WO2021166139A1 - Circuit forming method - Google Patents

Circuit forming method Download PDF

Info

Publication number
WO2021166139A1
WO2021166139A1 PCT/JP2020/006677 JP2020006677W WO2021166139A1 WO 2021166139 A1 WO2021166139 A1 WO 2021166139A1 JP 2020006677 W JP2020006677 W JP 2020006677W WO 2021166139 A1 WO2021166139 A1 WO 2021166139A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
metal
resin
temperature
recommended
Prior art date
Application number
PCT/JP2020/006677
Other languages
French (fr)
Japanese (ja)
Inventor
亮 榊原
佑 竹内
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2020/006677 priority Critical patent/WO2021166139A1/en
Priority to JP2022501492A priority patent/JP7532495B2/en
Publication of WO2021166139A1 publication Critical patent/WO2021166139A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present invention relates to a circuit forming method for forming a circuit using a conductive fluid that develops conductivity by heating.
  • the challenge is to properly form a circuit using a conductive fluid that develops conductivity by heating.
  • the present specification describes a resin layer forming step of forming a resin layer with a curable resin and a circuit pattern of a conductive fluid that develops conductivity by heating at a predetermined temperature for a predetermined time.
  • a circuit forming method including a main heating step of heating a conductive fluid heated in the temporary heating step at the predetermined temperature for the predetermined time is disclosed.
  • the conductive fluid after heating the conductive fluid under at least one condition of a temperature lower than a predetermined temperature and a time shorter than a predetermined time, the conductive fluid is further heated at a predetermined temperature for a predetermined time. Therefore, the circuit can be formed appropriately.
  • FIG. 1 shows the circuit forming device 10.
  • the circuit forming device 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, a mounting unit 26, and a control device (see FIG. 2) 28.
  • the transfer device 20, the first modeling unit 22, the second modeling unit 24, and the mounting unit 26 are arranged on the base 29 of the circuit forming device 10.
  • the base 29 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 29 is orthogonal to the X-axis direction, and the lateral direction of the base 29 is orthogonal to both the Y-axis direction, the X-axis direction, and the Y-axis direction. The direction will be described as the Z-axis direction.
  • the transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32.
  • the X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36.
  • the X-axis slide rail 34 is arranged on the base 29 so as to extend in the X-axis direction.
  • the X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34.
  • the X-axis slide mechanism 30 has an electromagnetic motor (see FIG. 2) 38, and the X-axis slider 36 moves to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38.
  • the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52.
  • the Y-axis slide rail 50 is arranged on the base 29 so as to extend in the Y-axis direction, and is movable in the X-axis direction. Then, one end of the Y-axis slide rail 50 is connected to the X-axis slider 36.
  • the stage 52 is slidably held in the Y-axis slide rail 50 in the Y-axis direction.
  • the Y-axis slide mechanism 32 has an electromagnetic motor (see FIG. 2) 56, and the stage 52 moves to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 29 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
  • the stage 52 has a base 60, a holding device 62, and an elevating device 64.
  • the base 60 is formed in a flat plate shape, and a substrate is placed on the upper surface thereof.
  • the holding devices 62 are provided on both sides of the base 60 in the X-axis direction. Then, both edges of the substrate mounted on the base 60 in the X-axis direction are sandwiched by the holding device 62, so that the substrate is fixedly held. Further, the elevating device 64 is arranged below the base 60 and raises and lowers the base 60.
  • the first modeling unit 22 is a unit for modeling the wiring of the circuit board, and has a first printing unit 72 and a heating unit 74.
  • the first printing unit 72 has an inkjet head (see FIG. 2) 76 and a dispense head (see FIG. 2) 77.
  • the inkjet head 76 ejects metal ink linearly.
  • Metal ink is nanometer-sized metal fine particles dispersed in a solvent. Further, the surface of the metal fine particles is coated with a dispersant to prevent agglutination in a solvent.
  • the inkjet head 76 ejects metal ink from a plurality of nozzles by, for example, a piezo method using a piezoelectric element.
  • the dispense head 77 discharges the metal paste.
  • the metal paste is a resin in which micrometer-sized metal particles are dispersed in a resin that is cured by heating. By the way, the metal particles are in the form of flakes. Since the viscosity of the metal paste is relatively high as compared with the metal ink, the dispense head 77 ejects the metal paste from one nozzle having a diameter larger than the nozzle diameter of the inkjet head 76.
  • the heating unit 74 has a heater (see FIG. 2) 78.
  • the heater 78 is a device that heats the metal ink ejected by the inkjet head 76.
  • the metal ink is fired by being heated by the heater 78 to form wiring.
  • the solvent is vaporized and the protective film of the metal fine particles, that is, the dispersant is decomposed by applying energy, and the metal fine particles are brought into contact with each other or fused to be conductive. This is a phenomenon in which the rate increases.
  • the manufacturer of metal ink has announced the recommended heating temperature and heating time for metal ink (hereinafter, "recommended ink temperature" and "recommended ink time”).
  • the metal ink is suitably fired, and a wiring capable of exhibiting appropriate conductivity is formed.
  • the wiring capable of exhibiting appropriate conductivity means, for example, wiring having a predetermined resistance value.
  • the heater 78 is also a device that heats the metal paste discharged by the dispense head 77.
  • the resin of the metal paste is cured by being heated by the heater 78. At this time, in the metal paste, the cured resin shrinks, and the flake-shaped metal particles dispersed in the resin come into contact with each other. As a result, the metal paste develops conductivity.
  • the manufacturer of the metal paste also announces the recommended heating temperature and heating time of the metal paste (hereinafter, "recommended paste temperature” and "recommended paste time”).
  • the resin is suitably cured and the metal paste exhibits appropriate conductivity. By the way, when the metal paste exhibits appropriate conductivity, for example, the resistance value of the metal paste is lowered to a predetermined resistance value.
  • the second modeling unit 24 is a unit for modeling the resin layer of the circuit board, and has a second printing unit 84 and a curing unit 86.
  • the second printing unit 84 has an inkjet head (see FIG. 2) 88, and the inkjet head 88 ejects an ultraviolet curable resin.
  • the ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays.
  • the inkjet head 88 may be, for example, a piezo method using a piezoelectric element, or a thermal method in which a resin is heated to generate bubbles and discharged from a plurality of nozzles.
  • the cured portion 86 has a flattening device (see FIG. 2) 90 and an irradiation device (see FIG. 2) 92.
  • the flattening device 90 flattens the upper surface of the ultraviolet curable resin discharged by the inkjet head 88. For example, the surplus resin is scraped off by a roller or a blade while leveling the surface of the ultraviolet curable resin. Then, the thickness of the UV curable resin is made uniform.
  • the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the discharged ultraviolet curable resin with ultraviolet rays. As a result, the discharged ultraviolet curable resin is cured to form a resin layer.
  • the mounting unit 26 is a unit for mounting electronic components on a circuit board, and has a supply unit 110 and a mounting unit 112.
  • the supply unit 110 has a plurality of tape feeders (see FIG. 2) 114 that send out the taped electronic components one by one, and supplies the electronic components at the supply position.
  • the supply unit 110 is not limited to the tape feeder 114, and may be a tray-type supply device that picks up and supplies electronic components from the tray. Further, the supply unit 110 may be configured to include both a tape type and a tray type, or other supply devices.
  • the mounting unit 112 has a mounting head (see FIG. 2) 116 and a moving device (see FIG. 2) 118.
  • the mounting head 116 has a suction nozzle (not shown) for sucking and holding an electronic component (see FIG. 11) 119.
  • the suction nozzle sucks and holds electronic components by sucking air by supplying negative pressure from a positive / negative pressure supply device (not shown). Then, when a slight positive pressure is supplied from the positive / negative pressure supply device, the electronic component is separated. Further, the moving device 118 moves the mounting head 116 between the supply position of the electronic component by the tape feeder 114 and the base 60. As a result, in the mounting unit 112, the electronic components supplied from the tape feeder 114 are held by the suction nozzles, and the electronic components held by the suction nozzles are mounted on the circuit board.
  • the control device 28 includes a controller 120 and a plurality of drive circuits 122.
  • the plurality of drive circuits 122 include the electromagnetic motors 38 and 56, a holding device 62, an elevating device 64, an inkjet head 76, a dispense head 77, a heater 78, an inkjet head 88, a flattening device 90, an irradiation device 92, and a tape feeder 114. It is connected to the mounting head 116 and the moving device 118.
  • the controller 120 includes a CPU, a ROM, a RAM, and the like, and is mainly a computer, and is connected to a plurality of drive circuits 122. As a result, the operation of the transfer device 20, the first modeling unit 22, the second modeling unit 24, and the mounting unit 26 is controlled by the controller 120.
  • a resin laminate is formed on the rough surface film (see FIG. 3) 70 laid on the upper surface of the base 60 by the above-described configuration, and a metal is formed on the upper surface of the resin laminate according to the circuit pattern.
  • Ink is printed.
  • the metal ink is made conductive by heating to form wiring. Further, in order to establish continuity with the wiring, the metal paste is discharged onto the wiring and the metal paste is heated to make the metal paste conductive. Then, the circuit board is formed by arranging the electronic components so as to be conductive with the wiring.
  • the circuit board is formed in the circuit forming apparatus 10, but the circuit board is formed by repeatedly expanding and contracting the resin laminate, the base 60, and the like due to heating of the metal ink and the metal paste at a high temperature.
  • the substrate may float from the base 60. That is, when the resin laminate, the base 60, etc. repeat expansion and contraction, the difference in the coefficient of thermal expansion of the resin laminate, the base 60, etc. causes stress on the contact surface between the resin laminate, the base 60, and the like. This may cause the resin laminate to float from the base 60 when the circuit board is formed.
  • a heat-sensitive release film 71 is first laid on the upper surface of the base 60 of the stage 52, and a rough surface film 70 is laid on the upper surface of the heat-sensitive release film 71. Since the heat-sensitive release film 71 has adhesiveness, the rough surface film 70 can be appropriately adhered to the base 60. Further, the surface of the rough surface film 70 is a rough surface that is not smooth and rough, and the circuit board is formed on the rough surface film 70 to prevent the circuit board from being displaced when the circuit board is formed. Will be done.
  • the heat-sensitive release film 71 Since the adhesiveness of the heat-sensitive release film 71 is reduced by heating, the heat-sensitive release film 71 is laid on the upper surface of the base 60 to form a circuit board, and then the heat-sensitive release film 71 is heated. The formed circuit board can be easily removed from the base 60.
  • the stage 52 is moved below the second modeling unit 24.
  • the resin laminate 130 is formed on the rough surface film 70.
  • the resin laminate 130 has a cavity 132, and is formed by repeatedly discharging the ultraviolet-curable resin from the inkjet head 88 and irradiating the discharged ultraviolet-curable resin with ultraviolet rays by the irradiation device 92. ..
  • the inkjet head 88 ejects the ultraviolet curable resin into a thin film on the upper surface of the rough surface film 70.
  • the inkjet head 88 discharges the ultraviolet curable resin so that a predetermined portion on the upper surface of the rough surface film 70 is exposed.
  • the ultraviolet curable resin is flattened by the flattening device 90 so that the film thickness of the ultraviolet curable resin becomes uniform in the cured portion 86.
  • the irradiation device 92 irradiates the thin film ultraviolet curable resin with ultraviolet rays. As a result, the resin thin film layer 134 is formed on the rough surface film 70.
  • the inkjet head 88 ejects the ultraviolet curable resin into a thin film only on the upper portion of the thin film layer 134. That is, the inkjet head 88 ejects the ultraviolet curable resin in the form of a thin film on the thin film layer 134 so that a predetermined portion on the upper surface of the rough surface film 70 is exposed. Then, the thin film-shaped ultraviolet curable resin is flattened by the flattening device 90, and the irradiation device 92 irradiates the ultraviolet curable resin discharged in the thin film form with ultraviolet rays, so that the thin film layer 134 is placed on the thin film layer 134. Are laminated.
  • the ejection of the ultraviolet curable resin onto the thin film layer 134 and the irradiation of ultraviolet rays are repeated, and the plurality of thin film layers 134 are laminated to form the resin laminate 130 having the cavity 132. ..
  • the cavity 132 penetrates the resin laminate 130 in the vertical direction.
  • the stage 52 is moved below the first modeling unit 22. Then, in the first printing unit 72 of the first modeling unit 22, as shown in FIG. 5, the inkjet head 76 linearly ejects the metal ink 136 into the upper surface of the resin laminate 130 and the inside of the cavity 132. At this time, the inkjet head 76 ejects the metal ink 136 from the inside of one cavity 132 to the inside of the cavity 132 adjacent to the cavity 132 via the upper surface of the resin laminate 130. That is, the metal ink 136 is ejected so as to connect the two adjacent cavities 132.
  • metal ink 136 is discharged so as to connect two adjacent cavities 132 of the four cavities 132, and the remaining two adjacent cavities are connected.
  • Metal ink 136 is ejected so as to connect 132.
  • the heating unit 74 of the first modeling unit 22 the metal ink 136 is heated by the heater 78.
  • the metal ink 136 is fired and the wiring 138 is formed. That is, two wires 138 are formed, one is a wire 138a connecting two adjacent cavities 132 among the four cavities 132, and the other is a wire 138b connecting the remaining two adjacent cavities 132.
  • the recommended ink temperature is 110 to 150 degrees
  • the recommended ink time is 40 to 80 minutes.
  • the heater 78 heats the metal ink 136 at 110 to 150 degrees for 40 to 80 minutes.
  • a wiring 138 capable of exhibiting appropriate conductivity, for example, a wiring 138 having a volume resistance value of about 4 to 8 ( ⁇ ⁇ cm) is formed.
  • the dispense head 77 discharges the metal paste 140 into the cavity 132 as shown in FIG. At this time, the dispense head 77 discharges the metal paste 140 so as to come into contact with the wiring 138 inside the cavity 132. Then, in the heating unit 74 of the first modeling unit 22, the metal paste 140 is heated by the heater 78. As a result, the metal paste 140 is cured, and the metal paste 140 becomes conductive.
  • the recommended paste temperature is 110 to 150 degrees, and the recommended paste time is 40 to 80 minutes. Therefore, conventionally, the heater 78 heats the metal paste 140 at 110 to 150 degrees for 40 to 80 minutes. As a result, the resin is suitably cured, and the metal paste 140 exhibits appropriate conductivity.
  • the volume resistance value of the metal paste 140 is about 4 to 8 ( ⁇ ⁇ cm).
  • the stage 52 is moved below the second modeling unit 24.
  • the resin laminate 150 is formed on the resin laminate 130.
  • the resin laminate 150 is formed so as to fill the inside of the cavity 132 of the resin laminate 130.
  • the resin laminate 150 also has a cavity 152, and a part of the wiring 138 formed on the upper surface of the resin laminate 130 is exposed in the cavity 152.
  • Two cavities 152a and b are formed in the resin laminate 150, and a part of the wiring 138a is exposed in one cavity 152a and a part of the wiring 138b is exposed in the other cavity 152b. doing.
  • the resin laminate 150 is formed by repeating the ejection of the ultraviolet curable resin by the inkjet head 88 and the irradiation of ultraviolet rays by the irradiation device 92, similarly to the resin laminate 130.
  • the stage 52 is moved below the first modeling unit 22.
  • the inkjet head 76 applies the metal ink 160 from the wiring 138 exposed inside the cavity 152 to the upper surface of the resin laminate 150. Discharge linearly.
  • the metal ink 160a extending from the wiring 138a inside the cavity 152a to the upper surface of the resin laminate 150 and the metal ink 160b extending from the wiring 138b inside the cavity 152b to the upper surface of the resin laminate 150 are close to each other. It is discharged, but not in contact.
  • the heating unit 74 of the first modeling unit 22 the metal ink 160 is heated by the heater 78.
  • the heater 78 heats the metal ink 160 at the recommended ink temperature (110 to 150 degrees) for the recommended ink time (40 to 80 minutes).
  • a wiring 162 capable of exhibiting appropriate conductivity for example, a wiring 162 having a volume resistance value of about 4 to 8 ( ⁇ ⁇ cm) is formed.
  • the stage 52 is moved below the second modeling unit 24.
  • the resin laminate 170 is formed on the resin laminate 150.
  • the resin laminate 170 is made so as to fill the inside of the cavity 152 of the resin laminate 150.
  • the resin laminate 170 also has a cavity 172, and in the cavity 172, the ends of the two wirings 162a and 162 formed on the upper surface of the resin laminate 170 are exposed.
  • the resin laminate 170 is also formed by repeating the ejection of the ultraviolet curable resin by the inkjet head 88 and the irradiation of ultraviolet rays by the irradiation device 92, similarly to the resin laminates 130 and 150.
  • the stage 52 is moved below the first modeling unit 22.
  • the dispense head 77 discharges the metal paste 180 into the cavity 172 as shown in FIG.
  • the dispense head 77 discharges the metal paste 180 to two places inside the cavity 172, one above the end of the wiring 162a and the other above the end of the wiring 162b.
  • the stage 52 is moved below the mounting unit 26.
  • the electronic component 119 is supplied by the tape feeder 114, and the electronic component 119 is held by the suction nozzle of the mounting head 116.
  • the electronic component 119 is composed of a component body 182 and two electrodes 184 arranged on the lower surface of the component body 182.
  • the mounting head 116 is moved by the moving device 118, and the electronic component 119 held by the suction nozzle is mounted on the upper surface of the resin laminate 150 inside the cavity 172.
  • the electronic component 119 is mounted on the upper surface of the resin laminate 150 so that the electrode 184 of the electronic component 119 comes into contact with the metal paste 180 discharged onto the wiring 162.
  • the stage 52 is moved below the first modeling unit 22.
  • the heating unit 74 of the first modeling unit 22 the metal paste 180 is heated by the heater 78.
  • the heater 78 heats the metal paste 180 at the recommended paste temperature (110 to 150 degrees) for the recommended paste time (40 to 80 minutes).
  • the metal paste 180 exhibits appropriate conductivity, and for example, the deposition resistance value of the metal paste 180 is about 4 to 8 ( ⁇ ⁇ cm).
  • the three resin laminates 130, 150, and 170 are laminated, and the resin laminates are conducted by the wirings 138 and 162, and the electronic component 119 is conducted through the wiring 162 to form the circuit board 190. Will be done.
  • the heat-sensitive release film 71 is heated by the heater 78 in order to remove the circuit board 190 from the base 60.
  • the recommended temperature and the recommended heating time for reducing the adhesiveness of the heat-sensitive release film 71 are the same temperature and time as those of the metal ink and the metal paste. Therefore, the heater 78 heats the heat-sensitive release film 71 at 110 to 150 degrees for 40 to 80 minutes.
  • the adhesiveness of the heat-sensitive release film 71 is reduced, and as shown in FIG. 12, the circuit board 190 can be easily peeled off from the heat-sensitive release film 71 together with the rough surface film 70. Since the rough surface film 70 does not originally have adhesiveness, it can be easily peeled off from the circuit board 190.
  • the temperature of each of the metal ink 136, the metal paste 140, the metal ink 160, the metal paste 180, and the heat-sensitive release film 71 during heating is 110 to 150 degrees. Heat for 40-80 minutes. That is, each of the five steps is heated at a high temperature for a long time. Further, after each heating step, a cooling step is also performed for a certain period of time. By repeatedly executing the heating step at a high temperature for a long time and the cooling step in this way, there is a possibility that the resin laminate 130 may be lifted from the base 60 at the time of forming the circuit board. In addition, there is a possibility that the modeled object such as the resin laminate 130 may be warped. Furthermore, a large stress is applied to a modeled object such as the resin laminate 130 due to the heating process at a high temperature and for a long time.
  • the heating temperature by the heater 78 is lowered and the heating time is shortened. That is, each of the metal ink 136, the metal paste 140, the metal ink 160, and the metal paste 180 is heated at a temperature lower than the recommended temperature for a time shorter than the recommended time. Then, when the heat-sensitive release film 71 is heated, the metal ink 136, the metal paste 140, the metal ink 160, the metal paste 180, and the heat-sensitive release film 71 are heated together by heating at the recommended temperature for the recommended time. There is.
  • a rough surface film 70 is laid on the upper surface of the base 60 via a heat-sensitive release film 71, as in the conventional method.
  • a resin laminate 130 is formed on the upper surface of the rough surface film 70, and the metal ink 136 is discharged so as to connect the two cavities 132. Then, the metal ink 136 is heated, but at a temperature of about 35 to 90% of the recommended ink temperature, for example, about 70 to 100 degrees, about 35 to 90% of the recommended ink time, for example, about 5 to 30 minutes. For hours, the metal ink 136 is heated.
  • the metal ink 136 when the metal ink 136 is heated at a temperature lower than the ink recommended temperature and for a time shorter than the ink recommended time, the metal ink 136 is fired to some extent, so that it becomes a wiring 138, but the wiring 138 becomes a wiring 138.
  • Wiring 138 that does not exhibit appropriate conductivity and has a volume resistance value of 10 ( ⁇ ⁇ cm) or more is formed, for example.
  • the metal paste 140 is discharged into the cavity 132 of the resin laminate 130. Then, the metal paste 140 is heated, but at a temperature of about 35 to 90% of the recommended paste temperature, for example, about 70 to 100 degrees, about 35 to 90% of the recommended paste time, for example, about 5 to 30 minutes. For hours, the metal paste 140 is heated. Thus, when the metal paste 140 is heated at a temperature lower than the recommended paste temperature for a time shorter than the recommended paste time, the metal paste 140 is cured to some extent and becomes conductive, but the metal paste 140 is suitable. It does not exhibit conductivity, and for example, the volume resistance value is 10 ( ⁇ ⁇ cm) or more.
  • the resin laminate 150 is produced on the resin laminate 130 in the same manner as in the conventional method.
  • the metal ink 160 is discharged from the wiring 138 exposed inside the cavity 152 of the resin laminate 150 to the upper surface of the resin laminate 150.
  • the metal ink 160 is heated.
  • the metal ink 160 also has an ink recommended time of 35 at a temperature of about 35 to 90% of the recommended ink temperature, for example, about 70 to 100 degrees. It is heated for about 90%, for example, about 5 to 30 minutes.
  • the metal ink 160 is fired to some extent, so that it becomes a wiring 162, but the wiring 162 also does not exhibit appropriate conductivity, for example, a wiring having a volume resistance value of 10 ( ⁇ ⁇ cm) or more. Become.
  • a resin laminate 170 is produced on the resin laminate 150 in the same manner as in the conventional method.
  • the metal paste 180 is discharged to the end of the wiring 162.
  • the electronic component 119 is mounted on the upper surface of the resin laminate 150 so that the electrode 184 of the electronic component 119 comes into contact with the metal paste 180 discharged onto the wiring 162.
  • the metal paste 180 is heated, and like the metal paste 140, the metal paste 180 also has a paste recommended time of 35 to 90% at a temperature of about 35 to 90% of the recommended paste temperature, for example, about 70 to 100 degrees. It is heated for about 90%, for example, about 5 to 30 minutes.
  • the metal paste 180 is cured to some extent and becomes conductive, but the metal paste 180 does not exhibit appropriate conductivity, and for example, the volume resistance value becomes 10 ( ⁇ ⁇ cm) or more.
  • the heat-sensitive release film 71 is heated at 110 to 150 degrees for 40 to 80 minutes, as in the conventional method.
  • the circuit board 190 is removed from the base 60 together with the rough surface film 70.
  • the heat-sensitive release film 71 is heated, not only the heat-sensitive release film 71 but also the wiring 138, the metal paste 140, the wiring 162, and the metal paste 180 are heated at 110 to 150 degrees for 40 to 80 minutes.
  • the wirings 138 and 162 are sufficiently fired to become wirings capable of exhibiting appropriate conductivity, for example, wirings having a volume resistance value of about 4 to 8 ( ⁇ ⁇ cm).
  • the metal pastes 140 and 180 are sufficiently cured and exhibit appropriate conductivity, for example, the volume resistance values of the metal paste 140 and the metal paste 180 become 4 to 8 ( ⁇ ⁇ cm).
  • each of the metal inks 136, 160 and the metal pastes 140, 180 is heated at a temperature lower than the recommended temperature for a shorter time than the recommended time, so that the circuit board 190 floats from the base 60. It is possible to prevent the resin laminate 130 and the like from warping and reduce the stress on the resin laminate 130 and the like. In addition, heating at a low temperature makes it possible to suppress the energy required for heating. Furthermore, by shortening the heating time, it is possible to shorten the tact time.
  • each of the metal ink and the metal paste is heated at the recommended temperature for the recommended time, and the volume resistance values of the metal ink and the metal paste during the molding of the circuit board 190 are shown in the figure.
  • it is set to 6 ( ⁇ ⁇ cm).
  • the heat-sensitive release film 71 is heated and the circuit board 190 is removed from the base 60, so that the volume resistance value of the metal ink and the metal paste when the circuit board 190 is completed is also, for example, 6 ( ⁇ ⁇ cm). It is said that.
  • each of the metal ink and the metal paste is heated at a temperature lower than the recommended temperature for a shorter time than the recommended time, so that the volume resistance value during the molding of the circuit board 190 is increased. Is, for example, 12 ( ⁇ ⁇ cm). Then, the heat-sensitive release film 71 is heated at the recommended temperature for the recommended time, and the circuit board 190 is removed from the base 60, so that the volume resistance value when the circuit board 190 is completed is, for example, 6 ( ⁇ ⁇ cm). Drops to.
  • the metal ink and the metal paste are heated at a temperature lower than the recommended temperature for a shorter time than the recommended time, the metal ink together with the heat-sensitive release film 71 is heated when the heat-sensitive release film 71 is heated. And when the metal paste is heated at the recommended temperature for the recommended time, the volume resistance value becomes 6 ( ⁇ ⁇ cm). That is, the metal ink and the metal paste do not exhibit appropriate conductivity during the molding of the circuit board 190, but the metal ink and the metal paste exhibit appropriate conductivity when the circuit board 190 is completed. This prevents the circuit board 190 from floating from the base 60 and warping of the resin laminate 130, etc., while ensuring appropriate modeling of the circuit board 190, and reduces stress on the resin laminate 130, etc. Is possible.
  • the controller 120 of the control device 28 has a laminate forming unit 200, a fluid discharge unit 202, a temporary heating unit 204, and a main heating unit 206.
  • the laminate forming portion 200 is a functional portion for forming the resin laminates 130, 150, 170.
  • the fluid discharge unit 202 is a functional unit for discharging metal ink and metal paste.
  • the temporary heating unit 204 is a functional unit for heating the metal ink and the metal paste at a temperature lower than the recommended temperature for a shorter time than the recommended time.
  • the heating unit 206 is a functional unit for heating the metal ink and the metal paste at a recommended temperature for a recommended time.
  • the thermal release film 71 is an example of the film.
  • the resin laminates 130, 150, and 170 are examples of the resin layer.
  • the metal inks 136 and 160 are examples of conductive fluids.
  • the metal pastes 140 and 180 are examples of conductive fluids.
  • the step executed by the laminate forming unit 200 is an example of the resin layer forming step.
  • the step executed by the fluid discharge unit 202 is an example of a coating step.
  • the step executed by the temporary heating unit 204 is an example of the temporary heating step.
  • the step executed by the main heating unit 206 is an example of the main heating step.
  • the present invention is not limited to the above embodiment, and can be implemented in various modes with various modifications and improvements based on the knowledge of those skilled in the art.
  • the metal ink and the metal paste are heated at a temperature lower than the recommended temperature for a shorter time than the recommended time, but at least one of reduction of the heating temperature and shortening of the heating time is performed. Just do it. That is, the metal ink and the metal paste may be heated at a temperature lower than the recommended temperature for a recommended time, and the metal ink and the metal paste may be heated at a recommended temperature for a time shorter than the recommended time.
  • the metal ink and the metal paste are heated together with the heat-sensitive release film 71 at the recommended temperature for the recommended time, but in various heating steps, the metal ink and the metal paste are heated.
  • the metal paste may be heated at the recommended temperature for the recommended time.
  • the heating step at the recommended temperature for the recommended time is preferably performed in the final heating step.
  • the metal paste 180 may be heated at the recommended temperature for the recommended time in the heating step of the metal paste 180.
  • the metal ink and the metal paste are heated by the heater 78, but the metal ink and the metal paste may be heated by irradiation with a laser beam or the like.
  • the metal pastes 140 and 180 are discharged to the resin laminate 130 by the dispense head 77, but the metal pastes 140 and 180 may be transferred to the resin laminate 130 by a stamp or the like. Further, the metal ink or the metal paste may be printed on the resin laminate 130 by screen printing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

This circuit forming method includes: a resin layer forming step for forming a resin layer from a curable resin; an application step for applying, in accordance with a circuit pattern, a conductive fluid which expresses conductivity through heating at a prescribed temperature for a prescribed time period; a temporary heating step for heating the conductive fluid applied in the application step under the conditions of a temperature lower than the prescribed temperature and/or a time period shorter than the prescribed time period; and a main heating step for heating the conductive fluid, having been heated in the temporary heating step, at the prescribed temperature for the prescribed time period.

Description

回路形成方法Circuit formation method
 本発明は、加熱により導電性を発現する導電性流体を用いて、回路を形成する回路形成方法に関する。 The present invention relates to a circuit forming method for forming a circuit using a conductive fluid that develops conductivity by heating.
 下記特許文献に記載されているように、加熱により導電性を発現する導電性流体を用いて、回路を形成する技術が開発されている。 As described in the following patent documents, a technique for forming a circuit has been developed using a conductive fluid that develops conductivity by heating.
国際公開第2016/042657号International Publication No. 2016/042657
 加熱により導電性を発現する導電性流体を用いて、回路を適切に形成することを課題とする。 The challenge is to properly form a circuit using a conductive fluid that develops conductivity by heating.
 上記課題を解決するために、本明細書は、硬化性樹脂により樹脂層を形成する樹脂層形成工程と、所定温度で所定時間、加熱することで導電性を発現する導電性流体を、回路パターンに応じて塗布する塗布工程と、前記塗布工程において塗布された導電性流体を、前記所定温度より低い温度と、前記所定時間より短い時間との少なくとも一方の条件下で加熱する仮加熱工程と、前記仮加熱工程において加熱された導電性流体を、前記所定温度で前記所定時間、加熱する本加熱工程とを含む回路形成方法を開示する。 In order to solve the above problems, the present specification describes a resin layer forming step of forming a resin layer with a curable resin and a circuit pattern of a conductive fluid that develops conductivity by heating at a predetermined temperature for a predetermined time. A coating step of coating according to the above, a temporary heating step of heating the conductive fluid applied in the coating step under at least one condition of a temperature lower than the predetermined temperature and a time shorter than the predetermined time. A circuit forming method including a main heating step of heating a conductive fluid heated in the temporary heating step at the predetermined temperature for the predetermined time is disclosed.
 本開示によれば、導電性流体を、所定温度より低い温度と、所定時間より短い時間との少なくとも一方の条件下で加熱した後に、さらに、導電性流体を、所定温度で所定時間、加熱することで、回路を適切に形成することができる。 According to the present disclosure, after heating the conductive fluid under at least one condition of a temperature lower than a predetermined temperature and a time shorter than a predetermined time, the conductive fluid is further heated at a predetermined temperature for a predetermined time. Therefore, the circuit can be formed appropriately.
回路形成装置を示す図である。It is a figure which shows the circuit forming apparatus. 制御装置を示すブロック図である。It is a block diagram which shows the control device. 感熱剥離フィルムを介して粗面フィルムが敷かれた基台を示す断面図である。It is sectional drawing which shows the base on which the rough surface film was laid through the thermal release film. 樹脂積層体が形成された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which the resin laminate is formed. 樹脂積層体の上に配線が形成された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which the wiring is formed on the resin laminate. 樹脂積層体のキャビティに金属ペーストが吐出された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which the metal paste was discharged into the cavity of the resin laminate. 樹脂積層体の上に樹脂積層体が積層された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which the resin laminate is laminated on the resin laminate. 樹脂積層体の上に配線が形成された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which the wiring is formed on the resin laminate. 樹脂積層体の上に樹脂積層体が積層された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which the resin laminate is laminated on the resin laminate. 樹脂積層体の上に金属ペーストが吐出された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which the metal paste was discharged on the resin laminate. 電子部品が装着された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which the electronic component is attached. 基台から取り外された状態の回路を示す断面図である。It is sectional drawing which shows the circuit in the state which was removed from the base. 従来の加熱条件での体積抵抗率と新条件での体積抵抗率とを示す図である。It is a figure which shows the volume resistivity under the conventional heating condition and the volume resistivity under the new condition.
 図1に回路形成装置10を示す。回路形成装置10は、搬送装置20と、第1造形ユニット22と、第2造形ユニット24と、装着ユニット26と、制御装置(図2参照)28とを備える。それら搬送装置20と第1造形ユニット22と第2造形ユニット24と装着ユニット26とは、回路形成装置10のベース29の上に配置されている。ベース29は、概して長方形状をなしており、以下の説明では、ベース29の長手方向をX軸方向、ベース29の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。 FIG. 1 shows the circuit forming device 10. The circuit forming device 10 includes a transport device 20, a first modeling unit 22, a second modeling unit 24, a mounting unit 26, and a control device (see FIG. 2) 28. The transfer device 20, the first modeling unit 22, the second modeling unit 24, and the mounting unit 26 are arranged on the base 29 of the circuit forming device 10. The base 29 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 29 is orthogonal to the X-axis direction, and the lateral direction of the base 29 is orthogonal to both the Y-axis direction, the X-axis direction, and the Y-axis direction. The direction will be described as the Z-axis direction.
 搬送装置20は、X軸スライド機構30と、Y軸スライド機構32とを備えている。そのX軸スライド機構30は、X軸スライドレール34とX軸スライダ36とを有している。X軸スライドレール34は、X軸方向に延びるように、ベース29の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ(図2参照)38を有しており、電磁モータ38の駆動により、X軸スライダ36がX軸方向の任意の位置に移動する。また、Y軸スライド機構32は、Y軸スライドレール50とステージ52とを有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース29の上に配設されており、X軸方向に移動可能とされている。そして、Y軸スライドレール50の一端部が、X軸スライダ36に連結されている。そのY軸スライドレール50には、ステージ52が、Y軸方向にスライド可能に保持されている。さらに、Y軸スライド機構32は、電磁モータ(図2参照)56を有しており、電磁モータ56の駆動により、ステージ52がY軸方向の任意の位置に移動する。これにより、ステージ52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース29上の任意の位置に移動する。 The transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32. The X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36. The X-axis slide rail 34 is arranged on the base 29 so as to extend in the X-axis direction. The X-axis slider 36 is slidably held in the X-axis direction by the X-axis slide rail 34. Further, the X-axis slide mechanism 30 has an electromagnetic motor (see FIG. 2) 38, and the X-axis slider 36 moves to an arbitrary position in the X-axis direction by driving the electromagnetic motor 38. Further, the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a stage 52. The Y-axis slide rail 50 is arranged on the base 29 so as to extend in the Y-axis direction, and is movable in the X-axis direction. Then, one end of the Y-axis slide rail 50 is connected to the X-axis slider 36. The stage 52 is slidably held in the Y-axis slide rail 50 in the Y-axis direction. Further, the Y-axis slide mechanism 32 has an electromagnetic motor (see FIG. 2) 56, and the stage 52 moves to an arbitrary position in the Y-axis direction by driving the electromagnetic motor 56. As a result, the stage 52 moves to an arbitrary position on the base 29 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32.
 ステージ52は、基台60と、保持装置62と、昇降装置64とを有している。基台60は、平板状に形成され、上面に基板が載置される。保持装置62は、基台60のX軸方向の両側部に設けられている。そして、基台60に載置された基板のX軸方向の両縁部が、保持装置62によって挟まれることで、基板が固定的に保持される。また、昇降装置64は、基台60の下方に配設されており、基台60を昇降させる。 The stage 52 has a base 60, a holding device 62, and an elevating device 64. The base 60 is formed in a flat plate shape, and a substrate is placed on the upper surface thereof. The holding devices 62 are provided on both sides of the base 60 in the X-axis direction. Then, both edges of the substrate mounted on the base 60 in the X-axis direction are sandwiched by the holding device 62, so that the substrate is fixedly held. Further, the elevating device 64 is arranged below the base 60 and raises and lowers the base 60.
 第1造形ユニット22は、回路基板の配線を造形するユニットであり、第1印刷部72と、加熱部74とを有している。第1印刷部72は、インクジェットヘッド(図2参照)76とディスペンスヘッド(図2参照)77とを有している。インクジェットヘッド76が金属インクを線状に吐出する。金属インクは、ナノメートルサイズの金属の微粒子が溶剤中に分散されたものである。また、金属微粒子の表面は分散剤によりコーティングされており、溶剤中での凝集が防止されている。なお、インクジェットヘッド76は、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから金属インクを吐出する。 The first modeling unit 22 is a unit for modeling the wiring of the circuit board, and has a first printing unit 72 and a heating unit 74. The first printing unit 72 has an inkjet head (see FIG. 2) 76 and a dispense head (see FIG. 2) 77. The inkjet head 76 ejects metal ink linearly. Metal ink is nanometer-sized metal fine particles dispersed in a solvent. Further, the surface of the metal fine particles is coated with a dispersant to prevent agglutination in a solvent. The inkjet head 76 ejects metal ink from a plurality of nozzles by, for example, a piezo method using a piezoelectric element.
 また、ディスペンスヘッド77は金属ペーストを吐出する。金属ペーストは、加熱により硬化する樹脂に、マイクロメートルサイズの金属粒子が分散されたものである。ちなみに、金属粒子は、フレーク状とされている。なお、金属ペーストの粘度は、金属インクと比較して、比較的高いため、ディスペンスヘッド77は、インクジェットヘッド76のノズルの径より大きな径の1個のノズルから金属ペーストを吐出する。 In addition, the dispense head 77 discharges the metal paste. The metal paste is a resin in which micrometer-sized metal particles are dispersed in a resin that is cured by heating. By the way, the metal particles are in the form of flakes. Since the viscosity of the metal paste is relatively high as compared with the metal ink, the dispense head 77 ejects the metal paste from one nozzle having a diameter larger than the nozzle diameter of the inkjet head 76.
 加熱部74は、ヒータ(図2参照)78を有している。ヒータ78は、インクジェットヘッド76により吐出された金属インクを加熱する装置である。金属インクは、ヒータ78により加熱されることで焼成し、配線が形成される。なお、金属インクの焼成とは、エネルギーを付与することによって、溶媒の気化や金属微粒子の保護膜、つまり、分散剤の分解等が行われ、金属微粒子が接触または融着をすることで、導電率が高くなる現象である。そして、金属インクを焼成することで、金属製の配線が形成される。なお、金属インクのメーカが、金属インクの推奨の加熱温度及び加熱時間(以下、「インク推奨温度」及び「インク推奨時間」)を公表しており、インク推奨温度でインク推奨時間、金属インクを加熱することで、金属インクが好適に焼成し、適切な導電性を発現可能な配線が形成される。ちなみに、適切な導電性を発現可能な配線とは、例えば、所定の抵抗値の配線等を意味する。 The heating unit 74 has a heater (see FIG. 2) 78. The heater 78 is a device that heats the metal ink ejected by the inkjet head 76. The metal ink is fired by being heated by the heater 78 to form wiring. In the firing of metal ink, the solvent is vaporized and the protective film of the metal fine particles, that is, the dispersant is decomposed by applying energy, and the metal fine particles are brought into contact with each other or fused to be conductive. This is a phenomenon in which the rate increases. Then, by firing the metal ink, a metal wiring is formed. The manufacturer of metal ink has announced the recommended heating temperature and heating time for metal ink (hereinafter, "recommended ink temperature" and "recommended ink time"). By heating, the metal ink is suitably fired, and a wiring capable of exhibiting appropriate conductivity is formed. Incidentally, the wiring capable of exhibiting appropriate conductivity means, for example, wiring having a predetermined resistance value.
 また、ヒータ78は、ディスペンスヘッド77により吐出された金属ペーストをも加熱する装置である。金属ペーストは、ヒータ78により加熱されることで、樹脂が硬化する。この際、金属ペーストでは、硬化した樹脂が収縮し、その樹脂に分散されたフレーク状の金属粒子が互いに接触する。これにより、金属ペーストが導電性を発現する。なお、金属ペーストのメーカも、金属ペーストの推奨の加熱温度及び加熱時間(以下、「ペースト推奨温度」及び「ペースト推奨時間」)を公表しており、ペースト推奨温度でペースト推奨時間、金属ペーストを加熱することで、樹脂が好適に硬化し、金属ペーストが適切な導電性を発現する。ちなみに、金属ペーストが適切な導電性を発現することで、例えば、金属ペーストの抵抗値が所定の抵抗値まで低くなる。 The heater 78 is also a device that heats the metal paste discharged by the dispense head 77. The resin of the metal paste is cured by being heated by the heater 78. At this time, in the metal paste, the cured resin shrinks, and the flake-shaped metal particles dispersed in the resin come into contact with each other. As a result, the metal paste develops conductivity. The manufacturer of the metal paste also announces the recommended heating temperature and heating time of the metal paste (hereinafter, "recommended paste temperature" and "recommended paste time"). Upon heating, the resin is suitably cured and the metal paste exhibits appropriate conductivity. By the way, when the metal paste exhibits appropriate conductivity, for example, the resistance value of the metal paste is lowered to a predetermined resistance value.
 また、第2造形ユニット24は、回路基板の樹脂層を造形するユニットであり、第2印刷部84と、硬化部86とを有している。第2印刷部84は、インクジェットヘッド(図2参照)88を有しており、インクジェットヘッド88は紫外線硬化樹脂を吐出する。紫外線硬化樹脂は、紫外線の照射により硬化する樹脂である。なお、インクジェットヘッド88は、例えば、圧電素子を用いたピエゾ方式でもよく、樹脂を加熱して気泡を発生させ複数のノズルから吐出するサーマル方式でもよい。 Further, the second modeling unit 24 is a unit for modeling the resin layer of the circuit board, and has a second printing unit 84 and a curing unit 86. The second printing unit 84 has an inkjet head (see FIG. 2) 88, and the inkjet head 88 ejects an ultraviolet curable resin. The ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays. The inkjet head 88 may be, for example, a piezo method using a piezoelectric element, or a thermal method in which a resin is heated to generate bubbles and discharged from a plurality of nozzles.
 硬化部86は、平坦化装置(図2参照)90と照射装置(図2参照)92とを有している。平坦化装置90は、インクジェットヘッド88によって吐出された紫外線硬化樹脂の上面を平坦化するものであり、例えば、紫外線硬化樹脂の表面を均しながら余剰分の樹脂を、ローラもしくはブレードによって掻き取ることで、紫外線硬化樹脂の厚みを均一させる。また、照射装置92は、光源として水銀ランプもしくはLEDを備えており、吐出された紫外線硬化樹脂に紫外線を照射する。これにより、吐出された紫外線硬化樹脂が硬化し、樹脂層が形成される。 The cured portion 86 has a flattening device (see FIG. 2) 90 and an irradiation device (see FIG. 2) 92. The flattening device 90 flattens the upper surface of the ultraviolet curable resin discharged by the inkjet head 88. For example, the surplus resin is scraped off by a roller or a blade while leveling the surface of the ultraviolet curable resin. Then, the thickness of the UV curable resin is made uniform. Further, the irradiation device 92 includes a mercury lamp or an LED as a light source, and irradiates the discharged ultraviolet curable resin with ultraviolet rays. As a result, the discharged ultraviolet curable resin is cured to form a resin layer.
 また、装着ユニット26は、回路基板に電子部品を装着するユニットであり、供給部110と、装着部112とを有している。供給部110は、テーピング化された電子部品を1つずつ送り出すテープフィーダ(図2参照)114を複数有しており、供給位置において、電子部品を供給する。なお、供給部110は、テープフィーダ114に限らず、トレイから電子部品をピックアップして供給するトレイ型の供給装置でもよい。また、供給部110は、テープ型とトレイ型との両方、あるいはそれ以外の供給装置を備えた構成でもよい。 Further, the mounting unit 26 is a unit for mounting electronic components on a circuit board, and has a supply unit 110 and a mounting unit 112. The supply unit 110 has a plurality of tape feeders (see FIG. 2) 114 that send out the taped electronic components one by one, and supplies the electronic components at the supply position. The supply unit 110 is not limited to the tape feeder 114, and may be a tray-type supply device that picks up and supplies electronic components from the tray. Further, the supply unit 110 may be configured to include both a tape type and a tray type, or other supply devices.
 装着部112は、装着ヘッド(図2参照)116と、移動装置(図2参照)118とを有している。装着ヘッド116は、電子部品(図11参照)119を吸着保持するための吸着ノズル(図示省略)を有する。吸着ノズルは、正負圧供給装置(図示省略)から負圧が供給されることで、エアの吸引により電子部品を吸着保持する。そして、正負圧供給装置から僅かな正圧が供給されることで、電子部品を離脱する。また、移動装置118は、テープフィーダ114による電子部品の供給位置と、基台60との間で、装着ヘッド116を移動させる。これにより、装着部112では、テープフィーダ114から供給された電子部品が、吸着ノズルにより保持され、その吸着ノズルによって保持された電子部品が、回路基板に装着される。 The mounting unit 112 has a mounting head (see FIG. 2) 116 and a moving device (see FIG. 2) 118. The mounting head 116 has a suction nozzle (not shown) for sucking and holding an electronic component (see FIG. 11) 119. The suction nozzle sucks and holds electronic components by sucking air by supplying negative pressure from a positive / negative pressure supply device (not shown). Then, when a slight positive pressure is supplied from the positive / negative pressure supply device, the electronic component is separated. Further, the moving device 118 moves the mounting head 116 between the supply position of the electronic component by the tape feeder 114 and the base 60. As a result, in the mounting unit 112, the electronic components supplied from the tape feeder 114 are held by the suction nozzles, and the electronic components held by the suction nozzles are mounted on the circuit board.
 また、制御装置28は、図2に示すように、コントローラ120と、複数の駆動回路122とを備えている。複数の駆動回路122は、上記電磁モータ38,56、保持装置62、昇降装置64、インクジェットヘッド76、ディスペンスヘッド77、ヒータ78、インクジェットヘッド88、平坦化装置90、照射装置92、テープフィーダ114、装着ヘッド116、移動装置118に接続されている。コントローラ120は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路122に接続されている。これにより、搬送装置20、第1造形ユニット22、第2造形ユニット24、装着ユニット26の作動が、コントローラ120によって制御される。 Further, as shown in FIG. 2, the control device 28 includes a controller 120 and a plurality of drive circuits 122. The plurality of drive circuits 122 include the electromagnetic motors 38 and 56, a holding device 62, an elevating device 64, an inkjet head 76, a dispense head 77, a heater 78, an inkjet head 88, a flattening device 90, an irradiation device 92, and a tape feeder 114. It is connected to the mounting head 116 and the moving device 118. The controller 120 includes a CPU, a ROM, a RAM, and the like, and is mainly a computer, and is connected to a plurality of drive circuits 122. As a result, the operation of the transfer device 20, the first modeling unit 22, the second modeling unit 24, and the mounting unit 26 is controlled by the controller 120.
 回路形成装置10では、上述した構成によって、基台60の上面に敷かれた粗面フィルム(図3参照)70の上に樹脂積層体が形成され、その樹脂積層体の上面に回路パターンに従って金属インクが印刷される。金属インクは、加熱により導電化され、配線が形成される。また、配線との導通を図るべく、配線上に金属ペーストが吐出され、金属ペーストが加熱されることで、金属ペーストが導電化される。そして、配線と導通するように電子部品が配設されることで、回路基板が形成される。このように、回路形成装置10では、回路基板が形成されるが、金属インク及び金属ペーストの高温での加熱等により、樹脂積層体,基台60等が膨張と収縮とを繰り返すことで、回路基板の基台60からの浮きなどが発生する虞がある。つまり、樹脂積層体,基台60等が膨張と収縮とを繰り返す際に、樹脂積層体,基台60等の熱膨張率の差により、樹脂積層体と基台60との密着面などに応力がかかり、回路基板形成時に、樹脂積層体の基台60からの浮きなどが発生する虞がある。 In the circuit forming apparatus 10, a resin laminate is formed on the rough surface film (see FIG. 3) 70 laid on the upper surface of the base 60 by the above-described configuration, and a metal is formed on the upper surface of the resin laminate according to the circuit pattern. Ink is printed. The metal ink is made conductive by heating to form wiring. Further, in order to establish continuity with the wiring, the metal paste is discharged onto the wiring and the metal paste is heated to make the metal paste conductive. Then, the circuit board is formed by arranging the electronic components so as to be conductive with the wiring. In this way, the circuit board is formed in the circuit forming apparatus 10, but the circuit board is formed by repeatedly expanding and contracting the resin laminate, the base 60, and the like due to heating of the metal ink and the metal paste at a high temperature. There is a risk that the substrate may float from the base 60. That is, when the resin laminate, the base 60, etc. repeat expansion and contraction, the difference in the coefficient of thermal expansion of the resin laminate, the base 60, etc. causes stress on the contact surface between the resin laminate, the base 60, and the like. This may cause the resin laminate to float from the base 60 when the circuit board is formed.
 具体的には、ステージ52の基台60の上面に、まず、図3に示すように、感熱剥離フィルム71が敷かれ、その感熱剥離フィルム71の上面に粗面フィルム70が敷かれる。感熱剥離フィルム71は、粘着性を有するため、粗面フィルム70を基台60の上に適切に密着させることができる。また、粗面フィルム70の表面は、平滑でない、ざらつく粗い面とされており、その粗面フィルム70の上に回路基板が形成されることで、回路基板形成時における回路基板のズレ等が防止される。なお、感熱剥離フィルム71は、加熱により粘着性が低下するため、感熱剥離フィルム71が基台60の上面に敷かれ、回路基板が形成された後に、感熱剥離フィルム71が加熱されることで、形成された回路基板を容易に基台60から取り外すことができる。 Specifically, as shown in FIG. 3, a heat-sensitive release film 71 is first laid on the upper surface of the base 60 of the stage 52, and a rough surface film 70 is laid on the upper surface of the heat-sensitive release film 71. Since the heat-sensitive release film 71 has adhesiveness, the rough surface film 70 can be appropriately adhered to the base 60. Further, the surface of the rough surface film 70 is a rough surface that is not smooth and rough, and the circuit board is formed on the rough surface film 70 to prevent the circuit board from being displaced when the circuit board is formed. Will be done. Since the adhesiveness of the heat-sensitive release film 71 is reduced by heating, the heat-sensitive release film 71 is laid on the upper surface of the base 60 to form a circuit board, and then the heat-sensitive release film 71 is heated. The formed circuit board can be easily removed from the base 60.
 そして、基台60の上に、感熱剥離フィルム71を介して粗面フィルム70が敷かれると、ステージ52が、第2造形ユニット24の下方に移動される。そして、第2造形ユニット24において、図4に示すように、粗面フィルム70の上に樹脂積層体130が形成される。樹脂積層体130は、キャビティ132を有しており、インクジェットヘッド88からの紫外線硬化樹脂の吐出と、吐出された紫外線硬化樹脂への照射装置92による紫外線の照射とが繰り返されることにより形成される。 Then, when the rough surface film 70 is laid on the base 60 via the thermal release film 71, the stage 52 is moved below the second modeling unit 24. Then, in the second modeling unit 24, as shown in FIG. 4, the resin laminate 130 is formed on the rough surface film 70. The resin laminate 130 has a cavity 132, and is formed by repeatedly discharging the ultraviolet-curable resin from the inkjet head 88 and irradiating the discharged ultraviolet-curable resin with ultraviolet rays by the irradiation device 92. ..
 詳しくは、第2造形ユニット24の第2印刷部84において、インクジェットヘッド88が、粗面フィルム70の上面に紫外線硬化樹脂を薄膜状に吐出する。この際、インクジェットヘッド88は、粗面フィルム70の上面の所定の部分が露出するように、紫外線硬化樹脂を吐出する。続いて、紫外線硬化樹脂が薄膜状に吐出されると、硬化部86において、紫外線硬化樹脂の膜厚が均一となるように、紫外線硬化樹脂が平坦化装置90によって平坦化される。そして、照射装置92が、その薄膜状の紫外線硬化樹脂に紫外線を照射する。これにより、粗面フィルム70の上に樹脂の薄膜層134が形成される。 Specifically, in the second printing unit 84 of the second modeling unit 24, the inkjet head 88 ejects the ultraviolet curable resin into a thin film on the upper surface of the rough surface film 70. At this time, the inkjet head 88 discharges the ultraviolet curable resin so that a predetermined portion on the upper surface of the rough surface film 70 is exposed. Subsequently, when the ultraviolet curable resin is discharged in the form of a thin film, the ultraviolet curable resin is flattened by the flattening device 90 so that the film thickness of the ultraviolet curable resin becomes uniform in the cured portion 86. Then, the irradiation device 92 irradiates the thin film ultraviolet curable resin with ultraviolet rays. As a result, the resin thin film layer 134 is formed on the rough surface film 70.
 続いて、インクジェットヘッド88が、その薄膜層134の上の部分にのみ紫外線硬化樹脂を薄膜状に吐出する。つまり、インクジェットヘッド88は、粗面フィルム70の上面の所定の部分が露出するように、薄膜層134の上に紫外線硬化樹脂を薄膜状に吐出する。そして、平坦化装置90によって薄膜状の紫外線硬化樹脂が平坦化され、照射装置92が、その薄膜状に吐出された紫外線硬化樹脂に紫外線を照射することで、薄膜層134の上に薄膜層134が積層される。このように、薄膜層134の上への紫外線硬化樹脂の吐出と、紫外線の照射とが繰り返され、複数の薄膜層134が積層されることで、キャビティ132を有する樹脂積層体130が形成される。なお、キャビティ132は、樹脂積層体130を上下方向に貫通している。 Subsequently, the inkjet head 88 ejects the ultraviolet curable resin into a thin film only on the upper portion of the thin film layer 134. That is, the inkjet head 88 ejects the ultraviolet curable resin in the form of a thin film on the thin film layer 134 so that a predetermined portion on the upper surface of the rough surface film 70 is exposed. Then, the thin film-shaped ultraviolet curable resin is flattened by the flattening device 90, and the irradiation device 92 irradiates the ultraviolet curable resin discharged in the thin film form with ultraviolet rays, so that the thin film layer 134 is placed on the thin film layer 134. Are laminated. In this way, the ejection of the ultraviolet curable resin onto the thin film layer 134 and the irradiation of ultraviolet rays are repeated, and the plurality of thin film layers 134 are laminated to form the resin laminate 130 having the cavity 132. .. The cavity 132 penetrates the resin laminate 130 in the vertical direction.
 上述した手順により樹脂積層体130が形成されると、ステージ52が第1造形ユニット22の下方に移動される。そして、第1造形ユニット22の第1印刷部72において、インクジェットヘッド76が、図5に示すように、樹脂積層体130の上面及びキャビティ132の内部に金属インク136を線状に吐出する。この際、インクジェットヘッド76は、1つのキャビティ132の内部から、樹脂積層体130の上面を経由して、そのキャビティ132の隣のキャビティ132の内部に至るまで、金属インク136を吐出する。つまり、隣り合う2つのキャビティ132を繋ぐように、金属インク136が吐出されている。なお、樹脂積層体130に4つのキャビティ132が形成されており、4つのキャビティ132のうちの隣り合う2つのキャビティ132を繋ぐように金属インク136が吐出されており、残りの隣り合う2つのキャビティ132を繋ぐように金属インク136が吐出されている。そして、第1造形ユニット22の加熱部74において、金属インク136が、ヒータ78により加熱される。これにより、金属インク136が焼成し、配線138が形成される。つまり、4つのキャビティ132のうちの隣り合う2つのキャビティ132を繋ぐ配線138aと、残りの隣り合う2つのキャビティ132を繋ぐ配線138bとの2本の配線138が形成される。なお、インク推奨温度は、110~150度とされており、インク推奨時間は、40~80分間とされている。このため、従来、ヒータ78は、110~150度で40~80分間、金属インク136を加熱する。これにより、適切な導電性を発現可能な配線138、例えば、体積抵抗値が4~8(μΩ・cm)程度の配線138が形成される。 When the resin laminate 130 is formed by the above procedure, the stage 52 is moved below the first modeling unit 22. Then, in the first printing unit 72 of the first modeling unit 22, as shown in FIG. 5, the inkjet head 76 linearly ejects the metal ink 136 into the upper surface of the resin laminate 130 and the inside of the cavity 132. At this time, the inkjet head 76 ejects the metal ink 136 from the inside of one cavity 132 to the inside of the cavity 132 adjacent to the cavity 132 via the upper surface of the resin laminate 130. That is, the metal ink 136 is ejected so as to connect the two adjacent cavities 132. Four cavities 132 are formed in the resin laminate 130, metal ink 136 is discharged so as to connect two adjacent cavities 132 of the four cavities 132, and the remaining two adjacent cavities are connected. Metal ink 136 is ejected so as to connect 132. Then, in the heating unit 74 of the first modeling unit 22, the metal ink 136 is heated by the heater 78. As a result, the metal ink 136 is fired and the wiring 138 is formed. That is, two wires 138 are formed, one is a wire 138a connecting two adjacent cavities 132 among the four cavities 132, and the other is a wire 138b connecting the remaining two adjacent cavities 132. The recommended ink temperature is 110 to 150 degrees, and the recommended ink time is 40 to 80 minutes. Therefore, conventionally, the heater 78 heats the metal ink 136 at 110 to 150 degrees for 40 to 80 minutes. As a result, a wiring 138 capable of exhibiting appropriate conductivity, for example, a wiring 138 having a volume resistance value of about 4 to 8 (μΩ · cm) is formed.
 続いて、第1造形ユニット22の第1印刷部72において、ディスペンスヘッド77が、図6に示すように、キャビティ132の内部に金属ペースト140を吐出する。この際、ディスペンスヘッド77は、キャビティ132の内部において配線138と接触するように、金属ペースト140を吐出する。そして、第1造形ユニット22の加熱部74において、金属ペースト140が、ヒータ78により加熱される。これにより、金属ペースト140が硬化し、金属ペースト140が導電化する。なお、ペースト推奨温度は、110~150度とされており、ペースト推奨時間は、40~80分間とされている。このため、従来、ヒータ78は、110~150度で40~80分間、金属ペースト140を加熱する。これにより、樹脂が好適に硬化し、金属ペースト140が適切な導電性を発現し、例えば、金属ペースト140の体積抵抗値が4~8(μΩ・cm)程度となる。 Subsequently, in the first printing unit 72 of the first modeling unit 22, the dispense head 77 discharges the metal paste 140 into the cavity 132 as shown in FIG. At this time, the dispense head 77 discharges the metal paste 140 so as to come into contact with the wiring 138 inside the cavity 132. Then, in the heating unit 74 of the first modeling unit 22, the metal paste 140 is heated by the heater 78. As a result, the metal paste 140 is cured, and the metal paste 140 becomes conductive. The recommended paste temperature is 110 to 150 degrees, and the recommended paste time is 40 to 80 minutes. Therefore, conventionally, the heater 78 heats the metal paste 140 at 110 to 150 degrees for 40 to 80 minutes. As a result, the resin is suitably cured, and the metal paste 140 exhibits appropriate conductivity. For example, the volume resistance value of the metal paste 140 is about 4 to 8 (μΩ · cm).
 次に、ステージ52が、第2造形ユニット24の下方に移動される。そして、第2造形ユニット24において、図7に示すように、樹脂積層体130の上に樹脂積層体150が形成される。樹脂積層体150は、樹脂積層体130のキャビティ132の内部を埋めるように形成されている。ただし、樹脂積層体150もキャビティ152を有しており、そのキャビティ152において、樹脂積層体130の上面に形成された配線138の一部が露出している。なお、樹脂積層体150には、2つのキャビティ152a,bが形成されており、1つのキャビティ152aにおいて、配線138aの一部が露出し、もう1つのキャビティ152bにおいて、配線138bの一部が露出している。なお、樹脂積層体150は、樹脂積層体130と同様に、インクジェットヘッド88による紫外線硬化樹脂の吐出と、照射装置92による紫外線の照射とが繰り返されることで、形成される。 Next, the stage 52 is moved below the second modeling unit 24. Then, in the second modeling unit 24, as shown in FIG. 7, the resin laminate 150 is formed on the resin laminate 130. The resin laminate 150 is formed so as to fill the inside of the cavity 132 of the resin laminate 130. However, the resin laminate 150 also has a cavity 152, and a part of the wiring 138 formed on the upper surface of the resin laminate 130 is exposed in the cavity 152. Two cavities 152a and b are formed in the resin laminate 150, and a part of the wiring 138a is exposed in one cavity 152a and a part of the wiring 138b is exposed in the other cavity 152b. doing. The resin laminate 150 is formed by repeating the ejection of the ultraviolet curable resin by the inkjet head 88 and the irradiation of ultraviolet rays by the irradiation device 92, similarly to the resin laminate 130.
 続いて、樹脂積層体150が形成されると、ステージ52が第1造形ユニット22の下方に移動される。そして、第1造形ユニット22の第1印刷部72において、インクジェットヘッド76が、図8に示すように、キャビティ152の内部で露出する配線138から樹脂積層体150の上面に至るまで金属インク160を線状に吐出する。なお、キャビティ152aの内部の配線138aから樹脂積層体150の上面に至る金属インク160aと、キャビティ152bの内部の配線138bから樹脂積層体150の上面に至る金属インク160bとは、互いに接近するように吐出されているが、接触はしていない。そして、第1造形ユニット22の加熱部74において、金属インク160が、ヒータ78により加熱される。この際、ヒータ78は、インク推奨温度(110~150度)でインク推奨時間(40~80分間)、金属インク160を加熱する。これにより、適切な導電性を発現可能な配線162、例えば、体積抵抗値が4~8(μΩ・cm)程度の配線162が形成される。 Subsequently, when the resin laminate 150 is formed, the stage 52 is moved below the first modeling unit 22. Then, in the first printing unit 72 of the first modeling unit 22, as shown in FIG. 8, the inkjet head 76 applies the metal ink 160 from the wiring 138 exposed inside the cavity 152 to the upper surface of the resin laminate 150. Discharge linearly. The metal ink 160a extending from the wiring 138a inside the cavity 152a to the upper surface of the resin laminate 150 and the metal ink 160b extending from the wiring 138b inside the cavity 152b to the upper surface of the resin laminate 150 are close to each other. It is discharged, but not in contact. Then, in the heating unit 74 of the first modeling unit 22, the metal ink 160 is heated by the heater 78. At this time, the heater 78 heats the metal ink 160 at the recommended ink temperature (110 to 150 degrees) for the recommended ink time (40 to 80 minutes). As a result, a wiring 162 capable of exhibiting appropriate conductivity, for example, a wiring 162 having a volume resistance value of about 4 to 8 (μΩ · cm) is formed.
 次に、ステージ52が、第2造形ユニット24の下方に移動される。そして、第2造形ユニット24において、図9に示すように、樹脂積層体150の上に樹脂積層体170が形成される。樹脂積層体170は、樹脂積層体150のキャビティ152の内部を埋めるように作成されている。ただし、樹脂積層体170もキャビティ172を有しており、そのキャビティ172において、樹脂積層体170の上面に形成された2本の配線162a,bの端部が露出している。なお、樹脂積層体170も、樹脂積層体130,150と同様に、インクジェットヘッド88による紫外線硬化樹脂の吐出と、照射装置92による紫外線の照射とが繰り返されることで、形成される。 Next, the stage 52 is moved below the second modeling unit 24. Then, in the second modeling unit 24, as shown in FIG. 9, the resin laminate 170 is formed on the resin laminate 150. The resin laminate 170 is made so as to fill the inside of the cavity 152 of the resin laminate 150. However, the resin laminate 170 also has a cavity 172, and in the cavity 172, the ends of the two wirings 162a and 162 formed on the upper surface of the resin laminate 170 are exposed. The resin laminate 170 is also formed by repeating the ejection of the ultraviolet curable resin by the inkjet head 88 and the irradiation of ultraviolet rays by the irradiation device 92, similarly to the resin laminates 130 and 150.
 続いて、ステージ52が第1造形ユニット22の下方に移動される。そして、第1造形ユニット22の第1印刷部72において、ディスペンスヘッド77が、図10に示すように、キャビティ172の内部に金属ペースト180を吐出する。この際、ディスペンスヘッド77は、キャビティ172の内部において配線162aの端部の上と配線162bの端部の上との2箇所に、金属ペースト180を吐出する。 Subsequently, the stage 52 is moved below the first modeling unit 22. Then, in the first printing unit 72 of the first modeling unit 22, the dispense head 77 discharges the metal paste 180 into the cavity 172 as shown in FIG. At this time, the dispense head 77 discharges the metal paste 180 to two places inside the cavity 172, one above the end of the wiring 162a and the other above the end of the wiring 162b.
 このように、金属ペースト180が配線162の上に吐出されると、ステージ52が装着ユニット26の下方に移動される。装着ユニット26では、テープフィーダ114により電子部品119が供給され、その電子部品119が装着ヘッド116の吸着ノズルによって、保持される。なお、図11に示すように、電子部品119は、部品本体182と、部品本体182の下面に配設された2個の電極184とにより構成されている。そして、装着ヘッド116が、移動装置118によって移動され、吸着ノズルにより保持された電子部品119が、キャビティ172の内部において、樹脂積層体150の上面に装着される。この際、電子部品119の電極184が、配線162の上に吐出された金属ペースト180に接触するように、電子部品119は樹脂積層体150の上面に装着される。 In this way, when the metal paste 180 is discharged onto the wiring 162, the stage 52 is moved below the mounting unit 26. In the mounting unit 26, the electronic component 119 is supplied by the tape feeder 114, and the electronic component 119 is held by the suction nozzle of the mounting head 116. As shown in FIG. 11, the electronic component 119 is composed of a component body 182 and two electrodes 184 arranged on the lower surface of the component body 182. Then, the mounting head 116 is moved by the moving device 118, and the electronic component 119 held by the suction nozzle is mounted on the upper surface of the resin laminate 150 inside the cavity 172. At this time, the electronic component 119 is mounted on the upper surface of the resin laminate 150 so that the electrode 184 of the electronic component 119 comes into contact with the metal paste 180 discharged onto the wiring 162.
 次に、電子部品119が装着されると、ステージ52が第1造形ユニット22の下方に移動される。そして、第1造形ユニット22の加熱部74において、金属ペースト180が、ヒータ78により加熱される。この際、ヒータ78は、ペースト推奨温度(110~150度)でペースト推奨時間(40~80分間)、金属ペースト180を加熱する。これにより、金属ペースト180が適切な導電性を発現し、例えば、金属ペースト180の堆積抵抗値が4~8(μΩ・cm)程度となる。 Next, when the electronic component 119 is mounted, the stage 52 is moved below the first modeling unit 22. Then, in the heating unit 74 of the first modeling unit 22, the metal paste 180 is heated by the heater 78. At this time, the heater 78 heats the metal paste 180 at the recommended paste temperature (110 to 150 degrees) for the recommended paste time (40 to 80 minutes). As a result, the metal paste 180 exhibits appropriate conductivity, and for example, the deposition resistance value of the metal paste 180 is about 4 to 8 (μΩ · cm).
 このように、3つの樹脂積層体130,150,170が積層され、樹脂積層体間が配線138,162により導通されており、配線162に電子部品119が導通されることで回路基板190が形成される。そして、回路基板190が形成されると、回路基板190を基台60から取り外すべく、感熱剥離フィルム71がヒータ78により加熱される。なお、感熱剥離フィルム71の粘着性を低下させるための推奨温度及び推奨加熱時間は、金属インク及び金属ペーストと同じ温度及び時間とされている。このため、ヒータ78は、110~150度で40~80分間、感熱剥離フィルム71を加熱する。これにより、感熱剥離フィルム71の粘着性が低下し、図12に示すように、回路基板190を、粗面フィルム70とともに、感熱剥離フィルム71から容易に剥がすことができる。なお、粗面フィルム70は、元々、粘着性を有していないため、回路基板190から容易に剥がすことができる。 In this way, the three resin laminates 130, 150, and 170 are laminated, and the resin laminates are conducted by the wirings 138 and 162, and the electronic component 119 is conducted through the wiring 162 to form the circuit board 190. Will be done. Then, when the circuit board 190 is formed, the heat-sensitive release film 71 is heated by the heater 78 in order to remove the circuit board 190 from the base 60. The recommended temperature and the recommended heating time for reducing the adhesiveness of the heat-sensitive release film 71 are the same temperature and time as those of the metal ink and the metal paste. Therefore, the heater 78 heats the heat-sensitive release film 71 at 110 to 150 degrees for 40 to 80 minutes. As a result, the adhesiveness of the heat-sensitive release film 71 is reduced, and as shown in FIG. 12, the circuit board 190 can be easily peeled off from the heat-sensitive release film 71 together with the rough surface film 70. Since the rough surface film 70 does not originally have adhesiveness, it can be easily peeled off from the circuit board 190.
 このように、回路基板190が従来の手法により形成される際には、金属インク136,金属ペースト140,金属インク160,金属ペースト180,感熱剥離フィルム71の加熱時の各々において、110~150度で40~80分間、加熱される。つまり、5回の工程の各々において、高温かつ長時間加熱される。また、各加熱工程の後には、ある程度の時間、冷却工程も行われている。このように、高温かつ長時間での加熱工程と、冷却工程とが繰り返し実行されることで、回路基板の形成時において、樹脂積層体130の基台60からの浮きが生じる虞がある。また、樹脂積層体130等の造形物に反りが生じる虞もある。さらに言えば、高温かつ長時間での加熱工程により樹脂積層体130等の造形物に大きなストレスがかかる。 As described above, when the circuit board 190 is formed by the conventional method, the temperature of each of the metal ink 136, the metal paste 140, the metal ink 160, the metal paste 180, and the heat-sensitive release film 71 during heating is 110 to 150 degrees. Heat for 40-80 minutes. That is, each of the five steps is heated at a high temperature for a long time. Further, after each heating step, a cooling step is also performed for a certain period of time. By repeatedly executing the heating step at a high temperature for a long time and the cooling step in this way, there is a possibility that the resin laminate 130 may be lifted from the base 60 at the time of forming the circuit board. In addition, there is a possibility that the modeled object such as the resin laminate 130 may be warped. Furthermore, a large stress is applied to a modeled object such as the resin laminate 130 due to the heating process at a high temperature and for a long time.
 そこで、回路形成装置10では、金属インク136,金属ペースト140,金属インク160,金属ペースト180の各々の加熱工程において、ヒータ78による加熱温度を下げるとともに、加熱時間を短縮している。つまり、推奨温度より低い温度で、推奨時間より短い時間、金属インク136,金属ペースト140,金属インク160,金属ペースト180の各々を加熱している。そして、感熱剥離フィルム71の加熱時に、推奨温度での推奨時間の加熱を行うことで、金属インク136と金属ペースト140と金属インク160と金属ペースト180と感熱剥離フィルム71とを纏めて加熱している。 Therefore, in the circuit forming apparatus 10, in each of the heating steps of the metal ink 136, the metal paste 140, the metal ink 160, and the metal paste 180, the heating temperature by the heater 78 is lowered and the heating time is shortened. That is, each of the metal ink 136, the metal paste 140, the metal ink 160, and the metal paste 180 is heated at a temperature lower than the recommended temperature for a time shorter than the recommended time. Then, when the heat-sensitive release film 71 is heated, the metal ink 136, the metal paste 140, the metal ink 160, the metal paste 180, and the heat-sensitive release film 71 are heated together by heating at the recommended temperature for the recommended time. There is.
 具体的には、従来の手法と同様に、図3に示すように、基台60の上面に、感熱剥離フィルム71を介して、粗面フィルム70が敷かれる。その粗面フィルム70の上面に、図5に示すように、樹脂積層体130が形成され、2つのキャビティ132を繋ぐように、金属インク136が吐出される。そして、金属インク136が加熱されるが、インク推奨温度の35~90%程度、例えば、70~100度程度の温度で、インク推奨時間の35~90%程度、例えば、5~30分間程度の時間、金属インク136が加熱される。このように、金属インク136がインク推奨温度より低い温度で、インク推奨時間より短い時間、加熱されると、金属インク136は、ある程度、焼成するため、配線138となるが、その配線138は、適切な導電性を発現せず、例えば、体積抵抗値が10(μΩ・cm)以上の配線138が形成される。 Specifically, as shown in FIG. 3, a rough surface film 70 is laid on the upper surface of the base 60 via a heat-sensitive release film 71, as in the conventional method. As shown in FIG. 5, a resin laminate 130 is formed on the upper surface of the rough surface film 70, and the metal ink 136 is discharged so as to connect the two cavities 132. Then, the metal ink 136 is heated, but at a temperature of about 35 to 90% of the recommended ink temperature, for example, about 70 to 100 degrees, about 35 to 90% of the recommended ink time, for example, about 5 to 30 minutes. For hours, the metal ink 136 is heated. As described above, when the metal ink 136 is heated at a temperature lower than the ink recommended temperature and for a time shorter than the ink recommended time, the metal ink 136 is fired to some extent, so that it becomes a wiring 138, but the wiring 138 becomes a wiring 138. Wiring 138 that does not exhibit appropriate conductivity and has a volume resistance value of 10 (μΩ · cm) or more is formed, for example.
 次に、図6に示すように、樹脂積層体130のキャビティ132の内部に、金属ペースト140が吐出される。そして、金属ペースト140が加熱されるが、ペースト推奨温度の35~90%程度、例えば、70~100度程度の温度で、ペースト推奨時間の35~90%程度、例えば、5~30分間程度の時間、金属ペースト140が加熱される。このように、金属ペースト140がペースト推奨温度より低い温度で、ペースト推奨時間より短い時間、加熱されると、金属ペースト140は、ある程度硬化し、導電化するが、その金属ペースト140は、適切な導電性を発現せず、例えば、体積抵抗値が10(μΩ・cm)以上となる。 Next, as shown in FIG. 6, the metal paste 140 is discharged into the cavity 132 of the resin laminate 130. Then, the metal paste 140 is heated, but at a temperature of about 35 to 90% of the recommended paste temperature, for example, about 70 to 100 degrees, about 35 to 90% of the recommended paste time, for example, about 5 to 30 minutes. For hours, the metal paste 140 is heated. Thus, when the metal paste 140 is heated at a temperature lower than the recommended paste temperature for a time shorter than the recommended paste time, the metal paste 140 is cured to some extent and becomes conductive, but the metal paste 140 is suitable. It does not exhibit conductivity, and for example, the volume resistance value is 10 (μΩ · cm) or more.
 続いて、図7に示すように、樹脂積層体130の上に、従来の手法と同様に、樹脂積層体150が作成される。そして、図8に示すように、樹脂積層体150のキャビティ152の内部で露出する配線138から樹脂積層体150の上面に至るまで金属インク160が吐出される。次に、金属インク160が加熱されるが、金属インク160も、金属インク136と同様に、インク推奨温度の35~90%程度、例えば、70~100度程度の温度で、インク推奨時間の35~90%程度、例えば、5~30分間程度の時間、加熱される。これにより、金属インク160は、ある程度、焼成するため、配線162となるが、その配線162も、適切な導電性を発現せず、例えば、体積抵抗値が10(μΩ・cm)以上の配線となる。 Subsequently, as shown in FIG. 7, the resin laminate 150 is produced on the resin laminate 130 in the same manner as in the conventional method. Then, as shown in FIG. 8, the metal ink 160 is discharged from the wiring 138 exposed inside the cavity 152 of the resin laminate 150 to the upper surface of the resin laminate 150. Next, the metal ink 160 is heated. Like the metal ink 136, the metal ink 160 also has an ink recommended time of 35 at a temperature of about 35 to 90% of the recommended ink temperature, for example, about 70 to 100 degrees. It is heated for about 90%, for example, about 5 to 30 minutes. As a result, the metal ink 160 is fired to some extent, so that it becomes a wiring 162, but the wiring 162 also does not exhibit appropriate conductivity, for example, a wiring having a volume resistance value of 10 (μΩ · cm) or more. Become.
 続いて、図9に示すように、樹脂積層体150の上に、従来の手法と同様に、樹脂積層体170が作成される。そして、図10に示すように、配線162の端部に、金属ペースト180が吐出される。続いて、図11に示すように、電子部品119の電極184が、配線162の上に吐出された金属ペースト180に接触するように、電子部品119が樹脂積層体150の上面に装着される。そして、金属ペースト180が加熱されるが、金属ペースト180も、金属ペースト140と同様に、ペースト推奨温度の35~90%程度、例えば、70~100度程度の温度で、ペースト推奨時間の35~90%程度、例えば、5~30分間程度の時間、加熱される。これにより、金属ペースト180は、ある程度硬化し、導電化するが、その金属ペースト180は、適切な導電性を発現せず、例えば、体積抵抗値が10(μΩ・cm)以上となる。 Subsequently, as shown in FIG. 9, a resin laminate 170 is produced on the resin laminate 150 in the same manner as in the conventional method. Then, as shown in FIG. 10, the metal paste 180 is discharged to the end of the wiring 162. Subsequently, as shown in FIG. 11, the electronic component 119 is mounted on the upper surface of the resin laminate 150 so that the electrode 184 of the electronic component 119 comes into contact with the metal paste 180 discharged onto the wiring 162. Then, the metal paste 180 is heated, and like the metal paste 140, the metal paste 180 also has a paste recommended time of 35 to 90% at a temperature of about 35 to 90% of the recommended paste temperature, for example, about 70 to 100 degrees. It is heated for about 90%, for example, about 5 to 30 minutes. As a result, the metal paste 180 is cured to some extent and becomes conductive, but the metal paste 180 does not exhibit appropriate conductivity, and for example, the volume resistance value becomes 10 (μΩ · cm) or more.
 そして、最後に、感熱剥離フィルム71の粘着性を低下させるべく、従来の手法と同様に、110~150度で40~80分間、感熱剥離フィルム71が加熱される。これにより、図12に示すように、回路基板190が粗面フィルム70とともに基台60から取り外される。また、感熱剥離フィルム71の加熱時には、感熱剥離フィルム71だけでなく、配線138,金属ペースト140,配線162,金属ペースト180も、110~150度で40~80分間、加熱される。これにより、配線138,162が充分に焼成し、適切な導電性を発現可能な配線、例えば、体積抵抗値が4~8(μΩ・cm)程度の配線となる。また、金属ペースト140,180が充分に硬化し、適切な導電性を発現することで、例えば、金属ペースト140及び金属ペースト180の体積抵抗値が4~8(μΩ・cm)となる。 Finally, in order to reduce the adhesiveness of the heat-sensitive release film 71, the heat-sensitive release film 71 is heated at 110 to 150 degrees for 40 to 80 minutes, as in the conventional method. As a result, as shown in FIG. 12, the circuit board 190 is removed from the base 60 together with the rough surface film 70. When the heat-sensitive release film 71 is heated, not only the heat-sensitive release film 71 but also the wiring 138, the metal paste 140, the wiring 162, and the metal paste 180 are heated at 110 to 150 degrees for 40 to 80 minutes. As a result, the wirings 138 and 162 are sufficiently fired to become wirings capable of exhibiting appropriate conductivity, for example, wirings having a volume resistance value of about 4 to 8 (μΩ · cm). Further, when the metal pastes 140 and 180 are sufficiently cured and exhibit appropriate conductivity, for example, the volume resistance values of the metal paste 140 and the metal paste 180 become 4 to 8 (μΩ · cm).
 このように、金属インク136,160及び金属ペースト140,180の各々が、各々の推奨温度より低い温度で、推奨時間より短い時間、加熱されることで、回路基板190の基台60からの浮き,樹脂積層体130等の反りを防止するとともに、樹脂積層体130等へのストレスを軽減することが可能となる。また、低い温度での加熱により、加熱に要するエネルギーを抑制することが可能となる。さらに言えば、加熱時間の短縮により、タクトタイムの短縮を図ることも可能となる。 In this way, each of the metal inks 136, 160 and the metal pastes 140, 180 is heated at a temperature lower than the recommended temperature for a shorter time than the recommended time, so that the circuit board 190 floats from the base 60. It is possible to prevent the resin laminate 130 and the like from warping and reduce the stress on the resin laminate 130 and the like. In addition, heating at a low temperature makes it possible to suppress the energy required for heating. Furthermore, by shortening the heating time, it is possible to shorten the tact time.
 また、従来の手法では、金属インク及び金属ペーストの各々が、各々の推奨温度で推奨時間、加熱されることで、回路基板190の造形途中での金属インク及び金属ペーストの体積抵抗値は、図13に示すように、例えば、6(μΩ・cm)とされている。そして、感熱剥離フィルム71が加熱され、回路基板190が基台60から取り外されることで、回路基板190が完成した際の金属インク及び金属ペーストの体積抵抗値も、例えば、6(μΩ・cm)とされている。 Further, in the conventional method, each of the metal ink and the metal paste is heated at the recommended temperature for the recommended time, and the volume resistance values of the metal ink and the metal paste during the molding of the circuit board 190 are shown in the figure. As shown in 13, for example, it is set to 6 (μΩ · cm). Then, the heat-sensitive release film 71 is heated and the circuit board 190 is removed from the base 60, so that the volume resistance value of the metal ink and the metal paste when the circuit board 190 is completed is also, for example, 6 (μΩ · cm). It is said that.
 一方、新たな条件下、つまり、金属インク及び金属ペーストの各々が、各々の推奨温度より低い温度で、推奨時間より短い時間、加熱されることで、回路基板190の造形途中での体積抵抗値は、例えば、12(μΩ・cm)とされている。そして、感熱剥離フィルム71が推奨温度で推奨時間、加熱され、回路基板190が基台60から取り外されることで、回路基板190が完成した際の体積抵抗値は、例えば、6(μΩ・cm)まで低下する。 On the other hand, under new conditions, that is, each of the metal ink and the metal paste is heated at a temperature lower than the recommended temperature for a shorter time than the recommended time, so that the volume resistance value during the molding of the circuit board 190 is increased. Is, for example, 12 (μΩ · cm). Then, the heat-sensitive release film 71 is heated at the recommended temperature for the recommended time, and the circuit board 190 is removed from the base 60, so that the volume resistance value when the circuit board 190 is completed is, for example, 6 (μΩ · cm). Drops to.
 このように、金属インク及び金属ペーストが、推奨温度より低い温度で、推奨時間より短い時間、加熱された場合であっても、感熱剥離フィルム71の加熱時において、感熱剥離フィルム71とともに、金属インク及び金属ペーストが推奨温度で推奨時間、加熱されることで、体積抵抗値は6(μΩ・cm)となる。つまり、回路基板190の造形途中では、金属インク及び金属ペーストは適切な導電性を発現しないが、回路基板190の完成時において、金属インク及び金属ペーストは適切な導電性を発現する。これにより、適切な回路基板190の造形を担保しつつ、回路基板190の基台60からの浮き,樹脂積層体130等の反りを防止するとともに、樹脂積層体130等へのストレスを軽減することが可能となる。 As described above, even when the metal ink and the metal paste are heated at a temperature lower than the recommended temperature for a shorter time than the recommended time, the metal ink together with the heat-sensitive release film 71 is heated when the heat-sensitive release film 71 is heated. And when the metal paste is heated at the recommended temperature for the recommended time, the volume resistance value becomes 6 (μΩ · cm). That is, the metal ink and the metal paste do not exhibit appropriate conductivity during the molding of the circuit board 190, but the metal ink and the metal paste exhibit appropriate conductivity when the circuit board 190 is completed. This prevents the circuit board 190 from floating from the base 60 and warping of the resin laminate 130, etc., while ensuring appropriate modeling of the circuit board 190, and reduces stress on the resin laminate 130, etc. Is possible.
 なお、制御装置28のコントローラ120は、図2に示すように、積層体形成部200と、流体吐出部202と、仮加熱部204と、本加熱部206とを有している。積層体形成部200は、樹脂積層体130,150,170を形成するための機能部である。流体吐出部202は、金属インク及び金属ペーストを吐出するための機能部である。仮加熱部204は、金属インク及び金属ペーストを、推奨温度より低い温度で、推奨時間より短い時間、加熱するための機能部である。本加熱部206は、金属インク及び金属ペーストを、推奨温度で推奨時間、加熱するための機能部である。 As shown in FIG. 2, the controller 120 of the control device 28 has a laminate forming unit 200, a fluid discharge unit 202, a temporary heating unit 204, and a main heating unit 206. The laminate forming portion 200 is a functional portion for forming the resin laminates 130, 150, 170. The fluid discharge unit 202 is a functional unit for discharging metal ink and metal paste. The temporary heating unit 204 is a functional unit for heating the metal ink and the metal paste at a temperature lower than the recommended temperature for a shorter time than the recommended time. The heating unit 206 is a functional unit for heating the metal ink and the metal paste at a recommended temperature for a recommended time.
 なお、上記実施例において、感熱剥離フィルム71は、フィルムの一例である。樹脂積層体130,150,170は、樹脂層の一例である。金属インク136,160は、導電性流体の一例である。金属ペースト140,180は、導電性流体の一例である。積層体形成部200により実行される工程は、樹脂層形成工程の一例である。流体吐出部202により実行される工程は、塗布工程の一例である。仮加熱部204により実行される工程は、仮加熱工程の一例である。本加熱部206により実行される工程は、本加熱工程の一例である。 In the above embodiment, the thermal release film 71 is an example of the film. The resin laminates 130, 150, and 170 are examples of the resin layer. The metal inks 136 and 160 are examples of conductive fluids. The metal pastes 140 and 180 are examples of conductive fluids. The step executed by the laminate forming unit 200 is an example of the resin layer forming step. The step executed by the fluid discharge unit 202 is an example of a coating step. The step executed by the temporary heating unit 204 is an example of the temporary heating step. The step executed by the main heating unit 206 is an example of the main heating step.
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。例えば、上記実施例では、金属インク及び金属ペーストが、推奨温度より低い温度で、推奨時間より短い時間、加熱されているが、加熱温度の低減と加熱時間の短縮との少なくとも一方が実行されればよい。つまり、金属インク及び金属ペーストが、推奨温度より低い温度で、推奨時間、加熱されてもよく、金属インク及び金属ペーストが、推奨温度で、推奨時間より短い時間、加熱されてもよい。 The present invention is not limited to the above embodiment, and can be implemented in various modes with various modifications and improvements based on the knowledge of those skilled in the art. For example, in the above embodiment, the metal ink and the metal paste are heated at a temperature lower than the recommended temperature for a shorter time than the recommended time, but at least one of reduction of the heating temperature and shortening of the heating time is performed. Just do it. That is, the metal ink and the metal paste may be heated at a temperature lower than the recommended temperature for a recommended time, and the metal ink and the metal paste may be heated at a recommended temperature for a time shorter than the recommended time.
 また、上記実施例では、感熱剥離フィルム71の加熱工程において、金属インク及び金属ペーストが、感熱剥離フィルム71とともに、推奨温度で推奨時間、加熱されているが、種々の加熱工程において、金属インク及び金属ペーストが、推奨温度で推奨時間、加熱されてもよい。ただし、推奨温度での推奨時間の加熱工程は、最終の加熱工程で行われることが好ましい。例えば、上記実施形態において、感熱剥離フィルム71の加熱工程が無い場合には、金属ペースト180の加熱工程において、推奨温度で推奨時間、金属ペースト180が加熱されてもよい。 Further, in the above embodiment, in the heating step of the heat-sensitive release film 71, the metal ink and the metal paste are heated together with the heat-sensitive release film 71 at the recommended temperature for the recommended time, but in various heating steps, the metal ink and the metal paste are heated. The metal paste may be heated at the recommended temperature for the recommended time. However, the heating step at the recommended temperature for the recommended time is preferably performed in the final heating step. For example, in the above embodiment, when there is no heating step of the heat-sensitive release film 71, the metal paste 180 may be heated at the recommended temperature for the recommended time in the heating step of the metal paste 180.
 また、上記実施例では、ヒータ78により、金属インク及び金属ペーストが加熱されているが、レーザ光等の照射により、金属インク及び金属ペーストが加熱されてもよい。 Further, in the above embodiment, the metal ink and the metal paste are heated by the heater 78, but the metal ink and the metal paste may be heated by irradiation with a laser beam or the like.
 また、上記実施例では、金属ペースト140,180が、ディスペンスヘッド77により樹脂積層体130に吐出されているが、スタンプ等により金属ペースト140,180が樹脂積層体130に転写されてもよい。また、スクリーン印刷により、金属インク若しくは金属ペーストが樹脂積層体130に印刷されてもよい。 Further, in the above embodiment, the metal pastes 140 and 180 are discharged to the resin laminate 130 by the dispense head 77, but the metal pastes 140 and 180 may be transferred to the resin laminate 130 by a stamp or the like. Further, the metal ink or the metal paste may be printed on the resin laminate 130 by screen printing.
 71:感熱剥離フィルム  130:樹脂積層体  136:金属インク  140:金属ペースト  150:樹脂積層体  160:金属インク  170:樹脂積層体  180:金属ペースト  200:積層体形成部  202:流体吐出部  204:仮加熱部  206:本加熱部 71: Heat-sensitive release film 130: Resin laminate 136: Metal ink 140: Metal paste 150: Resin laminate 160: Metal ink 170: Resin laminate 180: Metal paste 200: Laminate body forming part 202: Fluid discharge part 204: Temporary Heating unit 206: Main heating unit

Claims (3)

  1.  硬化性樹脂により樹脂層を形成する樹脂層形成工程と、
     所定温度で所定時間、加熱することで導電性を発現する導電性流体を、回路パターンに応じて塗布する塗布工程と、
     前記塗布工程において塗布された導電性流体を、前記所定温度より低い温度と、前記所定時間より短い時間との少なくとも一方の条件下で加熱する仮加熱工程と、
     前記仮加熱工程において加熱された導電性流体を、前記所定温度で前記所定時間、加熱する本加熱工程と
     を含む回路形成方法。
    A resin layer forming step of forming a resin layer with a curable resin,
    A coating process in which a conductive fluid that develops conductivity by heating at a predetermined temperature for a predetermined time is applied according to a circuit pattern, and
    A temporary heating step of heating the conductive fluid coated in the coating step under at least one of a temperature lower than the predetermined temperature and a time shorter than the predetermined time.
    A circuit forming method including a main heating step of heating a conductive fluid heated in the temporary heating step at the predetermined temperature for the predetermined time.
  2.  前記樹脂層形成工程と前記塗布工程と前記仮加熱工程とが繰り返し実行されることで、前記仮加熱工程において加熱された導電性流体を含む樹脂層が複数、積層され、
     前記本加熱工程は、
     その複数積層された樹脂層を、前記所定温度で前記所定時間、加熱する請求項1に記載の回路形成方法。
    By repeatedly executing the resin layer forming step, the coating step, and the temporary heating step, a plurality of resin layers containing the conductive fluid heated in the temporary heating step are laminated.
    The main heating step is
    The circuit forming method according to claim 1, wherein the plurality of laminated resin layers are heated at the predetermined temperature for the predetermined time.
  3.  前記樹脂層形成工程は、
     加熱により粘着性が低下するフィルムの上に、硬化性樹脂により樹脂層を形成する請求項1または請求項2に記載の回路形成方法。
    The resin layer forming step is
    The circuit forming method according to claim 1 or 2, wherein a resin layer is formed of a curable resin on a film whose adhesiveness is lowered by heating.
PCT/JP2020/006677 2020-02-20 2020-02-20 Circuit forming method WO2021166139A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/006677 WO2021166139A1 (en) 2020-02-20 2020-02-20 Circuit forming method
JP2022501492A JP7532495B2 (en) 2020-02-20 2020-02-20 Circuit formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006677 WO2021166139A1 (en) 2020-02-20 2020-02-20 Circuit forming method

Publications (1)

Publication Number Publication Date
WO2021166139A1 true WO2021166139A1 (en) 2021-08-26

Family

ID=77391865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006677 WO2021166139A1 (en) 2020-02-20 2020-02-20 Circuit forming method

Country Status (2)

Country Link
JP (1) JP7532495B2 (en)
WO (1) WO2021166139A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158352A (en) * 2005-12-07 2007-06-21 Samsung Electro Mech Co Ltd Method of manufacturing wiring board, and wiring board
WO2014073563A1 (en) * 2012-11-09 2014-05-15 古河電気工業株式会社 Production method for build-up multilayer substrate, and build-up multilayer substrate
JP2018107419A (en) * 2016-12-27 2018-07-05 大日本印刷株式会社 Through electrode substrate, mounting substrate including through electrode substrate, and manufacturing method of through electrode substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007158352A (en) * 2005-12-07 2007-06-21 Samsung Electro Mech Co Ltd Method of manufacturing wiring board, and wiring board
WO2014073563A1 (en) * 2012-11-09 2014-05-15 古河電気工業株式会社 Production method for build-up multilayer substrate, and build-up multilayer substrate
JP2018107419A (en) * 2016-12-27 2018-07-05 大日本印刷株式会社 Through electrode substrate, mounting substrate including through electrode substrate, and manufacturing method of through electrode substrate

Also Published As

Publication number Publication date
JP7532495B2 (en) 2024-08-13
JPWO2021166139A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
JP6714109B2 (en) Circuit forming method and circuit forming apparatus
WO2020012626A1 (en) Circuit formation method and circuit formation device
JP6533112B2 (en) Circuit formation method
JP7316742B2 (en) Manufacturing method of mounting board by 3D additive manufacturing
JP6811770B2 (en) Circuit formation method
WO2021166139A1 (en) Circuit forming method
WO2016189577A1 (en) Wiring forming method
JP7055897B2 (en) Circuit formation method
WO2022195800A1 (en) Electronic part mounting method and electronic part mounting device
JP7549006B2 (en) Circuit forming method and circuit forming device
JP7282906B2 (en) Component mounting method and component mounting device
JP7325532B2 (en) 3D object manufacturing method and 3D object manufacturing device by layered manufacturing method
WO2022113186A1 (en) Electric circuit forming method
JP7394626B2 (en) Manufacturing method and manufacturing apparatus for three-dimensional laminated electronic device
WO2019186780A1 (en) Circuit formation method and circuit formation device
WO2023148888A1 (en) Electrical circuit forming method and electrical circuit forming apparatus
WO2023079607A1 (en) Circuit-forming method and circuit-forming apparatus
WO2022101965A1 (en) Circuit forming method
WO2023223562A1 (en) Manufacturing method and manufacturing device
JP7411452B2 (en) Circuit formation method
WO2021199421A1 (en) Circuit formation method and circuit formation device
WO2023157111A1 (en) Electrical circuit formation method, and electrical circuit formation device
WO2021176498A1 (en) Wiring formation method
WO2024057475A1 (en) Resin laminate formation device and resin laminate formation method
WO2024062605A1 (en) Circuit forming device and circuit forming method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920057

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501492

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920057

Country of ref document: EP

Kind code of ref document: A1