WO2019030850A1 - Wiring forming method and wiring forming device - Google Patents

Wiring forming method and wiring forming device Download PDF

Info

Publication number
WO2019030850A1
WO2019030850A1 PCT/JP2017/028919 JP2017028919W WO2019030850A1 WO 2019030850 A1 WO2019030850 A1 WO 2019030850A1 JP 2017028919 W JP2017028919 W JP 2017028919W WO 2019030850 A1 WO2019030850 A1 WO 2019030850A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
containing liquid
wiring
metal ink
laser
Prior art date
Application number
PCT/JP2017/028919
Other languages
French (fr)
Japanese (ja)
Inventor
亮二郎 富永
克明 牧原
良崇 橋本
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to JP2019535500A priority Critical patent/JP6808050B2/en
Priority to PCT/JP2017/028919 priority patent/WO2019030850A1/en
Publication of WO2019030850A1 publication Critical patent/WO2019030850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns

Definitions

  • the present invention applies a metal-containing liquid containing metal fine particles onto an insulating support or substrate, and bakes the metal-containing liquid with a laser beam to form a wiring, and a wiring It relates to a forming apparatus.
  • the metal-containing liquid When the metal-containing liquid is irradiated with laser light, the energy of the laser light is absorbed by the metal-containing liquid, whereby the metal-containing liquid generates heat and is fired. Therefore, it is an object of the present invention to appropriately bake the metal-containing liquid by laser light irradiation and to appropriately form a wiring.
  • a baking treatment step of forming a wiring wherein the coating step is a range in which the coating area ratio, which is the ratio of the coating area of the metal-containing liquid to the area within the laser spot diameter of the laser beam, is preset.
  • the wiring formation method which applies the said metal containing liquid so that it may become in a certain setting range is disclosed.
  • the present specification includes a coating apparatus for applying a metal-containing liquid containing metal fine particles, an irradiation apparatus for irradiating a laser beam, and a control apparatus, and the control apparatus is provided on an insulating support or substrate.
  • the wiring formation apparatus which apply
  • the metal-containing liquid is applied such that the application area ratio, which is the ratio of the application area of the metal-containing liquid to the area within the laser spot diameter of the laser light, falls within the set range. This makes it possible to suppress the variation in the heat generation temperature of the metal-containing liquid at the time of laser light irradiation to the metal-containing liquid, and to preferably fire the metal-containing liquid and form the wiring appropriately.
  • FIG. 1 shows a circuit forming device 10.
  • the circuit forming device 10 includes a transport device 20, a first shaping unit 22, a second shaping unit 24, and a control device 26 (see FIG. 2).
  • the transfer device 20, the first shaping unit 22, and the second shaping unit 24 are disposed on the base 28 of the circuit forming device 10.
  • the base 28 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 28 is the X-axis direction, and the short direction of the base 28 is orthogonal to both the Y-axis direction, the X-axis direction and the Y-axis direction.
  • the direction is referred to as the Z-axis direction.
  • the transfer device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32.
  • the X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36.
  • the X-axis slide rail 34 is disposed on the base 28 so as to extend in the X-axis direction.
  • the X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34.
  • the X-axis slide mechanism 30 includes an electromagnetic motor (see FIG. 2) 38. By driving the electromagnetic motor 38, the X-axis slider 36 is moved to an arbitrary position in the X-axis direction.
  • the Y-axis slide mechanism 32 also has a Y-axis slide rail 50 and a stage 52.
  • the Y-axis slide rail 50 is disposed on the base 28 so as to extend in the Y-axis direction, and is movable in the X-axis direction. Then, one end of the Y-axis slide rail 50 is connected to the X-axis slider 36.
  • a stage 52 is slidably held by the Y-axis slide rail 50 in the Y-axis direction.
  • the Y-axis slide mechanism 32 has an electromagnetic motor (see FIG. 2) 56. By driving the electromagnetic motor 56, the stage 52 moves to any position in the Y-axis direction. Thereby, the stage 52 is moved to an arbitrary position on the base 28 by the drive of the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
  • the stage 52 has a base 60, a holding device 62, and a lifting device (see FIG. 2) 64.
  • the base 60 is formed in a flat plate shape, and the substrate is mounted on the upper surface.
  • the holding devices 62 are provided on both sides in the X-axis direction of the base 60. Then, both edges in the X-axis direction of the substrate placed on the base 60 are held by the holding device 62, whereby the substrate is fixedly held.
  • the lifting device 64 is disposed below the base 60, and lifts the base 60.
  • the first shaping unit 22 is a unit for shaping the wiring on the substrate (see FIG. 3) 70 placed on the base 60 of the stage 52, and has a first printing unit 72 and a baking unit 74. ing.
  • the first printing unit 72 has an inkjet head (see FIG. 2) 76 and discharges metal ink linearly on the substrate 70 placed on the base 60.
  • the metal ink is one in which fine particles of metal are dispersed in a solvent.
  • the inkjet head 76 discharges the conductive material from the plurality of nozzles by, for example, a piezo method using a piezoelectric element.
  • the baking unit 74 has a laser irradiation device (see FIG. 2) 78.
  • the laser irradiation device 78 is a device for irradiating the metal ink discharged onto the substrate 70 with a laser, and the metal ink irradiated with the laser is fired to form a wiring.
  • the baking of the metal ink is a phenomenon in which the evaporation of the solvent, the decomposition of the metal fine particle protective film, and the like are carried out by applying energy, and the metal fine particles contact or fuse to increase the conductivity. is there. Then, the metal ink is fired to form a metal wiring.
  • the second modeling unit 24 is a unit for modeling a resin layer on the substrate 70 placed on the base 60 of the stage 52, and includes a second printing unit 84 and a curing unit 86. .
  • the second printing unit 84 has an ink jet head (see FIG. 2) 88 and discharges the ultraviolet curing resin onto the substrate 70 placed on the base 60.
  • the inkjet head 88 may be, for example, a piezo method using a piezoelectric element, or may be a thermal method in which a resin is heated to generate air bubbles and discharged from a nozzle.
  • the curing unit 86 includes a planarization device (see FIG. 2) 90 and an irradiation device (see FIG. 2) 92.
  • the planarization apparatus 90 planarizes the upper surface of the ultraviolet curable resin discharged onto the substrate 70 by the ink jet head 88.
  • the excess resin may be a roller or an adhesive while the surface of the ultraviolet curable resin is smoothed.
  • the thickness of the ultraviolet curable resin is made uniform by scraping with a blade.
  • the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the ultraviolet curable resin discharged on the substrate 70 with ultraviolet light. Thereby, the ultraviolet curing resin discharged onto the substrate 70 is cured, and the resin layer is shaped.
  • the control device 26 includes a controller 120 and a plurality of drive circuits 122.
  • the plurality of drive circuits 122 are connected to the electromagnetic motors 38 and 56, the holding device 62, the lifting device 64, the inkjet head 76, the laser irradiation device 78, the inkjet head 88, the flattening device 90, and the irradiation device 92.
  • the controller 120 includes a CPU, a ROM, a RAM, and the like, is mainly composed of a computer, and is connected to a plurality of drive circuits 122. Thus, the controller 120 controls the operation of the transfer device 20, the first shaping unit 22, and the second shaping unit 24.
  • a circuit pattern is formed on the substrate 70 by the configuration described above. Specifically, the substrate 70 is set on the base 60 of the stage 52, and the stage 52 is moved below the second modeling unit 24. Then, as shown in FIG. 3, in the second modeling unit 24, the resin laminate 130 is formed on the substrate 70.
  • the resin laminate 130 is formed by repeating the discharge of the ultraviolet curable resin from the ink jet head 88 and the irradiation of the ultraviolet light by the irradiation device 92 to the discharged ultraviolet curable resin.
  • the inkjet head 88 discharges the ultraviolet curable resin in a thin film form on the upper surface of the substrate 70. Subsequently, when the ultraviolet curable resin is discharged in a thin film, the ultraviolet curable resin is flattened by the flattening device 90 so that the film thickness of the ultraviolet curable resin becomes uniform in the curing portion 86. Then, the irradiation device 92 irradiates the thin film ultraviolet curing resin with ultraviolet light. Thereby, the thin film resin layer 132 is formed on the substrate 70.
  • the ink jet head 88 discharges the ultraviolet curable resin in a thin film form on the thin film resin layer 132.
  • the thin film ultraviolet curing resin is flattened by the flattening device 90, and the irradiation device 92 irradiates the ultraviolet curing resin discharged in the thin film onto the thin film resin layer 132.
  • a thin film resin layer 132 is stacked. As described above, the discharge of the ultraviolet curable resin onto the thin film resin layer 132 and the irradiation of the ultraviolet light are repeated, and the plurality of resin layers 132 are laminated, whereby the resin laminate 130 is formed.
  • the stage 52 is moved to the lower side of the first shaping unit 22. Then, in the first printing unit 72, the inkjet head 76 discharges the metal ink on the upper surface of the resin laminate 130 in a linear shape in accordance with the circuit pattern.
  • the circuit pattern is stored in the controller 120 as wiring formation data for forming a wiring, and the ink jet head 76 is controlled based on the wiring formation data, whereby the metal ink corresponds to the circuit pattern. It is discharged.
  • the laser irradiation device 78 irradiates the metal ink with laser light. At this time, the energy of the laser light is absorbed by the metal ink, whereby the metal ink generates heat and is baked. As a result, as shown in FIG. 4, the wiring 136 is formed on the resin laminate 130. As described above, in the circuit forming device 10, the resin laminate 130 is formed of the ultraviolet curing resin, and the wiring 136 is formed of the metal ions, whereby a circuit pattern is formed on the substrate 70.
  • the wiring 136 includes signal lines, power supply lines, power grounds, pads, and the like, and since the thickness, size, and the like of the wiring 136 are different, variations occur in the heat generated during the baking process of the metal ink. At this time, if excessive heat is generated in the metal ink, the expansion of the metal ink may cause the wiring to rupture or burn the wiring. On the other hand, when the heat generation necessary for firing the metal ink does not occur, it becomes unfired and a high resistance wiring is formed.
  • metal ink is used according to the wiring 136 of the predetermined width. Is applied onto the resin laminate 130. Then, the metal ink is irradiated with laser light. At this time, the ratio of the application area of the metal ink to the area within the laser spot diameter of the laser beam (hereinafter referred to as the "application area ratio") is about 16%, and the metal ink having an application area ratio of about 16% Energy of the laser light is absorbed.
  • the laser spot diameter of the laser beam is the outer diameter of the irradiation range of the laser beam when the upper surface of the resin laminate 130 is irradiated with the laser beam without moving the laser irradiation device 78, and a circular solid line 160 Is indicated by. Further, when the coated metal ink is irradiated with the laser light, the laser irradiation device 78 that irradiates the laser light moves along the metal ink. For this reason, the outer edge of the irradiation range of the laser light when the laser light is irradiated with the movement of the laser irradiation device 78 is indicated by the straight dotted line 162.
  • the wire 136 of that width is formed.
  • metal ink is applied onto the resin laminate 130.
  • the metal ink is irradiated with laser light.
  • the coating area ratio is about 33%, and the energy of the laser light is absorbed by the metal ink having a coating area ratio of about 33%.
  • the laser spot diameter of the laser beam (white in FIG. 8).
  • the metal ink is applied onto the resin laminate 130 more largely than the punched out portion. Then, the metal ink is irradiated with laser light. At this time, the coated area ratio is 100%, and the energy of the laser light is absorbed by the metal ink having the coated area ratio of 100%.
  • the energy of the laser beam is absorbed by the metal ink having a coated area ratio of 16% to 100%.
  • the energy of the laser beam irradiated in this case is the same irrespective of the magnitude
  • the energy absorbed by the metal ink having a coating area ratio of 16% decreases, and the energy absorbed by the metal ink having a coating area ratio of 100% increases. That is, the smaller the coated area ratio, the smaller the energy absorbed by the metal ink, and the larger the coated area ratio, the larger the energy absorbed by the metal ink.
  • the smaller the coated area ratio the less the metal ink generates heat
  • the larger the coated area ratio the more easily the metal ink generates heat.
  • a metal ink having a large coated area ratio is likely to generate heat, but also easily dissipate heat.
  • the metal ink with a small application area ratio is hard to generate heat, it is also hard to dissipate heat. For this reason, when the application area ratio is largely different, it is difficult to balance the heat generation and the heat release of the metal ink, and thus the temperature at the time of the metal ink baking process varies.
  • the heat generation temperature of the metal ink (hereinafter referred to as "reference heat generation temperature") when the laser light is irradiated to the metal ink having a coating area ratio of 48% is referred to
  • the heat generation temperature of the metal ink when the laser light is irradiated to the metal ink having an application area ratio of 100% is 1.15 times (115%) the reference heat generation temperature.
  • the heat generation temperature of the metal ink when the laser light is irradiated to the metal ink having a coating area ratio of 16% is 1.09 times (109%) of the reference heat generation temperature.
  • the heat generation temperature of the metal ink when the metal ink having the application area ratio of 33% is irradiated with the laser light is 1.13 times (113%) the reference heat generation temperature.
  • the difference in the coated area ratio causes a temperature difference corresponding to 15% of the reference temperature.
  • the metal ink generates an excessive amount of heat, and a wire with rupture, burnt and the like is formed.
  • the heat generation necessary for firing the metal ink does not occur, and an unfired wiring is formed.
  • the metal ink is applied such that the application area ratio is in the set range, specifically, in the range of 48% to 65%.
  • the case where the formation of the wiring 136 is scheduled to be a part of the laser spot diameter (circular solid line 160) of the laser light will be described.
  • a conventional design pattern hereinafter referred to as “conventional pattern” is provided in a region 170 where the formation of the interconnection 136 is scheduled (hereinafter referred to as “first region”).
  • the metal ink 180 is applied according to The conventional pattern will be described in detail later.
  • the application area ratio is set in a region (hereinafter referred to as “second region”) 172 other than the first region 170 inside the laser spot diameter (circular solid line 160) when the laser light is irradiated.
  • the metal ink 182 is applied in accordance with a design pattern (hereinafter referred to as a “setting pattern”) set to be a range.
  • the metal ink 182 applied according to the set pattern is not applied to all of the second region 172, and is applied so as not to contact with the metal ink 180 applied according to the conventional pattern. That is, the metal ink 182 is applied to the area of the second area 172 excluding the area adjacent to the first area 170 according to the setting pattern.
  • the pixel 188 is a unit indicating a square area of 42.3 nm ⁇ 42.3 nm.
  • the metal ink 182 applied according to the setting pattern is shown by hatching, and the metal ink 180 applied according to the conventional pattern is shown black.
  • the metal ink 180 is applied to the first region in accordance with the conventional pattern, and the metal ink 182 is applied to the second region in accordance with the set pattern, whereby the application area ratio becomes 50%. That is, when the metal ink 182 is not applied to the second area 172 according to the setting pattern, the application area ratio is 16%, but the metal ink 182 is applied to the second area 172 according to the setting pattern. The rate will be 50%.
  • the metal ink 182 applied in accordance with the setting pattern is applied not only to the second region 172 but also to the region continuous with the second region 172.
  • the metal ink 182 can be applied according to the conventional pattern to the area excluding the area to which the metallic ink 180 is applied according to the conventional pattern. That is, in the design of the coating pattern, the region excluding the region coated in accordance with the conventional pattern can be set as the region coated in accordance with the set pattern. This makes it possible to simplify the design of the application pattern.
  • the metal ink 180 is applied to the area 170 according to the conventional pattern, and the metal ink 182 is applied to the second area 172 according to the set pattern.
  • the application area ratio is 55%. That is, when the metal ink 182 is not applied to the second area 172 according to the setting pattern, the application area ratio is 33%, but the metal ink 182 is applied to the second area 172 according to the setting pattern. The rate will be 55%.
  • the outer diameter of the laser spot diameter is five wires. It is less than or equal to the sum of the width 136 and the clearance between the wires. In such a case, the clearance between the interconnections is the second region 172, and the second region 172 is a relatively narrow region. Therefore, when the metal ink 182 is applied to the second area 172, the metal ink 182 applied to the second area 172 may be in contact with the metal ink 180 applied to the first area 170. Therefore, in such a case, as shown in FIG.
  • the metal ink 180 is applied to the first region 170 according to the conventional pattern, but the metal ink 182 is not applied to the second region 172. Therefore, in the discharge pattern shown in FIG. 13, as in the case where the metal ink is applied according to the conventional pattern only to the first region 170 described above inside the laser spot diameter (circular solid line 160), The coated area ratio is 48%.
  • the metal ink 182 is applied according to the set pattern so as not to contact the metal ink 180 applied according to the conventional pattern. This is to simplify the design of the application pattern, as described above.
  • the formation of the wiring 136 is planned.
  • the metal ink is applied according to the setting pattern. That is, as shown in FIG. 14, the metal ink 184 is applied to the entire area of the first region 170 where the formation of the wiring 136 is scheduled, in accordance with the setting pattern.
  • the coated area ratio is 48% to 65%. That is, when the metal ink was ejected according to the conventional pattern only, the coated area ratio was 16% to 100%, and the difference between the minimum value and the maximum value of the coated area ratio was 84%. On the other hand, when the metal ink is discharged according to the conventional pattern and the setting pattern, the coated area ratio is 48% to 65%, and the difference between the minimum value and the maximum value of the coated area ratio is 17%. As described above, when the laser light is irradiated to the metal ink in which the difference in the coated area ratio is suppressed to 1/4 or less of the conventional one, the variation in the heat generation temperature of the metal ink is suitably suppressed.
  • the heat generation temperature of the metal ink (hereinafter referred to as "reference heat generation temperature") when the laser light was irradiated to the metal ink having a coating area ratio of 48% was used as a reference
  • the heat generation temperature of the metal ink when the metal ink having the application area ratio of 65% is irradiated with the laser light is 1.05 times (105%) the reference heat generation temperature.
  • the heat generation temperature of the metal ink when the laser light is irradiated to the metal ink having a coating area ratio of 50% is 0.98 times (98%) of the reference heat generation temperature.
  • the heat generation temperature of the metal ink when the metal ink having the application area ratio of 55% is irradiated with the laser light is 1.04 times (104%) the reference heat generation temperature.
  • the coating area ratio is 48% to 65%, and the metal ink having the coating area ratio of 48% to 65% is irradiated with the laser light.
  • a temperature difference corresponding to 7% of the reference temperature occurs.
  • the metal ink is ejected according to the conventional pattern only, the standard is applied when the metal ink having the coating area ratio of 16% to 100% and the coating area ratio of 16% to 100% is irradiated. There was a temperature difference corresponding to 15% of the temperature.
  • the metal ink is discharged in accordance with the conventional pattern and the setting pattern, so that the heat generation temperature of the metal ink at the time of the laser light irradiation to the metal ink is suppressed to 1/2 or less of the conventional. That is, by discharging the metal ink 182 according to the setting pattern so that the application area ratio is in the setting range, specifically, 48% to 65%, the heat generation of the metal ink at the time of the laser light irradiation to the metal ink The temperature is suppressed to 1/2 or less of the conventional temperature. As a result, it is possible to preferably suppress the variation in the heat generation temperature of the metal ink at the time of the laser light irradiation, and it is possible to preferably fire the metal ink and form the wiring appropriately.
  • the wiring 190 formed by irradiating the metal ink 180 discharged according to the conventional pattern with laser light is electrically connected.
  • the wiring 192 formed by irradiating the metal ink 182 discharged in accordance with the setting pattern with the laser light is not electrically connected. That is, in the discharge patterns shown in FIG. 10, FIG. 12 and FIG. 13, the metal ink 180 is discharged to the first area 170 according to the conventional pattern so as to be conductive and the metal ink 182 can not be supplied to the second area 172 according to the setting pattern. Is discharged.
  • the wiring 190 electrically connected to the first region within the laser spot diameter of the laser beam is formed, and the wiring 192 not electrically connected is formed in the region other than the first region.
  • the wiring 194 formed by irradiating the metal ink 184 discharged according to the setting pattern with laser light is electrically connected. That is, in the discharge pattern shown in FIG. 14, the metal ink 184 is discharged to the first region 170 according to the setting pattern so as to be conductive. Thus, the wiring 194 electrically connected to all the regions in the laser spot diameter of the laser light is formed.
  • the controller 120 has the application part 200 and the baking part 202, as shown in FIG.
  • the application unit 200 is a functional unit for applying a metal ink on the resin laminate 130.
  • the baking unit 202 is a functional unit for forming a wiring by irradiating the metal ink with laser light and baking the metal ink.
  • the circuit forming apparatus 10 is an example of a wiring forming apparatus.
  • the control device 26 is an example of a control device.
  • the substrate 70 is an example of a substrate.
  • the inkjet head 76 is an example of a coating apparatus.
  • the laser irradiation device 78 is an example of the irradiation device.
  • the resin laminate 130 is an example of a support.
  • the first area 170 is an example of a first area.
  • the second area 172 is an example of a second area.
  • the metal inks 180, 182, and 184 are examples of the metal-containing liquid.
  • the wires 190 and 194 are examples of connection wires.
  • the wiring 192 is an example of a wiring not electrically connected.
  • the application unit 200 is an example of an application unit.
  • the firing unit 202 is an example of a firing unit.
  • the step performed by the application part 200 is an example of an application step.
  • the steps performed by the firing unit 202 are an example of
  • the present invention is not limited to the above-described embodiments, and can be implemented in various modes in which various changes and improvements are made based on the knowledge of those skilled in the art.
  • the metal ink may be applied on the substrate 70 to form the wiring.
  • only one type of setting pattern is set, and wiring formation is planned in a partial area within the laser spot diameter, and wiring formation is formed in all areas within the laser spot diameter.
  • the same setting pattern is used in cases where is planned.
  • two or more types of setting patterns are set, and wiring formation is planned in a partial area within the laser spot diameter, and wiring formation is planned in all areas within the laser spot diameter.
  • different types of setting patterns may be used.
  • the setting range is set to 48% to 65%, but is not limited to that range, and can be set to an arbitrary range.
  • the setting range can also be indicated by the difference between the minimum value and the maximum value of the coating area ratio.
  • the difference between the minimum value and the maximum value of the coating area ratio is preferably 50% or less, and more preferably 40% or less. Furthermore, it is preferably 20% to 30% or less.
  • Circuit formation device (wiring formation device) 26: Control device 70: Substrate 76: Ink jet head (coating device) 78: Laser irradiation device (irradiation device) 130: Resin laminate (support) 170: First region 172: Second region 180: metal ink 182: metal ink 184: metal ink 190: wiring (connection wiring) 192: wiring (wiring not electrically connected) 194: wiring (connection wiring) 200: application section 202: firing section

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

This wiring forming method includes: an application step for applying, on an electrically insulative support or substrate, a metal-containing liquid that contains metal fine particles; and a firing treatment step for forming wiring by carrying out a firing treatment on the metal-containing liquid with a laser beam, wherein, in the application step, the metal-containing liquid is applied so that an application area ratio, which is the ratio of the application area size of the metal-containing liquid with respect to the area in the laser spot dimension of the laser beam, falls within a set range that has been set in advance.

Description

配線形成方法、および配線形成装置Wiring formation method and wiring formation apparatus
 本発明は、絶縁性の支持体または基板上に、金属微粒子を含有する金属含有液を塗布し、その金属含有液をレーザ光で焼成処理することで、配線を形成する配線形成方法、および配線形成装置に関する。 The present invention applies a metal-containing liquid containing metal fine particles onto an insulating support or substrate, and bakes the metal-containing liquid with a laser beam to form a wiring, and a wiring It relates to a forming apparatus.
 近年、下記特許文献に記載されているように、絶縁性の支持体または基板上に、金属微粒子を含有する金属含有液を塗布した後に、その金属含有液にレーザ光を照射し、金属含有液を焼成処理することで、配線を形成する技術が開発されている。 In recent years, as described in the following patent documents, after a metal-containing liquid containing metal fine particles is coated on an insulating support or substrate, the metal-containing liquid is irradiated with laser light, and the metal-containing liquid A technique for forming a wiring by firing is developed.
特開2006-310346号公報JP 2006-310346 A
 金属含有液にレーザ光が照射されると、レーザ光のエネルギーが金属含有液に吸収されることで、金属含有液が発熱し、焼成する。そこで、レーザ光の照射により、金属含有液を好適に焼成し、適切に配線を形成することを、本発明の課題とする。 When the metal-containing liquid is irradiated with laser light, the energy of the laser light is absorbed by the metal-containing liquid, whereby the metal-containing liquid generates heat and is fired. Therefore, it is an object of the present invention to appropriately bake the metal-containing liquid by laser light irradiation and to appropriately form a wiring.
 上記課題を解決するために、本明細書は、絶縁性の支持体または基板上に、金属微粒子を含有する金属含有液を塗布する塗布ステップと、前記金属含有液をレーザ光で焼成処理することで、配線を形成する焼成処理ステップとを含み、前記塗布ステップが、前記レーザ光のレーザスポット径内の面積に対する前記金属含有液の塗布面積の比率である塗布面積率が予め設定された範囲である設定範囲内となるように、前記金属含有液を塗布する配線形成方法を開示する。 In order to solve the above problems, in the present specification, a step of applying a metal-containing liquid containing metal fine particles on an insulating support or substrate, and baking the metal-containing liquid with a laser beam And a baking treatment step of forming a wiring, wherein the coating step is a range in which the coating area ratio, which is the ratio of the coating area of the metal-containing liquid to the area within the laser spot diameter of the laser beam, is preset. The wiring formation method which applies the said metal containing liquid so that it may become in a certain setting range is disclosed.
 また、本明細書は、金属微粒子を含有する金属含有液を塗布する塗布装置と、レーザ光を照射する照射装置と、制御装置とを備え、前記制御装置が、絶縁性の支持体または基板上に前記金属含有液を、前記塗布装置により塗布する塗布部と、前記塗布装置により塗布された前記金属含有液に前記レーザ光を照射し、その金属含有液を焼成することで、配線を形成する焼成部とを含み、前記塗布部が、前記レーザ光のレーザスポット径内の面積に対する前記金属含有液の塗布面積の比率である塗布面積率が予め設定された範囲である設定範囲内となるように、前記金属含有液を塗布する配線形成装置を開示する。 Further, the present specification includes a coating apparatus for applying a metal-containing liquid containing metal fine particles, an irradiation apparatus for irradiating a laser beam, and a control apparatus, and the control apparatus is provided on an insulating support or substrate. A coating portion for applying the metal-containing liquid by the coating device, and irradiating the metal-containing liquid applied by the coating device with the laser beam to form a wiring by baking the metal-containing liquid And a baking unit, wherein the coating unit has a coating area ratio, which is a ratio of a coating area of the metal-containing liquid to an area within a laser spot diameter of the laser beam, within a preset range. The wiring formation apparatus which apply | coats the said metal containing liquid is disclosed.
 本開示によれば、レーザ光のレーザスポット径内の面積に対する金属含有液の塗布面積の比率である塗布面積率が設定範囲内となるように、金属含有液が塗布される。これにより、金属含有液へのレーザ光照射時における金属含有液の発熱温度のバラツキを抑制することが可能となり、金属含有液を好適に焼成し、適切に配線を形成することが可能となる。 According to the present disclosure, the metal-containing liquid is applied such that the application area ratio, which is the ratio of the application area of the metal-containing liquid to the area within the laser spot diameter of the laser light, falls within the set range. This makes it possible to suppress the variation in the heat generation temperature of the metal-containing liquid at the time of laser light irradiation to the metal-containing liquid, and to preferably fire the metal-containing liquid and form the wiring appropriately.
配線形成装置を示す図である。It is a figure which shows a wiring formation apparatus. 配線形成装置の制御装置を示すブロック図である。It is a block diagram showing a control device of a wiring formation device. 樹脂積層体が形成された状態の回路を示す断面図である。It is sectional drawing which shows the circuit of the state in which the resin laminated body was formed. 樹脂積層体の上に配線が形成された状態の回路を示す断面図である。It is sectional drawing which shows the circuit of the state in which wiring was formed on the resin laminated body. 従来の配線形成方法において樹脂積層体の上に金属インクが吐出された状態の回路を示す平面図である。It is a top view which shows the circuit of the state by which the metal ink was discharged on the resin laminated body in the conventional wiring formation method. 従来の配線形成方法において樹脂積層体の上に金属インクが吐出された状態の回路を示す平面図である。It is a top view which shows the circuit of the state by which the metal ink was discharged on the resin laminated body in the conventional wiring formation method. 従来の配線形成方法において樹脂積層体の上に金属インクが吐出された状態の回路を示す平面図である。It is a top view which shows the circuit of the state by which the metal ink was discharged on the resin laminated body in the conventional wiring formation method. 従来の配線形成方法において樹脂積層体の上に金属インクが吐出された状態の回路を示す平面図である。It is a top view which shows the circuit of the state by which the metal ink was discharged on the resin laminated body in the conventional wiring formation method. 従来の配線形成方法において吐出された金属インクにレーザ光が照射された際の金属インクの発熱温度を、塗布面積率毎に示す図である。It is a figure which shows the exothermic temperature of the metal ink at the time of a laser beam being irradiated to the metal ink discharged in the conventional wiring formation method for every application area ratio. 本発明の配線形成方法において樹脂積層体の上に金属インクが吐出された状態の回路を示す平面図である。It is a top view which shows the circuit of the state by which the metal ink was discharged on the resin laminated body in the wiring formation method of this invention. 設定パターンを概略的に示す図である。It is a figure which shows a setting pattern roughly. 本発明の配線形成方法において樹脂積層体の上に金属インクが吐出された状態の回路を示す平面図である。It is a top view which shows the circuit of the state by which the metal ink was discharged on the resin laminated body in the wiring formation method of this invention. 本発明の配線形成方法において樹脂積層体の上に金属インクが吐出された状態の回路を示す平面図である。It is a top view which shows the circuit of the state by which the metal ink was discharged on the resin laminated body in the wiring formation method of this invention. 本発明の配線形成方法において樹脂積層体の上に金属インクが吐出された状態の回路を示す平面図である。It is a top view which shows the circuit of the state by which the metal ink was discharged on the resin laminated body in the wiring formation method of this invention. 本発明の配線形成方法において吐出された金属インクにレーザ光が照射された際の金属インクの発熱温度を、塗布面積率毎に示す図である。It is a figure which shows the emitted-heat temperature of the metal ink at the time of a laser beam being irradiated to the metal ink discharged in the wiring formation method of this invention for every application area ratio.
 (A)回路形成装置の構成
 図1に回路形成装置10を示す。回路形成装置10は、搬送装置20と、第1造形ユニット22と、第2造形ユニット24と、制御装置(図2参照)26とを備える。それら搬送装置20と第1造形ユニット22と第2造形ユニット24とは、回路形成装置10のベース28の上に配置されている。ベース28は、概して長方形状をなしており、以下の説明では、ベース28の長手方向をX軸方向、ベース28の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。
(A) Configuration of Circuit Forming Device FIG. 1 shows a circuit forming device 10. The circuit forming device 10 includes a transport device 20, a first shaping unit 22, a second shaping unit 24, and a control device 26 (see FIG. 2). The transfer device 20, the first shaping unit 22, and the second shaping unit 24 are disposed on the base 28 of the circuit forming device 10. The base 28 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 28 is the X-axis direction, and the short direction of the base 28 is orthogonal to both the Y-axis direction, the X-axis direction and the Y-axis direction. The direction is referred to as the Z-axis direction.
 搬送装置20は、X軸スライド機構30と、Y軸スライド機構32とを備えている。そのX軸スライド機構30は、X軸スライドレール34とX軸スライダ36とを有している。X軸スライドレール34は、X軸方向に延びるように、ベース28の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ(図2参照)38を有しており、電磁モータ38の駆動により、X軸スライダ36がX軸方向の任意の位置に移動する。また、Y軸スライド機構32は、Y軸スライドレール50とステージ52とを有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース28の上に配設されており、X軸方向に移動可能とされている。そして、Y軸スライドレール50の一端部が、X軸スライダ36に連結されている。そのY軸スライドレール50には、ステージ52が、Y軸方向にスライド可能に保持されている。さらに、Y軸スライド機構32は、電磁モータ(図2参照)56を有しており、電磁モータ56の駆動により、ステージ52がY軸方向の任意の位置に移動する。これにより、ステージ52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース28上の任意の位置に移動する。 The transfer device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32. The X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36. The X-axis slide rail 34 is disposed on the base 28 so as to extend in the X-axis direction. The X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34. Furthermore, the X-axis slide mechanism 30 includes an electromagnetic motor (see FIG. 2) 38. By driving the electromagnetic motor 38, the X-axis slider 36 is moved to an arbitrary position in the X-axis direction. The Y-axis slide mechanism 32 also has a Y-axis slide rail 50 and a stage 52. The Y-axis slide rail 50 is disposed on the base 28 so as to extend in the Y-axis direction, and is movable in the X-axis direction. Then, one end of the Y-axis slide rail 50 is connected to the X-axis slider 36. A stage 52 is slidably held by the Y-axis slide rail 50 in the Y-axis direction. Furthermore, the Y-axis slide mechanism 32 has an electromagnetic motor (see FIG. 2) 56. By driving the electromagnetic motor 56, the stage 52 moves to any position in the Y-axis direction. Thereby, the stage 52 is moved to an arbitrary position on the base 28 by the drive of the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
 ステージ52は、基台60と、保持装置62と、昇降装置(図2参照)64とを有している。基台60は、平板状に形成され、上面に基板が載置される。保持装置62は、基台60のX軸方向の両側部に設けられている。そして、基台60に載置された基板のX軸方向の両縁部が、保持装置62によって挟まれることで、基板が固定的に保持される。また、昇降装置64は、基台60の下方に配設されており、基台60を昇降させる。 The stage 52 has a base 60, a holding device 62, and a lifting device (see FIG. 2) 64. The base 60 is formed in a flat plate shape, and the substrate is mounted on the upper surface. The holding devices 62 are provided on both sides in the X-axis direction of the base 60. Then, both edges in the X-axis direction of the substrate placed on the base 60 are held by the holding device 62, whereby the substrate is fixedly held. In addition, the lifting device 64 is disposed below the base 60, and lifts the base 60.
 第1造形ユニット22は、ステージ52の基台60に載置された基板(図3参照)70の上に配線を造形するユニットであり、第1印刷部72と、焼成部74とを有している。第1印刷部72は、インクジェットヘッド(図2参照)76を有しており、基台60に載置された基板70の上に、金属インクを線状に吐出する。金属インクは、金属の微粒子が溶剤中に分散されたものである。なお、インクジェットヘッド76は、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから導電性材料を吐出する。 The first shaping unit 22 is a unit for shaping the wiring on the substrate (see FIG. 3) 70 placed on the base 60 of the stage 52, and has a first printing unit 72 and a baking unit 74. ing. The first printing unit 72 has an inkjet head (see FIG. 2) 76 and discharges metal ink linearly on the substrate 70 placed on the base 60. The metal ink is one in which fine particles of metal are dispersed in a solvent. The inkjet head 76 discharges the conductive material from the plurality of nozzles by, for example, a piezo method using a piezoelectric element.
 焼成部74は、レーザ照射装置(図2参照)78を有している。レーザ照射装置78は、基板70の上に吐出された金属インクにレーザを照射する装置であり、レーザが照射された金属インクは焼成し、配線が形成される。なお、金属インクの焼成とは、エネルギーを付与することによって、溶剤の気化や金属微粒子保護膜の分解等が行われ、金属微粒子が接触または融着をすることで、導電率が高くなる現象である。そして、金属インクが焼成することで、金属製の配線が形成される。 The baking unit 74 has a laser irradiation device (see FIG. 2) 78. The laser irradiation device 78 is a device for irradiating the metal ink discharged onto the substrate 70 with a laser, and the metal ink irradiated with the laser is fired to form a wiring. The baking of the metal ink is a phenomenon in which the evaporation of the solvent, the decomposition of the metal fine particle protective film, and the like are carried out by applying energy, and the metal fine particles contact or fuse to increase the conductivity. is there. Then, the metal ink is fired to form a metal wiring.
 また、第2造形ユニット24は、ステージ52の基台60に載置された基板70の上に樹脂層を造形するユニットであり、第2印刷部84と、硬化部86とを有している。第2印刷部84は、インクジェットヘッド(図2参照)88を有しており、基台60に載置された基板70の上に紫外線硬化樹脂を吐出する。なお、インクジェットヘッド88は、例えば、圧電素子を用いたピエゾ方式でもよく、樹脂を加熱して気泡を発生させノズルから吐出するサーマル方式でもよい。 The second modeling unit 24 is a unit for modeling a resin layer on the substrate 70 placed on the base 60 of the stage 52, and includes a second printing unit 84 and a curing unit 86. . The second printing unit 84 has an ink jet head (see FIG. 2) 88 and discharges the ultraviolet curing resin onto the substrate 70 placed on the base 60. The inkjet head 88 may be, for example, a piezo method using a piezoelectric element, or may be a thermal method in which a resin is heated to generate air bubbles and discharged from a nozzle.
 硬化部86は、平坦化装置(図2参照)90と照射装置(図2参照)92とを有している。平坦化装置90は、インクジェットヘッド88によって基板70の上に吐出された紫外線硬化樹脂の上面を平坦化するものであり、例えば、紫外線硬化樹脂の表面を均しながら余剰分の樹脂を、ローラもしくはブレードによって掻き取ることで、紫外線硬化樹脂の厚みを均一させる。また、照射装置92は、光源として水銀ランプもしくはLEDを備えており、基板70の上に吐出された紫外線硬化樹脂に紫外線を照射する。これにより、基板70の上に吐出された紫外線硬化樹脂が硬化し、樹脂層が造形される。 The curing unit 86 includes a planarization device (see FIG. 2) 90 and an irradiation device (see FIG. 2) 92. The planarization apparatus 90 planarizes the upper surface of the ultraviolet curable resin discharged onto the substrate 70 by the ink jet head 88. For example, the excess resin may be a roller or an adhesive while the surface of the ultraviolet curable resin is smoothed. The thickness of the ultraviolet curable resin is made uniform by scraping with a blade. In addition, the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the ultraviolet curable resin discharged on the substrate 70 with ultraviolet light. Thereby, the ultraviolet curing resin discharged onto the substrate 70 is cured, and the resin layer is shaped.
 また、制御装置26は、図2に示すように、コントローラ120と、複数の駆動回路122とを備えている。複数の駆動回路122は、上記電磁モータ38,56、保持装置62、昇降装置64、インクジェットヘッド76、レーザ照射装置78、インクジェットヘッド88、平坦化装置90、照射装置92に接続されている。コントローラ120は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路122に接続されている。これにより、搬送装置20、第1造形ユニット22、第2造形ユニット24の作動が、コントローラ120によって制御される。 Further, as shown in FIG. 2, the control device 26 includes a controller 120 and a plurality of drive circuits 122. The plurality of drive circuits 122 are connected to the electromagnetic motors 38 and 56, the holding device 62, the lifting device 64, the inkjet head 76, the laser irradiation device 78, the inkjet head 88, the flattening device 90, and the irradiation device 92. The controller 120 includes a CPU, a ROM, a RAM, and the like, is mainly composed of a computer, and is connected to a plurality of drive circuits 122. Thus, the controller 120 controls the operation of the transfer device 20, the first shaping unit 22, and the second shaping unit 24.
 (B)回路形成装置の作動
 回路形成装置10では、上述した構成によって、基板70の上に回路パターンが形成される。具体的には、ステージ52の基台60に基板70がセットされ、そのステージ52が、第2造形ユニット24の下方に移動される。そして、第2造形ユニット24において、図3に示すように、基板70の上に樹脂積層体130が形成される。樹脂積層体130は、インクジェットヘッド88からの紫外線硬化樹脂の吐出と、吐出された紫外線硬化樹脂への照射装置92による紫外線の照射とが繰り返されることにより形成される。
(B) Operation of Circuit Forming Device In the circuit forming device 10, a circuit pattern is formed on the substrate 70 by the configuration described above. Specifically, the substrate 70 is set on the base 60 of the stage 52, and the stage 52 is moved below the second modeling unit 24. Then, as shown in FIG. 3, in the second modeling unit 24, the resin laminate 130 is formed on the substrate 70. The resin laminate 130 is formed by repeating the discharge of the ultraviolet curable resin from the ink jet head 88 and the irradiation of the ultraviolet light by the irradiation device 92 to the discharged ultraviolet curable resin.
 詳しくは、第2造形ユニット24の第2印刷部84において、インクジェットヘッド88が、基板70の上面に紫外線硬化樹脂を薄膜状に吐出する。続いて、紫外線硬化樹脂が薄膜状に吐出されると、硬化部86において、紫外線硬化樹脂の膜厚が均一となるように、紫外線硬化樹脂が平坦化装置90によって平坦化される。そして、照射装置92が、その薄膜状の紫外線硬化樹脂に紫外線を照射する。これにより、基板70の上に薄膜状の樹脂層132が形成される。 Specifically, in the second printing unit 84 of the second shaping unit 24, the inkjet head 88 discharges the ultraviolet curable resin in a thin film form on the upper surface of the substrate 70. Subsequently, when the ultraviolet curable resin is discharged in a thin film, the ultraviolet curable resin is flattened by the flattening device 90 so that the film thickness of the ultraviolet curable resin becomes uniform in the curing portion 86. Then, the irradiation device 92 irradiates the thin film ultraviolet curing resin with ultraviolet light. Thereby, the thin film resin layer 132 is formed on the substrate 70.
 続いて、インクジェットヘッド88が、その薄膜状の樹脂層132の上に紫外線硬化樹脂を薄膜状に吐出する。そして、平坦化装置90によって薄膜状の紫外線硬化樹脂が平坦化され、照射装置92が、その薄膜状に吐出された紫外線硬化樹脂に紫外線を照射することで、薄膜状の樹脂層132の上に薄膜状の樹脂層132が積層される。このように、薄膜状の樹脂層132の上への紫外線硬化樹脂の吐出と、紫外線の照射とが繰り返され、複数の樹脂層132が積層されることで、樹脂積層体130が形成される。 Subsequently, the ink jet head 88 discharges the ultraviolet curable resin in a thin film form on the thin film resin layer 132. Then, the thin film ultraviolet curing resin is flattened by the flattening device 90, and the irradiation device 92 irradiates the ultraviolet curing resin discharged in the thin film onto the thin film resin layer 132. A thin film resin layer 132 is stacked. As described above, the discharge of the ultraviolet curable resin onto the thin film resin layer 132 and the irradiation of the ultraviolet light are repeated, and the plurality of resin layers 132 are laminated, whereby the resin laminate 130 is formed.
 上述した手順により樹脂積層体130が形成されると、ステージ52が第1造形ユニット22の下方に移動される。そして、第1印刷部72において、インクジェットヘッド76が、樹脂積層体130の上面に金属インクを、回路パターンに応じて線状に吐出する。なお、回路パターンは、配線を形成するための配線形成データとしてコントローラ120に記憶されており、その配線形成データに基づいて、インクジェットヘッド76が制御されることで、金属インクが回路パターンに応じて吐出される。 When the resin laminate 130 is formed by the above-described procedure, the stage 52 is moved to the lower side of the first shaping unit 22. Then, in the first printing unit 72, the inkjet head 76 discharges the metal ink on the upper surface of the resin laminate 130 in a linear shape in accordance with the circuit pattern. The circuit pattern is stored in the controller 120 as wiring formation data for forming a wiring, and the ink jet head 76 is controlled based on the wiring formation data, whereby the metal ink corresponds to the circuit pattern. It is discharged.
 次に、第1造形ユニット22の焼成部74において、レーザ照射装置78が、金属インクにレーザ光を照射する。この際、レーザ光のエネルギーが金属インクに吸収されることによって、金属インクが発熱し、焼成する。これにより、図4に示すように、樹脂積層体130の上に配線136が形成される。このように、回路形成装置10では、紫外線硬化樹脂によって樹脂積層体130が形成され、金属イオンによって配線136が形成されることで、基板70の上に回路パターンが形成される。 Next, in the baking unit 74 of the first shaping unit 22, the laser irradiation device 78 irradiates the metal ink with laser light. At this time, the energy of the laser light is absorbed by the metal ink, whereby the metal ink generates heat and is baked. As a result, as shown in FIG. 4, the wiring 136 is formed on the resin laminate 130. As described above, in the circuit forming device 10, the resin laminate 130 is formed of the ultraviolet curing resin, and the wiring 136 is formed of the metal ions, whereby a circuit pattern is formed on the substrate 70.
 なお、配線136には、信号線,電源線,パワーグランド,パッド等があり、配線136の太さ,大きさ等が異なるため、金属インクの焼成処理時に発生する熱にバラツキが生じる。この際、金属インクに過剰な発熱が生じると、金属インクの膨張により配線が破裂したり、配線が焦げたりする。一方、金属インクを焼成させるために必要な発熱が生じない場合には、未焼成となり、高抵抗の配線が形成される。 Note that the wiring 136 includes signal lines, power supply lines, power grounds, pads, and the like, and since the thickness, size, and the like of the wiring 136 are different, variations occur in the heat generated during the baking process of the metal ink. At this time, if excessive heat is generated in the metal ink, the expansion of the metal ink may cause the wiring to rupture or burn the wiring. On the other hand, when the heat generation necessary for firing the metal ink does not occur, it becomes unfired and a high resistance wiring is formed.
 詳しくは、例えば、図5に示すように、樹脂積層体130の上に所定の幅(=A)の配線136が形成される場合には、その所定の幅の配線136に応じて、金属インクが樹脂積層体130の上に塗布される。そして、その金属インクにレーザ光が照射される。この際、レーザ光のレーザスポット径内の面積に対する金属インクの塗布面積の比率(以下、「塗布面積率」と記載する)は、約16%であり、塗布面積率が約16%の金属インクにレーザ光のエネルギーが吸収される。なお、レーザ光のレーザスポット径は、レーザ照射装置78を移動させることなく、樹脂積層体130の上面にレーザ光を照射した際のレーザ光の照射範囲の外径であり、円形状の実線160により示されている。また、塗布された金属インクにレーザ光が照射される際に、レーザ光を照射するレーザ照射装置78は、金属インクに沿って移動する。このため、レーザ照射装置78の移動に伴ってレーザ光が照射される際のレーザ光の照射範囲の外縁が、直線状の点線162により示されている。 Specifically, for example, as shown in FIG. 5, when the wiring 136 of a predetermined width (= A) is formed on the resin laminate 130, metal ink is used according to the wiring 136 of the predetermined width. Is applied onto the resin laminate 130. Then, the metal ink is irradiated with laser light. At this time, the ratio of the application area of the metal ink to the area within the laser spot diameter of the laser beam (hereinafter referred to as the "application area ratio") is about 16%, and the metal ink having an application area ratio of about 16% Energy of the laser light is absorbed. The laser spot diameter of the laser beam is the outer diameter of the irradiation range of the laser beam when the upper surface of the resin laminate 130 is irradiated with the laser beam without moving the laser irradiation device 78, and a circular solid line 160 Is indicated by. Further, when the coated metal ink is irradiated with the laser light, the laser irradiation device 78 that irradiates the laser light moves along the metal ink. For this reason, the outer edge of the irradiation range of the laser light when the laser light is irradiated with the movement of the laser irradiation device 78 is indicated by the straight dotted line 162.
 また、例えば、図6に示すように、樹脂積層体130の上に所定の幅(=A)の配線136が5本、形成される場合には、その所定の幅の5本の配線136に応じて、金属インクが樹脂積層体130の上に塗布される。そして、その金属インクにレーザ光が照射される。この際、塗布面積率は約48%であり、塗布面積率が約48%の金属インクにレーザ光のエネルギーが吸収される。 Further, for example, as shown in FIG. 6, when five wires 136 of a predetermined width (= A) are formed on the resin laminate 130, five wires 136 of the predetermined width are formed. In response, metal ink is applied onto the resin laminate 130. Then, the metal ink is irradiated with laser light. At this time, the coated area ratio is about 48%, and the energy of the laser light is absorbed by the metal ink having the coated area ratio of about 48%.
 また、例えば、図7に示すように、樹脂積層体130の上に、図5に示す配線の2倍の幅(=2A)の配線136が形成される場合には、その幅の配線136に応じて、金属インクが樹脂積層体130の上に塗布される。そして、その金属インクにレーザ光が照射される。この際、塗布面積率は約33%であり、塗布面積率が約33%の金属インクにレーザ光のエネルギーが吸収される。 Further, for example, as shown in FIG. 7, when a wire 136 having a width (= 2 A) twice that of the wire shown in FIG. 5 is formed on the resin laminate 130, the wire 136 of that width is formed. In response, metal ink is applied onto the resin laminate 130. Then, the metal ink is irradiated with laser light. At this time, the coating area ratio is about 33%, and the energy of the laser light is absorbed by the metal ink having a coating area ratio of about 33%.
 さらに言えば、例えば、図8に示すように、樹脂積層体130の上に、パワーグランド,パッドのような大きな配線136が形成される場合には、レーザ光のレーザスポット径(図8中白抜き部)より大きく金属インクが樹脂積層体130の上に塗布される。そして、その金属インクにレーザ光が照射される。この際、塗布面積率は100%であり、塗布面積率が100%の金属インクにレーザ光のエネルギーが吸収される。 Furthermore, for example, as shown in FIG. 8, when a large wiring 136 such as a power ground or a pad is formed on the resin laminate 130, the laser spot diameter of the laser beam (white in FIG. 8). The metal ink is applied onto the resin laminate 130 more largely than the punched out portion. Then, the metal ink is irradiated with laser light. At this time, the coated area ratio is 100%, and the energy of the laser light is absorbed by the metal ink having the coated area ratio of 100%.
 つまり、図5~図8に示す配線136の各々が形成される際に、塗布面積率が16%~100%の金属インクにレーザ光のエネルギーが吸収される。また、この際照射されるレーザ光のエネルギーは、塗布面積率の大きさに関わらず、同じである。つまり、塗布面積率が最小の16%の金属インクに照射されるレーザ光のエネルギーと、塗布面積率が最大の100%の金属インクに照射されるレーザ光のエネルギーとは同じである。 That is, when each of the wirings 136 shown in FIGS. 5 to 8 is formed, the energy of the laser beam is absorbed by the metal ink having a coated area ratio of 16% to 100%. Moreover, the energy of the laser beam irradiated in this case is the same irrespective of the magnitude | size of an application area ratio. That is, the energy of the laser beam irradiated to the metal ink of 16% having the smallest coated area rate is the same as the energy of the laser beam irradiated to the metal ink of 100% having the largest coated area rate.
 このような場合に、塗布面積率が16%の金属インクに吸収されるエネルギーは小さくなり、塗布面積率が100%の金属インクに吸収されるエネルギーは大きくなる。つまり、塗布面積率が小さいほど、金属インクに吸収されるエネルギーは小さくなり、塗布面積率が大きいほど、金属インクに吸収されるエネルギーは大きくなる。これにより、塗布面積率が小さいほど、金属インクは発熱し難く、塗布面積率が大きいほど、金属インクは発熱し易い。 In such a case, the energy absorbed by the metal ink having a coating area ratio of 16% decreases, and the energy absorbed by the metal ink having a coating area ratio of 100% increases. That is, the smaller the coated area ratio, the smaller the energy absorbed by the metal ink, and the larger the coated area ratio, the larger the energy absorbed by the metal ink. Thus, the smaller the coated area ratio, the less the metal ink generates heat, and the larger the coated area ratio, the more easily the metal ink generates heat.
 一方で、塗布面積率が大きい金属インクは、発熱し易いが、放熱もし易い。また、塗布面積率が小さい金属インクは、発熱し難いが、放熱もし難い。このため、塗布面積率が大きく異なる場合において、金属インクの発熱と放熱とのバランスを取り難いため、金属インク焼成処理時の温度にバラツキが生じる。 On the other hand, a metal ink having a large coated area ratio is likely to generate heat, but also easily dissipate heat. Moreover, although the metal ink with a small application area ratio is hard to generate heat, it is also hard to dissipate heat. For this reason, when the application area ratio is largely different, it is difficult to balance the heat generation and the heat release of the metal ink, and thus the temperature at the time of the metal ink baking process varies.
 具体的には、図9に示すように、塗布面積率48%の金属インクにレーザ光が照射された際の金属インクの発熱温度(以下、「基準発熱温度」と記載する)を基準にした場合に、塗布面積率100%の金属インクにレーザ光が照射された際の金属インクの発熱温度は、基準発熱温度の1.15倍(115%)となる。また、塗布面積率16%の金属インクにレーザ光が照射された際の金属インクの発熱温度は、基準発熱温度の1.09倍(109%)となる。また、塗布面積率33%の金属インクにレーザ光が照射された際の金属インクの発熱温度は、基準発熱温度の1.13倍(113%)となる。 Specifically, as shown in FIG. 9, the heat generation temperature of the metal ink (hereinafter referred to as "reference heat generation temperature") when the laser light is irradiated to the metal ink having a coating area ratio of 48% is referred to In this case, the heat generation temperature of the metal ink when the laser light is irradiated to the metal ink having an application area ratio of 100% is 1.15 times (115%) the reference heat generation temperature. The heat generation temperature of the metal ink when the laser light is irradiated to the metal ink having a coating area ratio of 16% is 1.09 times (109%) of the reference heat generation temperature. Further, the heat generation temperature of the metal ink when the metal ink having the application area ratio of 33% is irradiated with the laser light is 1.13 times (113%) the reference heat generation temperature.
 つまり、塗布面積率が16%~100%の金属インクにレーザ光が照射された場合に、塗布面積率の相違により、基準温度の15%に相当する温度差が生じる。このように、レーザ光の照射時において、塗布面積率の相違により、金属インクの発熱温度が大きく異なると、金属インクが過剰に発熱し、破裂,焦げ等の生じた配線が形成される。若しくは、金属インクを焼成させるために必要な発熱が生じず、未焼成の配線が形成される。 That is, when the metal ink having the coated area ratio of 16% to 100% is irradiated with the laser light, the difference in the coated area ratio causes a temperature difference corresponding to 15% of the reference temperature. As described above, when the heat generation temperature of the metal ink is largely different due to the difference in the coated area ratio at the time of the laser light irradiation, the metal ink generates an excessive amount of heat, and a wire with rupture, burnt and the like is formed. Alternatively, the heat generation necessary for firing the metal ink does not occur, and an unfired wiring is formed.
 このようなことに鑑みて、回路形成装置10では、塗布面積率が設定範囲、具体的には、48%~65%の範囲内となるように、金属インクの塗布が行われる。具体的には、まず、図5に示すように、レーザ光のレーザスポット径(円形状の実線160)の一部に配線136の形成が予定されている場合について説明する。このような場合には、図10に示すように、配線136の形成が予定されている領域(以下、「第1領域」と記載する)170に、従来のデザインパターン(以下、「従来パターン」と記載する)に従って、金属インク180が塗布される。なお、従来パターンについては、後に詳しく説明する。 In view of this, in the circuit forming apparatus 10, the metal ink is applied such that the application area ratio is in the set range, specifically, in the range of 48% to 65%. Specifically, first, as shown in FIG. 5, the case where the formation of the wiring 136 is scheduled to be a part of the laser spot diameter (circular solid line 160) of the laser light will be described. In such a case, as shown in FIG. 10, a conventional design pattern (hereinafter referred to as “conventional pattern”) is provided in a region 170 where the formation of the interconnection 136 is scheduled (hereinafter referred to as “first region”). The metal ink 180 is applied according to The conventional pattern will be described in detail later.
 また、レーザ光が照射される際のレーザスポット径(円形状の実線160)の内部の第1領域170以外の領域(以下、「第2領域」と記載する)172に、塗布面積率が設定範囲となるように設定されたデザインパターン(以下、「設定パターン」と記載する)に従って、金属インク182が塗布される。ただし、設定パターンに従って塗布される金属インク182は、第2領域172の全てに塗布されず、従来パターンに従って塗布された金属インク180と接触しないように、塗布される。つまり、第2領域172のうちの第1領域170と隣接する領域を除いた領域に、設定パターンに従って金属インク182が塗布される。 In addition, the application area ratio is set in a region (hereinafter referred to as “second region”) 172 other than the first region 170 inside the laser spot diameter (circular solid line 160) when the laser light is irradiated. The metal ink 182 is applied in accordance with a design pattern (hereinafter referred to as a “setting pattern”) set to be a range. However, the metal ink 182 applied according to the set pattern is not applied to all of the second region 172, and is applied so as not to contact with the metal ink 180 applied according to the conventional pattern. That is, the metal ink 182 is applied to the area of the second area 172 excluding the area adjacent to the first area 170 according to the setting pattern.
 なお、設定パターンとは、図11に示すように、3列×3行で配列されたピクセル188、つまり、9ピクセル188のうちの6ピクセル188に金属インク182が塗布され、残りの3ピクセルに金属インク182が塗布されないように設定されたデザインパターンである。このため、設定パターンに従って金属インク182が塗布された場合に、樹脂積層体130の上に6/9(=約65%)の比率で金属インク182が塗布される。なお、ピクセル188は、42.3nm×42.3nmの正方形状の領域を示す単位である。 In the setting pattern, as shown in FIG. 11, metal ink 182 is applied to pixels 188 arranged in 3 columns × 3 rows, that is, 6 pixels 188 of 9 pixels 188, and the remaining 3 pixels are applied. It is a design pattern set so that the metal ink 182 is not applied. Therefore, when the metal ink 182 is applied according to the setting pattern, the metal ink 182 is applied on the resin laminate 130 at a ratio of 6/9 (= about 65%). The pixel 188 is a unit indicating a square area of 42.3 nm × 42.3 nm.
 また、上述した従来パターンとは、3列×3行で配列されたピクセル188、つまり、9ピクセル188の全てに金属インク180が塗布されるように設定されたデザインパターンである。このため、従来パターンに従って金属インク180が塗布された場合に、樹脂積層体130の上に、9/9(=100%)の比率で金属インク180が塗布される。なお、図10において、設定パターンに従って塗布された金属インク182は、網掛により示されており、従来パターンに従って塗布された金属インク180は、黒塗により示されている。 Further, the above-described conventional pattern is a design pattern set so that the metal ink 180 is applied to all the pixels 188 arranged in 3 columns × 3 rows, that is, all 9 pixels 188. Therefore, when the metal ink 180 is applied according to the conventional pattern, the metal ink 180 is applied on the resin laminate 130 at a ratio of 9/9 (= 100%). In FIG. 10, the metal ink 182 applied according to the setting pattern is shown by hatching, and the metal ink 180 applied according to the conventional pattern is shown black.
 このように、第1領域に従来パターンに従って金属インク180を塗布し、第2領域に設定パターンに従って金属インク182を塗布することで、塗布面積率は50%となる。つまり、第2領域172に設定パターンに従って金属インク182が塗布されない場合に、塗布面積率は16%であったが、第2領域172に設定パターンに従って金属インク182が塗布されることで、塗布面積率は50%となる。 As described above, the metal ink 180 is applied to the first region in accordance with the conventional pattern, and the metal ink 182 is applied to the second region in accordance with the set pattern, whereby the application area ratio becomes 50%. That is, when the metal ink 182 is not applied to the second area 172 according to the setting pattern, the application area ratio is 16%, but the metal ink 182 is applied to the second area 172 according to the setting pattern. The rate will be 50%.
 なお、塗布面積率は、第1領域170の面積と、従来パターンで金属インク180が塗布される比率(9/9(=100%))と、第2領域172の面積と、設定パターンで金属インク182が塗布される比率(6/9(=約65%))とに基づいて演算される。なお、塗布面積率の演算で用いられる第2領域172の面積は、第2領域172のうちの第1領域170と隣接する箇所を除いた面積、つまり、設定パターンに従った金属インク182の塗布対象の面積である。 The application area ratio is the area of the first area 170, the ratio (9/9 (= 100%)) at which the metal ink 180 is applied in the conventional pattern, the area of the second area 172, and the metal in the setting pattern. It is calculated based on the ratio (6/9 (= about 65%)) at which the ink 182 is applied. Note that the area of the second region 172 used in the calculation of the application area ratio is the area excluding the portion adjacent to the first region 170 in the second region 172, that is, the application of the metal ink 182 according to the setting pattern It is the area of the object.
 ちなみに、設定パターンに従って塗布される金属インク182は、第2領域172だけでなく、第2領域172に連続する領域にも塗布される。これにより、従来パターンに従って金属インク180が塗布される領域を除く領域に、従来パターンに従って金属インク182を塗布することができる。つまり、塗布パターンの設計において、従来パターンに従って塗布される領域を除く領域を、設定パターンに従って塗布される領域に設定することができる。これにより、塗布パターンの設計を簡素化することが可能となる。 Incidentally, the metal ink 182 applied in accordance with the setting pattern is applied not only to the second region 172 but also to the region continuous with the second region 172. As a result, the metal ink 182 can be applied according to the conventional pattern to the area excluding the area to which the metallic ink 180 is applied according to the conventional pattern. That is, in the design of the coating pattern, the region excluding the region coated in accordance with the conventional pattern can be set as the region coated in accordance with the set pattern. This makes it possible to simplify the design of the application pattern.
 また、図7に示す配線136の形成が、レーザスポット径(円形状の実線160)内の一部に予定されている場合においても、上記手法と同様に、図12に示すように、第1領域170に従来パターンに従って金属インク180が塗布され、第2領域172に設定パターンに従って金属インク182が塗布される。これにより、塗布面積率は55%となる。つまり、第2領域172に設定パターンに従って金属インク182が塗布されない場合に、塗布面積率は33%であったが、第2領域172に設定パターンに従って金属インク182が塗布されることで、塗布面積率は55%となる。 Also, even when the formation of the wiring 136 shown in FIG. 7 is scheduled to be a part of the laser spot diameter (circular solid line 160), as shown in FIG. The metal ink 180 is applied to the area 170 according to the conventional pattern, and the metal ink 182 is applied to the second area 172 according to the set pattern. Thereby, the application area ratio is 55%. That is, when the metal ink 182 is not applied to the second area 172 according to the setting pattern, the application area ratio is 33%, but the metal ink 182 is applied to the second area 172 according to the setting pattern. The rate will be 55%.
 なお、図6に示す5本の配線136の形成が、レーザスポット径(円形状の実線160)内の一部に予定されている場合には、レーザスポット径の外径が、5本の配線136の幅と配線間のクリアランスとを加算した値以下となっている。このような場合において、配線間のクリアランスが第2領域172となり、第2領域172は、比較的狭い領域となる。このため、第2領域172に金属インク182が塗布されると、第2領域172に塗布された金属インク182と、第1領域170に塗布された金属インク180とが接触する虞がある。そこで、このような場合には、図13に示すように、第1領域170に従来パターンに従って金属インク180が塗布されるが、第2領域172に金属インク182は塗布されない。このため、図13に示す吐出パターンでは、レーザスポット径(円形状の実線160)内の内部において、先に説明した第1領域170にのみ従来パターンに従って金属インクが塗布される場合と同様に、塗布面積率は48%となる。 In the case where the formation of the five wires 136 shown in FIG. 6 is scheduled to be a part of the laser spot diameter (circular solid line 160), the outer diameter of the laser spot diameter is five wires. It is less than or equal to the sum of the width 136 and the clearance between the wires. In such a case, the clearance between the interconnections is the second region 172, and the second region 172 is a relatively narrow region. Therefore, when the metal ink 182 is applied to the second area 172, the metal ink 182 applied to the second area 172 may be in contact with the metal ink 180 applied to the first area 170. Therefore, in such a case, as shown in FIG. 13, the metal ink 180 is applied to the first region 170 according to the conventional pattern, but the metal ink 182 is not applied to the second region 172. Therefore, in the discharge pattern shown in FIG. 13, as in the case where the metal ink is applied according to the conventional pattern only to the first region 170 described above inside the laser spot diameter (circular solid line 160), The coated area ratio is 48%.
 ただし、レーザスポット径(円形状の実線160)の外部には、従来パターンに従って塗布された金属インク180と接触しないように、設定パターンに従って金属インク182が塗布される。これは、先に説明したように、塗布パターンの設計を簡素化するためである。 However, on the outside of the laser spot diameter (circular solid line 160), the metal ink 182 is applied according to the set pattern so as not to contact the metal ink 180 applied according to the conventional pattern. This is to simplify the design of the application pattern, as described above.
 また、図8に示すように、レーザ光のレーザスポット径(円形状の実線160)内の全てに配線136の形成が予定されている場合には、配線136の形成が予定されている領域に、設定パターンに従って、金属インクが塗布される。つまり、図14に示すように、配線136の形成が予定されている領域である第1領域170の全域に、設定パターンに従って金属インク184が塗布される。ちなみに、設定パターンで金属インクが塗布される比率は、上述したように、6/9(=約65%)である。このため、図14に示す吐出パターンにおいて、塗布面積率は65%となる。 Further, as shown in FIG. 8, in the case where the formation of the wiring 136 is planned for all within the laser spot diameter of the laser light (circular solid line 160), the formation of the wiring 136 is planned. The metal ink is applied according to the setting pattern. That is, as shown in FIG. 14, the metal ink 184 is applied to the entire area of the first region 170 where the formation of the wiring 136 is scheduled, in accordance with the setting pattern. Incidentally, the rate at which the metal ink is applied in the setting pattern is 6/9 (= about 65%) as described above. Therefore, in the discharge pattern shown in FIG. 14, the application area ratio is 65%.
 このように、従来パターンと設定パターンとに従って金属インク180,182,184が吐出されると、塗布面積率は48%~65%となる。つまり、従来パターンのみに従って金属インクが吐出された場合には、塗布面積率は16%~100%であり、塗布面積率の最小値と最大値との差は84%であった。一方、従来パターンと設定パターンとに従って金属インクが吐出された場合には、塗布面積率は48%~65%となり、塗布面積率の最小値と最大値との差は17%となる。このように、塗布面積率の差が従来の1/4以下に抑制された金属インクへのレーザ光の照射時には、金属インクの発熱温度のバラツキが好適に抑制される。 As described above, when the metal inks 180, 182, and 184 are discharged in accordance with the conventional pattern and the setting pattern, the coated area ratio is 48% to 65%. That is, when the metal ink was ejected according to the conventional pattern only, the coated area ratio was 16% to 100%, and the difference between the minimum value and the maximum value of the coated area ratio was 84%. On the other hand, when the metal ink is discharged according to the conventional pattern and the setting pattern, the coated area ratio is 48% to 65%, and the difference between the minimum value and the maximum value of the coated area ratio is 17%. As described above, when the laser light is irradiated to the metal ink in which the difference in the coated area ratio is suppressed to 1/4 or less of the conventional one, the variation in the heat generation temperature of the metal ink is suitably suppressed.
 具体的には、図15に示すように、塗布面積率48%の金属インクにレーザ光が照射された際の金属インクの発熱温度(以下、「基準発熱温度」と記載する)を基準にした場合に、塗布面積率65%の金属インクにレーザ光が照射された際の金属インクの発熱温度は、基準発熱温度の1.05倍(105%)となる。また、塗布面積率50%の金属インクにレーザ光が照射された際の金属インクの発熱温度は、基準発熱温度の0.98倍(98%)となる。また、塗布面積率55%の金属インクにレーザ光が照射された際の金属インクの発熱温度は、基準発熱温度の1.04倍(104%)となる。 Specifically, as shown in FIG. 15, the heat generation temperature of the metal ink (hereinafter referred to as "reference heat generation temperature") when the laser light was irradiated to the metal ink having a coating area ratio of 48% was used as a reference In this case, the heat generation temperature of the metal ink when the metal ink having the application area ratio of 65% is irradiated with the laser light is 1.05 times (105%) the reference heat generation temperature. Further, the heat generation temperature of the metal ink when the laser light is irradiated to the metal ink having a coating area ratio of 50% is 0.98 times (98%) of the reference heat generation temperature. Further, the heat generation temperature of the metal ink when the metal ink having the application area ratio of 55% is irradiated with the laser light is 1.04 times (104%) the reference heat generation temperature.
 つまり、従来パターンと設定パターンとに従って金属インクが吐出された場合に、塗布面積率が48%~65%となり、塗布面積率が48%~65%の金属インクにレーザ光が照射された際に、基準温度の7%に相当する温度差が生じる。一方、従来パターンのみに従って金属インクが吐出された場合に、塗布面積率が16%~100%であり、塗布面積率が16%~100%の金属インクにレーザ光が照射された際に、基準温度の15%に相当する温度差が生じていた。このように、従来パターンと設定パターンとに従って金属インクが吐出されることで、金属インクへのレーザ光の照射時における金属インクの発熱温度が従来の1/2以下に抑制される。つまり、塗布面積率が設定範囲、具体的には、48%~65%となるように、設定パターンに従って金属インク182を吐出することで、金属インクへのレーザ光の照射時における金属インクの発熱温度が従来の1/2以下に抑制される。これにより、レーザ光の照射時における金属インクの発熱温度のバラツキを好適に抑制することが可能となり、金属インクを好適に焼成し、適切に配線を形成することが可能となる。 That is, when the metal ink is discharged according to the conventional pattern and the setting pattern, the coating area ratio is 48% to 65%, and the metal ink having the coating area ratio of 48% to 65% is irradiated with the laser light. A temperature difference corresponding to 7% of the reference temperature occurs. On the other hand, when the metal ink is ejected according to the conventional pattern only, the standard is applied when the metal ink having the coating area ratio of 16% to 100% and the coating area ratio of 16% to 100% is irradiated. There was a temperature difference corresponding to 15% of the temperature. As described above, the metal ink is discharged in accordance with the conventional pattern and the setting pattern, so that the heat generation temperature of the metal ink at the time of the laser light irradiation to the metal ink is suppressed to 1/2 or less of the conventional. That is, by discharging the metal ink 182 according to the setting pattern so that the application area ratio is in the setting range, specifically, 48% to 65%, the heat generation of the metal ink at the time of the laser light irradiation to the metal ink The temperature is suppressed to 1/2 or less of the conventional temperature. As a result, it is possible to preferably suppress the variation in the heat generation temperature of the metal ink at the time of the laser light irradiation, and it is possible to preferably fire the metal ink and form the wiring appropriately.
 なお、図10,図12,図13に示す吐出パターンにおいて、従来パターンに従って吐出された金属インク180にレーザ光が照射されることで形成される配線190は、電気的に接続されている。一方、設定パターンに従って吐出された金属インク182にレーザ光が照射されることで形成される配線192は、電気的に接続されていない。つまり、図10,図12,図13に示す吐出パターンでは、第1領域170に、従来パターンに従って金属インク180が通電可能に吐出され、第2領域172に、設定パターンに従って金属インク182が通電不能に吐出される。これにより、レーザ光のレーザスポット径内の第1領域に電気的に接続される配線190が形成され、第1領域以外の領域に、電気的に接続されない配線192が形成される。 In the discharge patterns shown in FIGS. 10, 12, and 13, the wiring 190 formed by irradiating the metal ink 180 discharged according to the conventional pattern with laser light is electrically connected. On the other hand, the wiring 192 formed by irradiating the metal ink 182 discharged in accordance with the setting pattern with the laser light is not electrically connected. That is, in the discharge patterns shown in FIG. 10, FIG. 12 and FIG. 13, the metal ink 180 is discharged to the first area 170 according to the conventional pattern so as to be conductive and the metal ink 182 can not be supplied to the second area 172 according to the setting pattern. Is discharged. Thus, the wiring 190 electrically connected to the first region within the laser spot diameter of the laser beam is formed, and the wiring 192 not electrically connected is formed in the region other than the first region.
 また、図14に示す吐出パターンにおいて、設定パターンに従って吐出された金属インク184にレーザ光が照射されることで形成される配線194は、電気的に接続されている。つまり、図14に示す吐出パターンでは、第1領域170に、設定パターンに従って金属インク184が通電可能に吐出される。これにより、レーザ光のレーザスポット径内の全ての領域に電気的に接続される配線194が形成される。 Further, in the discharge pattern shown in FIG. 14, the wiring 194 formed by irradiating the metal ink 184 discharged according to the setting pattern with laser light is electrically connected. That is, in the discharge pattern shown in FIG. 14, the metal ink 184 is discharged to the first region 170 according to the setting pattern so as to be conductive. Thus, the wiring 194 electrically connected to all the regions in the laser spot diameter of the laser light is formed.
 なお、コントローラ120は、図2に示すように、塗布部200と焼成部202とを有している。塗布部200は、樹脂積層体130の上に金属インクを塗布するための機能部である。焼成部202は、金属インクにレーザ光を照射し、金属インクを焼成することで、配線を形成するための機能部である。 In addition, the controller 120 has the application part 200 and the baking part 202, as shown in FIG. The application unit 200 is a functional unit for applying a metal ink on the resin laminate 130. The baking unit 202 is a functional unit for forming a wiring by irradiating the metal ink with laser light and baking the metal ink.
 ちなみに、上記実施例において、回路形成装置10は、配線形成装置の一例である。制御装置26は、制御装置の一例である。基板70は、基板の一例である。インクジェットヘッド76は、塗布装置の一例である。レーザ照射装置78は、照射装置の一例である。樹脂積層体130は、支持体の一例である。第1領域170は、第1領域の一例である。第2領域172は、第2領域の一例である。金属インク180,182,184は、金属含有液の一例である。配線190,194は、接続配線の一例である。配線192は、電気的に接続されない配線の一例である。塗布部200は、塗布部の一例である。焼成部202は、焼成部の一例である。また、塗布部200により実行されるステップは、塗布ステップの一例である。焼成部202により実行されるステップは、焼成処理ステップの一例である。 Incidentally, in the above embodiment, the circuit forming apparatus 10 is an example of a wiring forming apparatus. The control device 26 is an example of a control device. The substrate 70 is an example of a substrate. The inkjet head 76 is an example of a coating apparatus. The laser irradiation device 78 is an example of the irradiation device. The resin laminate 130 is an example of a support. The first area 170 is an example of a first area. The second area 172 is an example of a second area. The metal inks 180, 182, and 184 are examples of the metal-containing liquid. The wires 190 and 194 are examples of connection wires. The wiring 192 is an example of a wiring not electrically connected. The application unit 200 is an example of an application unit. The firing unit 202 is an example of a firing unit. Moreover, the step performed by the application part 200 is an example of an application step. The steps performed by the firing unit 202 are an example of a firing process step.
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。例えば、上記実施例では、樹脂積層体130の上に金属インクが塗布され、配線が形成されているが、基板70の上に金属インクが塗布され、配線が形成されてもよい。 The present invention is not limited to the above-described embodiments, and can be implemented in various modes in which various changes and improvements are made based on the knowledge of those skilled in the art. For example, although the metal ink is applied on the resin laminate 130 and the wiring is formed in the above embodiment, the metal ink may be applied on the substrate 70 to form the wiring.
 また、上記実施例では、設定パターンが1種類しか設定されておらず、レーザスポット径内の一部の領域に配線形成が予定されている場合と、レーザスポット径内の全ての領域に配線形成が予定されている場合とで、同じ設定パターンが用いられている。一方、2種類以上の設定パターンを設定し、レーザスポット径内の一部の領域に配線形成が予定されている場合と、レーザスポット径内の全ての領域に配線形成が予定されている場合とで、異なる種類の設定パターンを用いてもよい。 In the above embodiment, only one type of setting pattern is set, and wiring formation is planned in a partial area within the laser spot diameter, and wiring formation is formed in all areas within the laser spot diameter. The same setting pattern is used in cases where is planned. On the other hand, two or more types of setting patterns are set, and wiring formation is planned in a partial area within the laser spot diameter, and wiring formation is planned in all areas within the laser spot diameter. Alternatively, different types of setting patterns may be used.
 また、上記実施例では、設定範囲が48%~65%に設定されているが、その範囲に限定されず、任意の範囲に設定することが可能である。また、設定範囲を、塗布面積率の最小値と最大値との差で示すことも可能である。この場合には、塗布面積率の最小値と最大値との差が、50%以下であることが好ましく、出来れば、40%以下であることが好ましい。さらに言えば、20%~30%以下であることが好ましい。 Further, in the above embodiment, the setting range is set to 48% to 65%, but is not limited to that range, and can be set to an arbitrary range. The setting range can also be indicated by the difference between the minimum value and the maximum value of the coating area ratio. In this case, the difference between the minimum value and the maximum value of the coating area ratio is preferably 50% or less, and more preferably 40% or less. Furthermore, it is preferably 20% to 30% or less.
 10:回路形成装置(配線形成装置)  26:制御装置  70:基板  76:インクジェットヘッド(塗布装置)  78:レーザ照射装置(照射装置)  130:樹脂積層体(支持体)  170:第1領域  172:第2領域  180:金属インク  182:金属インク  184:金属インク  190:配線(接続配線)  192:配線(電気的に接続されない配線)  194:配線(接続配線)  200:塗布部  202:焼成部 10: Circuit formation device (wiring formation device) 26: Control device 70: Substrate 76: Ink jet head (coating device) 78: Laser irradiation device (irradiation device) 130: Resin laminate (support) 170: First region 172: Second region 180: metal ink 182: metal ink 184: metal ink 190: wiring (connection wiring) 192: wiring (wiring not electrically connected) 194: wiring (connection wiring) 200: application section 202: firing section

Claims (5)

  1.  絶縁性の支持体または基板上に、金属微粒子を含有する金属含有液を塗布する塗布ステップと、
     前記金属含有液をレーザ光で焼成処理することで、配線を形成する焼成処理ステップと
     を含み、
     前記塗布ステップが、
     前記レーザ光のレーザスポット径内の面積に対する前記金属含有液の塗布面積の比率である塗布面積率が予め設定された範囲である設定範囲内となるように、前記金属含有液を塗布する配線形成方法。
    Applying a metal-containing liquid containing metal fine particles on an insulating support or substrate;
    Firing the metal-containing liquid with a laser beam to form a wiring; and
    The application step is
    Wiring formation which applies the metal-containing liquid so that the application area ratio which is a ratio of the application area of the metal-containing liquid to the area in the laser spot diameter of the laser beam falls within a preset range. Method.
  2.  前記塗布ステップが、
     前記レーザ光のレーザスポット径内の一部の領域である第1領域に、電気的に接続される配線である接続配線の形成が予定されている場合に、前記第1領域に前記接続配線に応じて前記金属含有液を塗布し、前記レーザ光のレーザスポット径内の前記第1領域以外の領域である第2領域に、前記塗布面積率が前記設定範囲内となるように設定されたデザインパターンに従って前記金属含有液を塗布し、
     前記焼成処理ステップが、
     前記第1領域に塗布された前記金属含有液をレーザ光で焼成処理することで、前記接続配線を形成し、前記第2領域に塗布された前記金属含有液をレーザ光で焼成処理することで、電気的に接続されない配線を形成する請求項1に記載の配線形成方法。
    The application step is
    When formation of a connection wiring which is a wiring to be electrically connected is planned in a first region which is a partial region within the laser spot diameter of the laser beam, the connection wiring may be formed in the first region. According to the design, the metal-containing liquid is applied, and the coating area ratio is set to fall within the setting range in the second area other than the first area within the laser spot diameter of the laser beam. Apply the metal-containing solution according to the pattern,
    The firing process step is
    The metal-containing liquid applied to the first region is subjected to a baking treatment with laser light to form the connection wiring, and the metal-containing liquid applied to the second region is subjected to a baking treatment with laser light. The method according to claim 1, wherein the wiring not electrically connected is formed.
  3.  前記塗布ステップが、
     前記レーザ光のレーザスポット径内の全ての領域に、前記接続配線の形成が予定されている場合に、前記レーザ光のレーザスポット径内の全ての領域に、前記デザインパターンに従って前記金属含有液を塗布し、
     前記焼成処理ステップが、
     前記レーザ光のレーザスポット径内の全ての領域に塗布された前記金属含有液をレーザ光で焼成処理することで、前記接続配線を形成する請求項2に記載の配線形成方法。
    The application step is
    When formation of the connection wiring is scheduled in all areas within the laser spot diameter of the laser light, the metal-containing liquid is applied in accordance with the design pattern in all areas within the laser spot diameter of the laser light Apply
    The firing process step is
    The wiring formation method according to claim 2, wherein the connection wiring is formed by baking the metal-containing liquid applied to all the regions within the laser spot diameter of the laser light with a laser light.
  4.  前記塗布ステップが、
     前記レーザ光のレーザスポット径内の全ての領域に、電気的に接続される配線である接続配線の形成が予定されている場合に、前記レーザ光のレーザスポット径内の全ての領域に、前記塗布面積率が前記設定範囲内となるように設定されたデザインパターンに従って前記金属含有液を塗布し、
     前記焼成処理ステップが、
     前記レーザ光のレーザスポット径内の全ての領域に塗布された前記金属含有液をレーザ光で焼成処理することで、前記接続配線を形成する請求項1または請求項2に記載の配線形成方法。
    The application step is
    In the case where it is planned to form a connection wiring, which is a wiring to be electrically connected, in all the regions in the laser spot diameter of the laser light, the above-mentioned in all the regions in the laser spot diameter of the laser light Applying the metal-containing liquid according to a design pattern set so that the application area ratio is within the set range;
    The firing process step is
    The wiring formation method according to claim 1 or 2, wherein the connection wiring is formed by baking the metal-containing liquid applied to the entire region within the laser spot diameter of the laser light with a laser light.
  5.  金属微粒子を含有する金属含有液を塗布する塗布装置と、
     レーザ光を照射する照射装置と、
     制御装置と
     を備え、
     前記制御装置が、
     絶縁性の支持体または基板上に前記金属含有液を、前記塗布装置により塗布する塗布部と、
     前記塗布装置により塗布された前記金属含有液に前記レーザ光を照射し、その金属含有液を焼成することで、配線を形成する焼成部と
     を含み、
     前記塗布部が、
     前記レーザ光のレーザスポット径内の面積に対する前記金属含有液の塗布面積の比率である塗布面積率が予め設定された範囲である設定範囲内となるように、前記金属含有液を塗布する配線形成装置。
    A coating device for applying a metal-containing liquid containing metal fine particles,
    An irradiation device for irradiating a laser beam;
    Equipped with a controller and
    The controller
    An application section for applying the metal-containing liquid onto the insulating support or substrate by the application apparatus;
    The metal containing liquid coated by the coating device is irradiated with the laser beam, and the metal containing liquid is fired to form a wiring.
    The application unit
    Wiring formation which applies the metal-containing liquid so that the application area ratio which is a ratio of the application area of the metal-containing liquid to the area in the laser spot diameter of the laser beam falls within a preset range. apparatus.
PCT/JP2017/028919 2017-08-09 2017-08-09 Wiring forming method and wiring forming device WO2019030850A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019535500A JP6808050B2 (en) 2017-08-09 2017-08-09 Wiring forming method and wiring forming device
PCT/JP2017/028919 WO2019030850A1 (en) 2017-08-09 2017-08-09 Wiring forming method and wiring forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028919 WO2019030850A1 (en) 2017-08-09 2017-08-09 Wiring forming method and wiring forming device

Publications (1)

Publication Number Publication Date
WO2019030850A1 true WO2019030850A1 (en) 2019-02-14

Family

ID=65271962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028919 WO2019030850A1 (en) 2017-08-09 2017-08-09 Wiring forming method and wiring forming device

Country Status (2)

Country Link
JP (1) JP6808050B2 (en)
WO (1) WO2019030850A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732659B2 (en) * 1998-08-03 2006-01-05 Ntn株式会社 Pattern correcting apparatus and correcting method
JP2006310346A (en) * 2005-04-26 2006-11-09 Seiko Epson Corp Device and method of forming functional film pattern, and electronic equipment
JP2014116315A (en) * 2007-05-18 2014-06-26 Applied Nanotech Holdings Inc Metallic ink
WO2016075822A1 (en) * 2014-11-14 2016-05-19 富士機械製造株式会社 Wiring board manufacturing method and wiring board manufacturing device
WO2017085763A1 (en) * 2015-11-16 2017-05-26 富士機械製造株式会社 Laser irradiation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3732659B2 (en) * 1998-08-03 2006-01-05 Ntn株式会社 Pattern correcting apparatus and correcting method
JP2006310346A (en) * 2005-04-26 2006-11-09 Seiko Epson Corp Device and method of forming functional film pattern, and electronic equipment
JP2014116315A (en) * 2007-05-18 2014-06-26 Applied Nanotech Holdings Inc Metallic ink
WO2016075822A1 (en) * 2014-11-14 2016-05-19 富士機械製造株式会社 Wiring board manufacturing method and wiring board manufacturing device
WO2017085763A1 (en) * 2015-11-16 2017-05-26 富士機械製造株式会社 Laser irradiation device

Also Published As

Publication number Publication date
JPWO2019030850A1 (en) 2019-12-12
JP6808050B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP6947842B2 (en) Manufacturing method of 3D laminated electronic device
JP6680878B2 (en) Circuit formation method
JP6926078B2 (en) Circuit formation method and circuit formation device
JP6533112B2 (en) Circuit formation method
WO2020012626A1 (en) Circuit formation method and circuit formation device
JP6714109B2 (en) Circuit forming method and circuit forming apparatus
WO2016189577A1 (en) Wiring forming method
JP6811770B2 (en) Circuit formation method
JP6554541B2 (en) Wiring formation method and wiring formation apparatus
JP6949751B2 (en) Via forming method for 3D laminated modeling
WO2019030850A1 (en) Wiring forming method and wiring forming device
JP6816283B2 (en) Wiring forming method and wiring forming device
JP7282906B2 (en) Component mounting method and component mounting device
JP7428470B2 (en) Circuit formation method
JP6818154B2 (en) Wiring forming method and wiring forming device
JP7250964B2 (en) CIRCUIT-FORMING APPARATUS AND CIRCUIT-FORMING METHOD
JP7411452B2 (en) Circuit formation method
WO2019123629A1 (en) Method and device for manufacturing additively manufactured electronic device
WO2019167156A1 (en) Wiring forming apparatus and wiring forming method
JPWO2016072011A1 (en) Wiring formation method
WO2021166139A1 (en) Circuit forming method
JPWO2019171531A1 (en) Information processing device
JP7075481B2 (en) Printed circuit board forming method and printed circuit board forming device
WO2021019718A1 (en) Cured resin formation method and cured resin formation device
JPWO2020079744A1 (en) Circuit formation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921126

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535500

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17921126

Country of ref document: EP

Kind code of ref document: A1