WO2019029601A1 - 曝光设备和曝光方法 - Google Patents

曝光设备和曝光方法 Download PDF

Info

Publication number
WO2019029601A1
WO2019029601A1 PCT/CN2018/099543 CN2018099543W WO2019029601A1 WO 2019029601 A1 WO2019029601 A1 WO 2019029601A1 CN 2018099543 W CN2018099543 W CN 2018099543W WO 2019029601 A1 WO2019029601 A1 WO 2019029601A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination
exposure
light source
illuminance
light
Prior art date
Application number
PCT/CN2018/099543
Other languages
English (en)
French (fr)
Inventor
钱俊
翟思洪
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Priority to KR1020207004727A priority Critical patent/KR102370159B1/ko
Priority to SG11202001116UA priority patent/SG11202001116UA/en
Priority to US16/637,658 priority patent/US11119412B2/en
Priority to JP2020507095A priority patent/JP7221934B2/ja
Publication of WO2019029601A1 publication Critical patent/WO2019029601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70191Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70016Production of exposure light, i.e. light sources by discharge lamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70208Multiple illumination paths, e.g. radiation distribution devices, microlens illumination systems, multiplexers or demultiplexers for single or multiple projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/7085Detection arrangement, e.g. detectors of apparatus alignment possibly mounted on wafers, exposure dose, photo-cleaning flux, stray light, thermal load

Definitions

  • the present invention relates to the field of semiconductor technology, and in particular to an exposure apparatus and an exposure method.
  • lithography technology in semiconductor technology is the best and most common processing technology for fabricating fine structures in modern processing technology, especially the exposure part of lithography technology, which is modern manufacturing large scale integrated circuit (LSI), MEMS.
  • LSI large scale integrated circuit
  • MEMS microelectromechanical system
  • LCD flat panel display
  • OLED organic light-emitting diode
  • the basic principle of lithography is similar to the principle of camera photography.
  • a high uniform illumination field can be formed by the light source generator to illuminate the mask plate fixed on the mask table.
  • the lithography pattern is required on the mask.
  • the projection objective image can image the illuminated mask pattern without aberration to the substrate fixed on the workpiece stage, and then obtain the desired microstructure by a subsequent process.
  • the exposure equipment should form a high uniform illumination field that meets the requirements and achieve precise control of the exposure dose, but as the product size becomes larger and larger, a larger scanning width is required, and the requirements for the entire exposure apparatus are increasingly high.
  • the present invention provides an exposure apparatus including a control system, a light source system, a plurality of illumination systems, and a plurality of projection objective lenses, wherein the light source system is configured to emit a plurality of first illumination beams into the plurality of sets An illumination system, each set of said illumination system comprising a variable attenuator and a branch energy detector, each set of said branch system energy detectors for detecting a second illumination beam generated in said corresponding illumination system The illumination is fed back to the control system, which controls the illumination of each of the second illumination beams by controlling a variable attenuator of each of the illumination systems.
  • the light source system includes a light source generator and a beam unit, and the beam unit divides the light beam emitted by the light source generator into the plurality of first illumination beams, each of which The first illumination beam is incident on a corresponding set of the illumination system.
  • the light source system includes a plurality of light source generators, each of the light source generators emitting one of the first illumination beams to a corresponding one of the illumination systems.
  • variable attenuator includes two visors with adjustable positions, each of the visors has a plurality of through holes, and the relative position of the two visors is controlled to control the The throughput of the first illumination beam.
  • the light source generator comprises a mercury lamp.
  • the light source system further includes a plurality of constant light intensity detectors, each of the constant light intensity detectors for detecting the first one generated by the corresponding one of the light source generators The intensity of the illumination beam.
  • each set of the illumination system further includes a light homogenizing unit, and the branch energy detector detects illumination of the second illumination light beam generated in the corresponding light homogenizing unit .
  • the light homogenizing unit includes a first light homogenizing rod and a second light homogenizing rod connected to the first light homogenizing rod, wherein the branch energy detector detects the first The illuminance of the second illumination beam emitted by the junction of a uniform light bar and the second light homogenizer.
  • the light homogenizing unit further includes a branch mirror and a diaphragm, and the light is emitted from a junction of the first light homogenizing rod and the second light homogenizing rod
  • the second illumination beam is reflected by the branch mirror and is detected by the branch energy detector after passing through the aperture.
  • the exposure apparatus further includes a calibration energy detector, wherein the calibration energy detector is configured to respectively detect illumination of an exposure beam of each of the image planes of the projection objective,
  • the control system matches the illuminance of each of the second illumination beams based on the detected illuminance of each of the exposure beams.
  • the invention also provides an exposure method for performing an exposure operation on a material located on an image surface of the projection objective lens by using the above exposure apparatus, comprising the following steps:
  • each of the branch energy detectors detects and feeds back the illuminance of the second illumination beam in each illumination system in real time, and the control system determines the energy variation of the second illumination beam of each illumination system in real time, If the energy change amount is within the energy change threshold range, calculate the energy value that needs to be adjusted in real time, and then control the corresponding variable attenuator to adjust; if the energy change amount exceeds the energy change threshold range, stop the exposure action And issue an alert.
  • the method further includes:
  • Step 1 Return the variable attenuator of each illumination system to zero, so that the attenuation is zero;
  • Step 2 performing test exposure, the calibration energy detector detects the illumination of the exposure beam of the corresponding image plane of the projection objective, and calibrates the branch energy detector of each of the illumination systems;
  • Step 3 Perform test exposure again, the calibration energy detector detects the illuminance of the exposure beam of the corresponding image plane of the projection objective, and the variable attenuator corresponding to the minimum value of the illuminance of all the exposed exposure beams is a reference, calculating the attenuation of the remaining variable attenuators, and performing a variable attenuator setting based on the calculated amount of attenuation;
  • Step 4 Perform test exposure again, determine whether the illuminance of the exposure beam of the image plane of each of the projection objective lenses satisfies the illuminance matching requirement, and save the calibration amount of the branch energy detector and the attenuation amount of the variable attenuator as The mechanical constant, the illuminance match ends; otherwise, return to step 2.
  • the light source system includes a plurality of light source generators, each of the light source generators emitting one of the first illumination beams into a corresponding set of the illumination system, each set
  • the light source system further includes a constant light intensity detector, and the constant light intensity detector detects a light intensity of the first illumination light beam generated by the corresponding light source generator, and between step 1 and step 2 include:
  • the calibration energy detector detecting the illuminance of the exposure beam of the corresponding image plane of the projection objective, and detecting the constant intensity detector corresponding to the minimum value of the illuminance of all the exposure beams detected For the benchmark, separately calibrate the remaining constant light intensity detectors;
  • the light source generator is used as a reference, and the electric power of the remaining light source generators is calculated, and the electric power setting of the light source generator is performed based on the calculated electric power.
  • the exposure apparatus is provided with a plurality of illumination systems, each of which includes a variable attenuator and a branch energy detector, through the support of the illumination system
  • the road energy detector detects the illuminance of the corresponding branch and feeds back to the control system, so that the control system controls the variable attenuator of each lighting system to adjust the illuminance of the corresponding branch, thereby optimizing the energy control strategy of the exposure device and improving the exposure performance.
  • High energy adjustment accuracy and fast beam adjustment can reduce the overall energy loss, and have less impact on other performances, achieve precise control, and improve exposure accuracy.
  • FIG. 1 is a schematic structural view of a single illumination system and a light source system of an exposure apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional view showing a variable attenuator of an exposure apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view of a light homogenizing unit of an exposure apparatus according to an embodiment of the present invention.
  • the invention provides an exposure apparatus, comprising a control system, a light source system, a plurality of illumination systems and a plurality of projection objective lenses, wherein the light source system is configured to emit a plurality of first illumination beams into the plurality of illumination systems, each set
  • the illumination system includes a variable attenuator and a branch energy detector, and each set of the branch energy detector of the illumination system is configured to detect the illumination of a second illumination beam generated in the corresponding illumination system and feed back to the A control system that adjusts the illuminance of each of the second illumination beams by controlling a variable attenuator of each of the illumination systems.
  • the light source system may be provided with only one set, the set of light source systems comprising a light source generator and a beam unit, the beam unit dividing the light beam emitted by the light source generator into the plurality of first illumination beams, Each of the first illumination beams is incident on a corresponding set of the illumination system, thereby implementing a one-to-many combination of a plurality of illumination systems corresponding to a set of light source systems.
  • the light source system is provided with multiple sets, which are in one-to-one correspondence with the plurality of sets of the illumination systems, and realize one-to-one corresponding discrete combination manners according to the one-to-many combination manner to meet the needs of different production types.
  • the exposure apparatus may include a set of light source systems, multiple sets of illumination systems, multiple sets of projection objective lenses 30 , and a control system.
  • the light source system includes a light source generator 10, the illumination system including a variable attenuator 20 that emits an illumination beam, the variable attenuator 20 removing a portion of the illumination beam for energy control, performing energy The controlled illumination beam is emitted from the projection objective 30.
  • the light source system further includes a beam unit 60 that splits the illumination beam generated by the source generator 10 into a plurality of first illumination beams, each of the first illumination beams It is possible to have the same combination of parameters such that the plurality of first illumination beams produced by the same source generator 10 make up different branches.
  • the variable attenuator 20 includes two light shielding plates, each of which has a plurality of through holes through which the light shielding plate 21 controls the feeding amount of the first illumination light beam.
  • Energy control is performed to independently adjust the energy of the first illumination beam of each branch through the visor 21.
  • the first illumination beam can pass through the uncovered intermediate region between the two visors 21 and the through holes, and by adjusting the size of the intermediate region, that is, by the relative movement of the two visors 21, The feed amount of the first illumination beam is controlled.
  • a plurality of through holes can better maintain the uniformity of the illumination beam, prevent the beam from being partially blocked, and the diffraction of light and the like to form a beam with less uniformity.
  • the two rectangular louvers control the feed amount. And in the view of the figure, the two rectangular louvers are arranged on the lower plate. It can be understood that the control of the feed amount can also adopt other shapes and combinations of visors, for example, arranged in the left and right directions in the illustrated viewing angle, using a circle The shape of the first illumination beam can also be adjusted by the shape of the visor or the like.
  • the light source generator 10 may include a bowl 11 having a reflective surface, a mercury lamp 12 disposed in the bowl 11, and a mirror 13, the illumination beam generated by the mercury lamp 12. After being reflected by the bowl 11 and the mirror 13 in turn, it is concentrated to the focal plane position, that is, the incident position of the beam unit 60 shown in FIG.
  • the mercury lamp has high luminous efficiency, long life and good light color, and can be used as a preferred light source.
  • each of the light source systems further includes a constant light intensity detector 14 that detects the intensity of the illumination beam generated by the light source generator 10, in order to prevent the illumination beam from occurring with the light source.
  • the device 10 is affected by the increase of the use time. It is necessary to detect the illumination beam by the constant light intensity detector 14 to determine whether the illumination beam meets the requirements, and the mercury lamp 12 can be adjusted in real time by real-time monitoring of the intensity of the mercury lamp 12 The electrical power is used to maintain the illumination requirements of the illumination beam.
  • the exposure apparatus may further include a coupling unit 40 that couples the energy-controlled illumination beam, and the coupling of the coupling unit 40 can adjust the numerical aperture of the illumination beam ( NA, Numerical Aperture) parameters and the fusion effect of the illumination beam to form the desired illumination beam and improve the utilization.
  • the coupling can be used to couple the illumination beam with a circular beam section into a shape of a square or a regular polygon. Illuminate the beam so that the illumination beam meets the requirements of the branch.
  • each set of the illumination system further includes a light-sharing unit 50, and the branch energy detector 51 located in the light-sharing unit 50 is configured to detect that the corresponding light-splitting unit 50 is generated in the corresponding branch.
  • the illuminance of the second illumination beam, the leveling unit 50 can homogenize the coupled illumination beam, so that the illumination beam satisfies the requirement of uniformity.
  • the illumination beam is not uniform enough to affect the exposure accuracy, the illumination beam is sufficiently homogenized in the leveling unit 50, and the illumination beam output a uniform spot on the exit end face.
  • the light homogenizing unit 50 includes a first light homogenizing rod 52 and a second light homogenizing rod 53 connected to the first light homogenizing rod 52, and the branch energy detector 51 detects The second illumination beam emitted from the junction of the first homogenizing rod 52 and the second homogenizing rod 53 is partially illuminated by the illumination beam at the junction, and is branched by the energy detector 51.
  • the material of the first homogenizing rod 52 and/or the second homogenizing rod 53 may be quartz, and the illumination beam may become more uniform after passing through the homogenizing rods 52 and 53, and the homogenizing rod may be preferably made through quartz.
  • fused silica is used as a homogenizing rod.
  • the light homogenizing unit 50 includes a branch mirror 511 and a diaphragm 512, and the second light is emitted from the junction of the first light rod 52 and the second light rod 53.
  • the illumination beam is reflected by the branch mirror 511 and is detected by the branch energy detector 51 after passing through the aperture 512.
  • the projection objective lens 30 is provided with multiple sets and is in one-to-one correspondence with the illumination system.
  • the exposure apparatus further includes a calibration energy detector 70, and the calibration energy detector 70 detects the projection objective lens.
  • Illuminance of the exposure beam of the image plane the control system illuminates the illumination beams incident on the projection objective 30 according to the illuminance of the exposure beam of the image plane, and the exposure beam is illuminated from the projection objective 30
  • the calibration energy detector 70 can be located on the substrate surface.
  • the calibration energy detector 70 enters the optical path, and the calibration energy detector 70 can be normally produced.
  • the calibration energy detector 70 can calibrate or calibrate the constant light intensity controller 14 of the mercury lamp 12 and calibrate or calibrate the branch energy detector 51 by detecting the illuminance of the exposure beam.
  • the exposure beam energy mismatch of each exposure sub-device is prone to occur, and the difference in exposure beam energy between the respective exposure sub-devices may reduce the overall exposure performance of the photolithography machine.
  • the illuminance matching is performed on the plurality of exposure sub-devices, so that the exposure beams generated by the respective exposure sub-devices have the same illuminance, thereby avoiding the difference of the exposure beam energy between the respective exposure sub-devices, and achieving extremely high energy adjustment precision.
  • Fast matching convergence speed reducing overall energy loss, while having less impact on other performance of the lithography machine, thereby improving the exposure accuracy of an exposure system such as a TFT lithography machine.
  • the first illumination beams entering the illumination systems are from the same source generator 10, and thus have substantially the same illumination parameters, so that the illuminations are made.
  • the first illumination beams received by the system have good consistency. Therefore, the constant light intensity controller 14 can be omitted.
  • multiple sets of light source systems may be used in one-to-one correspondence with multiple sets of illumination systems.
  • the beam unit 60 of Figure 1 can be omitted and the first illumination beam produced by the source generator 10 can be directed into the variable attenuator 20 of the illumination system.
  • a constant light intensity controller 14 is preferably provided corresponding to each of the light source generators 10 so as to pass through the respective constant light intensity controllers 14. The detected values are adjusted for each of the light source generators 10.
  • the rest of the configuration can be the same as the embodiment shown in FIG.
  • the present invention also provides an exposure method for performing exposure operation on a material located on the image plane of the projection objective lens 30 by using the above exposure apparatus, and specifically includes the following steps:
  • each of the branch energy detectors 51 detects and feeds back the illuminance of the second illumination beam in each illumination system in real time, and the control system determines the energy variation of the second illumination beam of each illumination system in real time. If the energy change amount is within the energy change threshold range, calculate the energy value that needs to be adjusted in real time, and then control the corresponding variable attenuator 20 to perform adjustment; if the energy change amount exceeds the energy change threshold range, stop the exposure.
  • the action an alarm, can also trigger illumination matching of the illumination beams incident on the projection objective 30.
  • illuminance matching of each illumination beam incident on the projection objective 30 includes the following steps:
  • Step 1 Return the variable attenuator 20 of each illumination system to the zero position, so that the attenuation amount is zero;
  • the calibration energy detector 70 detects the illumination of the exposure beam of the image plane of each of the projection objective lenses 30, and calibrates the branch energy detectors 51 of each of the illumination systems;
  • Step 3 performing test exposure again, the calibration energy detector 70 detecting the illuminance of the exposure beam of the image plane of each of the projection objective lenses 30 to detect the illuminance of the exposure beam of the image planes of all the projection objective lenses 30.
  • the variable attenuator 20 corresponding to the minimum value is used as a reference, and the attenuation amount of the remaining variable attenuator 20 is calculated, and the variable attenuator 20 is set based on the calculated attenuation amount;
  • Step 4 Perform test exposure again, determine whether the illuminance of the exposure beam of the image plane of each of the projection objective lenses 30 satisfies the illuminance matching requirement, and save the calibration amount of the branch energy detector 51 and the variable attenuator 20 The attenuation amount is used as the mechanical constant, and the illumination matching ends; otherwise, it returns to step 2.
  • a constant light intensity detector 14 may be disposed for each set of the light source system, and the constant light intensity detector 14 detects the generated by the light source generator 10
  • the intensity of the illumination beam may further include between step 1 and step 2:
  • the calibration energy detector 70 detects the illuminance of the exposure beam of the image plane of each of the projection objective lenses 30, and the minimum value of the illuminance of the exposure beam of the image planes of all the projection objective lenses 30 detected is corresponding.
  • the constant light intensity detector 14 is a reference, respectively calibrating the remaining constant light intensity detectors 14;
  • the light source generator 10 is a reference, calculates the electric power of the remaining light source generator 10, and performs electric power setting of the light source generator 10 based on the calculated electric power.
  • the exposure correction method performed by the exposure apparatus of the present invention before exposure can be performed as follows:
  • variable attenuator of each branch returns to the zero position, and the attenuation can be made zero by setting the shutter
  • the illuminance of the exposure beam of each branch can be obtained by the calibration energy detector;
  • the mercury lamp 12 can be used as a light source generator, and the intensity of the first illumination beam generated by each of the light source generators 10 is detected by the constant light intensity detector 14, respectively, and adjusted based on the minimum value of all the constant light intensity detectors.
  • the electric power of other light source generators makes the light intensity detected by all constant light intensity detectors consistent;
  • the calibration energy detector numerically calibrates the second illumination beam, and the second illumination beam is detected by the branch energy detector 51;
  • the present invention has the following exposure monitoring method for the exposure device:
  • judge the selection adjustment means such as manual intervention or self-adjustment through the variable attenuator for energy control
  • the description of the path of the light beam is omitted.
  • other optical lenses and the like are omitted, and the characteristic indexes of the components are obtained by calibration, and the corresponding input/output relationship can be determined by calibration.
  • the position distribution relationship of each component can also adjust the relative positional relationship according to the optical path.
  • the exposure apparatus is provided with a plurality of illumination systems, each of which includes a variable attenuator and a branch energy detector, through the support of the illumination system
  • the road energy detector detects the illumination beam illumination of the corresponding branch and feeds back to the control system, so that the control system controls the variable attenuator of each illumination system to adjust the illumination beam illumination of the corresponding branch, thereby optimizing the energy control strategy of the exposure device and improving the exposure.
  • Performance, high energy adjustment accuracy and rapid adjustment can reduce the overall energy loss, and have less impact on other properties of the lithography machine, achieving precise control and improving exposure accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

一种曝光设备和曝光方法,曝光设备包括控制系统、光源系统、多套照明系统及多套投影物镜(30),光源系统用于发出多个第一照明光束入射至多套照明系统,每套照明系统均包括可变衰减器(20)和支路能量探测器(51),每套照明系统的支路能量探测器(51)用于探测对应的照明系统中产生的一第二照明光束的照度并反馈给控制系统,控制系统通过控制各照明系统的可变衰减器(20)调节各第二照明光束的照度。曝光设备和曝光方法可提高曝光性能,对能量调整精度高并能快速调整,实现精确控制,提高曝光精度。

Description

曝光设备和曝光方法 技术领域
本发明涉及半导体技术领域,特别涉及曝光设备和曝光方法。
背景技术
半导体技术中的光刻技术是现代加工技术中制造微细结构最好也是最普遍的加工技术,特别是其中的光刻技术中的曝光部分,是现代制造大规模集成电路(LSI)、微机电系统(MEMS)、平板显示器(LCD、OLED等)最主要的加工手段。
光刻技术的基本原理类似照相机照相原理,可通过光源发生器形成满足要求的高均匀照明场,照射固定在掩膜台上的掩膜板,掩膜板上有所需的光刻图形,通过投影物镜可将被照明掩膜图形无像差的成像到固定在工件台上的基片上,再通过后续工艺得到所需的微细结构。其中,曝光设备要形成满足要求的高均匀照明场,并实现精确的控制曝光剂量,但是随着产品尺寸的越来越大,需要更大的扫描宽度,对于整个曝光设备的要求也越来越高。
因此,如何提高曝光的精度是本领域技术人员努力的方向。
发明内容
本发明的目的在于提供曝光设备和曝光方法,以提高曝光的精度。
为解决上述技术问题,本发明提供一种曝光设备,包括控制系统、光源系统、多套照明系统及多套投影物镜,所述光源系统用于发出多个第一照明光束入射至所述多套照明系统,每套所述照明系统均包括可变衰减器和支路能量探测器,每套所述照明系统的支路能量探测器用于探测对应的所述照明系统中产生的一第二照明光束的照度并反馈给所述控制系统,所述控制系统通过控制各所述照明系统的可变衰减器调节各所述第二照明光束的照度。
可选的,在所述曝光设备中,所述光源系统包括光源发生器和光束单元,所述光束单元将所述光源发生器发出的光束分为所述多个第一照明光束,每个所述第一照明光束入射至对应的一套所述照明系统。
可选的,在所述曝光设备中,所述光源系统包括多个光源发生器,每个所述光源发生器发出一个所述第一照明光束入射至对应的一套所述照明系统。
可选的,在所述曝光设备中,所述可变衰减器包括两块位置可调的遮光板,每块遮光板上均具有若干通孔,通过调节两块遮光板的相对位置控制所述第一照明光束的通过量。
可选的,在所述曝光设备中,所述光源发生器包括汞灯。
可选的,在所述曝光设备中,所述光源系统还包括多个恒光强探测器,每个所述恒光强探测器用于探测对应的一个所述光源发生器产生的所述第一照明光束的光强。
可选的,在所述曝光设备中,每套所述照明系统均还包括匀光单元,所述支路能量探测器探测对应的所述匀光单元中产生的所述第二照明光束的照度。
可选的,在所述曝光设备中,所述匀光单元包括第一匀光棒以及与所述第一匀光棒连接的第二匀光棒,所述支路能量探测器探测所述第一匀光棒与所述第二匀光棒的连接处射出的所述第二照明光束的照度。
可选的,在所述曝光设备中,所述匀光单元还包括支路反射镜及光阑,从所述第一匀光棒与所述第二匀光棒的连接处照射出的所述第二照明光束被所述支路反射镜反射,再经过所述光阑后被所述支路能量探测器探测。
可选的,在所述曝光设备中,所述曝光设备还包括测校能量探测器,所述测校能量探测器用于分别探测各套所述投影物镜的像面的曝光光束的照度,所述控制系统根据探测到的各所述曝光光束的照度对各所述第二照明光束的照度进行匹配。
本发明还提供一种曝光方法,采用上述曝光设备对位于所述投影物镜的像面上的物料进行曝光动作,包括以下步骤:
对所述物料进行曝光动作前,探测各所述投影物镜的像面的各曝光光束的照度,对各所述第二照明光束进行照度匹配;
上载所述物料进行曝光,各所述支路能量探测器实时探测并反馈各照明系统中的第二照明光束的照度,所述控制系统实时判断各照明系统的第二照明光束的能量变化量,若所述能量变化量位于能量变化阈值范围内,则计算需要实 时调整的能量数值后控制对应的所述可变衰减器进行调节;若所述能量变化量超出能量变化阈值范围,则停止曝光动作,并发出警报。
可选的,在所述曝光方法中,若所述能量变化量超出能量变化阈值范围,还包括:
步骤1、将各照明系统的可变衰减器回归零位,使衰减量为零;
步骤2、执行测试曝光,所述测校能量探测器探测对应的所述投影物镜的像面的曝光光束的照度,标定各所述照明系统的支路能量探测器;
步骤3、再次执行测试曝光,所述测校能量探测器探测对应的所述投影物镜的像面的曝光光束的照度,以探测到的所有曝光光束的照度的最小值对应的可变衰减器为基准,计算其余的可变衰减器的衰减量,并基于计算出的衰减量执行可变衰减器设置;
步骤4、再次执行测试曝光,判断各所述投影物镜的像面的曝光光束的照度是否满足照度匹配要求,是则保存所述支路能量探测器的标定量和可变衰减器的衰减量作为机械常数,照度匹配结束;否则返回步骤2。
可选的,在所述曝光方法中,所述光源系统包括多个光源发生器,每个所述光源发生器发出一个所述第一照明光束入射至对应的一套所述照明系统,每套所述光源系统均还包括恒光强探测器,所述恒光强探测器探测对应的所述光源发生器产生的所述第一照明光束的光强,所述步骤1与步骤2之间还包括:
执行测试曝光,所述测校能量探测器探测对应的所述投影物镜的像面的曝光光束的照度,以探测到的所有所述曝光光束的照度的最小值对应的所述恒光强探测器为基准,分别标定其余的恒光强探测器;
再用标定后的各所述恒光强探测器测量对应的所述光源发生器产生的第一照明光束的光强,以测得的所有第一照明光束的光强的最小值对应的所述光源发生器为基准,计算其余的光源发生器的电功率,并基于计算出的电功率执行所述光源发生器的电功率设置。
综上所述,在本发明提供的曝光设备和曝光方法中,所述曝光设备设有多套照明系统,每套照明系统均包括可变衰减器和支路能量探测器,通过照明系统的支路能量探测器探测对应支路的照度并反馈给控制系统,使控制系统控制 各照明系统的可变衰减器调节对应支路的照度,可优化在曝光设备的能量控制策略,提高曝光性能,对于能量调整精度高并能快束调整,可减少总体的能量损失,并对其它性能影响较小,实现精确控制,提高曝光精度。
附图说明
图1是本发明实施例的曝光设备的单套照明系统及光源系统的结构示意图;
图2是本发明实施例的曝光设备的可变衰减器的剖面示意图;
图3是本发明实施例的曝光设备的匀光单元的结构示意图。
具体实施方式
为了使本发明的目的、特征和优点能够更加明显易懂,请参阅附图。须知,本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
本发明提供一种曝光设备,包括控制系统、光源系统、多套照明系统及多套投影物镜,所述光源系统用于发出多个第一照明光束入射至所述多套照明系统,每套所述照明系统均包括可变衰减器和支路能量探测器,每套所述照明系统的支路能量探测器用于探测对应的所述照明系统中产生的一第二照明光束的照度并反馈给所述控制系统,所述控制系统通过控制各所述照明系统的可变衰减器调节各所述第二照明光束的照度。
其中,所述光源系统可仅设有一套,所述一套光源系统包括光源发生器和光束单元,所述光束单元将所述光源发生器发出的光束分为所述多个第一照明光束,每个所述第一照明光束入射至对应的一套所述照明系统,从而实现一套光源系统对应多套照明系统的一对多的组合方式。
可选的,所述光源系统设有多套,与多套所述照明系统一一对应,相比于上述一对多的组合方式实现一一对应分立组合方式,满足不同生产类型的需要。
如图1所示,以单套光源系统对应多套照明系统的曝光设备为例,所述曝光设备可包括一套光源系统、多套照明系统、多套投影物镜30和一控制系统。为了简洁,图1中仅画出多套照明系统中的一套以及多套投影物镜30中的一套。所述光源系统包括光源发生器10,所述照明系统包括可变衰减器20,所述光源发生器10发出照明光束,所述可变衰减器20去除部分所述照明光束进行能量控制,进行能量控制后的照明光束从所述投影物镜30射出。对于一对多的组成方式,所述光源系统还包括光束单元60,所述光束单元60将所述光源发生器10产生的照明光束分成多束第一照明光束,每一束第一照明光束都可以具有相同的参数组合,从而由同一光源发生器10产生的多束第一照明光束组成不同的支路。
参考图2所示,所述可变衰减器20包括两块遮光板,每块遮光板21均具有若干通孔,遮光板21通过所述若干通孔控制所述第一照明光束的进给量进行能量控制,从而通过遮光板21独立调节各支路的第一照明光束的能量。在本实施例中,第一照明光束可以从两块遮光板21之间的未遮住的中间区域以及通孔中通过,通过调节中间区域大小,即通过两块遮光板21相对移动,可对第一照明光束的进给量进行控制。若干通孔可以更好的保持照明光束的均匀性,防止光束遮住部分以及光的衍射等形成均匀性较差的光束,附图中仅图示了两块矩形遮光板控制进给量的方式,且在图示视角下,两块矩形遮光板上下排列,可以理解的是,对于进给量的控制也可以采用其他形状及组合方式的遮光板,例如在图示视角下左右排列、采用圆形遮光板等,同样可以实现第一照明光束的进给量调节作用。
在本实施例中,所述光源发生器10可包括具有反射表面的碗状体11、设置在所述碗状体11内的汞灯12以及反射镜13,所述汞灯12产生的照明光束依次经所述碗状体11和反射镜13反射后汇聚到焦面位置,即图1中所示的光束单元60的入射位置。汞灯的发光效率高、寿命长、光色好,可作为较佳的发光源。
可选的,每套所述光源系统均还包括恒光强探测器14,所述恒光强探测器14探测所述光源发生器10产生的照明光束的光强,为了防止照明光束随光源发生器10使用时间的增长而受到影响,需要通过恒光强探测器14来探测照明光 束的光强来确定照明光束是否满足要求,可通过实时监控汞灯12的光强,实现实时调整汞灯12的电功率来保持照明光束的照度要求。
在本实施例中,所述曝光设备还可包括耦合单元40,所述耦合单元40对经过能量控制后的所述照明光束进行耦合,通过耦合单元40的耦合作用可以调整照明光束的数值孔径(NA,Numerical Aperture)参数以及提高照明光束的融合效果,形成所需的照明光束并提高利用率,通过耦合可将光束截面为圆形等的照明光束耦合成光束截面为方形或正多边形等形状的照明光束,使照明光束符合支路的要求。
在本实施例中,每套所述照明系统均还包括匀光单元50,位于所述匀光单元50中的支路能量探测器51用于探测对应支路中由所述匀光单元50产生的第二照明光束的照度,所述匀光单元50可将经过耦合后的所述照明光束进行匀光,从而使照明光束满足均匀性的要求。照明光束不够均匀会影响曝光精度,照明光束在匀光单元50中充分均匀化,在出射端面照明光束输出均匀光斑。
如图3所示,进一步的,所述匀光单元50包括第一匀光棒52以及与所述第一匀光棒52连接的第二匀光棒53,所述支路能量探测器51探测所述第一匀光棒52与所述第二匀光棒53的连接处射出的所述第二照明光束,在所述连接处会有部分照明光束照射出来,并被支路能量探测器51探测到,照明光束只有极小的部分被截留(0.1%以下,对照明光束的能量平衡影响可忽略),所述被截留部分形成第二照明光束进入到支路能量探测器51中且用于反应所述匀光单元50中的整体照明光束的参数情况,从而可以实现实时反馈曝光设备中照明光束的能量变化。其中第一匀光棒52和/或第二匀光棒53的材料可为石英,照明光束经过匀光棒52、53后可变得更均匀,通过石英可较佳的制成匀光棒,例如,由熔石英作为匀光棒。
在本实施例中,所述匀光单元50包括支路反射镜511和光阑512,从所述第一匀光棒52与所述第二匀光棒53的连接处照射出的所述第二照明光束被所述支路反射镜511反射,再经过所述光阑512后被所述支路能量探测器51探测。
可选的,所述投影物镜30设有多套,并与所述照明系统一一对应,所述曝光设备还包括测校能量探测器70,所述测校能量探测器70探测所述投影物镜的 像面的曝光光束的照度,所述控制系统根据所述像面的曝光光束的照度对入射至所述投影物镜30的各照明光束进行照度匹配,所述曝光光束从所述投影物镜30照射出到所述测校能量探测器70上,测校能量探测器70可位于基板面,在测校工况时,测校能量探测器70才进入光路,测校能量探测器70可在正常生产过程中移除,测校能量探测器70可通过探测曝光光束的照度,实现对汞灯12的恒光强控制器14的校准或标定,以及对支路能量探测器51进行校准或标定。
现有方案中涉及到多个曝光子设备时,容易出现各个曝光子设备的曝光光束能量不匹配,各个曝光子设备间的曝光光束能量差异会降低光刻机的整体曝光性能。通过本方案对多个曝光子设备进行照度匹配,使各个曝光子设备所产生的曝光光束具有相同的照度,可避免各个曝光子设备间的曝光光束能量差异,实现极高的能量调整精度,较快的匹配收敛速度,减少总体的能量损失,同时对于光刻机的其他性能影响较小,从而提高曝光系统例如TFT光刻机的曝光精度。
在本实施例的曝光设备中,由于采用单套光源系统对应多套照明系统,进入各照明系统的第一照明光束来自于同一个光源发生器10,因此具有基本相同的照明参数,使得各照明系统所接收到的各第一照明光束具有良好的一致性。因此,可以省略恒光强控制器14。
在本发明另一实施例中,也可采用多套光源系统与多套照明系统一一对应设置。当采用多套光源系统时,可以省略图1中的光束单元60,将光源发生器10产生的第一照明光束直接引入照明系统的可变衰减器20。但是为了确保各光源发生器10发出的第一照明光束具有良好的一致性,优选地对应于每一个光源发生器10设置一恒光强控制器14,从而可以通过各个恒光强控制器14的探测值对各光源发生器10进行调节。其余构造可与图1所示实施例相同。本发明还提供一种曝光方法,采用上述曝光设备对位于所述投影物镜30的像面上的物料进行曝光动作,具体包括以下步骤:
对所述物料进行曝光动作前,探测从各所述投影物镜30入射至投影物镜像面的各曝光光束的照度,基于探测结果对入射至所述投影物镜30的各照明光束进行照度匹配,其中,所述投影物镜像面所在的位置对应于后续上载的物料表 面的位置;
上载所述物料进行曝光,各所述支路能量探测器51实时探测并反馈各照明系统中的第二照明光束的照度,所述控制系统实时判断各照明系统的第二照明光束的能量变化量,若所述能量变化量位于能量变化阈值范围内,则计算需要实时调整的能量数值后控制对应的所述可变衰减器20进行调节;若所述能量变化量超出能量变化阈值范围则停止曝光动作,发出警报,还可触发对入射至所述投影物镜30的各照明光束进行照度匹配。
在上述曝光方法中,对入射至所述投影物镜30的各照明光束进行照度匹配包括以下步骤:
步骤1、将各照明系统的可变衰减器20回归零位,使衰减量为零;
步骤2、执行测试曝光,所述测校能量探测器70探测各个所述投影物镜30的像面的曝光光束的照度,标定各所述照明系统的支路能量探测器51;
步骤3、再次执行测试曝光,所述测校能量探测器70探测各个所述投影物镜30的像面的曝光光束的照度,以探测到的所有所述投影物镜30的像面的曝光光束的照度的最小值对应的可变衰减器20为基准,计算其余的可变衰减器20的衰减量,并基于计算出的衰减量执行可变衰减器20设置;
步骤4、再次执行测试曝光,判断各所述投影物镜30的像面的曝光光束的照度是否满足照度匹配要求,是则保存所述支路能量探测器51的标定量和可变衰减器20的衰减量作为机械常数,照度匹配结束;否则返回步骤2。
可选的,对于设有多套所述光源系统的情况,还可为每套所述光源系统设置恒光强探测器14,所述恒光强探测器14探测所述光源发生器10产生的照明光束的光强,所述步骤1与步骤2之间还可包括:
执行测试曝光,所述测校能量探测器70探测各个所述投影物镜30的像面的曝光光束的照度,以探测到的所有所述投影物镜30的像面的曝光光束的照度的最小值对应的所述恒光强探测器14为基准,分别标定其余的所述恒光强探测器14;
再用标定后的各所述恒光强探测器14测量对应的所述光源发生器10产生的第一照明光束的光强,以测得的所有第一照明光束的光强的最小值对应的所 述光源发生器10为基准,计算其余的所述光源发生器10的电功率,并基于计算出的电功率执行所述光源发生器10的电功率设置。
本发明的曝光设备在曝光前进行的曝光校正方法可按如下进行:
1.进入测校模式,曝光设备按照设定开始执行照度匹配程序;
2.各个支路的可变衰减器回归零位,可通过设置遮光器使衰减量为零;
3.执行第一测试曝光,得到各个支路在投影物镜的像面处的曝光光束的照度,具体的,可通过测校能量探测器得到各个支路的曝光光束的照度;
4.以光源发生器对应的支路照度的最小值,分别标定各个光源发生器,标定后反馈标定最小值作为基准,计算各个光源发生器的电功率,并执行光源发生器的电功率设置,具体的,可采用汞灯12作为光源发生器,分别利用恒光强探测器14探测各个光源发生器10产生的第一照明光束的光强,以所有恒光强探测器中的最小值为基准,调整其他光源发生器的电功率,使所有恒光强探测器探测到的光强均一致;
5.执行第二测试曝光,通过测校能量探测器再次得到各个支路在投影物镜的像面处的曝光光束的照度;
6.进行标定测算,标定照明光束,再以所有支路中照度最小值作为基准,计算各个支路的可变衰减器20的衰减量,并执行可变衰减器调节,具体的,可通过测校能量探测器数值标定第二照明光束,第二照明光束由支路能量探测器51探测;
7.执行第三测试曝光,通过测校能量探测器得到各个支路在投影物镜的像面处的曝光光束的照度;
8.判断照度匹配结果是否满足预定参数,若是则进入下述步骤9,否则返回进行重新标定测算;
9.保存可变衰减器的衰减量作为机械常数,保存测校能量探测器的标定结果作为机械常数,结束照度匹配过程。所得到的包括可变衰减器的衰减量和测校能量探测器的标定结果的机械常数作为生产所需的设定参数。
为保证曝光精度,本发明对曝光设备设计有如下曝光监控方法:
1.通过各个支路能量探测器实时反馈各个支路照明光束的照度;
2.通过支路能量探测器实时反馈的探测结果实时判断各个支路的照明光束能量变化量,若满足照度匹配要求则返回上一步骤,否则进入后续步骤;
3.判断照明光束能量变化量是否超出预设的范围,若是则停止曝光生产,发出警报,触发曝光校正方法,否则进入后续步骤;
4.计算需要实时调整的能量数值;
5.根据预设范围,判断选择调整手段,例如进行人工介入或自行通过可变衰减器进行能量控制等;
6.返回至初始步骤,继续实时监控。
在上述实施例中,为了便于理解以光束的行径进行描述,本实施方式及附图中省略了其它光学镜片等组件,通过标定得到各部件的特性指标,标定可确定对应的输入/输出关系,其中各部件的位置分布关系亦可根据光学路径调整相对位置关系。
综上所述,在本发明提供的曝光设备和曝光方法中,所述曝光设备设有多套照明系统,每套照明系统均包括可变衰减器和支路能量探测器,通过照明系统的支路能量探测器探测对应支路的照明光束照度并反馈给控制系统,使控制系统控制各照明系统的可变衰减器调节对应支路的照明光束照度,可优化曝光设备的能量控制策略,提高曝光性能,能量调整精度高并能快速调整,可减少总体的能量损失,并对光刻机的其它性能影响较小,实现精确控制,提高曝光精度。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (13)

  1. 一种曝光设备,包括控制系统、光源系统、多套照明系统及多套投影物镜,其特征在于,所述光源系统用于发出多个第一照明光束入射至所述多套照明系统,每套所述照明系统均包括可变衰减器和支路能量探测器,每套所述照明系统的支路能量探测器用于探测对应的所述照明系统中产生的一第二照明光束的照度并反馈给所述控制系统,所述控制系统通过控制各所述照明系统的可变衰减器调节各所述第二照明光束的照度。
  2. 根据权利要求1所述的曝光设备,其特征在于,所述光源系统包括光源发生器和光束单元,所述光束单元将所述光源发生器发出的光束分为所述多个第一照明光束,每个所述第一照明光束入射至对应的一套所述照明系统。
  3. 根据权利要求1所述的曝光设备,其特征在于,所述光源系统包括多个光源发生器,每个所述光源发生器发出一个所述第一照明光束入射至对应的一套所述照明系统。
  4. 根据权利要求1所述的曝光设备,其特征在于,所述可变衰减器包括两块位置可调的遮光板,每块遮光板上均具有若干通孔,通过调节两块遮光板的相对位置控制所述第一照明光束的通过量。
  5. 根据权利要求2或3所述的曝光设备,其特征在于,所述光源发生器包括汞灯。
  6. 根据权利要求3所述的曝光设备,其特征在于,所述光源系统还包括多个恒光强探测器,每个所述恒光强探测器用于探测对应的一个所述光源发生器产生的所述第一照明光束的光强。
  7. 根据权利要求1所述的曝光设备,其特征在于,每套所述照明系统均还包括匀光单元,所述支路能量探测器探测对应的所述匀光单元中产生的所述第二照明光束的照度。
  8. 根据权利要求7所述的曝光设备,其特征在于,所述匀光单元包括第一匀光棒以及与所述第一匀光棒连接的第二匀光棒,所述支路能量探测器探测所述第一匀光棒与所述第二匀光棒的连接处射出的所述第二照明光束的照度。
  9. 根据权利要求8所述的曝光设备,其特征在于,所述匀光单元还包括支路反射镜及光阑,从所述第一匀光棒与所述第二匀光棒的连接处照射出的所述第二照明光束被所述支路反射镜反射,再经过所述光阑后被所述支路能量探测器探测。
  10. 根据权利要求1所述的曝光设备,其特征在于,所述曝光设备还包括测校能量探测器,所述测校能量探测器用于分别探测各套所述投影物镜的像面的曝光光束的照度,所述控制系统根据探测到的各所述曝光光束的照度对各所述第二照明光束的照度进行匹配。
  11. 一种曝光方法,其特征在于,采用如权利要求10所述的曝光设备对位于所述投影物镜的像面上的物料进行曝光动作,包括以下步骤:
    对所述物料进行曝光动作前,探测各所述投影物镜的像面的各曝光光束的照度,对各所述第二照明光束进行照度匹配;
    上载所述物料进行曝光,各所述支路能量探测器实时探测并反馈各照明系统中的第二照明光束的照度,所述控制系统实时判断各照明系统的第二照明光束的能量变化量,若所述能量变化量位于能量变化阈值范围内,则计算需要实时调整的能量数值后控制对应的所述可变衰减器进行调节;若所述能量变化量超出能量变化阈值范围,则停止曝光动作,并发出警报。
  12. 根据权利要求11所述的曝光方法,其特征在于,若所述能量变化量超出能量变化阈值范围,还包括:
    步骤1、将各照明系统的可变衰减器回归零位,使衰减量为零;
    步骤2、执行测试曝光,所述测校能量探测器探测对应的所述投影物镜的像面的曝光光束的照度,标定各所述照明系统的支路能量探测器;
    步骤3、再次执行测试曝光,所述测校能量探测器探测对应的所述投影物镜的像面的曝光光束的照度,以探测到的所有曝光光束的照度的最小值对应的可变衰减器为基准,计算其余的可变衰减器的衰减量,并基于计算出的衰减量执行可变衰减器设置;
    步骤4、再次执行测试曝光,判断各所述投影物镜的像面的曝光光束的照度是否满足照度匹配要求,是则保存所述支路能量探测器的标定量和可变衰减器的衰减量作为机械常数,照度匹配结束;否则返回步骤2。
  13. 根据权利要求12所述的曝光方法,其特征在于,所述光源系统包括多个光源发生器,每个所述光源发生器发出一个所述第一照明光束入射至对应的一套所述照明系统,每套所述光源系统均还包括恒光强探测器,所述恒光强探测器探测对应的所述光源发生器产生的所述第一照明光束的光强,所述步骤1与步骤2之间还包括:
    执行测试曝光,所述测校能量探测器探测对应的所述投影物镜的像面的曝光光束的照度,以探测到的所有所述曝光光束的照度的最小值对应的所述恒光强探测器为基准,分别标定其余的恒光强探测器;
    再用标定后的各所述恒光强探测器测量对应的所述光源发生器产生的第一照明光束的光强,以测得的所有第一照明光束的光强的最小值对应的所述光源发生器为基准,计算其余的光源发生器的电功率,并基于计算出的电功率执行所述光源发生器的电功率设置。
PCT/CN2018/099543 2017-08-10 2018-08-09 曝光设备和曝光方法 WO2019029601A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207004727A KR102370159B1 (ko) 2017-08-10 2018-08-09 노광 장비 및 노광 방법.
SG11202001116UA SG11202001116UA (en) 2017-08-10 2018-08-09 Exposure equipment and exposure method
US16/637,658 US11119412B2 (en) 2017-08-10 2018-08-09 Exposure equipment and exposure method
JP2020507095A JP7221934B2 (ja) 2017-08-10 2018-08-09 露光装置および露光方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710682101.5 2017-08-10
CN201710682101.5A CN107966882B (zh) 2017-08-10 2017-08-10 曝光设备和曝光方法

Publications (1)

Publication Number Publication Date
WO2019029601A1 true WO2019029601A1 (zh) 2019-02-14

Family

ID=61997510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/099543 WO2019029601A1 (zh) 2017-08-10 2018-08-09 曝光设备和曝光方法

Country Status (7)

Country Link
US (1) US11119412B2 (zh)
JP (1) JP7221934B2 (zh)
KR (1) KR102370159B1 (zh)
CN (1) CN107966882B (zh)
SG (1) SG11202001116UA (zh)
TW (1) TWI672566B (zh)
WO (1) WO2019029601A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966882B (zh) 2017-08-10 2020-10-16 上海微电子装备(集团)股份有限公司 曝光设备和曝光方法
JP7198659B2 (ja) * 2018-12-26 2023-01-04 株式会社オーク製作所 露光装置
CN111443575B (zh) * 2019-01-17 2021-05-18 上海微电子装备(集团)股份有限公司 一种曝光系统及光刻机
CN113050378B (zh) * 2019-12-27 2022-06-17 上海微电子装备(集团)股份有限公司 能量调节装置、能量调节方法、照明系统以及光刻机
CN116610007B (zh) * 2023-07-18 2023-10-27 上海图双精密装备有限公司 掩模对准光刻设备及其照明系统和照明方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947030A (en) * 1985-05-22 1990-08-07 Canon Kabushiki Kaisha Illuminating optical device
US5617181A (en) * 1994-04-28 1997-04-01 Nikon Corporation Exposure apparatus and exposure method
CN1182486A (zh) * 1996-02-23 1998-05-20 Asm石版印刷公司 光学设备的照明单元
CN1432874A (zh) * 2002-01-09 2003-07-30 尼康株式会社 曝光装置以及曝光方法
CN202472238U (zh) * 2012-01-12 2012-10-03 合肥芯硕半导体有限公司 用于光刻系统的光能量监测系统
CN107966882A (zh) * 2017-08-10 2018-04-27 上海微电子装备(集团)股份有限公司 曝光设备和曝光方法
CN108121163A (zh) * 2016-11-29 2018-06-05 上海微电子装备(集团)股份有限公司 一种光源曝光剂量控制系统及控制方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644089Y2 (zh) 1984-12-29 1989-02-02
US5581075A (en) * 1993-10-06 1996-12-03 Nikon Corporation Multi-beam scanning projection exposure apparatus and method with beam monitoring and control for uniform exposure of large area
JPH08139009A (ja) 1994-11-14 1996-05-31 Nikon Corp 照明光学装置
JPH09320932A (ja) * 1996-05-28 1997-12-12 Nikon Corp 露光量制御方法及び装置
DE19724903A1 (de) * 1997-06-12 1998-12-17 Zeiss Carl Fa Lichtintensitätsmeßanordnung
KR100499864B1 (ko) * 1997-06-12 2005-09-30 칼 짜이스 에스엠테 아게 광도 측정 장치
JP4289755B2 (ja) 2000-02-24 2009-07-01 キヤノン株式会社 露光量制御方法、デバイス製造方法および露光装置
JP2003295459A (ja) 2002-04-02 2003-10-15 Nikon Corp 露光装置及び露光方法
JP2003203853A (ja) 2002-01-09 2003-07-18 Nikon Corp 露光装置及び方法並びにマイクロデバイスの製造方法
JP2004063988A (ja) * 2002-07-31 2004-02-26 Canon Inc 照明光学系、当該照明光学系を有する露光装置及びデバイス製造方法
JP4174307B2 (ja) * 2002-12-02 2008-10-29 キヤノン株式会社 露光装置
JP2004327660A (ja) 2003-04-24 2004-11-18 Nikon Corp 走査型投影露光装置、露光方法及びデバイス製造方法
JP2005026511A (ja) 2003-07-03 2005-01-27 Nikon Corp 露光装置及び露光方法
JP4775842B2 (ja) 2005-06-10 2011-09-21 大日本スクリーン製造株式会社 パターン描画装置
JP2009058924A (ja) * 2007-08-31 2009-03-19 Attomakkusu:Kk 照明装置
CN101510054B (zh) * 2009-03-06 2011-05-11 上海微电子装备有限公司 一种用于光刻设备的曝光控制系统及控制方法
CN102253602A (zh) * 2010-05-18 2011-11-23 上海微电子装备有限公司 一种光刻系统中实时控制照明剂量的装置
CN103293864B (zh) * 2012-02-27 2015-05-13 上海微电子装备有限公司 一种光刻曝光剂量的控制装置及控制方法
CN106933040B (zh) * 2015-12-30 2019-11-26 上海微电子装备(集团)股份有限公司 光刻机拼接照明系统及其调整方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4947030A (en) * 1985-05-22 1990-08-07 Canon Kabushiki Kaisha Illuminating optical device
US5617181A (en) * 1994-04-28 1997-04-01 Nikon Corporation Exposure apparatus and exposure method
CN1182486A (zh) * 1996-02-23 1998-05-20 Asm石版印刷公司 光学设备的照明单元
CN1432874A (zh) * 2002-01-09 2003-07-30 尼康株式会社 曝光装置以及曝光方法
CN202472238U (zh) * 2012-01-12 2012-10-03 合肥芯硕半导体有限公司 用于光刻系统的光能量监测系统
CN108121163A (zh) * 2016-11-29 2018-06-05 上海微电子装备(集团)股份有限公司 一种光源曝光剂量控制系统及控制方法
CN107966882A (zh) * 2017-08-10 2018-04-27 上海微电子装备(集团)股份有限公司 曝光设备和曝光方法

Also Published As

Publication number Publication date
US20210011388A1 (en) 2021-01-14
CN107966882B (zh) 2020-10-16
CN107966882A (zh) 2018-04-27
SG11202001116UA (en) 2020-03-30
TWI672566B (zh) 2019-09-21
US11119412B2 (en) 2021-09-14
TW201910935A (zh) 2019-03-16
KR20200026303A (ko) 2020-03-10
JP2020530138A (ja) 2020-10-15
JP7221934B2 (ja) 2023-02-14
KR102370159B1 (ko) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2019029601A1 (zh) 曝光设备和曝光方法
KR20200130749A (ko) 오버레이 계측을 위한 국부적인 텔레센트릭시티와 초점 최적화
KR101698235B1 (ko) 노광 장치 및 디바이스 제조 방법
TWI660248B (zh) Light source exposure dose control system and control method
US7612868B2 (en) Exposure apparatus and method of manufacturing device
JP5739837B2 (ja) 露光装置、露光方法及びデバイス製造方法
US10908020B2 (en) Light source device and method for driving light source device
CN203765163U (zh) 激光飞行光路校正装置
JP2017161603A (ja) 光源装置及びこれを備えた露光装置
TW201037466A (en) Exposure method, exposure apparatus, and device manufacturing method
US20050218345A1 (en) Ion implantation apparatus and method
CN105137724A (zh) 具有瞳面质量监测和校准功能的光刻机照明系统和方法
CN105242495B (zh) 光刻曝光装置
JP2018036425A5 (zh)
KR101833584B1 (ko) 노광 장치, 노광 방법 및 디바이스의 제조 방법
KR100550521B1 (ko) 노광기 및 그 글래스 정렬방법
CN109856915B (zh) 光刻投影物镜、边缘曝光系统和边缘曝光装置
KR100660542B1 (ko) 반도체 제조용 오버레이 계측설비
Kuvaldin et al. Apparatus for measuring the main characteristics of compact objectives
US20090310110A1 (en) Exposure apparatus and device manufacturing method
KR20130028476A (ko) 노광용 레이저 다이오드 모듈 제어장치 및 그 제어방법
KR101374787B1 (ko) 레이저 빔 형상 검사장치
TW202338297A (zh) 光罩檢查裝置
CN116360221A (zh) 曝光系统和曝光系统的剂量控制方法
KR20040012051A (ko) 반도체 제조용 오버레이 계측설비

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507095

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207004727

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18845219

Country of ref document: EP

Kind code of ref document: A1