WO2019030839A1 - 三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物 - Google Patents

三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物 Download PDF

Info

Publication number
WO2019030839A1
WO2019030839A1 PCT/JP2017/028845 JP2017028845W WO2019030839A1 WO 2019030839 A1 WO2019030839 A1 WO 2019030839A1 JP 2017028845 W JP2017028845 W JP 2017028845W WO 2019030839 A1 WO2019030839 A1 WO 2019030839A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
unit
powder bed
convex portion
dimensional
Prior art date
Application number
PCT/JP2017/028845
Other languages
English (en)
French (fr)
Inventor
竜一 成田
渡辺 俊哉
明生 近藤
原口 英剛
秀次 谷川
仁 北村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2017/028845 priority Critical patent/WO2019030839A1/ja
Priority to US16/613,565 priority patent/US11344952B2/en
Priority to JP2019535489A priority patent/JP6825109B2/ja
Priority to CN201780090892.0A priority patent/CN110678281B/zh
Priority to DE112017007840.7T priority patent/DE112017007840T5/de
Publication of WO2019030839A1 publication Critical patent/WO2019030839A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • B22F10/85Data acquisition or data processing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/368Temperature or temperature gradient, e.g. temperature of the melt pool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present disclosure relates to a three-dimensional layered manufacturing apparatus that manufactures three-dimensional shaped objects by performing layered modeling by irradiating a beam such as a light beam or an electron beam to the laid powder, and three-dimensional layered modeling implemented by the apparatus.
  • the present invention relates to a method and a three-dimensional laminated object that can be manufactured by the three-dimensional additive manufacturing method.
  • Patent Document 1 discloses an example of this type of technology, in which a powder layer formed of powder is irradiated with a light beam to form a sintered layer, and by repeating this, a plurality of sintered layers are formed. It is described that a three-dimensional thing is manufactured by laminating as one.
  • a large three-dimensional shaped object is formed by repeatedly laminating layered sintered layers, so a long working time is required to complete the object.
  • the working time is actually tens of hours.
  • At least one embodiment of the present invention is made in view of the above-mentioned circumstances, detects various abnormalities which occur during modeling work at an early stage, implements modeling work in real time to avoid modeling failure, and is good.
  • An object of the present invention is to provide a three-dimensional additive manufacturing apparatus capable of achieving production efficiency, a three-dimensional additive manufacturing method implemented by the apparatus, and a three-dimensional additive-produced object manufacturable by the three-dimensional additive method.
  • a three-dimensional additive manufacturing apparatus includes a base plate, and a powder laying unit for laying powder on the base plate to form a powder bed;
  • a beam irradiation unit for irradiating the powder bed with a beam to selectively solidify the powder bed, asperities on the powder bed, and a shaped surface formed by the irradiation of the beam to the powder bed
  • at least one sensor for measuring the temperature of the powder bed during irradiation of the beam or the unevenness or temperature, and based on the detection result of the at least one sensor, the powder laying being carried out already Failure of the laying of the powder by the unit or by the beam irradiation unit which has already been carried out It constituted a problem of irradiation over arm so as to correct prior to shaping the completion of the next layer.
  • the at least one sensor includes a first shape measurement sensor for detecting unevenness on the powder bed
  • the powder laying unit includes: When the size of the unevenness detected by the first shape measurement sensor is out of the allowable range, the powder is relaid so that the unevenness of the powder bed becomes small before the irradiation of the beam to the powder bed Configured as.
  • the first shape measurement sensor monitors the unevenness on the powder bed which is abnormal or a sign thereof. Then, when the first shape measurement sensor detects the unevenness having a size outside the allowable range, the powder is relaid so that the unevenness is reduced before the irradiation of the beam to the powder bed. As a result, it is possible to prevent, at an early stage, that the unevenness becomes fatally abnormal as the molding operation progresses.
  • the apparatus further comprises a part replacement warning unit for issuing a warning prompting replacement of the part of the powder laying unit.
  • the at least one sensor includes a second shape measurement sensor for detecting unevenness on the shaped surface
  • the apparatus further comprises a powder supply unit for selectively supplying the powder to the concave portion detected by the second shape measurement sensor, and the beam irradiation unit is configured to supply the powder to the concave portion by the powder supply unit. To illuminate the beam.
  • corrugation on the modeling surface which shows abnormality or its indication is monitored by a 2nd shape measurement sensor.
  • the concave portion is filled by selectively (locally) supplying powder to the concave portion by the powder supply unit, and the beam is irradiated to the supplied powder. Solidify.
  • the at least one sensor includes a second shape measurement sensor for detecting unevenness on the shaped surface
  • the beam irradiation unit is configured to irradiate the beam to a convex portion detected by the second shape measurement sensor.
  • corrugation on the modeling surface which shows abnormality or its indication is monitored by a 2nd shape measurement sensor.
  • a convex part is detected on a modeling surface, a convex part is annihilated by irradiating a beam with respect to a convex part and fuse
  • by eliminating the convex portion in real time during the shaping operation it is possible to prevent the fatal abnormality of the convex portion at an early stage as the shaping operation progresses.
  • the at least one sensor includes a second shape measurement sensor for detecting unevenness on the shaped surface, It further has a convex part removal unit for removing the convex part detected by the 2nd above-mentioned shape measurement sensor.
  • the second shape measurement sensor monitors the unevenness on the shaped surface which indicates an abnormality or a sign thereof.
  • the convex part is mechanically removed by the convex part removing unit.
  • the convex portion removing unit includes a cutter or an air blow torch for removing the convex portion.
  • mechanical removal of the convex part on a modeling surface may be performed by a cutter or an air blow torch.
  • the controller further includes a controller for controlling at least the beam irradiation unit and the projection removing unit, the controller having the second shape Based on the shape of the convex portion detected by the measurement sensor, it is determined whether or not the convex portion is a sputter generated at the time of irradiation of the beam, and when the convex portion is the spatter, the spatter is removed It controls the said convex part removal unit so that it controls, and when the said convex part is except sputtering, it controls so that the said beam irradiation unit may be irradiated with the said beam with respect to the said convex part.
  • the convex portion on the shaped surface is sputtering, and the two removal methods are properly used based on the determination result.
  • Sputtering is formed with a relatively high proportion of oxides when the powder is melted by the beam. Therefore, when it is determined that the convex portion is spatter, by mechanically removing the convex portion by the convex portion removing unit, it is possible to reliably separate the convex portion while avoiding melting into the three-dimensional body.
  • the convex portion is other than sputtering, since there is no such concern, the convex portion can be quickly removed by irradiating the beam with the beam.
  • the convex portion on the shaped surface is the sputter.
  • the assumed sputtered particle size is relatively large, 150 ⁇ m It is about ⁇ 300 ⁇ m. Therefore, it can be determined that the convex portion is this type of sputtering depending on whether the projected area of the convex portion is within the range.
  • the powder bed is formed by irradiating a powder bed formed by laying powder on a base plate.
  • the method of (10) above can be suitably implemented by the three-dimensional additive manufacturing device of (1) above.
  • the unevenness on the powder bed is measured, and in the correcting step, the size of the unevenness measured in the measuring step is If out of tolerance, prior to irradiating the powder bed with the beam, the powder is relaid so that the asperities of the powder bed are reduced.
  • the method of (11) above can be suitably implemented by the three-dimensional additive manufacturing device of (2) above.
  • the unevenness on the shaped surface is measured, and in the correcting step, the concave portion measured in the measuring step Alternatively, the powder is selectively supplied, and the beam is irradiated to the powder supplied to the recess.
  • the method of the above (12) can be suitably implemented by the three-dimensional additive manufacturing device of the above (4).
  • the unevenness on the shaped surface is measured, and in the correcting step, it is measured in the measuring step.
  • the beam is irradiated to the convex portion.
  • the method of (13) above can be suitably implemented by the three-dimensional additive manufacturing device of (5) above.
  • the unevenness on the shaped surface is measured, and in the correction step, it is measured in the measurement step. Remove the ridges.
  • the method of (14) above can be suitably implemented by the three-dimensional additive manufacturing device of (6) above.
  • the protrusion is removed using a cutter or an air blow torch.
  • the method of (15) above can be suitably implemented by the three-dimensional additive manufacturing device of (7) above.
  • the method of (16) above can be suitably implemented by the three-dimensional additive manufacturing device of (8) above.
  • a three-dimensional laminated article is manufactured by irradiating a beam onto a powder laid in layers to perform layer-by-layer modeling A shaped object, wherein the powder is laid on a base plate to form a powder bed, and the powder bed is irradiated with the beam to selectively solidify the powder bed, and asperities on the powder bed, Irregularities or temperatures on the shaped surface formed by the irradiation of the beam to the powder bed, or the temperature of the powder bed during irradiation of the beam is measured, and based on the measurement results, the already formed It is made by correcting the failure of the laying of the powder in the powder bed or the failure of the irradiation of the beam already performed before the completion of the formation of the next layer. It is.
  • the three-dimensional laminated three-dimensional object of the above (17) is of high quality by correcting a defect in laying of powder or a defect in irradiation of a beam before completion of shaping of the next layer.
  • an additive manufacturing apparatus and a three-dimensional additive manufacturing method implemented by the apparatus can be provided.
  • the expression expressing a shape such as a quadrilateral shape or a cylindrical shape not only represents a shape such as a rectangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion The shape including a chamfer etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a schematic view showing an entire configuration of a three-dimensional layered manufacturing apparatus 1 according to at least one embodiment of the present invention.
  • the three-dimensional layered manufacturing apparatus 1 is an apparatus for manufacturing a three-dimensional shaped object by performing layered manufacturing by irradiating a beam on powder laid in layers.
  • the three-dimensional additive manufacturing apparatus 1 includes a base plate 2 as a base on which three-dimensional objects are formed.
  • the base plate 2 is vertically movably disposed inside a substantially cylindrical cylinder 4 having a central axis along the vertical direction.
  • a powder bed 8 is formed on the base plate 2 by laying powder as described later.
  • the powder bed 8 is newly formed by laying the powder on the upper layer side every time the base plate 2 is lowered in each cycle during the forming operation.
  • the three-dimensional additive manufacturing apparatus 1 includes a powder laying unit 10 for laying a powder on the base plate 2 to form a powder bed 8.
  • the powder laying unit 10 supplies powder to the upper surface side of the base plate 2 and flattens the surface to form a layered powder bed 8 having a substantially uniform thickness over the entire upper surface of the base plate 2.
  • the powder bed 8 formed in each cycle is selectively solidified by being irradiated with a beam from a beam irradiation unit 14 described later, and in the next cycle, the powder is again laid on the upper layer side by the powder laying unit 10 By this, a new powder bed is formed and stacked in layers.
  • the three-dimensional additive manufacturing apparatus 1 further includes a powder supply unit 12 for supplying powder locally to a partial region on the base plate 2.
  • the powder supply unit 12 has a discharge nozzle 12a for discharging powder.
  • the discharge nozzle 12 a is installed toward the base plate 2, and moved along a horizontal direction (surface of the base plate 2) by a drive mechanism (not shown) to a specific position of the powder bed 8 on the base plate 2, It is configured to be able to supply powder locally.
  • the powder supplied from the powder laying unit 10 and the powder supply unit 12 is a powdery substance to be a raw material of a three-dimensional object, for example, a metal material such as iron, copper, aluminum or titanium, or a non-ceramic material.
  • a metal material such as iron, copper, aluminum or titanium
  • a non-ceramic material a wide range of metal materials can be employed.
  • the powder handled by the powder laying unit 10 and the powder supply unit 12 may be the same material, or may be materials different from each other depending on the application.
  • the three-dimensional additive manufacturing apparatus 1 includes a beam irradiation unit 14 for irradiating the powder bed 8 with a beam so as to selectively solidify the powder bed 8.
  • FIG. 2 is a schematic view showing an internal configuration of the beam irradiation unit 14 of FIG.
  • the beam irradiation unit 14 includes a light source 18 for outputting a laser beam as a beam, an optical fiber 22 for guiding the beam from the light source 18 to the focusing unit 25, and a focusing unit 25 composed of a plurality of optical members.
  • the beam guided by the optical fiber 22 enters the collimator 24.
  • a collimator 24 focuses the beam into collimated light.
  • Light emitted from the collimator 24 enters the beam expander 30 via the isolator 26 and the pinhole 28.
  • the beam is expanded by a beam expander 30, and then deflected by a galvano mirror 32 which can swing in any direction, and is irradiated onto the powder bed 8 through an f ⁇ lens 33.
  • the beam emitted from the beam irradiation unit 14 is two-dimensionally scanned along the surface on the powder bed 8. Such two-dimensional scanning of the beam is performed in a pattern corresponding to the three-dimensional object to be formed, and for example, the beam irradiation unit 14 is moved along the surface of the base plate 2 by a drive mechanism (not shown). Alternatively, the angle of the galvano mirror 32 may be driven and controlled, or a combination of these may be performed.
  • the powder laying unit 10 lays the powder on the base plate 2 to form the powder bed 8, and the beam irradiation unit with respect to the powder bed 8.
  • the powder contained in the powder bed 8 is selectively solidified by two-dimensional scanning while irradiating a beam from 14.
  • such a cycle is repeatedly performed to laminate the solidified forming layer, and a target three-dimensional shaped object is manufactured.
  • the three-dimensional additive manufacturing apparatus 1 is provided with a shape measurement sensor 34 for monitoring the shape of the powder bed 8 or the formed surface (the surface to which the beam is irradiated) during the forming operation.
  • a shape measurement sensor 34 for monitoring the shape of the powder bed 8 or the formed surface (the surface to which the beam is irradiated) during the forming operation.
  • an optical scanner based on a fringe projection method is used as an example of the shape measurement sensor 34.
  • FIG. 3 is a schematic view showing a specific configuration example of the shape measurement sensor 34 of FIG.
  • the shape measurement sensor 34 projects the various fringe patterns (striped patterns) onto the object (powder bed 8 or the formed surface), and at least one of the projector 34a for acquiring the pattern image projected onto the object.
  • the analysis unit 34c analyzes the shape of the powder bed 8 or the formed surface by analyzing the imaging devices (in the present embodiment, two imaging devices 34b1 and 34b2 as an example) and the images acquired by these imaging devices 34b1 and 34b2 And a unit 34c.
  • the shape of the powder bed 8 or the formed surface is obtained by converting the two-dimensional images acquired by the imaging devices 34b1 and 34b2 into individual three-dimensional coordinate systems on the basis of an optical conversion equation. Is calculated.
  • the fringe projection method implemented by the shape measurement sensor 34 follows a well-known example and will not be described in detail here.
  • the analysis unit 34c is configured by an electronic arithmetic device such as a computer, for example, the analysis unit 34c may be included in the control device 100 described later.
  • the case where both the powder bed 8 and the shaping surface are configured to be able to be monitored by the common shape measurement sensor 34 is exemplified.
  • the shape measuring sensor with different configurations namely, the powder bed 8 and the shaping surface
  • the first shape measurement sensor and the second shape measurement sensor are configured to be able to be monitored by the common shape measurement sensor 34 .
  • the three-dimensional additive manufacturing apparatus 1 further includes a temperature measurement sensor 38 for monitoring the temperature of the powder bed 8 and the formed surface.
  • a temperature measurement sensor 38 for monitoring the temperature of the powder bed 8 and the formed surface.
  • the first temperature measurement sensor 38a for measuring the local temperature of the irradiated portion 39 of the beam among the powder bed 8 and the formed surface, the irradiated surface of the powder bed 8 and the formed surface
  • a second temperature measurement sensor 38b is provided to measure the temperature distribution in a two-dimensional area (at least an area wider than the irradiated part) including the part 39.
  • the first temperature measurement sensor 38 a is configured integrally with the beam irradiation unit 14. Specifically, as shown in FIG. 3, the irradiated portion 39 of the beam is based on the intensity of the electromagnetic wave (reflected light of the beam irradiated onto the powder bed 8) guided from the irradiated portion 39 through the optical axis of the beam.
  • the radiation thermometer is configured to measure the local temperature of the light source 40 and is configured to include the pyrometer 40.
  • the pyrometer 40 senses thermal radiation with respect to a part of the reflected light extracted by the dichroic mirror 43 disposed between the beam expander 30 and the galvano mirror 32 in the condensing part 25, and the Stefan-Boltzmann's law Measure local temperature based on.
  • the measurement result of the first temperature measurement sensor 38a is sent as an electrical signal to the control device 100 described later, and used for various processes.
  • the first temperature measurement sensor 38a measures the local temperature based on the reflected light of the beam guided from the irradiated portion 39 where the beam is irradiated to the pinpoint, the local temperature can be measured with high accuracy.
  • the first temperature measurement sensor 38a is integrally formed with the beam irradiation unit 14 and is scanned at a high speed to perform temperature measurement based on the reflected wave propagating along the same path as the beam irradiated to the powder bed 8 Good followability to the beam can be obtained.
  • the second temperature measurement sensor 38b is a sensor that detects the temperature distribution in the detection target area 41 which is wider than the irradiated portion 39 which is the measurement region of the above-described first temperature measurement sensor 38a.
  • the detection target area 41 is an area having a larger area than at least the irradiated portion 39 to which the beam is irradiated, and the second temperature measurement sensor 38 b is configured to be able to detect a two-dimensional temperature distribution in the area. ing.
  • Such a second temperature measurement sensor 38b is constituted by, for example, a two-color thermometer (pyro camera) or an infrared camera with the detection target area 41 as a measurement range, and for example, the ceiling or wall surface of the modeling area on the powder bed 8 It is installed to be directed to the detection target area 41.
  • the second temperature measurement sensor 38b may be driven to move the detection target area 41 so as to follow the two-dimensionally scanned beam.
  • the second temperature measurement sensor 38b may be controlled to follow so that the irradiated portion 39 is always positioned at the center of the detection target area 41.
  • the measurement result of the 2nd temperature measurement sensor 38b is sent to the control apparatus 100 mentioned later as an electric signal similarly to the above-mentioned 1st temperature measurement sensor 38a, and is used for various processes.
  • the three-dimensional additive manufacturing apparatus 1 includes a convex portion removing unit 42 for mechanically removing a convex portion present on a shaped surface formed by irradiating the powder bed 8 with a beam.
  • the protrusion removing unit 42 includes a cutter removing portion 42 a for removing the protrusion and an air blow removing portion 42 b.
  • the cutter removing unit 42 a is configured to be able to mechanically remove the convex portion present on the surface of the modeling surface by sliding the blade surface parallel to the modeling surface.
  • the air blow removing portion 42b is configured to be able to mechanically remove the convex portion by blowing off the molten metal by blowing high pressure oxygen while generating an arc by supplying an electric current to the convex portion using an air blow torch consisting of a carbon rod or the like. It is done.
  • the three-dimensional layered manufacturing apparatus 1 further includes a warning unit 44 for causing an operator or an external device to recognize occurrence of an abnormality.
  • the recognition target is a human such as an operator, it is constituted by, for example, a buzzer or an indicator for notifying occurrence of abnormality in a mode that can be recognized by five senses such as visual sense and auditory sense.
  • the recognition target is an external device, the external device is configured to transmit an electrical signal that can be recognized, and the external device receives the electrical signal to perform a predetermined response operation. It may be configured to be implemented automatically.
  • the control device 100 is a control unit of the three-dimensional additive manufacturing device 1 and is configured of an electronic arithmetic device such as a computer. Typically, an input device capable of inputting various information, a storage device capable of storing various information, a computing device capable of computing various information, and an output device capable of outputting various information
  • a control device 100 is configured to execute the three-dimensional additive manufacturing method according to at least one embodiment of the present invention by operating according to a program stored in advance in a storage device.
  • the internal configuration of the control device 100 while showing the internal configuration of the control device 100 as a functional block corresponding to each embodiment, the specific content of the three-dimensional layered manufacturing method realized by each configuration will be described.
  • FIG. 4 is a block diagram functionally showing the internal configuration of the control device 100 according to the first embodiment
  • FIG. 5 is a flowchart showing the three-dimensional additive manufacturing method implemented by the control device 100 of FIG. is there.
  • FIG. 4 among the functional configurations of the control device 100, only configurations relating to control contents to be described later are representatively shown, and other configurations may be provided as necessary.
  • the control device 100 includes a powder laying unit control unit 102 for controlling the powder laying unit 10, a beam irradiation unit control unit 104 for controlling the beam irradiation unit 14, and a shape measurement sensor. 34.
  • a shape monitoring unit 106 that measures the shape of the powder bed 8 based on the measurement result of 34, an unevenness determination unit 108 that determines the presence or absence of unevenness in the powder bed 8 based on the monitoring result of the shape monitoring unit 106, and an unevenness judgment unit
  • the correction control unit 110 performs correction control based on the determination result of 108, and the warning notification unit 112 controls the warning unit 44.
  • the three-dimensional additive manufacturing method according to the first embodiment is implemented as these components function as follows.
  • the forming cycle is repeated to construct a three-dimensional object to be formed, but in the following description, the n (arbitrary natural number) forming cycle will be described as an example. To be.
  • the powder laying unit control unit 102 controls the powder laying unit 10 so as to lay the powder on the powder bed 8 of the (n-1) th layer already laid on the base plate 2 or the base plate, and the nth layer
  • the powder bed 8 is formed (step S101).
  • the layer thickness tn of the powder bed 8 newly formed here is, for example, several tens of ⁇ m.
  • the shape monitoring unit 106 measures the surface shape of the powder bed 8 by acquiring the measurement result from the shape measurement sensor 34 (step S102). At this time, in the shape measurement sensor 34, the surface shape of the powder bed 8 is measured as a three-dimensional structure by measurement based on the fringe projection method as described above with reference to FIG. The measurement data acquired by the shape measurement sensor 34 is sent to the shape monitoring unit 106 as an electrical signal.
  • the unevenness determination unit 108 determines whether there is unevenness on the powder bed 8 based on the measurement result of step S102 (step S103).
  • the determination regarding the presence or absence of such unevenness is performed by analyzing the surface structure of the powder bed 8 acquired by the shape monitoring unit 106. In the present embodiment, if the detected unevenness is out of the allowable range, it is determined that the unevenness is present. This tolerance is set based on whether the unevenness on the powder bed 8 is an unacceptable defect for product quality as the build cycle progresses.
  • the size of the unevenness (that is, the height difference between the bottom of the recess and the top of the protrusion) is equal to or less than the thickness tn of the powder bed 8 that the powder laying unit 10 should form in step S101.
  • a certain range is set as an allowable range.
  • step S104 the powder laying unit 10 performs the rework (recoater) of the laying operation of the n-th powder bed 8.
  • recoater work is performed by the powder laying unit 10 laying the powder bed 8 in step S101, but another unit may be prepared.
  • the n-th powder bed 8 may be formed again, or the upper layer side may be left while leaving the powder bed 8 having irregularities.
  • the powder bed 8 of the nth layer may be repaired by supplying additional powder from the above.
  • the shape monitoring unit 106 measures the surface shape of the powder bed 8 again as in step S102 (step S105). Then, as in step S103, the asperity determination unit 108 again determines whether there is asperity on the powder bed 8 based on the measurement result in step S105 (step S106). As a result, when the unevenness still remains (step S106: YES), the warning notification unit 112 instructs the warning unit 44 to give a warning for prompting replacement of the component (for example, recoater blade) of the powder laying unit 10. It instructs to emit (step S107). That is, there is a possibility that mechanical failure may exist in the powder laying unit 10 when the unevenness is not eliminated even by the recoating of the powder.
  • the beam irradiation unit control unit 104 controls the beam irradiation unit 14 to form a tertiary object serving as a shaping object with respect to the powder bed 8 of the nth layer.
  • the beam is irradiated in a scanning pattern corresponding to the original object to be shaped (step S108).
  • the control device 100 determines whether or not the series of modeling operations has been completed by repeating the modeling cycle sufficiently (step S109).
  • the control device 100 returns the process to step S101 and shifts to the shaping process of the (n + 1) th layer (step S110).
  • Step S109 YES
  • the nondestructive inspection is performed on the completed three-dimensional formed object as necessary, and a series of forming operations is completed (end ).
  • the shape measurement sensor 34 monitors irregularities on the powder bed 8 which are abnormal or a sign thereof. Then, when the unevenness having a size outside the allowable range is detected by the shape measurement sensor 34, the powder is relaid so as to reduce the unevenness before irradiating the powder bed 8 with the beam. As a result, it is possible to prevent at an early stage that the unevenness caused by the laying failure of the powder becomes fatal abnormality as the forming operation proceeds. Also, if the powder bed does not improve the asperities on the powder bed, a mechanical failure of the powder laying unit may be present, so a warning is given to prompt component replacement. As a result, it is possible to avoid a failure in modeling by proceeding with the modeling operation while holding a defect that can not be eliminated in control.
  • FIG. 6 is a block diagram functionally showing the internal configuration of the control device 100 according to the second embodiment
  • FIG. 7 is a flowchart showing the three-dimensional additive manufacturing method implemented by the control device 100 of FIG.
  • FIG. 8 is a flow chart showing a subroutine of step S204 of FIG.
  • components corresponding to the above-described embodiments will be denoted by the same reference numerals, and redundant descriptions will be omitted as appropriate.
  • the control device 100 includes a powder laying unit control unit 102 for controlling the powder laying unit 10, a beam irradiation unit control unit 104 for controlling the beam irradiation unit 14, and a temperature measurement sensor. Based on the measurement results of the first temperature measurement sensor 38a and the second temperature measurement sensor 38b, the presence or absence of internal defects is determined based on the monitoring results of the temperature monitoring unit 114 that measures the temperature of the modeling surface and the temperature monitoring unit 114 And a correction control unit 110 for performing correction control based on the determination result of the internal defect determination unit 116.
  • the three-dimensional additive manufacturing method which concerns on 2nd Embodiment is implemented because these components function as follows.
  • the forming cycle is repeated to construct a three-dimensional object to be formed, but in the following description, the n (arbitrary natural number) forming cycle will be described as an example. To be.
  • the powder laying unit control unit 102 controls the powder laying unit 10 so as to lay the powder on the powder bed 8 of the (n-1) th layer already laid on the base plate 2 or the base plate, and the nth layer
  • the powder bed 8 is formed (step S201).
  • the layer thickness tn of the powder bed 8 newly formed here is, for example, several tens of ⁇ m.
  • the beam irradiation unit control unit 104 controls the beam irradiation unit 14 so that the n-th powder bed 8 formed in step S201 has a scanning pattern corresponding to a three-dimensional object to be formed.
  • the beam is irradiated to perform modeling (step S202).
  • the temperature monitoring unit 114 measures the temperature of the shaped surface on the powder bed 8 by acquiring the measurement result from the temperature measurement sensor 38 (step S203). ).
  • the three-dimensional layered modeling apparatus 1 includes the first temperature measurement sensor 38a and the second temperature measurement sensor 38b as temperature measurement sensors.
  • the first temperature measurement sensor 38 a measures the local temperature of the irradiated portion 39 irradiated by the beam
  • the second temperature measurement sensor 38 b measures the temperature distribution in the detection target area 41 including the irradiated portion 39.
  • the measurement results of the first temperature measurement sensor 38a and the second temperature measurement sensor 38b are acquired multiple times while the beam is scanned on the powder bed 8, and storage means (not shown) such as a memory of the control device 100 Accumulated in
  • the internal defect determination unit 116 determines, based on the measurement result of step S203, whether or not the internal surface has an internal defect (step S204). At the position where the internal defect exists, the heat insulation effect is larger than that at the periphery, so the internal defect determination unit 116 determines the presence or absence of the internal defect based on the measurement results of the first temperature measurement sensor 38a and the second temperature measurement sensor 38b. can do.
  • the determination method of the internal defect in step S204 will be specifically described with reference to FIG.
  • the internal defect determination unit 116 accumulates the measurement values of the first temperature measurement sensor 38a and the second temperature measurement sensor 38b (step S204a).
  • the first temperature measurement sensor 38a a local temperature at a position (a portion to be irradiated) where the beam is irradiated along the scanning path of the beam is detected.
  • the internal defect determination unit 116 calculates the amount of change in the in-plane position of such local temperature (step S204 b), and specifies the position where the amount of change is equal to or greater than a predetermined threshold as a candidate position at which the internal defect exists (step S204 c). ).
  • the internal defect determination unit 116 calculates the cooling rate at the candidate position identified in step S204c based on the measurement result of the second temperature measurement sensor 38b (step S204d), and sets the cooling rate to a position smaller than a predetermined threshold. It is determined that an internal defect exists (step S204e). At the position where the internal defect exists, the cooling rate is reduced because the heat insulating effect is increased compared to the surrounding area. As described above, the cooling rate also changes because the adiabaticity is increased at the position where the internal defect is present due to the effect of the cavity existing below the beam irradiation position. Therefore, at the position where the internal defect exists, when the cooling rate is compared with the adjacent position, the change in the cooling rate is larger than that at the position where the internal defect does not exist compared to the surrounding.
  • the internal defect determination unit 116 accurately determines the presence or absence of internal defects based on two viewpoints of the local temperature measured by the first temperature measurement sensor 38a and the cooling rate measured by the second temperature measurement sensor 38b. It is often judged.
  • the case of performing the determination based on the two viewpoints as described above is exemplified, but the determination based on only one of them may be performed.
  • step S204 when it is determined that there is an internal defect in the formed surface by such a determination throw (step S204: YES), the beam irradiation unit control unit 104 transmits an internal defect to the beam irradiation unit 14. The beam is re-irradiated to the position determined to be present (step S205). Thereby, the shaped surface at the position where the internal defect exists is remelted, and the internal defect disappears.
  • the beam re-irradiation conditions (output, scanning speed, hatch sense, focus, trajectory, etc.) in step S205 are set based on, for example, the state (size, shape, position, etc.) of the internal defect determined in step S204. Good to be done. For example, if an internal defect is detected in the vicinity of the contour of a three-dimensional object, re-irradiating the position with a high-output low-speed beam may deteriorate the surface roughness of the three-dimensional object. Therefore, the irradiation conditions should be set so that the energy density per unit time supplied by the beam is low (for example, the beam power may be reduced or the beam scanning speed may be increased).
  • control device 100 determines whether or not the series of modeling operations has been completed by repeating the modeling cycle sufficiently (step S206).
  • the control device 100 returns the process to step S201 and shifts to the shaping process of the (n + 1) th layer (step S207).
  • step S206 YES
  • the nondestructive inspection is performed on the completed three-dimensional shaped object as necessary, and the series of forming operations is completed (end ).
  • the beam when an abnormality or an internal defect that is an indication thereof is detected by monitoring the temperature of the shaped surface to which the beam is irradiated, the beam is re-irradiated at an early stage. Repair work will be carried out. Thereby, the repair operation can be performed in real time during the molding operation, and the quality improvement of the molded object and the improvement of the production efficiency can be achieved.
  • FIG. 9 is a block diagram functionally showing the internal configuration of the control device 100 according to the third embodiment
  • FIG. 10 is a flowchart showing the three-dimensional additive manufacturing method implemented by the control device 100 of FIG. is there.
  • components corresponding to the above-described embodiments will be denoted by the same reference numerals, and redundant descriptions will be omitted as appropriate.
  • the control device 100 includes a powder laying unit control unit 102 for controlling the powder laying unit 10, a beam irradiation unit control unit 104 for controlling the beam irradiation unit 14, and a temperature measurement sensor.
  • the average temperature of the powder bed 8 based on the monitoring results of the temperature monitoring unit 114 that measures the temperature of the shaped surface based on the measurement results of the first temperature measurement sensor 38a and the second temperature measurement sensor 38b and the temperature monitoring unit 114
  • a correction control unit 110 for performing correction control based on the calculation result of the average temperature calculation unit 118.
  • the three-dimensional additive manufacturing method according to the third embodiment is implemented as these components function as follows.
  • the forming cycle is repeated to construct a three-dimensional object to be formed, but in the following description, the n (arbitrary natural number) forming cycle will be described as an example. To be.
  • the powder laying unit control unit 102 controls the powder laying unit 10 so as to lay the powder on the powder bed 8 of the (n-1) th layer already laid on the base plate 2 or the base plate, and the nth layer
  • the powder bed 8 is formed (step S301).
  • the layer thickness tn of the powder bed 8 newly formed here is, for example, several tens of ⁇ m.
  • the beam irradiation unit control unit 104 controls the beam irradiation unit 14 so that the n-th powder bed 8 formed in step S301 has a scanning pattern corresponding to a three-dimensional object to be formed.
  • the beam is irradiated to perform modeling (step S302).
  • the temperature monitoring unit 114 measures the measurement result from at least one of the first temperature measurement sensor 38a and the second temperature measurement sensor 38b as in step S203 described above.
  • the average temperature calculation unit 118 calculates the average temperature T1 on the powder bed 8 after the irradiation of the beam, based on the measurement result of step S303 (step S304).
  • the powder laying unit control unit 102 lays the powder bed 8 of the (n + 1) th layer on the upper layer side according to the same procedure as step S301 (step S305). Then, the beam is irradiated to the powder bed 8 of the (n + 1) th layer as in step S302 (step S306). Then, as in step S303, the temperature of the powder bed 8 is measured (step S307), and the average temperature T2 on the powder bed 8 after the beam irradiation is calculated again (step S308).
  • the correction control unit 110 calculates a difference ⁇ T between the average temperature T1 calculated in step S304 and the average temperature T2 calculated in step S308 (step S309), and whether the difference ⁇ T is larger than the reference value ⁇ Tref It is determined whether or not (step S310). If the difference ⁇ T is larger than the reference value ⁇ Tref (step S310: YES), the correction control unit 110 instructs the beam irradiation unit control unit 104 to correct the irradiation density of the beam irradiated from the beam irradiation unit 14 (Step S311).
  • the decrease in the irradiation density of the beam in step S311 may be a spatial decrease or a temporal decrease.
  • it is preferable to suppress the increase in the average temperature of the formed surface by decreasing the power level of the beam by the beam irradiation unit 14 from that in standard time or by increasing the time interval in which the beam is irradiated.
  • Such correction control in the correction control unit 110 may be automatically canceled and returned to normal control when the average temperature is sufficiently decreased based on the measurement result of the temperature monitoring unit.
  • control device 100 determines whether or not the series of modeling operations has been completed by repeating the modeling cycle sufficiently (step S312). When the modeling process is not completed (step S312: NO), the control device 100 returns the process to step S301, and shifts to the next modeling process (step S313).
  • the radiation density of the beam is adjusted when the heat accumulation in the shaped surface is increased.
  • heat amount can be suppressed, and three-dimensional lamination modeling can be performed by the stable quality.
  • FIG. 11 is a block diagram functionally showing the internal configuration of the control device 100 according to the fourth embodiment
  • FIG. 12 is a flowchart showing the three-dimensional additive manufacturing method implemented by the control device 100 of FIG. is there.
  • components corresponding to the above-described embodiments will be denoted by the same reference numerals, and redundant descriptions will be omitted as appropriate.
  • the control device 100 includes a powder laying unit control unit 102 for controlling the powder laying unit 10, a beam irradiation unit control unit 104 for controlling the beam irradiation unit 14, and a shape measurement sensor 34.
  • a shape monitoring unit 106 that measures the shape of the formed surface based on the measurement result of 34, a recess judgment unit 120 that determines the presence or absence of a recess in the formation surface based on the monitoring result of the shape monitoring unit 106, And a correction control unit 110 that performs correction control based on the determination result.
  • the three-dimensional additive manufacturing method according to the fourth embodiment is implemented as these components function as follows.
  • the forming cycle is repeated to construct a three-dimensional object to be formed, but in the following description, the n (arbitrary natural number) forming cycle will be described as an example. To be.
  • the powder laying unit control unit 102 controls the powder laying unit 10 so as to lay the powder on the powder bed 8 of the (n-1) th layer already laid on the base plate 2 or the base plate, and the nth layer
  • the powder bed 8 is formed (step S401).
  • the layer thickness tn of the powder bed 8 newly formed here is, for example, several tens of ⁇ m.
  • the beam irradiation unit control unit 104 controls the beam irradiation unit 14 so that the n-th powder bed 8 formed in step S401 has a scanning pattern corresponding to a three-dimensional object to be formed.
  • the beam is irradiated to perform modeling (step S402).
  • the shape monitoring unit 106 measures the shape of the modeling surface by acquiring the measurement result from the shape measurement sensor 34, as in step S102 described above (step S403).
  • the shape measuring sensor 34 the surface shape of the modeling surface is measured as a three-dimensional structure by the measurement based on the fringe projection method as described above with reference to FIG.
  • the measurement data acquired by the shape measurement sensor 34 is sent to the shape monitoring unit 106 as an electrical signal.
  • the recess determining unit 120 determines whether or not there is a recess on the modeling surface (step S404). Such determination is performed by analyzing the three-dimensional structure of the shaped surface acquired by the shape monitoring unit 106 and extracting the concave portion. In the present embodiment, when the size of the extracted recess (that is, the depth, the width, and the like of the recess) is out of the allowable range, it is determined that the recess is present.
  • the allowable range serving as the determination reference in step S404 is set based on whether or not the recess present on the shaping surface may become a fatal shaping defect for the product quality when the shaping cycle proceeds. Ru.
  • the allowable range is defined as a range that is equal to or less than the thickness tn of the powder bed 8 per layer formed by the powder laying unit 10 in step S401.
  • the correction control unit 110 controls the powder supply unit 12 to selectively select the recess detected by the shape measurement sensor 34 Supply the powder locally) (step S405).
  • the recesses present in the shaped surface are filled with the powder selectively supplied from the powder supply unit 12.
  • the powder is supplied locally to the position where the recess exists by the powder supply unit 12, but the powder laying unit 10 supplies the powder to a wide range including the position where the recess exists. You may do it.
  • the correction control unit 110 instructs the beam irradiation unit control unit 104 to irradiate the powder supplied in step S405 with the beam (step S406).
  • the powder filling the recess is solidified and the recess disappears.
  • the correction control unit 110 instructs the beam irradiation unit control unit 104 to irradiate the powder supplied in step S405 with the beam (step S406).
  • step S407 the shape monitoring unit 106 measures the shape of the formed surface again as in step S403 (step S407).
  • step S404 the recess determining unit 120 determines again whether there is a recess on the modeling surface based on the measurement result of step S407 (step S408).
  • step S408 YES
  • the process is returned to step S405, and the above process is performed again to perform the repair.
  • step S408 NO
  • the control device 100 determines whether or not the series of forming operations has been completed by repeating the forming cycle sufficiently (step S409).
  • step S409: NO the control device 100 returns the process to step S401 and shifts to the shaping process of the (n + 1) th layer (step S410).
  • Step S409 YES
  • the nondestructive inspection is performed on the completed three-dimensional shaped object as necessary, and the series of forming operations is completed (end ).
  • the shape measurement sensor 34 monitors the unevenness of the formed surface, which is an element indicating a sign of formation failure.
  • the powder is selectively supplied to the concave portion by the powder supply unit 12, and the beam is irradiated to the supplied powder, thereby repairing the concave portion.
  • the concave portion present in the molding surface in the middle of the molding operation, it is possible to prevent at an early stage that the concave portion becomes an abnormality which causes a quality problem as the molding operation progresses.
  • FIG. 13 is a block diagram functionally showing the internal configuration of the control device 100 according to the fifth embodiment
  • FIG. 14 is a flowchart showing the three-dimensional additive manufacturing method implemented by the control device 100 of FIG. is there.
  • components corresponding to the above-described embodiments will be denoted by the same reference numerals, and redundant descriptions will be omitted as appropriate.
  • the control device 100 controls a powder laying unit control unit 102 for controlling the powder laying unit 10, a beam irradiation unit control unit 104 for controlling the beam irradiation unit 14, and a shape measurement sensor 34.
  • a shape monitoring unit 106 that measures the shape of a formed surface based on the measurement result of 34
  • a convex portion judgment unit 122 that determines the presence or absence of a convex portion on the formed surface based on the monitoring result of the shape monitoring unit 106
  • a correction control unit 110 that performs correction control based on the determination result of the unit 122.
  • the three-dimensional additive manufacturing method according to the fifth embodiment is implemented as these components function as follows.
  • the forming cycle is repeated to construct a three-dimensional object to be formed, but in the following description, the n (arbitrary natural number) forming cycle will be described as an example. To be.
  • the powder laying unit control unit 102 controls the powder laying unit 10 so as to lay the powder on the powder bed 8 of the (n-1) th layer already laid on the base plate 2 or the base plate, and the nth layer
  • the powder bed 8 is formed (step S501).
  • the layer thickness tn of the powder bed 8 newly formed here is, for example, several tens of ⁇ m.
  • the beam irradiation unit control unit 104 controls the beam irradiation unit 14 so that the n-th powder bed 8 formed in step S501 has a scanning pattern corresponding to a three-dimensional object to be formed.
  • the beam is irradiated to perform modeling (step S502).
  • the shape monitoring unit 106 measures the shape of the modeling surface by acquiring the measurement result from the shape measurement sensor 34, as in step S102 described above (step S503).
  • the shape measuring sensor 34 the surface shape of the modeling surface is measured as a three-dimensional structure by the measurement based on the fringe projection method as described above with reference to FIG.
  • the measurement data acquired by the shape measurement sensor 34 is sent to the shape monitoring unit 106 as an electrical signal.
  • the convex portion judgment unit 122 judges whether or not there is a convex portion on the modeling surface based on the measurement result of step S503 (step S504). Such determination is performed by analyzing the three-dimensional structure acquired by the shape monitoring unit 106 and extracting the convex portion. In the present embodiment, when the size of the extracted convex portion (that is, the height, the width, and the like of the convex portion) is out of the allowable range, it is determined that the convex portion is present.
  • the allowable range serving as the determination reference in step S504 is set based on whether or not the convex portion present on the shaping surface may become a fatal shaping defect for the product quality when the shaping cycle proceeds. Be done.
  • the allowable range is defined as a range that is equal to or less than the thickness tn of the powder bed 8 per layer formed by the powder laying unit 10 in step S501.
  • the correction control unit 110 causes the beam irradiation unit control unit 104 to be detected by the shape measurement sensor 34 by the beam irradiation unit 14. It instructs the beam to be selectively (locally) re-irradiated to the convex portion (step S505).
  • the portion irradiated with the beam is melted and the convex portion is eliminated, so that the convex portion can be prevented from growing into a shaping defect at an early stage as the shaping operation progresses, and the risk of shaping failure is effectively reduced. it can.
  • step S505 re-irradiation of the beam in step S505 may be performed multiple times if it is difficult to eliminate the convex portion in one irradiation depending on the output of the beam. Moreover, after implementing step S505, the process of confirming whether the convex part eliminated may be implemented. In this case, if the convex portion has not been eliminated, step S505 may be performed again, or a warning may be issued to urge the component replacement of the beam irradiation unit 14.
  • the surface shape is broken by the normal beam irradiation when the beam is re-irradiated in step S505. Since there is a risk, the beam focus, output, scanning speed, hatch interval, etc. may be adjusted.
  • control device 100 determines whether or not the series of forming operations has been completed by repeating the forming cycle sufficiently (step S506).
  • the control device 100 returns the process to step S501 and shifts to the forming process of the (n + 1) th layer (step S507).
  • Step S506 YES
  • the nondestructive inspection is performed on the completed three-dimensional shaped object as necessary, and the series of forming operations is completed (end ).
  • the repair operation is automatically performed by irradiating the beam to the convex portion and melting it. It will be.
  • a convex portion may be formed so that a part of the forming surface is lifted during the forming operation, which causes damage to the powder laying unit 10 and the powder supply unit 12. , It is effective to prevent such problems.
  • FIG. 15 is a block diagram functionally showing the internal configuration of the control device 100 according to the sixth embodiment
  • FIG. 16 is a flowchart showing the three-dimensional additive manufacturing method implemented by the control device 100 of FIG. is there.
  • components corresponding to the above-described embodiments will be denoted by the same reference numerals, and redundant descriptions will be omitted as appropriate.
  • the control device 100 controls a powder laying unit control unit 102 for controlling the powder laying unit 10, a beam irradiation unit control unit 104 for controlling the beam irradiation unit 14, and a shape measurement sensor 34.
  • a shape monitoring unit 106 that measures the shape of a formed surface based on the measurement result of 34
  • a convex portion judgment unit 122 that determines the presence or absence of a convex portion on the formed surface based on the monitoring result of the shape monitoring unit 106
  • a sputter determination unit 124 that determines whether the convex portion detected by the unit 122 is sputtering or not
  • a correction control unit 110 that performs correction control based on the determination results of the convex portion determination unit 122 and the sputter determination unit 124 And.
  • the three-dimensional additive manufacturing method according to the sixth embodiment is implemented as these components function as follows.
  • the forming cycle is repeated to construct a three-dimensional object to be formed, but in the following description, the n (arbitrary natural number) forming cycle will be described as an example. To be.
  • the powder laying unit control unit 102 controls the powder laying unit 10 so as to lay the powder on the powder bed 8 of the (n-1) th layer already laid on the base plate 2 or the base plate, and the nth layer
  • the powder bed 8 is formed (step S601).
  • the layer thickness tn of the powder bed 8 newly formed here is, for example, several tens of ⁇ m.
  • the beam irradiation unit control unit 104 controls the beam irradiation unit 14 so that the n-th powder bed 8 formed in step S601 has a scanning pattern corresponding to a three-dimensional object to be formed.
  • the beam is irradiated to perform shaping (step S602).
  • the shape monitoring unit 106 measures the shape of the modeling surface by acquiring the measurement result from the shape measurement sensor 34, as in step S102 described above (step S603).
  • the shape measuring sensor 34 the surface shape of the modeling surface is measured as a three-dimensional structure by the measurement based on the fringe projection method as described above with reference to FIG.
  • the measurement data acquired by the shape measurement sensor 34 is sent to the shape monitoring unit 106 as an electrical signal.
  • the convex portion judgment unit 122 judges whether there is a convex portion on the modeling surface based on the measurement result in step S603 (step S604). Such determination is performed by analyzing the three-dimensional structure acquired by the shape monitoring unit 106 and extracting the convex portion. In the present embodiment, when the size of the extracted convex portion (that is, the height, the width, and the like of the convex portion) is out of the allowable range, it is determined that the convex portion is present.
  • the allowable range serving as the determination reference in step S604 is set based on whether or not the convex portion present on the shaping surface may become a fatal shaping defect for the product quality when the shaping cycle proceeds. Be done.
  • the allowable range is defined as a range that is equal to or less than the thickness tn of the powder bed 8 per layer formed by the powder laying unit 10 in step S601.
  • the sputter determination unit 124 determines whether the convex portion is a sputter (step S605). In this judgment, for example, even if it is judged based on whether or not the projected area (convex projected area) of the amount of convex deformation generated on the surface of the powder bed after beam irradiation is equal to or less than the assumed sputter particle diameter. Good.
  • standard can be set according to the generation
  • the assumed sputtered particle size is relatively large, about 150 ⁇ m to 300 ⁇ m, so it can be determined that spatter is locally present when a projection area of 300 ⁇ m ⁇ 300 ⁇ m or less is obtained. .
  • the correction control unit 110 mechanically removes the convex portion using the convex portion removing unit 42 (at least one of the cutter removing portion 42a and the air blow removing portion 42b). (Step S606).
  • the convex portion is a sputter
  • the sputter contains a relatively high proportion of an oxide generated when the powder is melted, so that the oxide is mechanically removed so as not to be dissolved in the shaped object, Good modeling quality can be realized.
  • the cutter removal part 42a since the cutter removal part 42a has the good flatness precision of the modeling surface after cutter removal, the layer thickness dispersion
  • the air blow removing portion 42b can remove only by spattering even if there is a floating portion of the shaped product like the cutter removing portion 42a, it is possible to remove powders other than the spatter around the shaped product. It should be kept in mind that accurate positioning is required because there is a possibility of blowing away.
  • step S605 when the convex portion is other than sputtering (step S605: NO), the correction control unit 110 controls the beam irradiation unit control unit 104 to the beam irradiation unit control unit 104 as in step S505 described above.
  • the beam is instructed to be selectively (locally) re-irradiated to the convex portion detected by the shape measurement sensor 34 (step S 607).
  • the portion irradiated with the beam is melted and the convex portion is eliminated.
  • control device 100 determines whether or not the series of forming operations has been completed by repeating the forming cycle sufficiently (step S608).
  • the control device 100 returns the process to step S601 and shifts to the forming process of the (n + 1) th layer (step S609).
  • step S608 YES
  • the nondestructive inspection is performed on the completed three-dimensional shaped object as needed, and the series of forming operations is completed (end ).
  • the convex portion generated on the shaped surface is sputtering, and the method of removing the two convex portions can be used properly based on the determination result. If the projections are sputtered, the sputter contains a relatively high proportion of the oxide produced when the powder is melted, so that the projections are mechanically removed by the projection removing unit so that the oxides are not dissolved in the object. It is removed. On the other hand, when the convex portion is other than sputtering, since there is no such concern, the convex portion is removed by irradiating the beam with the beam. Thus, modeling defects can be effectively prevented while securing modeling quality.
  • FIG. 17 is a block diagram functionally showing the internal configuration of the control device 100 according to the seventh embodiment
  • FIG. 18 is a flowchart showing the three-dimensional additive manufacturing method implemented by the control device 100 of FIG. is there.
  • components corresponding to the above-described embodiments will be denoted by the same reference numerals, and redundant descriptions will be omitted as appropriate.
  • the control device 100 includes a powder laying unit control unit 102 for controlling the powder laying unit 10, a beam irradiation unit control unit 104 for controlling the beam irradiation unit 14, and a shape measurement sensor. 34.
  • a temperature monitoring unit 114 that measures the temperature of the formed surface, an internal defect determination unit 116 that determines the presence or absence of an internal defect based on the monitoring results of the temperature monitoring unit 114, and a powder bed 8 based on the monitoring results of the shape monitoring unit 106
  • Unevenness determination unit 108 that determines the presence or absence of unevenness on the surface or the molding surface of
  • An average temperature calculation unit 118 that calculates an average temperature of the powder bed 8 based on the monitoring result of the temperature monitoring unit 114, and a sputtering determination unit that determines
  • the three-dimensional additive manufacturing method according to the seventh embodiment is implemented as these components function as follows.
  • the forming cycle is repeated to construct a three-dimensional object to be formed, but in the following description, the n (arbitrary natural number) forming cycle will be described as an example. To be.
  • the powder laying unit control unit 102 controls the powder laying unit 10 so as to lay the powder on the powder bed 8 of the (n-1) th layer already laid on the base plate 2 or the base plate, and the nth layer
  • the powder bed 8 is formed (step S701).
  • the layer thickness tn of the powder bed 8 newly formed here is, for example, several tens of ⁇ m.
  • the shape monitoring unit 106 measures the surface shape of the powder bed 8 by acquiring the measurement result from the shape measurement sensor 34, and the unevenness judgment unit judges whether the powder bed 8 has unevenness based on the measurement result. (Step S702). If the unevenness of the powder bed 8 is present (step S702: NO), the correction control unit 110 re-lays the powder so that the unevenness of the powder bed 8 is reduced before irradiating the powder bed 8 with a beam (step S703). ). As a result, the unevenness on the powder bed 8 is eliminated, and the occurrence of abnormality caused by the unevenness can be effectively reduced when the forming operation proceeds.
  • the correction control unit 110 may instruct the warning notification unit 112 to issue a warning from the warning unit 44.
  • the details of each step in steps S702 to S704 are as described in the first embodiment described above, and thus the details will be omitted here.
  • the beam irradiation unit control unit 104 controls the beam irradiation unit 14 to set the irradiation conditions corresponding to the three-dimensional object to be formed for the n-th powder bed 8 formed.
  • Step S704 A beam is irradiated based on the set irradiation condition to perform modeling (step S705).
  • step S705 while scanning and irradiating the beam in step S705, the temperature monitoring unit 114 acquires measurement results from the first temperature measurement sensor 38a and the second temperature measurement sensor 38b, and the internal defect determination unit 116 determines the measurement results. The presence or absence of an internal defect is determined based on (step S706). If there is an internal defect (step S706: NO), the correction control unit 110 causes the beam irradiation unit control unit 104 to perform beam irradiation so as to re-irradiate the beam to the position determined to have the internal defect. The unit 14 is controlled (step S 707). Thereby, the position where the internal defect exists can be remelted and the internal defect can be eliminated.
  • the details of each step in steps S706 and S707 are as described in the second embodiment described above, and thus the details are omitted here.
  • the average temperature calculation unit 118 calculates an average temperature based on the measurement results of the first temperature measurement sensor 38a and the second temperature measurement sensor 38b, and determines whether there is an abnormality in the average temperature (step S708). In this determination, specifically, as described in the third embodiment, it is determined that there is an abnormality if the difference ⁇ T with the average temperature of the previous shaping cycle is equal to or more than the reference value Tref. If the average temperature is abnormal (step S 708: NO), the correction control unit 110 performs correction control on the beam irradiation unit control unit 104 so as to lower the energy density of the beam irradiated from the beam irradiation unit 14. (Step S709).
  • the irradiation conditions set in step S704 are changed so as to reduce the irradiation density.
  • the control is performed so that the irradiation density of the beam is reduced, thereby the stacking height direction Variation in quality can be suppressed.
  • the details of each step in steps S 708 and S 709 are as described in the above-described third embodiment, and thus the details are omitted here.
  • the shape monitoring unit 106 acquires the measurement result from the shape measurement sensor 34, and the unevenness determination unit 108 determines whether the formed surface has unevenness based on the acquisition result of the shape monitoring unit 106 (steps S710 and S712). ).
  • the correction control unit 110 controls the powder supply unit 12 to selectively (locally) powder for the recess detected by the shape measurement sensor 34.
  • the beam irradiation unit control unit 104 controls the beam irradiate a beam to the supplied powder (step S711).
  • the recesses present in the shaped surface are filled with the powder and solidified by the irradiation of the beam.
  • steps S710 and S711 are as described in the above-described fourth embodiment, and thus the details will be omitted here.
  • the correction control unit 110 i) re-irradiates the beam to the convex portion, ii) convex using at least one of the cutter removing portion and the air blow removing portion At least one of mechanical removal of the part, and iii) selective (local) re-irradiation of the beam to the convex part by the beam irradiation unit 14 is performed to the beam irradiation unit control part 104 (step S713).
  • the correction control unit 110 i) re-irradiates the beam to the convex portion, ii) convex using at least one of the cutter removing portion and the air blow removing portion At least one of mechanical removal of the part, and iii) selective (local) re-irradiation of the beam to the convex part by the beam irradiation unit 14 is performed to the beam irradiation unit control part 104 (step S713).
  • i) is as described in the above-mentioned fifth embodiment
  • control device 100 determines whether or not the series of forming operations has been completed by repeating the forming cycle sufficiently (step S714). If the modeling process is not completed (step S714: NO), the control device 100 returns the process to step S701 and shifts to the (n + 1) -th layer modeling process (step S715).
  • step S 714 YES
  • the nondestructive inspection is performed on the completed three-dimensional shaped object as necessary, and the series of forming operations is completed (end ).
  • the seventh embodiment by combining the respective methods described in the first to sixth embodiments described above, the occurrence of modeling abnormality can be made in real time from different viewpoints in each process during modeling operation It can prevent. As a result, better quality assurance and production efficiency can be achieved compared to the prior art.
  • At least one embodiment of the present invention is a three-dimensional layered manufacturing apparatus that manufactures three-dimensional shaped objects by irradiating layered powder by irradiating a beam to a laid powder, and three-dimensional layered manufacturing implemented by the apparatus Available to the method.

Abstract

三次元積層造形装置は、ベースプレート上に粉末を敷設して形成されたパウダーベッドにビームを照射することで、パウダーベッドを選択的に固化する。パウダーベッドの表面又は造形面の形状又は温度がセンサによって検知され、その検出結果に基づいて、粉末の敷設の不具合、または、ビームの照射の不具合を次層の造形完了前に修正するように構成される。

Description

三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物
 本開示は、敷設された粉末に光ビームや電子ビーム等のビームを照射して積層造形を行うことにより三次元形状物を製造する三次元積層造形装置、当該装置により実施される三次元積層造形方法、及び、当該三次元積層造形方法によって製造可能な三次元積層造形物に関する。
 層状に敷設された粉末に光ビームや電子ビーム等のビームを照射して積層造形を行うことにより三次元形状物を製造するための三次元積層造形技術が知られている。特許文献1には、この種の技術の一例が開示されており、粉末で形成された粉末層に光ビームを照射して焼結層を形成し、それを繰り返すことで、複数の焼結層が一体として積層されることで三次元形状物が製造されることが記載されている。
特開2009-1900号公報
 上記特許文献1のような三次元積層造形方法では、層状の焼結層を繰り返し積層することにより、大きな三次元形状物を形成するため、その完成までには、長い作業時間を要する。特に鉄、銅、アルミニウム又はチタン等の金属粉末を用いる場合、その作業時間は数十時間にも及ぶのが実情である。
 また、この種の三次元積層造形方法では、従来、造形作業が進行している最中に造形欠陥を検査する技術がないため、一連の造形作業が完了した後に不良品検査を実施することによって品質評価を行っている。そのため、造形作業後の検査で造形欠陥等の異常が発見された場合、その三次元形状物は不良品として廃棄処分せざるを得ず、それまでにかかった長い作業時間が無駄となってしまう。これは、三次元積層造形法における生産性を向上する妨げとなっている。
 本発明の少なくとも一実施形態は上述の事情に鑑みなされたものであり、造形作業中に発生する各種異常を早期に検知し、リアルタイムに修正作業を実施することで造形失敗を回避し、良好な生産効率を実現可能な三次元積層造形装置、当該装置により実施される三次元積層造形方法、及び、当該三次元積層造形方法によって製造可能な三次元積層造形物を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る三次元積層造形装置は上記課題を解決するために、ベースプレートと、前記ベースプレート上に粉末を敷設してパウダーベッドを形成するための粉末敷設ユニットと、前記パウダーベッドを選択的に固化するように前記パウダーベッドにビームを照射するためのビーム照射ユニットと、前記パウダーベッド上の凹凸、前記パウダーベッドへの前記ビームの照射により形成される造形面上の凹凸又は温度、又は、前記ビームの照射中の前記パウダーベッドの温度を計測するための少なくとも一つのセンサと、を備え、前記少なくとも一つのセンサの検出結果に基づいて、既に実施された前記粉末敷設ユニットによる前記粉末の敷設の不具合、又は、既に実施された前記ビーム照射ユニットによる前記ビームの照射の不具合を次層の造形完了前に修正するように構成される。
 上記(1)の構成によれば、i)パウダーベッド上の凹凸、ii)パウダーベッドへのビームの照射により形成される造形面上の凹凸又は温度、又は、iii)ビームの照射中のパウダーベッドの温度が、センサを用いた測定によって監視される。その結果、センサによって異常又はその兆候となる測定結果が得られた場合、既に実施された粉末敷設ユニットによる粉末の敷設の不具合、又は、既に実施されたビーム照射ユニットによるビームの照射の不具合を次層の造形完了前に修正する。これにより、造形作業中に発生する各種異常を早期に検知し、リアルタイムに修正作業を実施することで造形失敗を回避できる。
(2)幾つかの実施形態では上記(1)の構成において、前記少なくとも一つのセンサは、前記パウダーベッド上の凹凸を検出するための第1形状測定センサを含み、前記粉末敷設ユニットは、前記第1形状測定センサにより検出された前記凹凸の大きさが許容範囲外であるとき、前記パウダーベッドへの前記ビームの照射前に、前記パウダーベッドの前記凹凸が小さくなるよう前記粉末を再敷設するように構成される。
 上記(2)の構成によれば、第1形状測定センサによって、異常又はその兆候となるパウダーベッド上の凹凸が監視される。そして、第1形状測定センサによって許容範囲外の大きさを有する凹凸が検出された場合、パウダーベッドへのビームの照射前に、凹凸が小さくなるよう粉末を再敷設する。これにより、造形作業が進むに従って凹凸が致命的な異常となることを早い段階で防止できる。
(3)幾つかの実施形態では上記(2)の構成において、前記粉末敷設ユニットによる前記粉末の再敷設後において前記第1形状測定センサにより検出された前記凹凸の大きさが前記許容範囲外であるとき、前記粉末敷設ユニットの部品交換を促す警告を発する部品交換警告部を更に備える。
 上記(3)の構成によれば、粉末の再敷設によってもパウダーベッド上の凹凸が改善しない場合、粉末敷設ユニットの機械的な不具合の可能性が考えられるため、部品交換を促す警告が行われる。これにより、制御上で解消不能な不具合を抱えたまま造形作業に無駄に時間を費やす事態を回避することができる。
(4)幾つかの実施形態では上記(1)から(3)のいずれか一構成において、前記少なくとも一つのセンサは、前記造形面上の凹凸を検出するための第2形状測定センサを含み、前記第2形状測定センサにより検出された凹部に対して選択的に前記粉末を供給するための粉末供給ユニットを更に備え、前記ビーム照射ユニットは、前記粉末供給ユニットにより前記凹部に供給された前記粉末に対して前記ビームを照射するように構成される。
 上記(4)の構成によれば、第2形状測定センサによって、異常又はその兆候を示す造形面上の凹凸が監視される。その結果、造形面に凹部が検出された場合、凹部に対して粉末供給ユニットによって選択的(局所的)に粉末を供給することによって凹部を埋め、当該供給された粉末に対してビームを照射して固化する。このように造形作業中にリアルタイムで凹部を解消することで、造形作業が進むに従って凹部が致命的な異常になることを早い段階で防止できる。
(5)幾つかの実施形態では上記(1)から(4)のいずれか一構成において、前記少なくとも一つのセンサは、前記造形面上の凹凸を検出するための第2形状測定センサを含み、前記ビーム照射ユニットは、前記第2形状測定センサにより検出された凸部に対して前記ビームを照射するように構成される。
 上記(5)の構成によれば、第2形状測定センサによって、異常又はその兆候を示す造形面上の凹凸が監視される。その結果、造形面上に凸部が検出された場合、凸部に対してビームを照射して溶融することで凸部を消滅させる。このように造形作業中にリアルタイムで凸部を解消することで、造形作業が進むに従って凸部が致命的な異常になることを早い段階で防止できる。
(6)幾つかの実施形態では上記(1)から(5)のいずれか一構成において、前記少なくとも一つのセンサは、前記造形面上の凹凸を検出するための第2形状測定センサを含み、前記第2形状測定センサにより検出された凸部を除去するための凸部除去ユニットを更に備える。
 上記(6)の構成によれば、第2形状測定センサによって、異常又はその兆候を示す造形面上の凹凸が監視される。その結果、造形面上に凸部が検出された場合、凸部は凸部除去ユニットによって機械的に除去される。このように凸部を機械的に除去することで、凸部を溶融によって除去する場合のように凸部が三次元形状物の本体に溶け込むことにより、凸部の構成成分が本体の品質に悪影響を及ぼすことを回避できる。
(7)幾つかの実施形態では上記(6)の構成において、前記凸部除去ユニットは、前記凸部を除去するためのカッタ又はエアブロートーチを含む。
 上記(7)の構成によれば、造形面上の凸部の機械的除去は、カッタ又はエアブロートーチによって行われてもよい。
(8)幾つかの実施形態では上記(6)又は(7)の構成において、少なくとも前記ビーム照射ユニット及び前記凸部除去ユニットを制御するためのコントローラを更に備え、前記コントローラは、前記第2形状測定センサにより検出された前記凸部の形状に基づいて、前記凸部が前記ビームの照射時に発生したスパッタであるか否かを判断し、前記凸部が前記スパッタである場合、該スパッタを除去するように前記凸部除去ユニットを制御し、前記凸部がスパッタ以外である場合、前記凸部に対して前記ビームを照射するよう前記ビーム照射ユニットを制御するように構成される。
 上記(8)の構成によれば、造形面上の凸部がスパッタであるか否かが判断され、その判断結果に基づいて、2つの除去手法が使い分けられる。スパッタは粉末がビームによって溶融された際に酸化物を比較的高い割合で含んで形成される。そのため、凸部がスパッタであると判断された場合、凸部除去ユニットによって機械的に除去することで、凸部が三次元形状物の本体に溶け込むことを回避しつつ確実に分離できる。一方、凸部がスパッタ以外である場合には、このような懸念がないため、凸部に対してビームを照射することで迅速に凸部を除去できる。
(9)幾つかの実施形態では上記(8)の構成において、前記凸部の投影面積が300μm×300μm以下である場合に、前記凸部が前記スパッタであると判断する。
 上記(9)の構成によれば、凸部の投影面積が典型的なスパッタの粒径に対応する300μm×300μm以下である場合に、造形面上の凸部がスパッタであると判断する。スパッタの発生形態は様々であるが、例えば、パウダーベッドにビームが照射されて形成される溶融池から飛散して凝固する発生形態のスパッタの場合、想定されるスパッタ粒径は比較的大きく、150μm~300μm程度である。そのため、凸部の投影面積が当該範囲であるか否かによって、凸部がこの種のスパッタであることを判断することができる。
(10)本発明の少なくとも一実施形態に係る三次元積層造形方法は上記課題を解決するために、ベースプレート上に粉末を敷設して形成されるパウダーベッドにビームを照射することにより、前記パウダーベッドを選択的に固化して造形を行う三次元積層造形方法であって、前記パウダーベッド上の凹凸、前記パウダーベッドへの前記ビームの照射により形成される造形面上の凹凸又は温度、又は、前記ビームの照射中の前記パウダーベッドの温度を計測する計測工程と、前記計測工程における計測結果に基づいて、既に形成された前記パウダーベッドにおける前記粉末の敷設の不具合、又は、既に実施された前記ビームの照射の不具合を次層の造形完了前に修正する修正工程と、を備える。
 上記(10)の方法は、上記(1)の三次元積層造形装置によって好適に実施可能である。
(11)幾つかの実施形態では上記(10)の方法において、前記計測工程では、前記パウダーベッド上の凹凸を計測し、前記修正工程では、前記計測工程で計測された前記凹凸の大きさが許容範囲外であるとき、前記パウダーベッドへの前記ビームの照射前に、前記パウダーベッドの前記凹凸が小さくなるよう前記粉末を再敷設する。
 上記(11)の方法は、上記(2)の三次元積層造形装置によって好適に実施可能である。
(12)幾つかの実施形態では上記(10)又は(11)の方法において、前記計測工程では、前記造形面上の凹凸を計測し、前記修正工程では、前記計測工程で計測された凹部に対して選択的に前記粉末を供給し、前記凹部に供給された前記粉末に対して前記ビームを照射する。
 上記(12)の方法は、上記(4)の三次元積層造形装置によって好適に実施可能である。
(13)幾つかの実施形態では上記(10)から(12)のいずれか一方法において、前記計測工程では、前記造形面上の凹凸を計測し、前記修正工程では、前記計測工程で計測された凸部に対して前記ビームを照射する。
 上記(13)の方法は、上記(5)の三次元積層造形装置によって好適に実施可能である。
(14)幾つかの実施形態では上記(10)から(13)のいずれか一方法において、前記計測工程では、前記造形面上の凹凸を計測し、前記修正工程では、前記計測工程で計測された凸部を除去する。
 上記(14)の方法は、上記(6)の三次元積層造形装置によって好適に実施可能である。
(15)幾つかの実施形態では上記(14)の方法において、前記修正工程では、カッタ又はエアブロートーチを用いて前記凸部を除去する。
 上記(15)の方法は、上記(7)の三次元積層造形装置によって好適に実施可能である。
(16)幾つかの実施形態では上記(14)又は(15)の方法において、前記修正工程では、前記計測工程で計測された前記凸部の形状に基づいて、前記凸部が前記ビームの照射時に発生したスパッタであるか否かを判断し、前記凸部が前記スパッタである場合、該スパッタを除去し、前記凸部がスパッタ以外である場合、前記凸部に対して前記ビームを照射する。
 上記(16)の方法は、上記(8)の三次元積層造形装置によって好適に実施可能である。
(17)本発明の少なくとも一実施形態に係る三次元積層造形物は上記課題を解決するために、層状に敷設された粉末にビームを照射して積層造形を行うことにより製造される三次元積層造形物であって、ベースプレート上に前記粉末を敷設してパウダーベッドを形成し、前記パウダーベッドに前記ビームを照射することにより、前記パウダーベッドを選択的に固化し、前記パウダーベッド上の凹凸、前記パウダーベッドへの前記ビームの照射により形成される造形面上の凹凸又は温度、又は、前記ビームの照射中の前記パウダーベッドの温度を計測し、その計測結果に基づいて、既に形成された前記パウダーベッドにおける前記粉末の敷設の不具合、又は、既に実施された前記ビームの照射の不具合を次層の造形完了前に修正することで製造される。
 上記(17)の三次元積層造形物は、粉末の敷設の不具合、又は、ビームの照射の不具合を次層の造形完了前に修正することで、高品質である。
 本発明の少なくとも一実施形態によれば、造形作業中に発生する各種異常を早期に検知し、リアルタイムに修正作業を実施することで造形失敗を回避し、良好な生産効率を実現可能な三次元積層造形装置、及び、当該装置により実施される三次元積層造形方法を提供できる。
本発明の少なくとも一実施形態に係る三次元積層造形装置の全体構成を示す模式図である。 図1のビーム照射ユニットの内部構成を示す模式図である。 図1の形状測定センサの具体的構成例を示す模式図である。 第1実施形態に係る制御装置の内部構成を機能的に示すブロック図である。 図4の制御装置で実施される三次元積層造形方法を工程毎に示すフローチャートである。 第2実施形態に係る制御装置の内部構成を機能的に示すブロック図である。 図6の制御装置で実施される三次元積層造形方法を工程毎に示すフローチャートである。 図7のステップS204のサブルーチンを示すフローチャートである。 第3実施形態に係る制御装置の内部構成を機能的に示すブロック図である。 図9の制御装置で実施される三次元積層造形方法を工程毎に示すフローチャートである。 第4実施形態に係る制御装置の内部構成を機能的に示すブロック図である。 図11の制御装置で実施される三次元積層造形方法を工程毎に示すフローチャートである。 第5実施形態に係る制御装置の内部構成を機能的に示すブロック図である。 図13の制御装置で実施される三次元積層造形方法を工程毎に示すフローチャートである。 第6実施形態に係る制御装置の内部構成を機能的に示すブロック図である。 図15の制御装置で実施される三次元積層造形方法を工程毎に示すフローチャートである。 第7実施形態に係る制御装置の内部構成を機能的に示すブロック図である。 図17の制御装置で実施される三次元積層造形方法を工程毎に示すフローチャートである。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
 図1は、本発明の少なくとも一実施形態に係る三次元積層造形装置1の全体構成を示す模式図である。
 三次元積層造形装置1は、層状に敷設された粉末にビームを照射して積層造形を行うことにより三次元形状物を製造するための装置である。三次元積層造形装置1は、三次元形状物が造形される土台となるベースプレート2を備える。ベースプレート2は、鉛直方向に沿った中心軸を有する略円筒形状のシリンダ4の内側に昇降可能に配置されている。ベースプレート2上には、後述するように粉末が敷設されることによりパウダーベッド8が形成される。パウダーベッド8は、造形作業の間、各サイクルにてベースプレート2が下降する毎に、上層側に粉末が敷設されることにより新たに形成される。
 尚、本実施形態の三次元積層造形装置1ではビームとして光ビームを照射する場合を示すが、電子ビーム等の他の形態のビームを使用する場合にも、本発明の思想は同様に適用可能である。
 三次元積層造形装置1は、ベースプレート2上に粉末を敷設してパウダーベッド8を形成するための粉末敷設ユニット10を備える。粉末敷設ユニット10は、ベースプレート2の上面側に粉末を供給し、その表面を平坦化することによって、ベースプレート2の上面全体に亘って略均一な厚さを有する層状のパウダーベッド8を形成する。各サイクルで形成されたパウダーベッド8には、後述するビーム照射ユニット14からビームが照射されることによって選択的に固化され、次サイクルにて、粉末敷設ユニット10によって再び上層側に粉末が敷設されることで、新たなパウダーベッドが形成されることによって、層状に積み重ねられていく。
 また三次元積層造形装置1は、ベースプレート2上の一部領域に対して局所的に粉末を供給するための粉末供給ユニット12を備える。粉末供給ユニット12は、粉末を吐出するための吐出ノズル12aを有する。吐出ノズル12aはベースプレート2に向けて設置されており、不図示の駆動機構によって水平方向(ベースプレート2の表面)に沿って移動することで、ベースプレート2上のパウダーベッド8の特定位置に対して、局所的に粉末を供給可能に構成されている。
 尚、粉末敷設ユニット10及び粉末供給ユニット12から供給される粉末は、三次元形状物の原料となる粉末状物質であり、例えば鉄、銅、アルミニウム又はチタン等の金属材料や、セラミック等の非金属材料を広く採用可能である。また粉末敷設ユニット10及び粉末供給ユニット12で取り扱われる粉末は、それぞれ同じ材料であってもよいし、用途に応じて互いに異なる材料であってもよい。
 三次元積層造形装置1は、パウダーベッド8を選択的に固化するようにパウダーベッド8にビームを照射するためのビーム照射ユニット14を備える。ここで図2は図1のビーム照射ユニット14の内部構成を示す模式図である。ビーム照射ユニット14は、ビームとしてレーザ光を出力する光源18と、光源18からのビームを集光部25に案内するための光ファイバ22と、複数の光学部材からなる集光部25と、を備える。
 集光部25では、光ファイバ22によって案内されたビームが、コリメータ24に入射する。コリメータ24はビームを平行光に集束する。コリメータ24からの出射光は、アイソレータ26及びピンホール28を介して、ビームエキスパンダ30に入射する。ビームはビームエキスパンダ30で拡径された後、任意方向に揺動可能なガルバノミラー32によって偏向され、fθレンズ33を介してパウダーベッド8に照射される。
 ビーム照射ユニット14から照射されるビームは、パウダーベッド8上にて、その表面に沿って二次元的に走査される。このようなビームの二次元走査は、造形目的となる三次元形状物に応じたパターンで実施され、例えばビーム照射ユニット14が不図示の駆動機構によってベースプレート2の表面に沿って移動することによって行われてもよいし、ガルバノミラー32の角度が駆動制御されることによって行われてもよいし、或いは、これらの組み合わせによって行われてもよい。
 このような構成を有する三次元積層造形装置1では、各サイクルにおいて、粉末敷設ユニット10によってベースプレート2上に粉末を敷設することでパウダーベッド8が形成され、当該パウダーベッド8に対してビーム照射ユニット14からビームを照射しながら二次元走査することで、パウダーベッド8に含まれる粉末が選択的に固化される。造形作業では、このようなサイクルが繰り返し実施されることで、固化された成形層が積層され、目的となる三次元形状物が製造される。
 再び図1に戻って、三次元積層造形装置1には、造形作業中におけるパウダーベッド8又は造形面(ビームが照射される面)における形状を監視するための形状測定センサ34が備えられている。本実施形態では、形状測定センサ34の一例としてフリンジプロジェクション法をベースにした光学式スキャナが用いられている。ここで図3は、図1の形状測定センサ34の具体的構成例を示す模式図である。形状測定センサ34は、様々なフリンジパターン(縞模様)を対象物(パウダーベッド8又は造形面)上に投影するプロジェクタ34aと、対象物上に投影されたパターン画像を取得するための少なくとも1つの撮像装置(本実施形態では、一例として2台の撮像装置34b1及び34b2)と、これら撮像装置34b1及び34b2で取得された画像を解析することにより、パウダーベッド8又は造形面における形状を分析する分析部34cと、を備えて構成される。分析部34cでは、撮像装置34b1及び34b2で取得された二次元画像が、光学的返還式に基づいて独立した三次元座標系にピクセル毎に変換されることによって、パウダーベッド8又は造形面における形状が演算される。
 尚、形状測定センサ34で実施されるフリンジプロジェクション法については公知の例に倣うこととし、ここでは詳述を割愛する。また分析部34cは、例えばコンピュータ等の電子演算装置から構成されるが、後述する制御装置100に含まれてもよい。
 尚、本実施形態では、パウダーベッド8及び造形面の双方を共通の形状測定センサ34によって監視可能に構成した場合を例示したが、パウダーベッド8及び造形面をそれぞれ別構成の形状測定センサ(すなわち、第1形状測定センサ及び第2形状測定センサ)によって監視可能に構成してもよい。
 また三次元積層造形装置1は、パウダーベッド8及び造形面の温度を監視するための温度測定センサ38を備える。本実施形態では、温度測定センサ38として、パウダーベッド8及び造形面のうちビームの被照射部39における局所温度を測定するための第1温度測定センサ38aと、パウダーベッド8及び造形面の被照射部39を含む二次元領域(少なくとも被照射部より広い領域)における温度分布を測定するための第2温度測定センサ38bと、が設けられている。
 第1温度測定センサ38aは、ビーム照射ユニット14と一体的に構成されている。具体的には図3に示されるように、ビームの光軸を通して被照射部39から導かれる電磁波(パウダーベッド8に照射されるビームの反射光)の強度に基づいて、ビームの被照射部39の局所温度を計測するように構成された放射温度計であり、パイロメータ40を含んで構成されている。パイロメータ40は、集光部25のうちビームエキスパンダ30とガルバノミラー32との間に配置されたダイクロックミラー43によって抽出された反射光の一部について熱放射を感知し、シュテファン=ボルツマンの法則に基づいて局所温度を計測する。第1温度測定センサ38aの計測結果は、電気的信号として後述する制御装置100に送られ、各種処理に用いられる。
 このように第1温度測定センサ38aは、ビームがピンポイントに照射される被照射部39から導かれるビームの反射光に基づいて局所温度を計測するため、局所的な温度を精度よく測定できる。また第1温度測定センサ38aはビーム照射ユニット14と一体的に構成されており、パウダーベッド8に照射されるビームと同じ経路を伝播する反射波に基づいて温度計測を行うため、高速走査されるビームに対して良好な追従性が得られる。
 第2温度測定センサ38bは、図2に示されるように、上述の第1温度測定センサ38aの計測領域である被照射部39に比べて広い検出対象エリア41における温度分布を検出するセンサである。ここで検出対象エリア41は、少なくともビームが照射される被照射部39より広い面積を有するエリアであり、第2温度測定センサ38bは、当該エリアにおける二次元的な温度分布を検出可能に構成されている。
 このような第2温度測定センサ38bは、例えば、検出対象エリア41を計測範囲とする二色温度計(パイロカメラ)や赤外線カメラから構成され、例えば造形エリアの天井や壁面にパウダーベッド8上の検出対象エリア41に向かうように設置される。また第2温度測定センサ38bは、二次元走査されるビームに追従するように検出対象エリア41が移動するように駆動されてもよい。例えば、第2温度測定センサ38bは、検出対象エリア41の中心に被照射部39が常に位置するように追従制御されてもよい。そして、第2温度測定センサ38bの計測結果は、上述の第1温度測定センサ38aと同様に、電気的信号として後述する制御装置100に送られ、各種処理に用いられる。
 再び図1に戻って、三次元積層造形装置1は、パウダーベッド8にビームが照射されて形成された造形面上に存在する凸部を機械的に除去するための凸部除去ユニット42を備える。本実施形態では、凸部除去ユニット42として、凸部を除去するためのカッタ除去部42aと、エアブロー除去部42bとを備える。カッタ除去部42aは造形面に対して刃面を平行にスライドさせることで、造形面の表面に存在する凸部を機械的に切除可能に構成されている。また、エアブロー除去部42bは、炭素棒等からなるエアブロートーチによって凸部に通電させてアークを発生させながら高圧酸素を吹き付けることで溶融金属を吹き飛ばすことによって、凸部を機械的に除去可能に構成されている。
 また三次元積層造形装置1は、オペレータや外部機器に対して異常発生を認識させるための警告部44を備える。認識対象がオペレータ等の人間である場合には、視覚や聴覚などの五感によって認識可能な態様で、例えば、異常発生を報知するためのブザーやインジケータによって構成される。また認識対象が外部機器である場合には、外部機器によって認識可能な電気的信号が送信されるように構成されており、外部機器はこの電気的信号を受信することで、所定の対応動作が自動的に実施されるように構成されてもよい。
 制御装置100は、三次元積層造形装置1のコントロールユニットであり、例えばコンピュータのような電子演算装置によって構成される。典型的には、各種情報を入力可能な入力デバイス、各種情報を記憶可能な記憶デバイス、各種情報を演算可能な演算デバイス、各種情報を出力可能な出力デバイスを含んで構成されるが、これら電子演算装置の一般的構成については公知の例に倣うこととし、ここでは詳しい説明は省略する。このような制御装置100は、予め記憶デバイスに記憶されたプログラムに従って動作することにより、本発明の少なくとも一実施形態に係る三次元積層造形方法を実施するように構成されている。以下の説明では、制御装置100の内部構成を各実施形態に対応する機能ブロックとして示すとともに、各構成によって実現される三次元積層造形方法の具体的内容について述べていく。
<第1実施形態>
 第1実施形態に係る三次元積層造形装置1について、図4及び図5を参照して説明する。図4は第1実施形態に係る制御装置100の内部構成を機能的に示すブロック図であり、図5は図4の制御装置100で実施される三次元積層造形方法を工程毎に示すフローチャートである。
 尚、図4では、制御装置100の機能的構成のうち、後述する制御内容に関する構成のみを代表的に示しており、必要に応じて他の構成を備えてもよい。
 制御装置100は、図4に示されるように、粉末敷設ユニット10を制御するための粉末敷設ユニット制御部102と、ビーム照射ユニット14を制御するためのビーム照射ユニット制御部104と、形状測定センサ34の測定結果に基づいてパウダーベッド8の形状測定を行う形状モニタリング部106と、形状モニタリング部106のモニタリング結果に基づいてパウダーベッド8における凹凸の有無を判断する凹凸判断部108と、凹凸判断部108の判断結果に基づいて修正制御を実施する修正制御部110と、警告部44を制御する警告通知部112と、を備える。
 このような制御装置100では、これらの構成要素が以下のように機能することで、第1実施形態に係る三次元積層造形方法が実施される。三次元積層造形方法では、造形目的となる三次元形状物を構成するために造形サイクルが繰り返されるが、以下の説明では、n(任意の自然数)回目の造形サイクルを中心に例示的に説明することとする。
 まず粉末敷設ユニット制御部102は、ベースプレート2又はベースプレート上に既に敷設された(nー1)層目のパウダーベッド8上に粉末を敷設するように粉末敷設ユニット10を制御し、n層目のパウダーベッド8を形成する(ステップS101)。ここで新たに形成されるパウダーベッド8の層厚tnは、例えば数10μmである。
 続いて形状モニタリング部106は、形状測定センサ34から測定結果を取得することにより、パウダーベッド8の表面形状を測定する(ステップS102)。このとき形状測定センサ34では、図3を参照して上述したようにフリンジプロジェクション法をベースとした計測によって、パウダーベッド8の表面形状が三次元構造として計測される。形状測定センサ34で取得された測定データは、形状モニタリング部106に電気的信号として送られる。
 続いて凹凸判断部108は、ステップS102の測定結果に基づいて、パウダーベッド8上に凹凸があるか否かを判断する(ステップS103)。このような凹凸の有無に関する判断は、形状モニタリング部106で取得したパウダーベッド8の表面構造を解析することによって行われる。本実施形態では、検出された凹凸が許容範囲外である場合、凹凸があると判断される。この許容範囲は、造形サイクルが進行した際に、パウダーベッド8上の凹凸が製品品質にとって許容できない程度の欠陥であるか否かに基づいて設定される。例えば、本実施形態では凹凸の大きさ(すなわち、凹部の底点と凸部の頂点との高低差)が、ステップS101にて粉末敷設ユニット10が形成すべきパウダーベッド8の厚さtn以下である範囲が許容範囲として設定される。
 パウダーベッド8上に凹凸があると判断された場合(ステップS103:YES)、修正制御部110は、パウダーベッド8にビームを照射する前に、パウダーベッド8の凹凸が小さくなるように粉末を再敷設する(ステップS104)。つまり、粉末敷設ユニット10によって、n層目のパウダーベッド8の敷設作業のやり直し(リコータ)が行われる。このようなリコータ作業は、ステップS101でパウダーベッド8を敷設する粉末敷設ユニット10によって実施されるが、別のユニットを用意してもよい。またリコータ作業は、例えば、凹凸が存在するパウダーベッド8を一旦除去した後に、n層目のパウダーベッド8を再度形成してもよいし、凹凸が存在するパウダーベッド8を残したまま、上層側から追加の粉末を供給することでn層目のパウダーベッド8の補修が行われてもよい。
 粉末の再敷設が完了すると、形状モニタリング部106は、ステップS102と同様に、パウダーベッド8の表面形状を再度測定する(ステップS105)。そして凹凸判断部108は、ステップS103と同様に、ステップS105の測定結果に基づいて、パウダーベッド8上に凹凸があるか否かを再び判断する(ステップS106)。その結果、凹凸が依然として残っている場合(ステップS106:YES)、警告通知部112は、警告部44に対して粉末敷設ユニット10の部品(例えばリコータ用ブレード)の交換作業を促すための警告を発するよう指令する(ステップS107)。つまり、粉末の再敷設によっても凹凸が解消しない場合、粉末敷設ユニット10に機械的な不具合が存在する可能性がある。このような場合、再敷設作業を繰り返したとしても改善する見込みが少ないため、部品交換を促すよう警告が行われる。これにより、自動的な制御では凹凸の解消が難しい状況をオペレータ等に知らせることで、無駄な作業時間が増えることを回避できる。
 尚、本実施形態では粉末の再敷設によって凹凸が解消しない場合に、すぐに警告を行う場合を例示したが、警告を行う前に、リコータ作業を所定回数繰り返してもよい。
 そして再敷設によって凹凸が解消した場合(ステップS106:NO)、ビーム照射ユニット制御部104は、ビーム照射ユニット14を制御することにより、n層目のパウダーベッド8に対して、造形目的となる三次元造形物に対応した走査パターンでビームを照射して造形を行う(ステップS108)。そして、制御装置100は造形サイクルが十分繰り返されることで、一連の造形作業が処理が完了したか否かを判定する(ステップS109)。造形処理が完了していない場合(ステップS109:NO)、制御装置100は処理をステップS101に戻して(n+1)層目の造形処理に移行する(ステップS110)。
 その後、造形サイクルが十分繰り返されて造形作業が完了すると(ステップS109:YES)、完成した三次元造形物に対して必要に応じて非破壊検査を実施し、一連の造形作業が終了する(終了)。
 以上説明したように第1実施形態によれば、形状測定センサ34によって、異常又はその兆候となるパウダーベッド8上の凹凸が監視される。そして、形状測定センサ34によって許容範囲外の大きさを有する凹凸が検出された場合、パウダーベッド8へのビームの照射前に、凹凸が小さくなるよう粉末を再敷設する。これにより、粉末の敷設不具合によって生じた凹凸が造形作業が進むに従って致命的な異常となることを早い段階で防止できる。
 また粉末の再敷設によってもパウダーベッド上の凹凸が改善しない場合、粉末敷設ユニットの機械的な不具合が存在する可能性があるため、部品交換を促す警告が行われる。これにより、制御上で解消不能な不具合を抱えたまま造形作業が進むことで、造形失敗に至ることを回避できる。
<第2実施形態>
 第2実施形態に係る三次元積層造形装置1について、図6乃至図8を参照して説明する。図6は第2実施形態に係る制御装置100の内部構成を機能的に示すブロック図であり、図7は図6の制御装置100で実施される三次元積層造形方法を工程毎に示すフローチャートであり、図8は図7のステップS204のサブルーチンを示すフローチャートである。
 尚、以下の説明では、上述の実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
 制御装置100は、図6に示されるように、粉末敷設ユニット10を制御するための粉末敷設ユニット制御部102と、ビーム照射ユニット14を制御するためのビーム照射ユニット制御部104と、温度測定センサ(第1温度測定センサ38a及び第2温度測定センサ38b)の測定結果に基づいて造形面の温度測定を行う温度モニタリング部114と、温度モニタリング部114のモニタリング結果に基づいて内部欠陥の有無を判断する内部欠陥判断部116と、内部欠陥判断部116の判断結果に基づいて修正制御を実施する修正制御部110と、を備える。
 このような制御装置100では、これらの構成要素が以下のように機能することで、第2実施形態に係る三次元積層造形方法が実施される。三次元積層造形方法では、造形目的となる三次元形状物を構成するために造形サイクルが繰り返されるが、以下の説明では、n(任意の自然数)回目の造形サイクルを中心に例示的に説明することとする。
 まず粉末敷設ユニット制御部102は、ベースプレート2又はベースプレート上に既に敷設された(nー1)層目のパウダーベッド8上に粉末を敷設するように粉末敷設ユニット10を制御し、n層目のパウダーベッド8を形成する(ステップS201)。ここで新たに形成されるパウダーベッド8の層厚tnは、例えば数10μmである。
 続いてビーム照射ユニット制御部104は、ビーム照射ユニット14を制御することにより、ステップS201で形成したn層目のパウダーベッド8に対して、造形目的となる三次元形状物に対応した走査パターンでビームを照射して造形を行う(ステップS202)。
 ここで、ステップS202でビームを走査・照射している間、温度モニタリング部114は、温度測定センサ38から測定結果を取得することにより、パウダーベッド8上の造形面の温度測定を行う(ステップS203)。ここで三次元積層造形装置1は、上述したように、温度測定センサとして第1温度測定センサ38aと第2温度測定センサ38bとを有している。第1温度測定センサ38aでは、ビームが照射する被照射部39における局所温度が測定され、第2温度測定センサ38bでは、被照射部39を含む検出対象エリア41における温度分布が測定される。第1温度測定センサ38aと第2温度測定センサ38bの計測結果は、パウダーベッド8上をビームが走査される間、複数回にわたって取得され、制御装置100が有するメモリ等の記憶手段(不図示)に蓄積される。
 続いて内部欠陥判断部116は、ステップS203の測定結果に基づいて、造形面に内部欠陥があるか否かを判断する(ステップS204)。内部欠陥が存在する位置では、周囲に比べて断熱効果が大きくなるため、内部欠陥判断部116は第1温度測定センサ38a及び第2温度測定センサ38bの測定結果に基づいて内部欠陥の有無を判断することができる。ここでステップS204における内部欠陥の判定手法の一例を、図8を参照して、具体的に説明する。
 まず内部欠陥判断部116は、パウダーベッド8上をビームが走査される際、第1温度測定センサ38a及び第2温度測定センサ38bの計測値を蓄積する(ステップS204a)。ここで第1温度測定センサ38aでは、ビームの走査経路に沿ってビームが照射されている位置(被照射部)における局所温度が検知される。内部欠陥判断部116は、このような局所温度の面内位置における変化量を算出し(ステップS204b)、その変化量が所定閾値以上の位置を内部欠陥が存在する候補位置として特定する(ステップS204c)。局所温度の変化量が大きい位置に、断熱効果に影響を及ぼす内部欠陥が存在する可能性が高いと判断する。つまり、造形面上を走査しながらビーム照射による溶融池における局所温度を連続的に測定すると、その下部に欠陥があれば断熱性の違いから欠陥が存在しない隣位置との温度差が大きくなる。このように局所温度の変化量が周囲に比べて大きい位置に内部欠陥が存在する可能性が高いため、内部欠陥の候補位置として特定される。
 続いて内部欠陥判断部116は、第2温度測定センサ38bの測定結果に基づいて、ステップS204cで特定された候補位置における冷却速度を算出し(ステップS204d)、冷却速度が所定閾値より小さい位置に内部欠陥が存在すると判定する(ステップS204e)。内部欠陥が存在する位置では、その周囲に比べて断熱効果が大きくなるため、冷却速度が小さくなるからである。上述のように、内部欠陥がある位置ではビーム照射位置の下部に存在する空洞の影響によって断熱性が増加することから、冷却速度もまた変化する。そのため、内部欠陥が存在する位置では、その隣位置との間で冷却速度を比較すると、内部欠陥が存在しない位置に比べて冷却速度の変化が周囲に比べて大きくなる。
 このように内部欠陥判断部116は、第1温度測定センサ38aで測定される局所温度と、第2温度測定センサ38bで計測される冷却速度という2つの観点に基づいて、内部欠陥の有無を精度よく判定される。
 尚、本実施形態では、このように2つの観点に基づいた判定を行う場合について例示したが、いずれか一方のみに基づく判定がなされてもよい。
 再び図7に戻って、このような判定スローによって造形面に内部欠陥があると判断された場合(ステップS204:YES)、ビーム照射ユニット制御部104は、ビーム照射ユニット14に対して、内部欠陥があると判断された位置に対して、ビームを再照射する(ステップS205)。これにより、内部欠陥がある位置の造形面が再溶融し、内部欠陥が消滅する。
 尚、ステップS205におけるビームの再照射条件(出力、走査速度、ハッチ感覚、フォーカス、軌跡等)は、例えばステップS204で判断された内部欠陥の状態(大きさ、形状、位置等)に基づいて設定されるとよい。例えば、内部欠陥が三次元造形物の輪郭部近傍で検出された場合、その位置を高出力・低速度のビームで再照射すると、三次元造形物の表面粗度を悪化させてしまうおそれがあるため、ビームによって供給される単位時間あたりのエネルギ密度が低くなるように、照射条件が設定されるとよい(例えばビームの出力を下げたり、ビームの走査速度を速くしたりするとよい)。
 そして、制御装置100は造形サイクルが十分繰り返されることで、一連の造形作業が処理が完了したか否かを判定する(ステップS206)。造形処理が完了していない場合(ステップS206:NO)、制御装置100は処理をステップS201に戻して(n+1)層目の造形処理に移行する(ステップS207)。
 その後、造形サイクルが十分繰り返されて造形作業が完了すると(ステップS206:YES)、完成した三次元形状物に対して必要に応じて非破壊検査を実施し、一連の造形作業が終了する(終了)。
 以上説明したように第2実施形態によれば、ビームが照射される造形面の温度をモニタリングすることで、異常又はその兆候となる内部欠陥が検出された場合に、ビームの再照射によって早期に修復作業が実施される。これにより、造形作業中にリアルタイムで修復作業が行うことができ、造形物の品質向上及び生産効率の改善が達成される。
<第3実施形態>
 第3実施形態に係る三次元積層造形装置1について、図9及び図10を参照して説明する。図9は第3実施形態に係る制御装置100の内部構成を機能的に示すブロック図であり、図10は図9の制御装置100で実施される三次元積層造形方法を工程毎に示すフローチャートである。
 尚、以下の説明では、上述の実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
 制御装置100は、図9に示されるように、粉末敷設ユニット10を制御するための粉末敷設ユニット制御部102と、ビーム照射ユニット14を制御するためのビーム照射ユニット制御部104と、温度測定センサ(第1温度測定センサ38a及び第2温度測定センサ38b)の測定結果に基づいて造形面の温度測定を行う温度モニタリング部114と、温度モニタリング部114のモニタリング結果に基づいてパウダーベッド8の平均温度を算出する平均温度算出部118と、平均温度算出部118の算出結果に基づいて修正制御を実施する修正制御部110と、を備える。
 このような制御装置100では、これらの構成要素が以下のように機能することで、第3実施形態に係る三次元積層造形方法が実施される。三次元積層造形方法では、造形目的となる三次元形状物を構成するために造形サイクルが繰り返されるが、以下の説明では、n(任意の自然数)回目の造形サイクルを中心に例示的に説明することとする。
 まず粉末敷設ユニット制御部102は、ベースプレート2又はベースプレート上に既に敷設された(nー1)層目のパウダーベッド8上に粉末を敷設するように粉末敷設ユニット10を制御し、n層目のパウダーベッド8を形成する(ステップS301)。ここで新たに形成されるパウダーベッド8の層厚tnは、例えば数10μmである。
 続いてビーム照射ユニット制御部104は、ビーム照射ユニット14を制御することにより、ステップS301で形成したn層目のパウダーベッド8に対して、造形目的となる三次元形状物に対応した走査パターンでビームを照射して造形を行う(ステップS302)。
 ここで、ステップS302でビームを走査・照射している間、温度モニタリング部114は、上述のステップS203と同様に、第1温度測定センサ38a及び第2温度測定センサ38bの少なくとも一方から測定結果を取得することにより、パウダーベッド8の温度測定を行う(ステップS303)。そして平均温度算出部118は、ステップS303の測定結果に基づいて、ビームが照射された後のパウダーベッド8上における平均温度T1を算出する(ステップS304)。
 続いて粉末敷設ユニット制御部102は、ステップS301と同様の手順に従って、上層側に(n+1)層目のパウダーベッド8を敷設する(ステップS305)。そして(n+1)層目のパウダーベッド8に対して、ステップS302と同様にビームを照射する(ステップS306)。そしてステップS303と同様に、パウダーベッド8の温度測定を行い(ステップS307)、ビームが照射された後のパウダーベッド8上における平均温度T2を再び算出する(ステップS308)。
 続いて修正制御部110は、ステップS304で算出された平均温度T1と、ステップS308で算出された平均温度T2との差分ΔTを算出し(ステップS309)、当該差分ΔTが基準値ΔTrefより大きいか否かを判定する(ステップS310)。差分ΔTが基準値ΔTrefより大きい場合(ステップS310:YES)、修正制御部110はビーム照射ユニット制御部104に対して、ビーム照射ユニット14から照射されるビームの照射密度を低下するように修正指示を行う(ステップS311)。造形サイクルに従ってビームの照射を繰り返すと、造形中の三次元形状物に次第に熱量が蓄積し、造形面の平均温度が上昇することによって積層高さ方向における品質ばらつきが大きくなるおそれがある。これに対して、差分ΔTが基準値ΔTrefより大きくなることによって造形面における熱量の蓄積が多くなったと判断された場合には、このようにビームの照射密度が低下するように制御することで、積層高さ方向における品質ばらつきを抑えることができる。
 尚、ステップS311におけるビームの照射密度の低下は、空間的な低下であってもよいし、時間的な低下であってもよい。例えば、ビーム照射ユニット14によるビームの出力レベルを標準時より低下させたり、ビームが照射される時間間隔を増加させることで、造形面の平均温度の上昇を抑制するとよい。このような修正制御部110における修正制御は、温度モニタリング部の計測結果に基づいて平均温度が十分に低下した場合には、自動的に解除して通常制御に戻るようにしてもよい。
 そして、制御装置100は造形サイクルが十分繰り返されることで、一連の造形作業が処理が完了したか否かを判定する(ステップS312)。造形処理が完了していない場合(ステップS312:NO)、制御装置100は処理をステップS301に戻し、次の造形処理に移行する(ステップS313)。
 その後、造形サイクルが十分繰り返されて造形作業が完了すると(ステップS312:YES)、完成した三次元形状物に対して必要に応じて非破壊検査を実施し、一連の造形作業が終了する(終了)。
 以上説明したように第3実施形態によれば、ビームが照射された造形面の平均温度をモニタリングすることで、造形面における熱量の蓄積が増加した場合には、ビームの照射密度を調整する。これにより、熱量の蓄積による積層方向におけるばらつきを抑制し、安定した品質で三次元積層造形を行うことができる。その結果、造形作業が進行した際に造形欠陥が生じるリスクを効果的に削減できる。
<第4実施形態>
 第4実施形態に係る三次元積層造形装置1について、図11及び図12を参照して説明する。図11は第4実施形態に係る制御装置100の内部構成を機能的に示すブロック図であり、図12は図11の制御装置100で実施される三次元積層造形方法を工程毎に示すフローチャートである。
 尚、以下の説明では、上述の実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
 制御装置100は、図11に示されるように、粉末敷設ユニット10を制御するための粉末敷設ユニット制御部102と、ビーム照射ユニット14を制御するためのビーム照射ユニット制御部104と、形状測定センサ34の測定結果に基づいて造形面の形状測定を行う形状モニタリング部106と、形状モニタリング部106のモニタリング結果に基づいて造形面における凹部の有無を判断する凹部判断部120と、凹部判断部120の判断結果に基づいて修正制御を実施する修正制御部110と、を備える。
 このような制御装置100では、これらの構成要素が以下のように機能することで、第4実施形態に係る三次元積層造形方法が実施される。三次元積層造形方法では、造形目的となる三次元形状物を構成するために造形サイクルが繰り返されるが、以下の説明では、n(任意の自然数)回目の造形サイクルを中心に例示的に説明することとする。
 まず粉末敷設ユニット制御部102は、ベースプレート2又はベースプレート上に既に敷設された(nー1)層目のパウダーベッド8上に粉末を敷設するように粉末敷設ユニット10を制御し、n層目のパウダーベッド8を形成する(ステップS401)。ここで新たに形成されるパウダーベッド8の層厚tnは、例えば数10μmである。
 続いてビーム照射ユニット制御部104は、ビーム照射ユニット14を制御することにより、ステップS401で形成したn層目のパウダーベッド8に対して、造形目的となる三次元形状物に対応した走査パターンでビームを照射して造形を行う(ステップS402)。
 続いて形状モニタリング部106は、上述のステップS102と同様に、形状測定センサ34から測定結果を取得することにより、造形面の形状を測定する(ステップS403)。このとき形状測定センサ34では、図3を参照して上述したようにフリンジプロジェクション法をベースとした計測によって、造形面の表面形状が三次元構造として計測される。形状測定センサ34で取得された測定データは、形状モニタリング部106に電気的信号として送られる。
 続いて凹部判断部120は、ステップS403の測定結果に基づいて、造形面上に凹部があるか否かを判断する(ステップS404)。このような判断は、形状モニタリング部106で取得した造形面の三次元構造を解析して、凹部を抽出することで行われる。本実施形態では、抽出された凹部の大きさ(つまり、凹部の深さや幅等)が許容範囲外である場合、凹部があると判断される。
 ここでステップS404で判断基準となる許容範囲は、造形サイクルが進行した際に、造形面上に存在する凹部が、製品品質に対して致命的な造形欠陥になりうるか否かに基づいて設定される。本実施形態では、その一例として、許容範囲はステップS401にて粉末敷設ユニット10が形成する1層あたりのパウダーベッド8の厚さtn以下である範囲として規定される。
 造形面上に凹部があると判断された場合(ステップS404:YES)、修正制御部110は、粉末供給ユニット12を制御することにより、形状測定センサ34により検出された凹部に対して選択的(局所的)に粉末を供給する(ステップS405)。これにより、造形面に存在する凹部は、粉末供給ユニット12から選択的に供給される粉末によって埋められる。
 尚、本実施形態では粉末供給ユニット12によって凹部が存在する位置に対して局所的に粉末を供給しているが、粉末敷設ユニット10によって凹部が存在する位置を含む広い範囲に対して粉末を供給するようにしてもよい。
 続いて修正制御部110は、ビーム照射ユニット制御部104に対して、ステップS405で供給された粉末に対してビームを照射するように指示を行う(ステップS406)。これにより、凹部を埋める粉末が固化され、凹部は消滅する。このように造形作業の途中で、造形面で発見された凹部の修復作業を自動的に行うことで、造形作業が進むに従って凹部が品質上問題となるような異常となることを早い段階で防止できる。
 その後、形状モニタリング部106は、ステップS403と同様に、造形面の形状を再度測定する(ステップS407)。そして凹部判断部120は、ステップS404と同様に、ステップS407の測定結果に基づいて、造形面上に凹部があるか否かを再び判断する(ステップS408)。その結果、凹部が依然として存在している場合(ステップS408:YES)、処理がステップS405に戻され、上記工程が再度実施されることで修復が行われる。
 そして凹部が解消した場合(ステップS408:NO)、制御装置100は造形サイクルが十分繰り返されることで、一連の造形作業が処理が完了したか否かを判定する(ステップS409)。造形処理が完了していない場合(ステップS409:NO)、制御装置100は処理をステップS401に戻して(n+1)層目の造形処理に移行する(ステップS410)。
 その後、造形サイクルが十分繰り返されて造形作業が完了すると(ステップS409:YES)、完成した三次元形状物に対して必要に応じて非破壊検査を実施し、一連の造形作業が終了する(終了)。
 以上説明したように第4実施形態によれば、形状測定センサ34によって、造形失敗の兆候を示す一要素となる造形面の凹凸が監視される。その結果、造形面に凹部が検出された場合、凹部に対して粉末供給ユニット12によって選択的に粉末が供給され、当該供給された粉末に対してビームが照射されることで、凹部の修復が行われる。このように造形作業の途中で、造形面に存在する凹部を自動的に修復することで、造形作業が進むに従って凹部が品質上問題となるような異常となることを早い段階で防止できる。
<第5実施形態>
 第5実施形態に係る三次元積層造形装置1について、図13及び図14を参照して説明する。図13は第5実施形態に係る制御装置100の内部構成を機能的に示すブロック図であり、図14は図13の制御装置100で実施される三次元積層造形方法を工程毎に示すフローチャートである。
 尚、以下の説明では、上述の実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
 制御装置100は、図13に示されるように、粉末敷設ユニット10を制御するための粉末敷設ユニット制御部102と、ビーム照射ユニット14を制御するためのビーム照射ユニット制御部104と、形状測定センサ34の測定結果に基づいて造形面の形状測定を行う形状モニタリング部106と、形状モニタリング部106のモニタリング結果に基づいて造形面における凸部の有無を判断する凸部判断部122と、凸部判断部122の判断結果に基づいて修正制御を実施する修正制御部110と、を備える。
 このような制御装置100では、これらの構成要素が以下のように機能することで、第5実施形態に係る三次元積層造形方法が実施される。三次元積層造形方法では、造形目的となる三次元形状物を構成するために造形サイクルが繰り返されるが、以下の説明では、n(任意の自然数)回目の造形サイクルを中心に例示的に説明することとする。
 まず粉末敷設ユニット制御部102は、ベースプレート2又はベースプレート上に既に敷設された(nー1)層目のパウダーベッド8上に粉末を敷設するように粉末敷設ユニット10を制御し、n層目のパウダーベッド8を形成する(ステップS501)。ここで新たに形成されるパウダーベッド8の層厚tnは、例えば数10μmである。
 続いてビーム照射ユニット制御部104は、ビーム照射ユニット14を制御することにより、ステップS501で形成したn層目のパウダーベッド8に対して、造形目的となる三次元形状物に対応した走査パターンでビームを照射して造形を行う(ステップS502)。
 続いて形状モニタリング部106は、上述のステップS102と同様に、形状測定センサ34から測定結果を取得することにより、造形面の形状を測定する(ステップS503)。このとき形状測定センサ34では、図3を参照して上述したようにフリンジプロジェクション法をベースとした計測によって、造形面の表面形状が三次元構造として計測される。形状測定センサ34で取得された測定データは、形状モニタリング部106に電気的信号として送られる。
 続いて凸部判断部122は、ステップS503の測定結果に基づいて、造形面上に凸部があるか否かを判断する(ステップS504)。このような判断は、形状モニタリング部106で取得した三次元構造を解析して、凸部を抽出することで行われる。本実施形態では、抽出された凸部の大きさ(つまり、凸部の高さや幅等)が許容範囲外である場合、凸部があると判断される。
 ここでステップS504で判断基準となる許容範囲は、造形サイクルが進行した際に、造形面上に存在する凸部が、製品品質に対して致命的な造形欠陥になりうるか否かに基づいて設定される。本実施形態では、その一例として、許容範囲はステップS501にて粉末敷設ユニット10が形成する1層あたりのパウダーベッド8の厚さtn以下である範囲として規定される。
 造形面上に凸部があると判断された場合(ステップS504:YES)、修正制御部110は、ビーム照射ユニット制御部104に対して、ビーム照射ユニット14によって、形状測定センサ34により検出された凸部に対してビームが選択的(局所的)に再照射されるように指示する(ステップS505)。これにより、ビームが照射された箇所は溶融し、凸部は解消するため、造形作業が進むに従って凸部が造形欠陥に成長することを早い段階で防止でき、造形失敗のリスクを効果的に削減できる。
 尚、ステップS505におけるビームの再照射は、ビームの出力によっては一度の照射では凸部の解消が難しい場合には、複数回にわたってビームの再照射が行われてもよい。またステップS505を実施した後に、凸部が解消したか否かを確認するプロセスが実施されてもよい。この場合、凸部が解消していない場合には、ステップS505を再度実施したり、或いは、ビーム照射ユニット14の部品交換を促す警告を発してもよい。
 また凸部が三次元形状物の輪郭部(縁部)が浮き上がるように形成されている場合には、ステップS505でビームを再照射する際に、通常のビームの照射では表面形状が崩れてしまうおそれがあるため、ビームのフォーカス、出力、走査速度、ハッチ間隔等の調整を行うようにしてもよい。
 続いて制御装置100は造形サイクルが十分繰り返されることで、一連の造形作業が処理が完了したか否かを判定する(ステップS506)。造形処理が完了していない場合(ステップS506:NO)、制御装置100は処理をステップS501に戻して(n+1)層目の造形処理に移行する(ステップS507)。
 その後、造形サイクルが十分繰り返されて造形作業が完了すると(ステップS506:YES)、完成した三次元形状物に対して必要に応じて非破壊検査を実施し、一連の造形作業が終了する(終了)。
 以上説明したように第5実施形態によれば、形状測定センサ34によって造形面に凸部が検出された場合、凸部に対してビームを照射して溶融させることで自動的に修復作業が行われる。このように造形作業の途中で、造形面に存在する凸部を修復することで、造形作業が進むに従って凸部が品質上問題となるような異常となることを早い段階で防止できる。特にこの種の三次元積層造形装置1では、造形作業中に造形面の一部が浮き上がるように凸部が形成されることがあり、粉末敷設ユニット10や粉末供給ユニット12の損傷原因となるが、このような不具合を防止するために効果的である。
<第6実施形態>
 第6実施形態に係る三次元積層造形装置1について、図15及び図16を参照して説明する。図15は第6実施形態に係る制御装置100の内部構成を機能的に示すブロック図であり、図16は図15の制御装置100で実施される三次元積層造形方法を工程毎に示すフローチャートである。
 尚、以下の説明では、上述の実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
 制御装置100は、図15に示されるように、粉末敷設ユニット10を制御するための粉末敷設ユニット制御部102と、ビーム照射ユニット14を制御するためのビーム照射ユニット制御部104と、形状測定センサ34の測定結果に基づいて造形面の形状測定を行う形状モニタリング部106と、形状モニタリング部106のモニタリング結果に基づいて造形面における凸部の有無を判断する凸部判断部122と、凸部判断部122で検出された凸部がスパッタであるか否かを判断するスパッタ判断部124と、凸部判断部122及びスパッタ判断部124の判断結果に基づいて修正制御を実施する修正制御部110と、を備える。
 このような制御装置100では、これらの構成要素が以下のように機能することで、第6実施形態に係る三次元積層造形方法が実施される。三次元積層造形方法では、造形目的となる三次元形状物を構成するために造形サイクルが繰り返されるが、以下の説明では、n(任意の自然数)回目の造形サイクルを中心に例示的に説明することとする。
 まず粉末敷設ユニット制御部102は、ベースプレート2又はベースプレート上に既に敷設された(nー1)層目のパウダーベッド8上に粉末を敷設するように粉末敷設ユニット10を制御し、n層目のパウダーベッド8を形成する(ステップS601)。ここで新たに形成されるパウダーベッド8の層厚tnは、例えば数10μmである。
 続いてビーム照射ユニット制御部104は、ビーム照射ユニット14を制御することにより、ステップS601で形成したn層目のパウダーベッド8に対して、造形目的となる三次元形状物に対応した走査パターンでビームを照射して造形を行う(ステップS602)。
 続いて形状モニタリング部106は、上述のステップS102と同様に、形状測定センサ34から測定結果を取得することにより、造形面の形状を測定する(ステップS603)。このとき形状測定センサ34では、図3を参照して上述したようにフリンジプロジェクション法をベースとした計測によって、造形面の表面形状が三次元構造として計測される。形状測定センサ34で取得された測定データは、形状モニタリング部106に電気的信号として送られる。
 続いて凸部判断部122は、ステップS603の測定結果に基づいて、造形面上に凸部があるか否かを判断する(ステップS604)。このような判断は、形状モニタリング部106で取得した三次元構造を解析して、凸部を抽出することで行われる。本実施形態では、抽出された凸部の大きさ(つまり、凸部の高さや幅等)が許容範囲外である場合、凸部があると判断される。
 ここでステップS604で判断基準となる許容範囲は、造形サイクルが進行した際に、造形面上に存在する凸部が、製品品質に対して致命的な造形欠陥になりうるか否かに基づいて設定される。本実施形態では、その一例として、許容範囲はステップS601にて粉末敷設ユニット10が形成する1層あたりのパウダーベッド8の厚さtn以下である範囲として規定される。
 造形面上に凸部があると判断された場合(ステップS604:YES)、スパッタ判断部124は、当該凸部がスパッタであるか否かを判断する(ステップS605)。この判断では、例えば、ビーム照射後のパウダーベッドの表面に生じる凸状変形量の投影面積(凸部投影面積)が、想定されるスパッタ粒径以下であるか否かを基準に判定されてもよい。ここで、基準となるスパッタ粒径は、スパッタの発生形態に対応して設定可能であるが、例えば、パウダーベッドにビームが照射されて形成される溶融池から飛散して凝固する発生形態のスパッタの場合、想定されるスパッタ粒径は比較的大きく、150μm~300μm程度であることから、300μm×300μm以下の凸部投影面積が得られた場合にスパッタが局所的に存在すると判定することができる。
 凸部がスパッタである場合(ステップS605:YES)、修正制御部110は、凸部除去ユニット42(カッタ除去部42a及びエアブロー除去部42bの少なくとも一方)を用いて、凸部を機械的に除去する(ステップS606)。凸部がスパッタである場合、スパッタには粉末が溶融する際に生じた酸化物が比較的高い割合で含まれるため、その酸化物が造形物に溶け込まないように機械的に除去することで、良好な造形品質が実現できる。
 尚、カッタ除去部42aは、カッタ除去後の造形面の平坦度精度が良好であるため、次層の層厚ばらつきも低減され、造形品質向上につながる一方で、造形品の浮上り部にぶつかることでカッタの刃が損傷した場合には、交換作業が必要となったり、カッタの破損部が造形品に混じって異物(コンタミ)となる可能性がある点に留意するとよい。
 エアブロー除去部42bは、カッタ除去部42aのように造形品の浮上り部があったとしても、スパッタのみを狙って除去することが可能であるが、造形品の周りにあるスパッタ以外の粉末まで吹き飛ばしてしまう可能性があるため、精度のよい位置決めが必要となる点に留意するとよい。
 一方、凸部がスパッタ以外である場合(ステップS605:NO)、修正制御部110は、修正制御部110は上述のステップS505と同様に、ビーム照射ユニット制御部104に対して、ビーム照射ユニット14によって、形状測定センサ34により検出された凸部に対してビームが選択的(局所的)に再照射されるように指示する(ステップS607)。これにより、ビームが照射された箇所は溶融し、凸部は解消する。
 続いて制御装置100は造形サイクルが十分繰り返されることで、一連の造形作業が処理が完了したか否かを判定する(ステップS608)。造形処理が完了していない場合(ステップS608:NO)、制御装置100は処理をステップS601に戻して(n+1)層目の造形処理に移行する(ステップS609)。
 その後、造形サイクルが十分繰り返されて造形作業が完了すると(ステップS608:YES)、完成した三次元形状物に対して必要に応じて非破壊検査を実施し、一連の造形作業が終了する(終了)。
 以上説明したように第6実施形態によれば、造形面に生じる凸部がスパッタであるか否かが判断され、その判断結果に基づいて、2つの凸部の除去手法が使い分けられる。凸部がスパッタである場合、スパッタには粉末が溶融する際に生じた酸化物が比較的高い割合で含まれるため、その酸化物が造形物に溶け込まないように凸部除去ユニットによって機械的に除去される。一方、凸部がスパッタ以外である場合には、このような懸念がないため、凸部に対してビームを照射することで凸部の除去が行われる。このようにして造形品質を確保しながら、造形不良を効果的に防止できる。
<第7実施形態>
 第7実施形態に係る三次元積層造形装置1について、図17及び図18を参照して説明する。図17は第7実施形態に係る制御装置100の内部構成を機能的に示すブロック図であり、図18は図17の制御装置100で実施される三次元積層造形方法を工程毎に示すフローチャートである。
 尚、以下の説明では、上述の実施形態に対応する構成には共通の符号を付すこととし、重複する説明は適宜省略することとする。
 制御装置100は、図17に示されるように、粉末敷設ユニット10を制御するための粉末敷設ユニット制御部102と、ビーム照射ユニット14を制御するためのビーム照射ユニット制御部104と、形状測定センサ34の測定結果に基づいてパウダーベッド8の表面又は造形面の形状測定を行う形状モニタリング部106と、温度測定センサ(第1温度測定センサ38a及び第2温度測定センサ38b)の測定結果に基づいて造形面の温度測定を行う温度モニタリング部114と、温度モニタリング部114のモニタリング結果に基づいて内部欠陥の有無を判断する内部欠陥判断部116と、形状モニタリング部106のモニタリング結果に基づいてパウダーベッド8の表面又は造形面における凹凸の有無を判断する凹凸判断部108と、温度モニタリング部114のモニタリング結果に基づいてパウダーベッド8の平均温度を算出する平均温度算出部118と、凹凸判断部108で検出された凸部がスパッタであるか否かを判断するスパッタ判断部124と、前述の各部位の判断結果に基づいて修正制御を実施する修正制御部110と、警告部44を制御する警告通知部112と、を備える。
 このような制御装置100では、これらの構成要素が以下のように機能することで、第7実施形態に係る三次元積層造形方法が実施される。三次元積層造形方法では、造形目的となる三次元形状物を構成するために造形サイクルが繰り返されるが、以下の説明では、n(任意の自然数)回目の造形サイクルを中心に例示的に説明することとする。
 まず粉末敷設ユニット制御部102は、ベースプレート2又はベースプレート上に既に敷設された(nー1)層目のパウダーベッド8上に粉末を敷設するように粉末敷設ユニット10を制御し、n層目のパウダーベッド8を形成する(ステップS701)。ここで新たに形成されるパウダーベッド8の層厚tnは、例えば数10μmである。
 続いて形状モニタリング部106は、形状測定センサ34から測定結果を取得することにより、パウダーベッド8の表面形状を測定し、凹凸判断部は当該測定結果に基づいてパウダーベッド8に凹凸がないか判断する(ステップS702)。パウダーベッド8の凹凸がある場合(ステップS702:NO)、修正制御部110は、パウダーベッド8にビームを照射する前に、パウダーベッド8の凹凸が小さくなるように粉末を再敷設する(ステップS703)。これにより、パウダーベッド8上の凹凸が解消され、造形作業が進行した際に凹凸によって生じる異常発生を効果的に削減できる。また再敷設作業によっても凹凸が解消しない場合には、修正制御部110は警告通知部112に対して、警告部44から警告を発するように指令を行ってもよい。
 尚、ステップS702乃至S704における各工程の詳細は、上述の第1実施形態で述べた通りであるため、ここでは詳述を省略することとする。
 続いてビーム照射ユニット制御部104は、ビーム照射ユニット14を制御することにより、形成されたn層目のパウダーベッド8に対して、造形目的となる三次元形状物に対応した照射条件を設定し(ステップS704)、当該設定された照射条件に基づいてビームを照射して造形を行う(ステップS705)。
 ここでステップS705でビームを走査・照射している間、温度モニタリング部114は、第1温度測定センサ38a及び第2温度測定センサ38bから測定結果を取得し、内部欠陥判断部116は当該測定結果に基づいて内部欠陥の有無を判断する(ステップS706)。内部欠陥がある場合(ステップS706:NO)、修正制御部110は、ビーム照射ユニット制御部104に対して、当該内部欠陥があると判断された位置に対してビームを再照射するようにビーム照射ユニット14を制御する(ステップS707)。これにより、内部欠陥がある位置が再溶融し、内部欠陥を消滅できる。
 尚、ステップS706及びS707における各工程の詳細は、上述の第2実施形態で述べた通りであるため、ここでは詳述を省略することとする。
 続いて平均温度算出部118は、第1温度測定センサ38a及び第2温度測定センサ38bの測定結果に基づいて平均温度を算出し、当該平均温度に異常がないか判断する(ステップS708)。この判断では、具体的には、上記第3実施形態で説明したように、前造形サイクルの平均温度との差ΔTが基準値Tref以上である場合に、異常があると判断される。平均温度に異常がある場合(ステップS708:NO)、修正制御部110はビーム照射ユニット制御部104に対して、ビーム照射ユニット14から照射されるビームのエネルギ密度を低下するように修正制御を行う(ステップS709)。これによって、ステップS704で設定された照射条件は照射密度が低下するように変化される。このように、差分ΔTが基準値ΔTrefより大きくなることによって造形面における熱量の蓄積が多くなったと判断された場合には、ビームの照射密度が低下するように制御することで、積層高さ方向における品質ばらつきを抑えることができる。
 尚、ステップS708及びS709における各工程の詳細は、上述の第3実施形態で述べた通りであるため、ここでは詳述を省略することとする。
 続いて形状モニタリング部106は、形状測定センサ34から測定結果を取得するとともに、凹凸判断部108は形状モニタリング部106の取得結果に基づいて、造形面に凹凸がないか判断する(ステップS710、S712)。造形面に凹部がある場合(ステップS710:NO)、修正制御部110は、粉末供給ユニット12を制御することにより、形状測定センサ34により検出された凹部に対して選択的(局所的)に粉末を供給するとともに、ビーム照射ユニット制御部104に対して、当該供給された粉末に対してビームを照射するように制御する(ステップS711)。これにより、造形面に存在する凹部は粉末により埋められ、ビームの照射によって固化される。このように造形作業の途中で、造形面に存在する凹部を解消することで、造形作業が進むに従って凹部が異常となることを早い段階で防止できる。
 尚、ステップS710及びS711における各工程の詳細は、上述の第4実施形態で述べた通りであるため、ここでは詳述を省略することとする。
 一方、造形面に凸部がある場合(ステップS712:NO)、修正制御部110は、i)凸部へのビームの再照射、ii)カッタ除去部及びエアブロー除去部の少なくとも一方を用いた凸部の機械的除去、iii)ビーム照射ユニット制御部104に対して、ビーム照射ユニット14による凸部へのビームの選択的(局所的)な再照射の少なくとも一つが実施される(ステップS713)。このように造形作業の途中で、造形面に存在する凸部を解消することで、造形作業が進むに従って凸部が異常となることを早い段階で防止できる。
 尚、i)は上述の第5実施形態で述べた通りであり、ii)及びiii)は上述の第6実施形態で述べた通りであるため、ここでは詳述を省略することとする。
 続いて制御装置100は造形サイクルが十分繰り返されることで、一連の造形作業が処理が完了したか否かを判定する(ステップS714)。造形処理が完了していない場合(ステップS714:NO)、制御装置100は処理をステップS701に戻して(n+1)層目の造形処理に移行する(ステップS715)。
 その後、造形サイクルが十分繰り返されて造形作業が完了すると(ステップS714:YES)、完成した三次元形状物に対して必要に応じて非破壊検査を実施し、一連の造形作業が終了する(終了)。
 以上説明したように第7実施形態によれば、上述の第1乃至第6実施形態で説明した各方法を組み合わせることによって、造形作業中に、各工程において異なる観点から造形異常の発生をリアルタイムで防止できる。その結果、従来に比べて良好な品質確保と生産効率が達成できる。
 本発明の少なくとも一実施形態は、敷設された粉末にビームを照射して積層造形を行うことにより三次元形状物を製造する三次元積層造形装置、及び、当該装置により実施される三次元積層造形方法に利用可能である。
1 三次元積層造形装置
10 粉末敷設ユニット
12 粉末供給ユニット
14 ビーム照射ユニット
34 形状測定センサ
38a 第1温度測定センサ
38b 第2温度測定センサ
42 凸部除去ユニット
42a カッタ除去部
42b エアブロー除去部
44 警告部
100 制御装置
102 粉末敷設ユニット制御部
104 ビーム照射ユニット制御部
106 形状モニタリング部
108 凹凸判断部
110 修正制御部
112 警告通知部
114 温度モニタリング部
116 内部欠陥判断部
118 平均温度算出部
120 凹部判断部
122 凸部判断部
124 スパッタ判断部

Claims (17)

  1.  ベースプレートと、
     前記ベースプレート上に粉末を敷設してパウダーベッドを形成するための粉末敷設ユニットと、
     前記パウダーベッドを選択的に固化するように前記パウダーベッドにビームを照射するためのビーム照射ユニットと、
     前記パウダーベッド上の凹凸、前記パウダーベッドへの前記ビームの照射により形成される造形面上の凹凸又は温度、又は、前記ビームの照射中の前記パウダーベッドの温度を計測するための少なくとも一つのセンサと、
    を備え、
     前記少なくとも一つのセンサの検出結果に基づいて、既に実施された前記粉末敷設ユニットによる前記粉末の敷設の不具合、又は、既に実施された前記ビーム照射ユニットによる前記ビームの照射の不具合を次層の造形完了前に修正するように構成される、三次元積層造形装置。
  2.  前記少なくとも一つのセンサは、前記パウダーベッド上の凹凸を検出するための第1形状測定センサを含み、
     前記粉末敷設ユニットは、前記第1形状測定センサにより検出された前記凹凸の大きさが許容範囲外であるとき、前記パウダーベッドへの前記ビームの照射前に、前記パウダーベッドの前記凹凸が小さくなるよう前記粉末を再敷設するように構成される、請求項1に記載の三次元積層造形装置。
  3.  前記粉末敷設ユニットによる前記粉末の再敷設後において前記第1形状測定センサにより検出された前記凹凸の大きさが前記許容範囲外であるとき、前記粉末敷設ユニットの部品交換を促す警告を発する部品交換警告部を更に備える、請求項2に記載の三次元積層造形装置。
  4.  前記少なくとも一つのセンサは、前記造形面上の凹凸を検出するための第2形状測定センサを含み、
     前記第2形状測定センサにより検出された凹部に対して選択的に前記粉末を供給するための粉末供給ユニットを更に備え、
     前記ビーム照射ユニットは、前記粉末供給ユニットにより前記凹部に供給された前記粉末に対して前記ビームを照射するように構成される、請求項1から3のいずれか一項に記載の三次元積層造形装置。
  5.  前記少なくとも一つのセンサは、前記造形面上の凹凸を検出するための第2形状測定センサを含み、
     前記ビーム照射ユニットは、前記第2形状測定センサにより検出された凸部に対して前記ビームを照射するように構成される、請求項1から4のいずれか一項に記載の三次元積層造形装置。
  6.  前記少なくとも一つのセンサは、前記造形面上の凹凸を検出するための第2形状測定センサを含み、
     前記第2形状測定センサにより検出された凸部を除去するための凸部除去ユニットを更に備える、請求項1から5のいずれか一項に記載の三次元積層造形装置。
  7.  前記凸部除去ユニットは、前記凸部を除去するためのカッタ又はエアブロートーチを含む、請求項6に記載の三次元積層造形装置。
  8.  少なくとも前記ビーム照射ユニットおよび前記凸部除去ユニットを制御するためのコントローラを更に備え、
     前記コントローラは、
      前記第2形状測定センサにより検出された前記凸部の形状に基づいて、前記凸部が前記ビームの照射時に発生したスパッタであるか否かを判断し、
      前記凸部が前記スパッタである場合、該スパッタを除去するように前記凸部除去ユニットを制御し、
      前記凸部がスパッタ以外である場合、前記凸部に対して前記ビームを照射するよう前記ビーム照射ユニットを制御するように構成される、請求項6又は7に記載の三次元積層造形装置。
  9.  前記凸部の投影面積が300μm×300μm以下である場合に、前記凸部が前記スパッタであると判断する、請求項8に記載の三次元積層造形装置。
  10.  ベースプレート上に粉末を敷設して形成されるパウダーベッドにビームを照射することにより、前記パウダーベッドを選択的に固化して造形を行う三次元積層造形方法であって、
     前記パウダーベッド上の凹凸、前記パウダーベッドへの前記ビームの照射により形成される造形面上の凹凸又は温度、又は、前記ビームの照射中の前記パウダーベッドの温度を計測する計測工程と、
     前記計測工程における計測結果に基づいて、既に形成された前記パウダーベッドにおける前記粉末の敷設の不具合、又は、既に実施された前記ビームの照射の不具合を次層の造形完了前に修正する修正工程と、
    を備える、三次元積層造形方法。
  11.  前記計測工程では、前記パウダーベッドの表面の凹凸を計測し、
     前記修正工程では、前記計測工程で計測された前記凹凸の大きさが許容範囲外であるとき、前記パウダーベッドへの前記ビームの照射前に、前記パウダーベッドの前記凹凸が小さくなるよう前記粉末を再敷設する、請求項10に記載の三次元積層造形方法。
  12.  前記計測工程では、前記造形面上の凹凸を計測し、
     前記修正工程では、前記計測工程で計測された凹部に対して選択的に前記粉末を供給し、前記凹部に供給された前記粉末に対して前記ビームを照射する、請求項10又は11に記載の三次元積層造形方法。
  13.  前記計測工程では、前記造形面上の凹凸を計測し、
     前記修正工程では、前記計測工程で計測された凸部に対して前記ビームを照射する、請求項10から12のいずれか一項に記載の三次元積層造形方法。
  14.  前記計測工程では、前記造形面上の凹凸を計測し、
     前記修正工程では、前記計測工程で計測された凸部を除去する、請求項10から13のいずれか一項に記載の三次元積層造形方法。
  15.  前記修正工程では、カッタ又はエアブロートーチを用いて前記凸部を除去する、請求項14に記載の三次元積層造形方法。
  16.  前記修正工程では、前記計測工程で計測された前記凸部の形状に基づいて、前記凸部が前記ビームの照射時に発生したスパッタであるか否かを判断し、
      前記凸部が前記スパッタである場合、該スパッタを除去し、
      前記凸部がスパッタ以外である場合、前記凸部に対して前記ビームを照射する、請求項14又は15に記載の三次元積層造形方法。
  17.  層状に敷設された粉末にビームを照射して積層造形を行うことにより製造される三次元積層造形物であって、
     ベースプレート上に前記粉末を敷設してパウダーベッドを形成し、
     前記パウダーベッドに前記ビームを照射することにより、前記パウダーベッドを選択的に固化し、
     前記パウダーベッド上の凹凸、前記パウダーベッドへの前記ビームの照射により形成される造形面上の凹凸又は温度、又は、前記ビームの照射中の前記パウダーベッドの温度を計測し、
     その計測結果に基づいて、既に形成された前記パウダーベッドにおける前記粉末の敷設の不具合、又は、既に実施された前記ビームの照射の不具合を次層の造形完了前に修正することで製造される、三次元積層造形物。
PCT/JP2017/028845 2017-08-08 2017-08-08 三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物 WO2019030839A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2017/028845 WO2019030839A1 (ja) 2017-08-08 2017-08-08 三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物
US16/613,565 US11344952B2 (en) 2017-08-08 2017-08-08 Three-dimensional additive manufacturing device, three-dimensional additive manufacturing method, and three-dimensional additive manufactured product
JP2019535489A JP6825109B2 (ja) 2017-08-08 2017-08-08 三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物
CN201780090892.0A CN110678281B (zh) 2017-08-08 2017-08-08 三维层叠造形装置、三维层叠造形方法及三维层叠造形物
DE112017007840.7T DE112017007840T5 (de) 2017-08-08 2017-08-08 Dreidimensional-additive fertigungsvorrichtung, dreidimensional-additives fertigungsverfahren und dreidimensional-additiv hergestelltes produkt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/028845 WO2019030839A1 (ja) 2017-08-08 2017-08-08 三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物

Publications (1)

Publication Number Publication Date
WO2019030839A1 true WO2019030839A1 (ja) 2019-02-14

Family

ID=65272170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/028845 WO2019030839A1 (ja) 2017-08-08 2017-08-08 三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物

Country Status (5)

Country Link
US (1) US11344952B2 (ja)
JP (1) JP6825109B2 (ja)
CN (1) CN110678281B (ja)
DE (1) DE112017007840T5 (ja)
WO (1) WO2019030839A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019030838A1 (ja) * 2017-08-08 2020-03-26 三菱重工業株式会社 内部欠陥検出システム、三次元積層造形装置、内部欠陥検出方法、三次元積層造形物の製造方法、及び、三次元積層造形物
JP2020200501A (ja) * 2019-06-07 2020-12-17 株式会社ソディック 積層造形装置
JP2021009126A (ja) * 2019-07-03 2021-01-28 株式会社ジェイテクト 付加製造物の品質推定装置
KR20210030220A (ko) * 2019-09-09 2021-03-17 슈투름 머쉬넨- & 안라겐바우 게엠베하 금속 코팅 방법 및 시스템
JP2021041568A (ja) * 2019-09-09 2021-03-18 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法
JPWO2021235159A1 (ja) * 2020-05-22 2021-11-25
KR102380280B1 (ko) * 2021-12-15 2022-03-30 알앤엑스(주) 선택적 레이저 소결 방식의 3d프린팅 공정 중 출력물의 불량 실시간 검출 장치
EP3798330B1 (de) * 2019-09-09 2022-08-31 Sturm Maschinen- & Anlagenbau GmbH Verfahren und anlage zum metallischen beschichten
WO2022259725A1 (ja) * 2021-06-10 2022-12-15 株式会社日立製作所 積層造形物の製造方法及び積層造形装置
DE102022116400A1 (de) 2021-07-08 2023-01-12 Aspect Inc. Pulverbettschmelzvorrichtung und tragebewertungsverfahren dafür
KR20230059214A (ko) * 2021-10-26 2023-05-03 삼영기계 (주) 파우더 베드 방식 3d 프린팅 품질의 실시간 진단 방법, 조치 방법 및 이에 따른 3d 프린팅 장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018112129A1 (de) * 2018-05-18 2019-11-21 Volkswagen Aktiengesellschaft Verfahren zur generativen Herstellung eines Bauteils, Vorrichtung zur Durchführung des Verfahrens und Kraftfahrzeug
JP6915006B2 (ja) * 2019-08-29 2021-08-04 株式会社ソディック 金属粉末積層造形方法および金属粉末積層造形装置
JP2021172863A (ja) * 2020-04-27 2021-11-01 三菱重工業株式会社 造形プロセスの監視方法、積層造形方法、造形プロセスの監視装置及び積層造形装置
CN111804912B (zh) * 2020-05-29 2022-08-30 上海汉邦联航激光科技有限公司 3d打印机的换刀监控系统及换刀方法
US20220048243A1 (en) * 2020-08-13 2022-02-17 Uchicago Argonne, Llc Identifying Subsurface Porocity In Situ During Laser Based Additive Manufacturing Using Thermal Imaging
US11867638B2 (en) * 2020-10-28 2024-01-09 Lawrence Livermore National Security, Llc System and method for in situ inspection of defects in additively manufactured parts using high speed melt pool pyrometry
DE102021104447A1 (de) 2021-02-24 2022-08-25 Lixil Corporation Verfahren zur Reparatur eines Oberflächenfehlers eines Werkstücks

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002115004A (ja) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2003531034A (ja) * 2000-04-27 2003-10-21 アルカム アーベー 三次元製品を製造する装置及び方法
JP2004122490A (ja) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2005097692A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2010509092A (ja) * 2006-11-10 2010-03-25 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ 粉末状造形材料用の塗工装置を用いて3次元物体を製造する装置及び方法
WO2016042810A1 (ja) * 2014-09-19 2016-03-24 株式会社東芝 積層造形装置及び積層造形方法
WO2016081651A1 (en) * 2014-11-18 2016-05-26 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US20160339519A1 (en) * 2015-05-19 2016-11-24 Lockheed Martin Corporation In-process monitoring of powder bed additive manufacturing

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH596263A5 (ja) 1972-03-10 1978-03-15 Basf Ag
JPH01162584A (ja) 1987-12-18 1989-06-27 Kawasaki Steel Corp ロールの粗面化方法及びその装置
US6463349B2 (en) * 2000-03-23 2002-10-08 Solidica, Inc. Ultrasonic object consolidation system and method
JP3491627B2 (ja) 2001-06-26 2004-01-26 松下電工株式会社 三次元形状造形物の製造方法
TW506868B (en) 2000-10-05 2002-10-21 Matsushita Electric Works Ltd Method of and apparatus for making a three-dimensional object
JP5230264B2 (ja) 2007-05-23 2013-07-10 パナソニック株式会社 三次元形状造形物の製造方法
EP2878402A1 (en) 2013-12-02 2015-06-03 SLM Solutions Group AG Apparatus and method for producing three-dimensional work pieces with a radiation detection device
JP6359316B2 (ja) 2014-03-31 2018-07-18 三菱重工業株式会社 三次元積層装置及び三次元積層方法
US10336007B2 (en) * 2014-05-09 2019-07-02 United Technologies Corporation Sensor fusion for powder bed manufacturing process control
CN204366412U (zh) * 2014-12-12 2015-06-03 华南理工大学 激光选区熔化与铣削复合加工设备
US10353376B2 (en) 2015-01-29 2019-07-16 Arconic Inc. Systems and methods for modelling additively manufactured bodies
US10118345B2 (en) * 2015-06-17 2018-11-06 Xerox Corporation System and method for evaluation of a three-dimensional (3D) object during formation of the object
CN104959603A (zh) 2015-07-15 2015-10-07 广东奥基德信机电有限公司 一种适用于金属粉末熔化增材制造的系统
US20180297115A1 (en) * 2017-04-14 2018-10-18 General Electric Company Real Time Detection of Defects during Formation of an Additively Manufactured Component

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531034A (ja) * 2000-04-27 2003-10-21 アルカム アーベー 三次元製品を製造する装置及び方法
JP2002115004A (ja) * 2000-10-05 2002-04-19 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2004122490A (ja) * 2002-09-30 2004-04-22 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2005097692A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP2010509092A (ja) * 2006-11-10 2010-03-25 イーオーエス ゲゼルシャフト ミット ベシュレンクテル ハフツング イレクトロ オプティカル システムズ 粉末状造形材料用の塗工装置を用いて3次元物体を製造する装置及び方法
WO2016042810A1 (ja) * 2014-09-19 2016-03-24 株式会社東芝 積層造形装置及び積層造形方法
WO2016081651A1 (en) * 2014-11-18 2016-05-26 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
US20160339519A1 (en) * 2015-05-19 2016-11-24 Lockheed Martin Corporation In-process monitoring of powder bed additive manufacturing

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019030838A1 (ja) * 2017-08-08 2020-03-26 三菱重工業株式会社 内部欠陥検出システム、三次元積層造形装置、内部欠陥検出方法、三次元積層造形物の製造方法、及び、三次元積層造形物
JP2020200501A (ja) * 2019-06-07 2020-12-17 株式会社ソディック 積層造形装置
US11833746B2 (en) 2019-06-07 2023-12-05 Sodick Co., Ltd. Method for producing three-dimensional molded object and lamination molding apparatus
JP2021009126A (ja) * 2019-07-03 2021-01-28 株式会社ジェイテクト 付加製造物の品質推定装置
JP7363132B2 (ja) 2019-07-03 2023-10-18 株式会社ジェイテクト 付加製造物の品質推定装置
KR102478380B1 (ko) * 2019-09-09 2022-12-15 슈투름 머쉬넨- & 안라겐바우 게엠베하 금속 코팅 방법 및 시스템
KR20210030220A (ko) * 2019-09-09 2021-03-17 슈투름 머쉬넨- & 안라겐바우 게엠베하 금속 코팅 방법 및 시스템
JP7008669B2 (ja) 2019-09-09 2022-01-25 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法
EP3798330B1 (de) * 2019-09-09 2022-08-31 Sturm Maschinen- & Anlagenbau GmbH Verfahren und anlage zum metallischen beschichten
JP2021041568A (ja) * 2019-09-09 2021-03-18 日本電子株式会社 3次元積層造形装置及び3次元積層造形方法
JP7427563B2 (ja) 2019-09-09 2024-02-05 シュトゥルム マシーネン ウント アラゲンバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属コーティングの方法およびシステム
JP2021042471A (ja) * 2019-09-09 2021-03-18 シュトゥルム マシーネン ウント アラゲンバウ ゲゼルシャフト ミット ベシュレンクテル ハフツングSturm Maschinen− & Anlagenbau GmbH 金属コーティングの方法およびシステム
JP7462350B2 (ja) 2020-05-22 2024-04-05 技術研究組合次世代3D積層造形技術総合開発機構 積層造形における造形品質評価方法、積層造形システム、情報処理装置およびそのプログラム
JPWO2021235159A1 (ja) * 2020-05-22 2021-11-25
WO2022259725A1 (ja) * 2021-06-10 2022-12-15 株式会社日立製作所 積層造形物の製造方法及び積層造形装置
DE102022116400A1 (de) 2021-07-08 2023-01-12 Aspect Inc. Pulverbettschmelzvorrichtung und tragebewertungsverfahren dafür
US11865781B2 (en) 2021-07-08 2024-01-09 Aspect Inc. Powder bed fusion apparatus with evaluation unit and multiple storage containers
KR102590754B1 (ko) * 2021-10-26 2023-10-19 삼영기계(주) 파우더 베드 방식 3d 프린팅 품질의 실시간 진단 방법, 조치 방법 및 이에 따른 3d 프린팅 장치
KR20230059214A (ko) * 2021-10-26 2023-05-03 삼영기계 (주) 파우더 베드 방식 3d 프린팅 품질의 실시간 진단 방법, 조치 방법 및 이에 따른 3d 프린팅 장치
KR102380280B1 (ko) * 2021-12-15 2022-03-30 알앤엑스(주) 선택적 레이저 소결 방식의 3d프린팅 공정 중 출력물의 불량 실시간 검출 장치

Also Published As

Publication number Publication date
CN110678281A (zh) 2020-01-10
US11344952B2 (en) 2022-05-31
CN110678281B (zh) 2022-04-29
DE112017007840T5 (de) 2020-04-30
US20210162505A1 (en) 2021-06-03
JPWO2019030839A1 (ja) 2020-03-19
JP6825109B2 (ja) 2021-02-03

Similar Documents

Publication Publication Date Title
JP6825109B2 (ja) 三次元積層造形装置、三次元積層造形方法、及び、三次元積層造形物
JP6826201B2 (ja) 三次元積層造形装置の施工異常検出システム、三次元積層造形装置、三次元積層造形装置の施工異常検出方法、三次元積層造形物の製造方法、及び、三次元積層造形物
US10406599B2 (en) Additive manufacturing method and apparatus
EP2941677B1 (en) Object production using an additive manufacturing process and quality assessment of the object
JP6353065B2 (ja) 積層造形装置及び積層造形方法
EP3689508B1 (en) Additive manufacturing system including an imaging device
JP6961926B2 (ja) 付加製造プロセスのための音響モニタリング方法
CN111168062B (zh) 用于检测增材制造处理中的错误的熔池监测系统和方法
JP6735925B2 (ja) 内部欠陥検出システム、三次元積層造形装置、内部欠陥検出方法、三次元積層造形物の製造方法、及び、三次元積層造形物
KR20190026966A (ko) 적층 제조에서의 z-높이 측정 및 조정을 위한 시스템 및 방법
US20190134911A1 (en) Apparatus and methods for build surface mapping
JP2021516724A (ja) 電子ビーム製造中にビルド品質を監視及び制御するシステム並びに方法
JP2020189324A (ja) 構造体の製造システム及び製造方法
US20220324175A1 (en) Additive manufacturing system
EP2752720A1 (en) Object production using an additive manufacturing process and quality assessment of the object
JP2021020319A (ja) Am装置
TW201809933A (zh) 粉末積層製造之檢測修補裝置及其方法
GB2511409A (en) Object production and assessment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17921125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019535489

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17921125

Country of ref document: EP

Kind code of ref document: A1