块与其他DC/DC模块的连接。
本发明实施例可在检测到任一DC/DC模块出现故障时,将故障模块与其他DC/DC模块进行隔离,保证故障模块之外的其他并联模块的正常工作,保证了逆变电源系统的正常供电状态,提高了逆变电源系统的供电可靠性。
可选的,该故障处理方法还包括:若出现短路故障的组件是C1或者C2,且逆变电源系统处于电池充电模式,则断开故障模块的Q1和Q3,并在预设时间间隔后导通故障模块的Q2,以使故障模块的F1和F2被熔断以断开故障模块与其他DC/DC模块的连接。在本发明实施例中,无论处理逆变电源系统处于电池放电模式还是处于电池充电模式等工作状态,均可在检测到任一DC/DC模块出现故障时,将故障模块与其他DC/DC模块进行隔离,保证故障模块之外的其他并联模块的正常工作,进一步保证逆变电源系统的供电稳定性,提高了逆变电源系统的供电可靠性,适用性更强。
可选的,逆变电源系统检测到故障模块之后,还可在故障模块的Q2和Q1处于断开状态时,导通故障模块的Q3并检测故障模块的L1和L2上的电流状态。其中,上述检测L1和L2上的电流状态可包括检测L1或者L2上是否有电流。若检测到故障模块的L1和L2上均有电流,则确定故障模块的Q1出现短路故障。在Q3发波期间,若检测到故障模块中的L1、L2均有电流,而正常模块(例其他DC/DC模块)只有L2有电流(此时其他DC/DC模块的Q3处于导通状态,Q1和Q2均处于断开状态,因此其他DC/DC模块的L1上没有电流)。因此,如果检测得到DC/DC功率变换器1的L1和L2上均有电流,则可确定故障模块的Q1出现了短路故障。故障模块中的故障组件的检测操作便捷,检测效率更高。
可选的,逆变电源系统检测到故障模块之后,还可在故障模块的Q2和Q3处于断开状态时,导通故障模块的Q1并检测故障模块的L1和L2上的电流状态;若检测到故障模块的L1和L2上均有电流,则确定故障模块的Q3出现短路故障。在Q1发波期间,若DC/DC模块出现故障(例如DC/DC模块中的Q3短路),则DC/DC模块的L1、L2均有电流。此时正常模块(其他DC/DC模块)只有L1有电流(此时其他DC/DC模块2的Q1处于导通状态,Q2和Q3均处于断开状态,因此其他DC/DC模块的L2上没有电流)。因此,如果检测得到故障模块的L1和L2上均有电流,则可故障模块中的Q3出现故障。提高了故障模块中故障组件的检测方式多样性,增强了故障模块中的故障组件的检测的便捷性,提高故障组件的检测效率。
可选的,上述故障处理方法还可在故障模块中出现短路故障的组件是Q1或者Q3时,导通故障模块的Q2,以使故障模块的F1和F2被熔断以断开故障模块与其他DC/DC模块的连接。实现对故障模块的隔离,保证逆变电源系统中其他模块的正常工作,可保证逆变电源系统的正常供电,提高逆变电源系统的供电可靠性,适用性更高。
可选的,上述故障处理方法还可在故障模块中出现短路故障的组件是Q1或者Q3时断开所述故障模块的K1、K2、Q1、Q2以及Q3中的任意一个或者多个,继而可断开故障模块 与电池的连接,以断开故障模块与其他DC/DC模块的并联连接,操作更简单,增加了故障模块的隔离的实现方式,操作更灵活。
第二方面提供了一种供电设备,该供电设备包括逆变电源系统。该逆变电源系统包括至少两个DC/DC模块,上述至少两个DC/DC模块并联于同一个电池,并通过直流转交流电源DC/AC为负载供电。其中,上述至少两个DC/DC模块中任一DC/DC模块包括保险F1和F2,继电器K1和K2,电感L1和L2,开关模块Q1、Q2和Q3,以及直流母线电容C1和C2;K1的一端通过F1与电池的正极连接,K2的一端通过F2与电池的负极连接,K1的一端通过L1与Q1的一端和Q2的一端连接,K2的一端通过L2与Q2的一端和Q3的一端连接,Q1的一端与C1的一端连接,Q1的一端连接Q2的一端,Q2的一端与Q3的一端连接,C1的另一端通过C2与Q3的一端连接。
上述至少两个DC/DC模块中任一DC/DC模块包括:检测单元和控制单元。上述检测单元,用于检测任一DC/DC模块中的电压信号和/或电流信号,根据检测到的电压信号和/或电流信号确定任一DC/DC模块是否出现故障。上述检测单元,还用于在检测到任一DC/DC模块出现故障时,检测故障模块中产生故障的组件。上述控制单元,用于在检测单元检测到故障模块中出现故障的组件为C1或者C2,且逆变电源系统处于电池放电模式时,导通故障模块的Q2,以使故障模块的F1和F2被熔断以断开故障模块与其他DC/DC模块的连接。
可选的,上述控制单元还用于:在检测单元检测到故障模块中出现故障的组件为C1或者C2,且逆变电源系统处于电池充电模式时,断开故障模块的Q1和Q3,并在预设时间间隔后导通故障模块的Q2,以使故障模块的F1和F2被熔断以断开故障模块与其他DC/DC模块的连接。
可选的,上述检测单元还用于:在故障模块的Q2和Q1处于断开状态时,导通故障模块的Q3并检测故障模块的L1和L2上的电流状态;若检测到故障模块的L1和L2上均有电流,则确定故障模块的Q1出现短路故障;或者在故障模块的Q2和Q3处于断开状态时,导通故障模块的Q1并检测故障模块的L1和L2上的电流状态;若检测到故障模块的L1和L2上均有电流,则确定故障模块的Q3出现短路故障。
可选的,上述控制单元还用于:在检测单元检测得到故障模块中出现短路故障的组件是Q1或者Q3时,导通故障模块的Q2,以使故障模块的F1和F2被熔断以断开故障模块与其他DC/DC模块的连接。
可选的,上述控制单元还用于:在检测单元检测得到故障模块中出现短路故障的组件是Q1或者Q3时,断开所述故障模块的K1、K2、Q1、Q2以及Q3中的任意一个或者多个,以断开故障模块与其他DC/DC模块的并联连接。
在本发明实施例中,逆变电源系统可通过各个DC/DC模块内置的检测单元等逻辑控制模块对各个DC/DC模块进行故障检测,进而可在检测得到故障模块之后,通过控制单元(或称驱动单元)控制故障模块的Q1、Q2或者Q3等开关模块的导通或者断开状态来实现对故障模块的隔离,保证逆变电源系统中其他DC/DC模块的正常工作,可保证逆变电源系统的正常供电,提高逆变电源系统的供电可靠性,适用性更高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例所需要使用的附 图进行说明。
图1是逆变电源系统的一结构示意图;
图2是本发明实施例提供的功率变换器的一连接示意图;
图3是本发明实施例提供的一故障回路示意图;
图4是本发明实施例提供的另一故障回路示意图;
图5是本发明实施例提供的供电设备的故障处理方法的流程示意图。
具体实施方式
下面结合本发明实施例中的附图对本发明实施例进行描述。
参见图1,是逆变电源系统的一结构示意图。如图1,在典型的逆变电源系统的框图中,逆变电源系统主要包括三部分,包括DC/DC模块(也称DC/DC功率变换器)、交流转直流电源AC/DC模块(也称AC/DC功率变换器)以及直流转交流电源DC/AC模块)(也称DC/AC功率变换器)等。逆变电源系统通常具备三个功率端口:直流(如电池)输入端口、交流(如市电)输入端口和交流输出端口。上述三个功率端口分别对应上述三个功率变换器,其中直流输入端口对应于DC/DC功率变换器,交流输入端口对应于AC/DC功率变换器,交流输出端口对应于DC/AC功率变换器。DC/DC功率变换器将直流输入端口输入的电池低压升为直流高压,并输出至DC/AC功率变换器的输入端。其中,DC/AC功率变换器的输入端即为电容C的两端,电容C两端的电压也称为直流母线电压。AC/DC功率变换器将交流输入端口输入的交流电转换成直流电并完成输入功率因素校正,进而输出至电容C两端,通过电容C存储能量以得到直流母线电压。DC/AC功率变换器将直流母线上的直流高压转换成交流电,并通过交流输出端口输出至负载,为负载供电。直流母线上并有较大容量的滤波电容C,在市电供电正常的情况下,通常由交流市电经AC/DC功率变换器及DC/AC功率变换器变换成符合规格的交流电给关键负载供电。当市电停电时,电池输出的直流电压经DC/DC功率变换器升为直流高压并输出至直流母线,再经DC/AC功率逆变器变换成符合规格的交流电给关键负载供电,以达到关键负载的不间断供电要求。
本发明实施例所描述的直流母线可为逆变电源的电力系统中的母线,在此不做限制。
DC/DC功率变换器可实现能量的双向流动,存在两种工作模式,包括电池放电模式和电池充电模式。其中,电池放电模式中,电池输出直流电压,并通过DC/DC输出直流高压至直流母线,使得直流母线的电压维持在高压状态。在电池放电模式中,直流母线上的电容C处于储能状态。在市电供电正常的工作模式下,市电通过AC/DC功率变换器输出直流高压至直流母线,直流母线上的电容C存储能量,在电池充电模式中,电容C通过DC/DC功率变换器给电池充电储能。
为满足AC/DC功率变换器的电压逆变需求,其中,AC/DC功率变换器的逆变输出有效值为230V的正弦交流电,至少需要直流母线电压为230V*1.414=325.22V。为此,通常采用正激、推挽或全桥等脉冲宽度调制(pulse width modulation,PWM)功率变换器来满足输入输出电压变化范围的要求。即,上述图1所示的DC/DC功率变换器、AC/DC功率变换器和DC/AC功率变换器可采用正激、推挽或者全桥等配置方式。如图1所示,DC/DC功率变换器同交流市电的AC/DC功率变换器的输出并接在一起,通过直流母线上的电容C滤波而形成直流高压,进而可形成电池和市电互为备份的关系,满足不间断供电要求。
然而,随着逆变电源系统的容量越来越大,逆变电源系统中功率变换器并联使用的情况越来越多,其中,多个DC/DC功率变换器并联使用的情况也大量存在。参见图2,是本发明实施例提供的功率变换器的一连接示意图。如图2所示,两个DC/DC功率变换器并联于同一个电池组,并且每个DC/DC功率变换器并联一个DC/AC功率变换器,以通过DC/AC功率变换器为负载供电。图2仅是示出两个DC/DC功率变换器,具体实现中,DC/DC功率变换器的数量可根据实际应用场景需要确定,在此不做限制。图2所示的DC/DC功率变换器还可与AC/DC功率变换器并联,如图1所示的DC/DC功率变换器可为多个DC/DC功率变换器并联,在此不做限制。
图2所示的示意图为两个DC/DC功率变换器并联的部分组件的连接示意图,DC/DC功率变换器还可包括更多的组件,各个组件的连接方式可根据实际应用场景需求的DC/DC功率变换器功能设置,在此不做限制。本发明实施例将以图2所示的功率变换器的结构为例进行说明。
如图2所示,在两个DC/DC功率变换器中,任一DC/DC功率变换器(以下实现方式将以DC/DC功率变换器1为例进行说明)可包括保险F1和F2,继电器K1和K2,电感L1和L2,开关模块Q1、Q2和Q3,以及直流母线电容C1和C2。K1的一端通过F1与电池的正极(BAT+)连接,K2的一端通过F2与电池的负极(BAT-)连接,所述K1的一端通过所述F1与电池的正极连接,所述K2的一端通过所述F2与电池的负极连接,所述K1的另一端通过所述L1与所述Q1所述Q2的连接端连接,所述K2的另一端通过所述L2与所述Q2和所述Q3的连接端连接,所述Q1的一端与所述C1的一端连接,所述Q1的另一端连接所述Q2的一端,所述Q2的另一端与所述Q3的一端连接,所述C1的另一端通过所述C2与所述Q3的另一端连接,其特征在于,所述故障处理方法包括:
其中,上述Q1、Q2或者Q3可为mos管等类型的开关管,在此不做限制。
在DC/DC功率变换器的电池放电模式中,DC/DC功率变换器中,Q2导通,电池的BAT+端流出的电流通过F1和K1到达L1,在从L1经过Q2、L2、K和F2到达电池的BAT-端,为L1和L2储能。在Q2断开,Q1和Q3导通期间,L1和L2上存储的能量可通过Q1和Q3给C1和C2充电。在DC/DC功率变换器的电池充电模式中,在Q1和Q3导通的期间,直流母线上的电流从C1的正极出发,通过Q1为L1和L2储能。在Q1和Q3断开,Q2导通期间,L1和L2上存储的能量可通过F1达到电池的BAT+端为电池充电。在DC/DC功率变换器的正常工作过程中,DC/DC功率变换器1和DC/DC功率变换器2均有各自的工作回路,DC/DC功率变换器1和DC/DC功率变换器2的工作回路相互独立,互相不影响。
若DC/DC功率变换器的工作过程中,DC/DC功率变换器1中的某个组件出现短路等故障,则将影响DC/DC功率变换器2的正常工作状态,进而导致逆变电源系统的供电中断,影响了关键负载的正常工作。例如,若DC/DC功率变换器1的C1出现短路,则DC/DC功率变换器1与DC/DC功率变换器2之间将形成故障回路,导致DC/DC功率变换器2等没有损坏的模块或者设备不能正常工作,最终导致逆变电源系统的输出中断。DC/DC功率变换器1和DC/DC功率变换器2共用电池组,是并联使用,DC/DC功率变换器1的C1短路时,DC/DC功率变换器1和DC/DC功率变换器2之间可能存在如图3带箭头虚线所示的短路路径的短路电流。图3是本发明实施例提供的一故障回路示意图。图3所示路径上的短路电流将导 致DC/DC功率变换器2的直流母线电压(即DC/DC功率变换器2的C1正极与C2负极之间的电压)过压,进而导致DC/DC功率变换器2退出正常工作模式。
具体实现中,逆变电源系统中每个DC/DC功率变换器中均可包括一个检测单元(也称故障检测单元)以及控制单元等。为了方便描述,后续将以DC/DC功率变换器1中的检测单元以及控制单元为例进行说明。其中,检测单元主要用于检测电压信号和/或电流信号。可选的,检测单元可用于检测电池电压以及直流母线上的电压等,上述检测单元也可用于电感电流采样。具体地,检测DC/DC功率变换器2的C1正极与C2负极之间的电压,如果检测到DC/DC功率变换器2的直流母线电压(DC/DC功率变换器2的C1正极与C2负极之间的电压)过压,由于电池电压是由各个功率变换器上的母线电容进行分压,所以可以确定DC/DC功率变换器1的C1或者所述C2出现短路。检测单元可通过传感器和/或电流采样线路,将检测得到的电压信号和/或电池信号传给处理单元。控制单元对检测单元检测得到的电压信号和/或电流信号进行处理,发出控制信号,通过驱动电路控制继电器和开关管的开通和闭合。
可选的,上述控制单元也可称为处理单元,具体可为逆变电源系统的处理器,例如,逆变电源系统中用于处理各个DC/DC功率变换器的电压信号和/或电流信号的中央处理器(central processing unit,CPU)等功能模块。
可选的,DC/DC功率变换器1中的检测单元可对DC/DC功率变换器1中各个组件的工作状态进行检测。DC/DC功率变换器1中的检测单元还可在检测得到DC/DC功率变换器1出现故障时,进一步检测DC/DC功率变换器1中出现故障的组件。具体实现中,DC/DC功率变换器1还可通过其内置的控制单元(或称处理单元或者驱动单元等)对Q1、Q2或者Q3进行导通或者断开的驱动控制,具体可参见现有实现方式中逆变电源系统的驱动控制方式,在此不做限制。
具体实现中,DC/DC功率变换器1的C1出现故障时DC/DC功率变换器1的工作模式可为电池放电模式,也可为电池充电模式。具体地,检测DC/DC功率变换器2的C1正极与C2负极之间的电压,如果检测到DC/DC功率变换器2的直流母线电压(DC/DC功率变换器2的C1正极与C2负极之间的电压)过压,由于电池电压是由各个功率变换器上的母线电容进行分压,所以可以确定DC/DC功率变换器1的C1或者所述C2出现短路。若DC/DC功率变换器1的C1出现故障时,DC/DC功率变换器1的工作模式为电池充电模式,在DC/DC功率变换器1的Q1和Q3处于导通阶段,为了避免DC/DC功率变换器1的C1出现故障之后DC/DC功率变换器1和DC/DC功率变换器2之间出现图3中带箭头虚线所示的故障回路,逆变电源系统可在检测到DC/DC功率变换器1的C1出现短路故障时,立即断开DC/DC功率变换器1的Q1和Q3,终止DC/DC功率变换器1的电池充电模式,并使得DC/DC功率变换器1的C1出现的故障不影响到DC/DC功率变换器2的正常工作模式。进一步的,逆变电源系统可在断开DC/DC功率变换器1的Q1和Q3之后的预设时间间隔之后,导通DC/DC功率变换器1的Q2,使得DC/DC功率变换器1进入异常工作模式。DC/DC功率变换器1的Q2导通使得电池的BAT+端输出的电流经过DC/DC功率变换器1的F1、K1、L1和Q2之后,由Q2经过L2、K2和F2回到电池的BAT-端,这种异常工作模式将导致DC/DC功率变换器1的F1和F2上的电流过大,进而导致F1和F2被熔断,从而将DC/DC功率变换器1与DC/DC功率 变换器2等并联模块隔离开来,保证DC/DC功率变换器等其他并联模块的正常工作,保证了逆变电源系统的正常供电状态。具体实现中,上述DC/DC功率变换器1的Q1和Q3的断开,与Q2的导通之间的预设时间间隔可根据实际应用场景需求设定,可大于或者等于保证Q1、Q2和Q3不同时导通的最短时间间隔(例如2us)。为了防止逆变电源系统的故障检测时间过长,上述预设时间间隔也不易太长,具体可根据实际应用场景确定,在此不做限制。
可选的,若DC/DC功率变换器1的C1出现故障时,DC/DC功率变换器1的工作模式为电池放电模式,此时,DC/DC功率变换器1中电流从电池的BAT+端流向其他组件。为了避免DC/DC功率变换器1的C1出现故障之后DC/DC功率变换器1和DC/DC功率变换器2之间出现图3带箭头虚线所示的故障回路,逆变电源系统可在检测到DC/DC功率变换器1的C1出现短路故障时,直接导通DC/DC功率变换器1的Q2,使得DC/DC功率变换器1的C1出现的故障不影响到DC/DC功率变换器2的正常工作模式。DC/DC功率变换器1的Q2导通使得电池的BAT+端输出的电流经过DC/DC功率变换器1的F1、K1、L1和Q2之后,由Q2经过L2、K2和F2回到电池的BAT-端,这种异常工作模式将导致DC/DC功率变换器1的F1和F2上的电流过大,进而导致F1和F2被熔断,从而将DC/DC功率变换器1与DC/DC功率变换器2等并联模块隔离开来,保证DC/DC功率变换器等其他并联模块的正常工作,保证了逆变电源系统的正常供电状态,提高了逆变电源系统的供电稳定性,提高了逆变电源系统的适用性。
可选的,在DC/DC功率变换器1和DC/DC功率变换器2等多个供电模块并联并且各个供电模块均处于电池充电模式时,一个供电模块(例如DC/DC功率变换器1)的Q1短路后,在DC/DC功率变换器1内会形成如图4所示的故障路径1所示的故障回路电流。图4是本发明实施例提供的另一故障回路示意图。DC/DC功率变换器1和DC/DC功率变换器2之间会行程如图4所示的故障路径2所示的故障回路电流,引起DC/DC功率变换器2(即正常模块)对充电电流的采样不准确,这样就会导致正常模块的充电不能正常进行。
具体实现中,当DC/DC功率变换器1的Q1短路失效后,电池的BAT+端和BAT-端对DC/DC功率变换器1的C1和C2之间的远端共地端N的阻抗会发生变化,进而会引起每个供电模块(包括DC/DC功率变换器2)的电池正负级对N的电压不对称,形成偏压状态。各个供电模块出现偏压状态时,将触发逆变电源系统的故障检测单元对各个供电模块的工作状态进行检测。对各个供电模块(例如DC/DC功率变换器1和DC/DC功率变换器2,下面以DC/DC功率变换器1为例进行说明)的工作状态进行检测时,可首先导通DC/DC功率变换器1的Q3,例如导通DC/DC功率变换器1的Q3并持续3us(持续的时长可根据实际应用场景需求自定义)。在Q3发波期间,若DC/DC功率变换器1出现故障(例如Q1短路)则DC/DC功率变换器1的L1、L2均有电流,而正常模块(例如DC/DC功率变换器2)只有L2有电流(此时DC/DC功率变换器2的Q3处于导通状态,Q1和Q2均处于断开状态,因此DC/DC功率变换器2的L1上没有电流)。因此,如果检测得到DC/DC功率变换器1的L1和L2上均有电流,则可确定DC/DC功率变换器1的Q1出现了短路故障。
可选的,逆变电源系统也可检测DC/DC功率变换器(DC/DC功率变换模块1和DC/DC功率变换模块2等,以DC/DC功率变换模块1为例进行说明)的Q3是否发生故障。具体的,通过导通DC/DC功率变换器1的Q1之后进行L1和L2上的电流检测。在Q1发波期间,若DC/DC功率变换 器1出现故障(例如DC/DC功率变换器1的Q3短路),则DC/DC功率变换器1的L1、L2均有电流。此时正常模块(例如DC/DC功率变换器2)只有L1有电流(此时DC/DC功率变换器2的Q1处于导通状态,Q2和Q3均处于断开状态,因此DC/DC功率变换器2的L2上没有电流)因此,如果检测得到DC/DC功率变换器1的L1和L2上均有电流,则可确定DC/DC功率变换器1的Q3出现了短路故障。
具体实现中,若检测得到DC/DC功率变换器1中出现短路故障的组件是Q1或者Q3,则导通DC/DC功率变换器1的Q2,以使DC/DC功率变换器1的F1和F2被熔断以断开DC/DC功率变换器1与其他DC/DC功率变换模块的连接。
可选的,若检测得到DC/DC功率变换器1中出现短路故障的组件是Q1或者Q3,也可断开继电器,在继电器没有电流的情况下,以关闭DC/DC功率变换器1的DC/DC和DC/AC线路,达到隔离故障目的。
在本发明实施例中,逆变电源系统可通过各个DC/DC功率变换器内置的检测单元(或称故障检测单元)等逻辑控制模块对各个DC/DC功率变换器进行故障检测,进而可在检测得到故障功率变换器之后,通过驱动单元(或称控制单元)控制故障功率变换器的Q1、Q2或者Q3等开关模块的导通或者断开状态来实现对故障功率变换器的隔离,保证逆变电源系统中其他功率变换器的正常工作。进一步的,可保证逆变电源系统的正常供电,提高逆变电源系统的供电可靠性,适用性更高。
参见图5,是本发明实施例提供的供电设备的故障处理方法的流程示意图。本发明实施例提供的故障处理方法适用于供电设备中的逆变电源系统,其中,上述逆变电源系统的结构可参见上述图1至图4所示的结构示意图,在此不再赘述。本发明实施例提供的故障处理方法可包括步骤:
S51,检测逆变电源系统中的各个功率变换器的工作状态。
S52,判断逆变电源系统中包括的任一模块是否出现故障,若判断结果为是,则执行步骤S53,否则继续执行步骤S51。
S53,检测故障模块中产生故障的组件。
具体实现中,逆变电源系统可通过其内置的检测单元等功能模块实现故障功率变换器的检测以及功率变换器中故障组件的检测等操作。具体的,上述步骤S51-S53所描述的实现方式可参见上述实施例所描述的实现方式,在此不再赘述。
S54,若出现短路故障的组件为C1或者C2,且逆变电源系统处于电池放电模式,则导通故障模块的Q2。
具体实现中,上逆变电源系统可通过其内置的控制单元等功能模块实现故障功率变换器的开关模块等组件的控制等操作,具体可参见上述实施例所描述的实现方式,在此不再赘述。
可选的,若第一模块(例如DC/DC功率变换器1)中出现短路故障的组件为C1或者C2,并且DC/DC功率变换器1出现故障之前处于电池放电模式,则DC/DC功率变换器1出现故障之后,可直接导通DC/DC功率变换器1的Q2,以使DC/DC功率变换器1的F1和F2被熔断以隔离DC/DC功率变换器1和其他功率变换器。具体可参见上述实施例所描述的实现方式,在此不再赘述。
可选的,由上述实施例所描述的实现方式可知,若DC/DC功率变换器1中出现短路故障的组件是Q1或者Q3,则可直接导通DC/DC功率变换器1的Q2以熔断DC/DC功率变换器1的F1和F2。进一步的,也可直接断开DC/DC功率变换器1与电池的连接,以断开DC/DC功率变换器1与其他并联功率变换器的连接,保证其他功率变换器的正常工作。
可选的,本发明实施例可用以下步骤S54’替换上述步骤S54:
S54’,若出现短路故障的组件是C1或者C2,且逆变电源系统处于电池充电模式,则断开故障模块的Q1和Q3,并在预设时间间隔后导通故障模块的Q2。
可选的,若DC/DC功率变换器1中出现短路故障的组件为C1或者C2,并且DC/DC功率变换器1出现故障之前处于电池充电模式,则DC/DC功率变换器1出现故障之后,可断开DC/DC功率变换器1的Q1和Q3,并在预设时间间隔后导通DC/DC功率变换器1的Q2,以使DC/DC功率变换器1的F1和F2被熔断以隔离DC/DC功率变换器1和其他功率变换器。具体实现方式可参见上述实施例中所描述的实现方式,在此不再赘述。
在本发明实施例中,逆变电源系统可通过各个DC/DC功率变换器内置的检测单元(或称故障检测单元)等逻辑控制模块对各个功率变换模块进行故障检测,进而可在检测得到故障功率变换器之后,通过控制单元(或称处理单元或者驱动单元)控制故障功率变换器的Q1、Q2或者Q3等开关模块的导通或者断开状态来实现对故障功率变换器的隔离,保证逆变电源系统中其他功率变换器的正常工作,可保证逆变电源系统的正常供电,提高逆变电源系统的供电可靠性,适用性更高。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (10)

  1. 一种供电设备的故障处理方法,所述故障处理方法适用于供电设备中的逆变电源系统,所述逆变电源系统包括至少两个直流转直流电源DC/DC模块,所述至少两个DC/DC模块并联于同一个电池,并通过直流转交流电源DC/AC为负载供电,其中,所述至少两个DC/DC模块中任一DC/DC模块包括保险F1和F2,继电器K1和K2,电感L1和L2,开关模块Q1、Q2和Q3,以及直流母线电容C1和C2;
    所述K1的一端通过所述F1与电池的正极连接,所述K2的一端通过所述F2与电池的负极连接,所述K1的另一端通过所述L1与所述Q1所述Q2的连接端连接,所述K2的另一端通过所述L2与所述Q2和所述Q3的连接端连接,所述Q1的一端与所述C1的一端连接,所述Q1的另一端连接所述Q2的一端,所述Q2的另一端与所述Q3的一端连接,所述C1的另一端通过所述C2与所述Q3的另一端连接,其特征在于,所述故障处理方法包括:
    若检测到所述至少两个DC/DC模块中的任一模块出现故障,则确定故障模块中产生故障的组件,所述故障模块为所述至少两个DC/DC模块中的任一出现故障的模块;
    若出现故障的组件为所述C1或者所述C2,且所述逆变电源系统处于电池放电模式时,则导通所述故障模块中的所述Q2,以使所述故障模块中的所述F1和所述F2被熔断,以断开所述故障模块与其他DC/DC模块的连接。
  2. 如权利要求1所述的故障处理方法,其特征在于,所述故障处理方法还包括:
    若出现短路故障的组件是所述C1或者所述C2,且所述逆变电源系统处于电池充电模式,则断开所述故障模块的所述Q1和所述Q3,并在预设时间间隔后导通所述故障模块的所述Q2,以使所述故障模块的所述F1和所述F2被熔断以断开所述故障模块与其他DC/DC模块的连接。
  3. 如权利要求1所述的故障处理方法,其特征在于,所述若检测到所述至少两个DC/DC模块中的任一模块出现故障,则检测故障模块中产生故障的组件,还包括:
    在所述故障模块的所述Q2和所述Q1处于断开状态时,导通所述故障模块的所述Q3并检测所述故障模块的所述L1和所述L2上的电流状态;若检测到所述故障模块的所述L1和所述L2上均有电流,则确定所述故障模块的所述Q1出现短路故障;或者
    在所述故障模块的所述Q2和所述Q3处于断开状态时,导通所述故障模块的所述Q1并检测所述故障模块的所述L1和所述L2上的电流状态;若检测到所述故障模块的所述L1和所述L2上均有电流,则确定所述故障模块的所述Q3出现短路故障。
  4. 如权利要求3所述的故障处理方法,其特征在于,所述故障处理方法还包括:
    若所述故障模块中出现短路故障的组件是所述Q1或者所述Q3,则导通所述故障模块的Q2,以使所述故障模块的所述F1和所述F2被熔断以断开所述故障模块与其他DC/DC模块的连接。
  5. 如权利要求3所述的故障处理方法,其特征在于,所述故障处理方法还包括:
    若所述故障模块中出现短路故障的组件是所述Q1或者所述Q3,则断开所述故障模块的所述K1、所述K2、所述Q1、所述Q2以及所述Q3中的任意一个或者多个,以断开所述故障模块与其他DC/DC模块的并联连接。
  6. 一种供电设备,所述供电设备包括逆变电源系统,所述逆变电源系统包括至少两个DC/DC模块,所述至少两个DC/DC模块并联于同一个电池,并通过直流转交流电源DC/AC为负载供电,其中,所述至少两个DC/DC模块中任一DC/DC模块包括保险F1和F2,继电器K1和K2,电感L1和L2,开关模块Q1、Q2和Q3,以及直流母线电容C1和C2;
    所述K1的一端通过所述F1与电池的正极连接,所述K2的一端通过所述F2与电池的负极连接,所述K1的另一端通过所述L1与所述Q1所述Q2的连接端连接,所述K2的另一端通过所述L2与所述Q2和所述Q3的连接端连接,所述Q1的一端与所述C1的一端连接,所述Q1的另一端连接所述Q2的一端,所述Q2的另一端与所述Q3的一端连接,所述C1的另一端通过所述C2与所述Q3的另一端连接,其特征在于,所述至少两个DC/DC模块中任一DC/DC模块包括:
    检测单元,用于检测所述任一DC/DC模块中的电压信号和/或电流信号,根据检测到的所述电压信号和/或电流信号确定所述任一DC/DC模块是否出现故障;
    所述检测单元,还用于在检测到所述任一DC/DC模块出现故障时,检测故障模块中产生故障的组件;
    控制单元,用于在所述检测单元检测到所述故障模块中出现故障的组件为所述C1或者所述C2,且所述逆变电源系统处于电池放电模式时,导通所述故障模块的所述Q2,以使所述故障模块的所述F1和所述F2被熔断以断开所述故障模块与其他DC/DC模块的连接。
  7. 如权利要求6所述的供电设备,其特征在于,所述控制单元还用于:
    在所述检测单元检测到所述故障模块中出现故障的组件为所述C1或者所述C2,且所述逆变电源系统处于电池充电模式时,断开所述故障模块的所述Q1和所述Q3,并在预设时间间隔后导通所述故障模块的所述Q2,以使所述故障模块的所述F1和所述F2被熔断以断开所述故障模块与其他DC/DC模块的连接。
  8. 如权利要求6所述的供电设备,其特征在于,所述检测单元还用于:
    在所述故障模块的所述Q2和所述Q1处于断开状态时,导通所述故障模块的所述Q3并检测所述故障模块的所述L1和所述L2上的电流状态;若检测到所述故障模块的所述L1和所述L2上均有电流,则确定所述故障模块的所述Q1出现短路故障;或者
    在所述故障模块的所述Q2和所述Q3处于断开状态时,导通所述故障模块的所述Q1并检测所述故障模块的所述L1和所述L2上的电流状态;若检测到所述故障模块的所述L1和所述L2上均有电流,则确定所述故障模块的所述Q3出现短路故障。
  9. 如权利要求8所述的供电设备,其特征在于,所述控制单元还用于:
    在所述检测单元检测得到所述故障模块中出现短路故障的组件是所述Q1或者所述Q3时,导通所述故障模块的所述Q2,以使所述故障模块的所述F1和所述F2被熔断以断开所述故障模块与其他DC/DC模块的连接。
  10. 如权利要求8所述的供电设备,其特征在于,所述控制单元还用于:
    在所述检测单元检测得到所述故障模块中出现短路故障的组件是所述Q1或者所述Q3时,断开所述故障模块的所述K1、所述K2、所述Q1、所述Q2以及所述Q3中的任意一个或者多个,以断开所述故障模块与其他DC/DC模块的并联连接。
PCT/CN2018/099697 2017-08-18 2018-08-09 供电设备的故障处理方法及装置 WO2019033990A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21196788.0A EP3996239B1 (en) 2017-08-18 2018-08-09 Troubleshooting method and apparatus for power supply device
EP18846754.2A EP3657630B8 (en) 2017-08-18 2018-08-09 Fault handling method and device for power supply device
US16/790,027 US11239756B2 (en) 2017-08-18 2020-02-13 Troubleshooting method and apparatus for power supply device
US17/560,860 US20220190727A1 (en) 2017-08-18 2021-12-23 Troubleshooting method and apparatus for power supply device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710712675.2A CN107359688B (zh) 2017-08-18 2017-08-18 供电设备的故障处理方法及装置
CN201710712675.2 2017-08-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/790,027 Continuation US11239756B2 (en) 2017-08-18 2020-02-13 Troubleshooting method and apparatus for power supply device

Publications (1)

Publication Number Publication Date
WO2019033990A1 true WO2019033990A1 (zh) 2019-02-21

Family

ID=60287813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099697 WO2019033990A1 (zh) 2017-08-18 2018-08-09 供电设备的故障处理方法及装置

Country Status (4)

Country Link
US (2) US11239756B2 (zh)
EP (2) EP3996239B1 (zh)
CN (1) CN107359688B (zh)
WO (1) WO2019033990A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359688B (zh) * 2017-08-18 2020-08-25 华为技术有限公司 供电设备的故障处理方法及装置
CN108808839A (zh) * 2018-06-21 2018-11-13 常熟瑞特电气股份有限公司 高频隔离舰用直流电源的多功率模块协调控制方法
CN111277132A (zh) * 2018-12-04 2020-06-12 伊顿智能动力有限公司 功率因数校正电路和组件及包括其的在线式不间断电源
CN112034376B (zh) * 2020-08-24 2023-08-29 哲库科技(北京)有限公司 电源管理装置和方法
CN112350282B (zh) * 2020-11-18 2023-07-25 深圳市永联科技股份有限公司 一种用于防止铝电解电容过压漏液失效的方法
EP4020735A1 (en) * 2020-12-22 2022-06-29 Volvo Car Corporation Converter system for transferring power
EP4340153A1 (de) * 2022-09-14 2024-03-20 enwitec electronic GmbH Netzkoppelvorrichtung zum koppeln eines öffentlichen stromnetzes mit einem lokalen stromnetz
CN118091480B (zh) * 2024-04-19 2024-07-09 青岛元通电子有限公司 一种电源故障检测方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201045748Y (zh) * 2007-01-29 2008-04-09 德观电子(上海)有限公司 不间断电源
CN103344870A (zh) * 2013-06-25 2013-10-09 华为技术有限公司 不间断电源系统的晶闸管短路检测方法和装置
WO2016157469A1 (ja) * 2015-04-01 2016-10-06 東芝三菱電機産業システム株式会社 無停電電源装置およびそれを用いた無停電電源システム
CN107359688A (zh) * 2017-08-18 2017-11-17 华为技术有限公司 供电设备的故障处理方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH066984A (ja) * 1992-06-17 1994-01-14 Mitsubishi Electric Corp 電力変換装置
JPH06311739A (ja) * 1993-04-19 1994-11-04 Fujitsu Ltd 入力過電流抑制回路
JP3616026B2 (ja) * 2001-03-27 2005-02-02 富士通アクセス株式会社 Dc−dcコンバータの突入電流防止兼用入力切り離し回路
DE10158494C1 (de) * 2001-11-29 2003-08-07 Dialog Semiconductor Gmbh Lade/Entlade-Schutzschaltung
JP5539879B2 (ja) * 2007-09-18 2014-07-02 フライバック エネルギー,インク. 局所的なエネルギー源から高調波歪みの小さい交流電力を生成する電流波形構造
US8513928B2 (en) 2011-01-05 2013-08-20 Eaton Corporation Bidirectional buck-boost converter
CN105991054A (zh) * 2015-03-06 2016-10-05 南京南瑞继保电气有限公司 一种换流器子模块、控制方法及换流器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201045748Y (zh) * 2007-01-29 2008-04-09 德观电子(上海)有限公司 不间断电源
CN103344870A (zh) * 2013-06-25 2013-10-09 华为技术有限公司 不间断电源系统的晶闸管短路检测方法和装置
WO2016157469A1 (ja) * 2015-04-01 2016-10-06 東芝三菱電機産業システム株式会社 無停電電源装置およびそれを用いた無停電電源システム
CN107359688A (zh) * 2017-08-18 2017-11-17 华为技术有限公司 供电设备的故障处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3657630A4 *

Also Published As

Publication number Publication date
EP3657630B8 (en) 2021-12-15
CN107359688B (zh) 2020-08-25
US11239756B2 (en) 2022-02-01
US20200186038A1 (en) 2020-06-11
EP3657630A4 (en) 2020-05-27
CN107359688A (zh) 2017-11-17
EP3996239B1 (en) 2023-04-26
EP3657630B1 (en) 2021-11-03
EP3996239A1 (en) 2022-05-11
US20220190727A1 (en) 2022-06-16
EP3657630A1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
WO2019033990A1 (zh) 供电设备的故障处理方法及装置
JP6417043B2 (ja) 電力変換装置
JP5059197B2 (ja) 選択スイッチ装置、これを利用した電源供給装置、及びそのスイッチング方法
JP6575289B2 (ja) 電力変換装置
US8547073B2 (en) Output side capacitor voltage balancing DC power supply system
JP6838170B2 (ja) 電力変換システム
US11394292B2 (en) Power unit
CN113489046A (zh) 一种光伏系统、直流汇流箱及接线错误检测方法
CN106814334B (zh) 不间断电源开机的自检方法和自检装置
JP4774961B2 (ja) 無停電電源装置
JP2007202299A (ja) 電力変換装置
JP2013176240A (ja) 電力変換装置
JP2016086586A (ja) 系統連系インバータ装置
JP2015100249A (ja) 系統連系インバータ装置
WO2010113500A1 (ja) 開閉器操作装置および3相用開閉器
CN216312666U (zh) 直流母线电容缓冲保护电路
JP4044533B2 (ja) 切換装置
US11916431B2 (en) UPS device with passive balancing
CN113328621B (zh) 一种boost电路及开关电源
JPWO2019073608A1 (ja) 蓄電池装置及び起動検出回路
JP5501742B2 (ja) 分散型電源系統連系装置
JP2008312332A (ja) 無停電電源装置
KR20170126679A (ko) 3 레그 정류기-인버터 구조를 이용한 무정전 전원 공급 장치
CN113904307A (zh) 直流母线电容缓冲保护电路及方法
JP4339903B2 (ja) 切換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018846754

Country of ref document: EP

Effective date: 20200221