WO2019029031A1 - 一种无铅环保高强黄铜合金的增材制造方法 - Google Patents

一种无铅环保高强黄铜合金的增材制造方法 Download PDF

Info

Publication number
WO2019029031A1
WO2019029031A1 PCT/CN2017/110097 CN2017110097W WO2019029031A1 WO 2019029031 A1 WO2019029031 A1 WO 2019029031A1 CN 2017110097 W CN2017110097 W CN 2017110097W WO 2019029031 A1 WO2019029031 A1 WO 2019029031A1
Authority
WO
WIPO (PCT)
Prior art keywords
brass alloy
powder
laser
lead
friendly high
Prior art date
Application number
PCT/CN2017/110097
Other languages
English (en)
French (fr)
Inventor
杨超
赵延杰
李元元
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/094,190 priority Critical patent/US11401588B2/en
Publication of WO2019029031A1 publication Critical patent/WO2019029031A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/06Metallic powder characterised by the shape of the particles
    • B22F1/065Spherical particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • B22F10/366Scanning parameters, e.g. hatch distance or scanning strategy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/001Starting from powder comprising reducible metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0235Starting from compounds, e.g. oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the invention relates to the field of manufacturing new environmentally-friendly brass alloys and parts thereof, and in particular to a method for manufacturing additive materials of lead-free environmentally-friendly high-strength brass alloys.
  • Brass is an alloy of copper and zinc. Brass alloy has beautiful color and excellent electrical conductivity and thermal conductivity. It is widely used in hardware decorations, medals, steam pipes, air-conditioning internal and external connecting tubes and radiators, electronic communication, etc. It has good corrosion resistance and wide range. It is used in chemical engineering, ship parts and other fields such as cryogenic pipelines, submarine transportation pipes, etc. It has good mechanical properties, easy cutting and other processing techniques, and is widely used in bolts, nuts, washers, springs, valves, water pipes, faucets, and withstand voltage. Machinery and other fields of machinery manufacturing.
  • SLM Selective Laser Melting
  • High-precision metal parts are especially suitable for the manufacture of complex thin-walled precision components that are difficult to achieve by conventional machining techniques such as thin walls, complicated internal cavities, and internal flow paths.
  • the high cooling rate unique to SLM technology contains a wide range of non-equilibrium solidification during the cooling process, which can refine the crystal grains and improve the solid solubility, so that the microstructure of the molded part is fine and compact, the composition is uniform, and the performance is excellent.
  • a method for manufacturing an additive for a lead-free environmentally-friendly high-strength brass alloy comprising the steps of:
  • Pre-laying powder a brass alloy powder having a thickness of 50-100 ⁇ m is uniformly uniformly laid on a stainless steel substrate by a powder spreading device, and the excess brass alloy powder is sent to a recovery cylinder, and then collected and reused;
  • Laser melt forming The laser melts the pre-laid brass alloy powder according to the set shape and laser scanning strategy according to the computer design, and then forms a smooth molten layer of brass alloy on the stainless steel substrate, followed by stainless steel. The substrate is lowered to a set thickness distance, and then the brass powder having the same thickness as that of the stainless steel substrate is reprepended on the molten layer of the brass alloy, and the laid brass powder is laser-scanned again, and only one laser scan is required for each layer. a flat layer of molten brass alloy;
  • the specific steps of preparing the brass alloy powder by the gas atomization method in the step (1) are as follows: the element powder uniformly mixed in the above mass percentage is melted into a uniform metal liquid by an induction furnace, and then the metal liquid is injected into the mist. In the tundish above the nozzle, the metal liquid flows out from the bottom of the tundish; when the metal liquid flows out, it meets the high-speed airflow of the atomizing nozzle and atomizes into small droplets, and the atomized droplets are in the closed atomizing cylinder.
  • the spherical powder having a suitable particle size refers to a brass alloy powder having a particle size distribution in the range of 15 to 51 ⁇ m.
  • the laser scanning path in the step (2) is an S-type orthogonal layer stack scanning.
  • model of the selective laser melting molding apparatus is Dimetal 280.
  • the selective laser melting forming apparatus described in the step (3) includes a laser, a gas purifying device, Optical path transmission unit, sealing molding chamber, powder spreading device, control system and process software.
  • the laser is a SPI fiber laser with a wavelength of 1090 nm, a maximum power of not less than 160 W, and a focused spot diameter of 30 to 70 ⁇ m;
  • the powder spreading device is disposed in the sealed molding chamber, and is composed of a hopper and a paint brush under the hopper.
  • the paving brush is a flexible tooth flexible blade, and a 304 stainless steel piece having a thickness of 30 to 100 ⁇ m is used, and each elastic tooth flexible blade is cut by a fiber laser, and the gap of the flexible tooth flexible blade is a laser-cut slit width.
  • the energy input density is less than 333 J/mm 3
  • the input energy is insufficient to completely melt the brass powder, and a sufficiently dense brass sample cannot be obtained
  • the energy input density is greater than 416 J/mm 3
  • the surface area of the molten pool increases.
  • the cooling and solidification time is longer, increasing the tendency of oxidation and spheroidization.
  • increasing the laser power is likely to cause large thermal stress to cause warping deformation.
  • the zinc element has a low boiling point, is volatile, and the power is too high, so that the zinc element is obviously vaporized.
  • the porosity of the molded part is increased and the zinc element is ablated.
  • the ingredients are as follows: Zn 5.5 to 40 wt.%, Si 0.5% to 4 wt.%, trace elements Al and Ti in a total amount of 0 to 0.5% wt.%, and Cu balance
  • the microstructure of the lead-free environmentally-friendly high-strength brass alloy includes micron-sized cell crystals and dendrites; when the Zn content is 35-40 wt.%, the phase composition is the ⁇ phase of the face-centered cubic structure, that is, the Zn is dissolved in Cu.
  • the solid solution, and the ⁇ phase of the body-centered cubic structure that is, the CuZn-based solid solution; when the zinc content is less than 35 wt.% and the silicon content is higher than 2.0 wt%, the phase composition is Zn and Si as solid solution elements.
  • the lead-free environmentally-friendly high-strength brass alloy additive can be applied to various mechanical manufacturing fields such as sanitary ware, hardware decoration, radiator, electronic communication, low temperature pipeline, and pressure resistant equipment.
  • the present invention has the following advantages and beneficial effects:
  • the invention adopts the SLM technology to form high-strength brass alloy parts.
  • the laser melting has the characteristics of rapid heating and rapid cooling, so that the reaction in the molten pool is fast, the diffusion time is extremely short, and no component segregation occurs.
  • the microstructure of the material is effectively refined, and the high-density, high-yield, high-strength brass alloy parts are obtained, and the yield strength is as high as 275 MPa and the hardness is as high as (205 HV), which is much higher than the cast brass alloy of the same composition (205 MPa, 170 HV).
  • the invention adopts SLM technology to form high-strength brass alloy parts, and forms samples by point-by-point layer by layer.
  • the molten pools do not move with each other and react uniformly in the liquid phase, and the formed brass alloy samples are more cast.
  • the brass alloy has more uniform composition and no obvious segregation. It is easier to form a uniform and dense oxide film during electrochemical corrosion. Therefore, compared with the cast part, the SLM process forms a brass alloy. Better corrosion resistance.
  • the invention adopts the SLM forming process, and can form the complex shape brass parts according to the computer design three-dimensional model, realizes the rapid manufacture of the complex structure brass alloy parts, and greatly expands the application of the brass alloy in the industrial field.
  • FIG. 1 is a process flow diagram of preparing a brass alloy part by the SLM technique in Embodiment 1 of the present invention.
  • FIG. 2(a) is a side view scanning electron micrograph of a brass alloy part prepared by the SLM technique in the first embodiment of the present invention
  • FIG. 2(b) is a brass alloy part prepared by the SLM technique according to the first embodiment of the present invention. Scanning electron micrograph of the top view.
  • FIG. 3 is a comparison diagram of hardness and tensile true stress-true strain curves of a brass alloy part prepared by the SLM technique and a cast brass alloy part of the same composition in the first embodiment of the present invention.
  • This embodiment provides a method for manufacturing an additive for a lead-free environmentally-friendly high-strength brass alloy.
  • the flow chart of the method is as shown in FIG. 1 and includes the following steps:
  • the gas atomized powder is subjected to gas flow classification and Screening treatment, controlling the particle size of the powder in the range of 15 to 51 ⁇ m;
  • the sample of the square brass alloy formed by the above steps is polished to a bright specular shape, and the density is measured by the Archimedes drainage method, and then the Vickers hardness is measured; Cylindrical brass alloy samples were cut according to the designed international standard (Chinese GB/T 228-2002) tensile pattern, and tensile samples were obtained for tensile performance test.
  • the density of the silicon brass alloy formed in the processing parameter range is as high as 98.8%, which is nearly full density, which is significantly higher than that of the copper alloy Cu-4.3Sn (97%) and Cu-Cr which have been reported by SLM technology.
  • 2(a) and 2(b) are respectively a side view scanning electron micrograph and a top view scanning electron micrograph of a brass alloy part prepared by the SLM technique in the present embodiment, from which the sample microstructure can be seen.
  • the brass alloy produced by the method described in this embodiment The parts have a yield strength of up to 275 MPa and a hardness of up to (205 HV), which is much higher than the cast brass alloy of the same composition (205 MPa, 170 HV), tensile strength up to 371.5 MPa, strain at break of 7.5%, and cast brass alloy of the same composition.
  • the performance is equivalent (450 MPa, 9.5%).
  • the embodiment provides a method for manufacturing an additive for a lead-free environmentally-friendly high-strength brass alloy, the method comprising the following steps:
  • the brass alloy powder is loaded into the laser forming equipment (model Dimetal 280), of which Dimetal 280 equipment It mainly includes: laser, gas purification device, optical path transmission unit, sealing molding room, powder coating device, control system, process software and so on.
  • the laser melts the pre-laid brass alloy powder according to the set shape and laser scanning strategy according to the computer design, and then forms a smooth brass alloy melting layer on the substrate, and then the formed substrate is lowered by a certain thickness.
  • the laser is a SPI fiber laser with a wavelength of 1090 nm and the diameter of the focused spot is about 30 ⁇ m, the maximum power is 300W;
  • step 5 to melt the brass alloy powder layer by layer until the sample is stacked and formed, and the molded part is cut from the molded substrate to obtain a brass alloy sample;
  • the sample of the square brass alloy formed by the above steps is polished to a bright specular shape, and the density is measured by the Archimedes drainage method.
  • the silicon brass alloy formed in the processing parameter range has a density of up to 98.5%, which is nearly fully dense, and its phase composition is a face-centered cubic structure ⁇ -Cu phase with Zn and Si as solid solution elements.
  • the densely packed hexagonal Cu 7 Si phase has a microhardness of 201 HV, which is much higher than the cast alloy of the same composition (165 HV).
  • the embodiment provides a method for manufacturing an additive for a lead-free environmentally-friendly high-strength brass alloy, the method comprising the following steps:
  • the brass alloy powder is loaded into the laser forming equipment (Model Dimetal 280).
  • the Dimetal 280 equipment mainly includes: laser, gas purification device, optical path transmission unit, sealing molding chamber, powder laying device, control system, process software, etc. ;
  • the laser melts the pre-laid brass alloy powder according to the set shape and laser scanning strategy according to the computer design, and then forms a smooth brass alloy melting layer on the substrate, and then the formed substrate is lowered by a certain thickness.
  • the laser is a SPI fiber laser with a wavelength of 1090 nm and the diameter of the focused spot is about 50 ⁇ m, the maximum power is 200W;
  • the processing parameters are set as: laser power P is 200W, laser scanning power is 400mm/s, scanning pitch is 60 ⁇ m, powder thickness is 20 ⁇ m, energy input density E is 416.6J/mm 3 ;
  • step 5 to melt the brass alloy powder layer by layer until the sample is stacked and formed, and the molded part is cut from the molded substrate to obtain a brass alloy sample;
  • the sample of the tetragonal brass alloy formed by the above steps was polished to a bright specular shape, and the density was measured by the Archimedes drainage method.
  • the silicon brass alloy formed in the processing parameter range has a density of up to 97.8%, which is nearly fully dense, and its phase composition is a face-centered cubic structure of ⁇ -Cu (Zn, Si) phase and close-packed hexagonal
  • the structure Cu 7 Si phase has a microhardness of 195 HV, which is much higher than the casting alloy of the same composition (155 HV).
  • the embodiment provides a method for manufacturing an additive for a lead-free environmentally-friendly high-strength brass alloy, the method comprising the following steps:
  • the original powder prepared by gas atomization contains a certain amount of powder having an excessively large or too small size, which affects the laser forming effect, so
  • the powder prepared by gas atomization is subjected to gas flow classification and screening treatment, and the particle size of the powder is controlled to be 15 to 51 ⁇ m;
  • the brass alloy powder is loaded into the laser forming equipment (Model Dimetal 280).
  • the Dimetal 280 equipment mainly includes: laser, gas purification device, optical path transmission unit, sealing molding chamber, powder laying device, control system, process software, etc. ;
  • the laser melts the pre-laid brass alloy powder according to the set shape and laser scanning strategy according to the computer design, and then forms a smooth brass alloy melting layer on the substrate, and then the formed substrate is lowered by a certain thickness.
  • step 5 to melt the brass alloy powder layer by layer until the sample is stacked and cut, and the molded part is cut from the molded substrate to obtain a brass alloy sample;
  • the brass alloy sample formed by the above steps is ground to a bright specular shape, and its density is measured by the Archimedes drainage method.
  • the brass alloy of the composition is formed within the processing parameter range, because the laser power is low, the zinc content is high, and the volatilization is serious, and the density of the formed brass sample can reach 92.5%, and the tissue is covered by the face center.
  • the cubic phase ⁇ phase (solid solution of Zn dissolved in Cu) and the body-centered cubic structure ⁇ phase (CuZn-based solid solution) have a hardness (180 HV) higher than that of the same composition casting alloy (160 HV).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种无铅环保高强黄铜合金的增材制造方法,所述方法主要包括气雾化制粉、模型构建、成型室准备、预铺粉、选区激光成型五个步骤,其中无铅环保高强黄铜合金按如下的质量百分比配料:Zn 5.5~40wt.%、Si 0.5~4wt.%、微量元素Al和Ti的含量总共为0~0.5wt.%、以及Cu余量;其微观结构包括微米尺寸的胞状晶和树枝晶。通过上述方法可获得近全致密的高强黄铜合金及其近净成形的复杂结构零件,成型的高强黄铜合金色泽优美,兼具优异的导电性、导热性、耐蚀性、易切削性等物理特性,可广泛应用于卫浴、五金装饰、散热器、电子通讯、低温管路、耐压设备等机械制造领域。

Description

一种无铅环保高强黄铜合金的增材制造方法 技术领域
本发明涉及新型环保黄铜合金及其零件制造领域,具体涉及一种无铅环保高强黄铜合金的增材制造方法。
背景技术
黄铜是由铜和锌所组成的合金。黄铜合金色泽优美,具有优异的导电性和导热性,广泛应用于五金装饰品、奖章、蒸汽管、空调内外机连接管和散热器、电子通讯等领域;其具有良好的耐蚀性能,广泛应用于低温管路、海底运输管等化工、船舶零件等领域;其具有良好的力学性能、易切削等加工工艺性能,广泛应用于螺栓、螺母、垫圈、弹簧、阀门、水管、水龙头、耐压设备等机械制造领域。尤其是,对于卫浴行业使用的水龙头等零件用黄铜合金HPb59-1来说,由于有毒元素铅是该类黄铜的主要合金元素,始终存在于黄铜中,因而铅黄铜水龙头具有一定的毒副作用,对人体危害极大,难以满足GB18145-2014《陶瓷密封片水嘴标准》铅析出量的必须小于5μg/L最低限值。2011年1月4日,美国已正式签署无铅法案,要求美国各州的管道以及与饮用水接触的产品设备中的铅含量从原有的8%减少至0.25%。欧盟、日本、英国也相继推出了类似的法律法规。因此,寻找新型的无铅黄铜合金材料成为了卫浴等各个行业内亟待解决的重要课题。
传统的黄铜合金精密复杂零件,譬如水龙头等构件,采用的加工工艺主要为重力铸造、低压铸造等工艺。然而铸造工艺存在着一系列不利因素,冷却速度慢、铸件的晶粒不够细小,容易出现成分偏析和一些常见的缺陷,如缩孔、缩松、气孔、夹杂物、裂纹等,热加工性能差、组织不均匀,不仅会严重影响黄铜合金的力学性能,还会降低黄铜的耐蚀性能,同时铸造工艺不能成型某些复杂结构和优异性能的零件,从而严重影响黄铜合金的推广和使用。因此,探索新的黄铜合金零件成型工艺,提高黄铜合金零件的性能同时拓展其应用领域,成为迫切需要解决的问题。
选区激光熔化(Selective Laser Melting,SLM)作为一种新发展的增材制造技术,能按照三维数据模型直接将金属粉末在激光束的热作用下完全熔化,并凝固成型为具有良好冶金结合和较高精度的金属零件,特别适合薄壁、内腔复杂、内流道等传统加工技术难以实现的复杂薄壁精密构件的制造。同时,SLM技术特有的高冷却速率,在冷却过程中包含大范围的非平衡凝固现象,从而可细化晶粒,并提高固溶度,进而使得成型件组织细小致密、成分均匀、性能优异。此外,SLM技术还可以降低模具设计 的资金投入,仅需传统制造工艺20%左右的成本和10%左右的时间即可制造出所需制件,大大提高生产效率。在SLM过程中,为了保证足够的能量输入,获得近全致密和优异性能的零件,适合SLM工艺的合金元素通常需要满足以下三个基本物性要求(参考文献1:Manakari V,Parande G,Gupta M.Selective laser melting of magnesium and magnesium alloy powders:a review[J].Metals,2016,7(1):2):(1)具有较高的激光吸收率,(2)具有较低的导热系数,(3)不含有低沸点挥发性元素。迄今为止,SLM技术广泛研究的合金系统主要为不锈钢合金、镍基合金、钛基合金、铝基合金、钴铬合金等,都满足以上三个基本物性要求。然而,铜及铜合金由于较低的激光吸收率和高导热性等特点,极大限制了SLM技术成型黄铜零件的性能,例如目前已报道的通过SLM技术成型的铜合金包括Cu–4.3Sn(参考文献2:Ventura A P,Wade C A,Pawlikowski G,et al.Mechanical properties and microstructural characterization of Cu-4.3 Pct Sn fabricated by selective laser melting[J].Metallurgical & Materials Transactions A,2017,48:1-10)、Cu–Cr–Zr–Ti alloy(参考文献3:Popovich A,Sufiiarov V,Polozov I,et al.Microstructure and mechanical properties of additive manufactured copper alloy[J].Materials Letters,2016,179:38-41)等,就具有低相对密度(94.05%)和由此带来的力学性能恶劣等缺陷。尤其是,锌元素作为典型的易挥发性低沸点元素(沸点为900℃),通过熔化相关技术成型含锌合金更为困难,目前仅有少量关于SLM技术成型含锌合金的研究(参考文献4:Wei K,Wang Z,Zeng X.Influence of element vaporization on formability,composition,microstructure,and mechanical performance of the selective laser melted Mg–Zn–Zr components[J].Materials Letters,2015,156(18):187-190)。因此,通过SLM技术成型具有含量高、沸点低的锌元素,且基体元素为激光吸收率低、导热率高的铜元素的黄铜合金(不满足以上三个基本物性要求),从技术角度来说尤为困难。
目前,利用SLM技术成功制备出黄铜合金及其零件的成功案例鲜有文献报道。有鉴于此,针对现有黄铜合金材料多含有铅、传统铸造技术的缺陷、SLM技术成型黄铜合金的技术难度等诸多学术和技术问题,有必要探索出一种适合SLM技术成型的无铅环保高强黄铜合金及其增材制造方法,以拓展黄铜合金的产业化应用领域,这将对制备性能优异、结构复杂、且具有极端物性参数的合金材料具有重要的借鉴意义。
发明内容
本发明的目的是针对目前还没有实现通过SLM技术成型黄铜合金及其零件的现状,提供了一种无铅环保高强黄铜合金的增材制造方法,所述方法具有周期短、材料损耗少,产品性能优良等特点,并克服了传统铸造工艺难以制造复杂结构黄铜合金零件的缺陷,同时解决了SLM技术成型黄铜合金的工艺难题。
本发明的目的可以通过如下技术方案实现:
一种无铅环保高强黄铜合金的增材制造方法,所述包括以下步骤:
(1)制粉:把Cu、Zn、Si、Al和Ti各元素按如下的质量百分比配料,Zn5.5~40wt.%,Si0.5%~4wt.%,微量元素Al和Ti的含量总共为0~0.5%wt.%,以及Cu余量,通过气雾化法制取黄铜合金粉末,对制得的黄铜合金粉末进行筛分处理,获得适用于增材制造的颗粒尺寸合适的球形粉末;
(2)模型构建:构建所需制备结构零件的三维模型,将构建的三维模型输入Magics15.01进行分层处理,将处理后的数据输入激光扫描路径生成软件RPPath进而生成打印文件;
(3)成型室准备:将打印文件导入选区激光熔化(SLM)成型设备,用真空泵将密封成型室内抽至相对真空度为-60KPa,向密封成型室内输入保护气体,重复以上步骤,直至密封成型室内氧含量降至1ppm以下,并保证激光成型过程中密封成型室内氧含量始终低于100ppm;
(4)预铺粉:用铺粉装置在不锈钢基板上预先均匀铺置厚度为50-100μm的黄铜合金粉末,并将多余的黄铜合金粉末送入回收缸中,之后收集重复使用;
(5)激光熔化成型:激光器根据计算机设计的切片形状和激光扫描策略,按照设置的加工参数,熔化预先铺设的黄铜合金粉末,进而在不锈钢基板上形成平整的黄铜合金熔化层,随后不锈钢基板下降设定厚度的距离,再在黄铜合金熔化层上重新预置与不锈钢基板下降厚度相同厚度的黄铜粉末,再次激光扫描铺设的黄铜粉末,每层只需要进行一次激光扫描,得到平整的黄铜合金熔化层;
(6)重复步骤(5),直到被激光扫描的黄铜粉末达到预先设定的黄铜合金块体尺寸和形状,将成型件从不锈钢基板上切割下来,得到成型的黄铜合金试样。
进一步地,步骤(1)中通过气雾化法制取黄铜合金粉末的具体步骤如下:用感应炉将按上述质量百分比混合均匀的元素粉末熔炼成成分均匀的金属液体,然后将金属液体注入雾化喷嘴之上的中间包内,金属液体由中间包底部漏眼流出;金属液体流出时,与雾化喷嘴的高速气流相遇雾化为细小液滴,雾化液滴在封闭的雾化筒内快速凝固为粉末,其主要工艺参数为:保护气体为氮气或氩气,熔炼温度为1150℃~1300℃,熔炼时间为30~60min,在2.5~5MPa气压下,金属液体以5-10kg/min的流速喷出,得到黄铜合金粉末。
进一步地,步骤(1)中,所述颗粒尺寸合适的球形粉末指的是粒径分布在15~51μm范围内的黄铜合金粉末。
进一步地,步骤(2)中所述激光扫描路径为S型正交层错扫描。
进一步地,所述选区激光熔化成型设备的型号为Dimetal 280。
进一步地,步骤(3)中所述的选区激光熔化成型设备包括激光器、气体净化装置、 光路传输单元、密封成型室、铺粉装置、控制系统和工艺软件等。
进一步地,所述激光器为SPI光纤激光器,波长为1090nm,最大功率不低于160W,聚焦光斑直径在30~70μm;所述铺粉装置设置在密封成型室内,由料斗和料斗下方的铺粉刷组成,铺粉刷为弹性齿柔性刮片,采用30~100μm厚度的304不锈钢片,各弹性齿柔性刮片由光纤激光器切割而成,弹性齿柔性刮片的间隙为激光切割的缝宽。
进一步地,步骤(5)中所述的加工参数为:激光器的输入功率P≥150W,激光扫描速度:ν≤500mm/s,激光扫描间距:h=60~90μm,不锈钢基板下降厚度:t=20~40μm,且能量输入密度E:E=P/ν×h×t,满足333≤E≤416J/mm3
当能量输入密度小于333J/mm3时,输入的能量不足以使黄铜粉末完全熔化,不能得到足够致密的黄铜试样;当能量输入密度大于416J/mm3时,熔池表面积增大,冷却凝固时间更长,增加氧化与球化倾向,同时,提高激光功率容易产生较大的热应力导致翘曲变形;此外,锌元素沸点低,易挥发,功率过高使锌元素明显气化,使得成型件孔隙率增加,锌元素烧蚀。
进一步地,按如下的质量百分比配料:Zn 5.5~40wt.%、Si 0.5%~4wt.%、微量元素Al和Ti的含量总共为0~0.5%wt.%、以及Cu余量所制成的无铅环保高强黄铜合金的微观结构包括微米尺寸的胞状晶和树枝晶;当Zn含量为35~40wt.%时,其相组成为面心立方结构的α相,即Zn溶于Cu中的固溶体,和体心立方结构的β相,即以CuZn为基的固溶体;当锌含量低于35wt.%且硅含量高于2.0wt%时,其相组成为以Zn和Si为固溶元素的面心立方结构α-Cu相,以及密排六方结构的Cu7Si相。
进一步地,所述无铅环保高强黄铜合金增材能够应用于卫浴、五金装饰、散热器、电子通讯、低温管路、耐压设备等多种机械制造领域中。
本发明与现有技术相比,具有如下优点和有益效果:
1、本发明采用SLM技术成型高强黄铜合金零件,与传统铸造制备方法相比,激光熔化具有快速加热和急速冷却的特点,从而使熔池内的反应快,扩散时间极短而无成分偏析,进而有效细化材料微观组织结构,获得高致密、高屈服、高强韧的黄铜合金零件,其屈服强度高达275MPa、硬度高达(205HV),远高于同成分的铸造黄铜合金(205MPa,170HV),且其抗拉强度高达371.5MPa、断裂应变达7.5%,可与同成分的铸造黄铜合金的性能相比较(450MPa,9.5%),致密度更高达98.8%,明显高于已报道的SLM技术成型的铜合金。
2、本发明采用SLM技术成型高强黄铜合金零件,以逐点逐线逐层的方式成型试样,熔池之间无相互运动且在液相下均匀反应,成型的黄铜合金试样较铸造黄铜合金,除晶粒尺寸更细小外,成分更均匀、无明显的偏析,在电化学腐蚀时更容易形成均匀致密的氧化膜,因此,与铸造件相比,SLM工艺成型的黄铜合金的耐腐蚀性更好。
3、本发明采用SLM成型工艺,根据计算机设计三维模型可以完成复杂形状黄铜零件的成型,实现复杂结构黄铜合金零件的快速制造,大大拓展了黄铜合金在工业领域的应用。
4、本发明中的SLM成型后,选区外的黄铜合金粉末可以收集起来重复使用,提高了材料的利用率,从而节约了成本。
附图说明
图1为本发明实施例1中SLM技术制备黄铜合金零件的工艺流程图。
图2(a)为本发明实施例1中SLM技术制备的黄铜合金零件的侧视面扫描电镜图,图2(b)为为本发明实施例1中SLM技术制备的黄铜合金零件的俯视面扫描电镜图。
图3为本发明实施例1中SLM技术制备的黄铜合金零件与同成分的铸造黄铜合金零件的硬度和拉伸真应力-真应变曲线比较图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1:
本实施例提供了一种无铅环保高强黄铜合金的增材制造方法,所述方法的流程图如图1所示,包括以下步骤:
1、按照下述元素及其质量比配料:Zn 15.5wt.%,Si 2.8wt.%,含量总共为0.5wt.%的微量元素Al、Ti,Cu余量。在氮气保护气氛下,用感应炉将按上述成分配料混合均匀的元素粉末熔炼成成分均匀的金属液体,熔炼温度为1250℃,熔炼时间为45min,在5MPa气压下,金属液以7kg/min的流速喷出,得到气雾化黄铜合金粉末,由于气雾化制备的原始粉末含有一定量尺寸过大或过小的粉末,影响激光成型效果,故对气雾化制备的粉末进行气流分级和筛选处理,控制粉末的粒径在15~51μm范围内;
2、用三维建模软件构建所需制备零件结构的三维模型并将其输入软件Magics15.01中进行分层处理,之后输入激光扫描路径生成软件RPPath中生成打印文件,且激光扫描路径设置为S型正交层错;
3、将打印文件导入激光成型设备(Dimetal-280)中,密封成型室,用真空泵将成型室内抽至相对真空度为-60KPa,向成型室内输入保护气体氩气,重复以上步骤,使成型室氧含量降至1ppm以下,并在激光成型过程中成型室内氧含量始终低于100ppm;用铺粉装置在不锈钢基板上预先均匀铺置厚度为50-100μm的黄铜合金粉末,并将多余的黄铜合金粉末送入回收缸中,之后收集重复使用;
4、激光器根据按照计算机设计的切片型状和激光扫描策略,按照设置的加工参数,熔化预先铺设的黄铜合金粉末,进而在基板上形成平整的黄铜合金融化层,接下来成型基板下降一定厚度的距离,再在熔化层上重新预置相同厚度的黄铜粉末,再次激光扫描,每层只需要进行一次激光扫描。其中所述激光器为SPI光纤激光器,波长为1090nm,聚焦光斑的直径约为70μm,最大功率为200W。加工参数设置为:激光功率P为190W,激光扫描功率为200mm/s,扫描间距为80μm,铺粉厚度为30μm,并使能量输入密度E满足E=395J/mm3
5、不断重复上述步骤,使黄铜合金粉末逐层熔化,直至试样堆积成型,将成型件从成型基板上切割下来,得到黄铜合金试样;
6、由以上步骤成型的正方体黄铜合金试样,将其粗糙表面打磨至光亮的镜面状,通过阿基米德排水法测其致密度,之后并测其维氏硬度;对于上述步骤成型的圆柱体黄铜合金试样,按照设计的国际标准(Chinese GB/T 228-2002)拉伸图样进行切割,得到拉伸样进行拉伸性能测试。
本实施例在所述加工参数范围内成型的硅黄铜合金的致密度高达98.8%,近乎全致密,明显高于已报道SLM技术成型的铜合金Cu-4.3Sn(97%)、Cu-Cr-Zr-Ti(97.9%)和含锌合金Mg-5.2Zn-0.5Zr(94.05%)。图2(a)和图2(b)分别为本实施例中采用SLM技术制备的黄铜合金零件的侧视面扫描电镜图和俯视面扫描电镜图,从中可以看出,其试样微观结构主要由微米尺寸树枝晶和胞状晶组成,且晶胞内为α-Cu(Zn,Si)固溶体,晶界为α-Cu(Zn,Si)固溶体和Cu7Si的复合相;本实施例中采用SLM技术制备的黄铜合金零件与同成分的铸造黄铜合金零件的硬度和拉伸真应力-真应变曲线如图3所示,从中可以看出,采用本实施例所述方法制造的黄铜合金零件其屈服强度高达275MPa、硬度高达(205HV),远高于同成分的铸造黄铜合金(205MPa,170HV),抗拉强度高达371.5MPa、断裂应变达7.5%,与同成分的铸造黄铜合金的性能相当(450MPa,9.5%)。
实施例2:
本实施例提供了一种无铅环保高强黄铜合金的增材制造方法,该方法包括以下步骤:
1、按照下述元素及其质量比配料:Zn 5.5wt.%,Si 2.0wt.%,含量为0.5wt.%的微量元素Al、Ti,Cu余量,在氮气的保护气氛下,用感应炉将按上述成分配料混合均匀的元素粉末熔炼成成分均匀的金属液体,熔炼温度为1300℃,熔炼时间为60min,在5MPa气压下,金属液以10kg/min的流速喷出,得到气雾化黄铜合金粉末,由于气雾化制备的原始粉末含有一定量尺寸过大或过小的粉末,影响激光成型效果,故对气雾化制备的粉末进行气流分级和筛选处理,控制粉末的粒径在15~51μm范围内;
2、将黄铜合金粉末装入激光成型设备(型号Dimetal 280),其中Dimetal 280设备 主要包括:激光器、气体净化装置、光路传输单元、密封成型室、铺粉装置、控制系统、工艺软件等组成。
3、用三维建模软件构建所需制备零件的三维模型并将其输入软件Magics 15.01中进行分层处理,之后输入激光扫描路径生成软件RPPath中生成打印文件,且激光扫描路径设置为S型正交层错;
4、将打印文件导入激光成型设备(Dimetal-280)中,密封成型室,用真空泵将成型室内抽至相对真空度为-60KPa,向成型室内输入保护气体-氩气,重复以上步骤,使成型室氧含量降至1ppm以下,并在激光成型过程中成型室内氧含量始终低于100ppm;用铺粉装置在不锈钢基板上预先均匀铺置厚度为50-100μm的黄铜合金粉末,并将多余的黄铜合金粉末送入回收缸中,之后收集重复使用;
5、激光器根据按照计算机设计的切片形状和激光扫描策略,根据设置的加工参数,熔化预先铺设的黄铜合金粉末,进而在基板上形成平整的黄铜合金熔化层,接下来成型基板下降一定厚度的距离,再在熔化层上重新预置相同厚度的黄铜粉末,再次激光扫描,每层只需要进行一次激光扫描;其中所述激光器为SPI光纤激光器,波长为1090nm,聚焦光斑的直径约为30μm,最大功率为300W;加工参数设置为:激光功率P为300W,激光扫描功率为500mm/s,扫描间距为90μm,铺粉厚度为20μm,并使能量输入密度E满足E=333.3J/mm3
6、不断重复上述步骤5,使黄铜合金粉末逐层熔化,直至试样堆积成形,将成型件从成型基板上切割下来,得到黄铜合金试样;
7、由以上步骤成型的正方体黄铜合金试样,将其粗糙表面打磨至光亮的镜面状,通过阿基米德排水法测其致密度。
本实施例在所述加工参数范围内成型的硅黄铜合金致密度最高可达98.5%,近乎全致密,其相组成为以Zn和Si为固溶元素的面心立方结构α-Cu相和密排六方结构Cu7Si相,显微硬度为201HV,远高于同成分的铸造合金(165HV)。
实施例3:
本实施例提供了一种无铅环保高强黄铜合金的增材制造方法,该方法包括以下步骤:
1、按照下述元素及其质量比配料:Zn 20.5wt.%,Si 4.0wt.%,Cu余量;在氮气的保护气氛下,用感应炉将按上述成分配料混合均匀的元素粉末熔炼成成分均匀的金属液体,熔炼温度为1250℃,熔炼时间为40min,在5MPa气压下,金属液以5kg/min的流速喷出,得到气雾化黄铜合金粉末,由于气雾化制备的原始粉末含有一定量尺寸过大或过小的粉末,影响激光成型效果,故对气雾化制备的粉末进行气流分级和筛选 处理,控制粉末的粒径在15~51μm范围内;
2、将黄铜合金粉末装入激光成型设备(型号Dimetal 280),其中Dimetal 280设备主要包括:激光器、气体净化装置、光路传输单元、密封成型室、铺粉装置、控制系统、工艺软件等组成;
3、用三维建模软件构建所需制备零件的三维模型并将其输入软件Magics 15.01中进行分层处理,之后输入激光扫描路径生成软件RPPath中生成打印文件,且激光扫描路径设置为S型正交层错;
4、将打印文件导入激光成型设备(Dimetal-280)中,密封成型室,用真空泵将成型室内抽至相对真空度为-60KPa,向成型室内输入保护气体-氩气;重复以上步骤,使成型室氧含量降至1ppm以下,并在激光成型过程中成型室内氧含量始终低于100ppm;用铺粉装置在不锈钢基板上预先均匀铺置厚度为50-100μm的黄铜合金粉末,并将多余的黄铜合金粉末送入回收缸中,之后收集重复使用;
5、激光器根据按照计算机设计的切片形状和激光扫描策略,根据设置的加工参数,熔化预先铺设的黄铜合金粉末,进而在基板上形成平整的黄铜合金熔化层,接下来成型基板下降一定厚度的距离,再在熔化层上重新预置相同厚度的黄铜粉末,再次激光扫描,每层只需要进行一次激光扫描;其中所述激光器为SPI光纤激光器,波长为1090nm,聚焦光斑的直径约为50μm,最大功率为200W;加工参数设置为:激光功率P为200W,激光扫描功率为400mm/s,扫描间距为60μm,铺粉厚度为20μm,能量输入密度E为416.6J/mm3
6、不断重复上述步骤5,使黄铜合金粉末逐层熔化,直至试样堆积成形,将成型件从成型基板上切割下来,得到黄铜合金试样;
7.由以上步骤成型的正方体黄铜合金试样,将其粗糙表面打磨至光亮的镜面状,通过阿基米德排水法测其致密度。
本实施例在所述加工参数范围内成型的硅黄铜合金致密度最高可达97.8%,近乎全致密,其相组成为面心立方结构的α-Cu(Zn,Si)相和密排六方结构Cu7Si相,显微硬度为195HV,远高于同成分的铸造合金(155HV)。
实施例4:
本实施例提供了一种无铅环保高强黄铜合金的增材制造方法,该方法包括以下步骤:
1、按照下述元素及其质量比配料:Zn 40wt.%,Si 0.5wt.%,Al 0.4wt.%,Ti 0.05wt.%,Cu余量;在氮气的保护气氛下,用感应炉将按上述成分配料混合均匀的元素粉末熔炼成成分均匀的金属液体,熔炼温度为1150℃,熔炼时间为30min,在2.5MPa气 压下,金属液以10kg/min的流速喷出,得到气雾化黄铜合金粉末,由于气雾化制备的原始粉末含有一定量尺寸过大或过小的粉末,影响激光成型效果,故对气雾化制备的粉末进行气流分级和筛选处理,控制粉末的粒径在15~51μm;
2、将黄铜合金粉末装入激光成型设备(型号Dimetal 280),其中Dimetal 280设备主要包括:激光器、气体净化装置、光路传输单元、密封成型室、铺粉装置、控制系统、工艺软件等组成;
3、用三维建模软件构建所需制备零件的三维模型并将其输入软件Magics 15.01中进行分层处理,之后输入激光扫描路径生成软件RPPath中生成打印文件,且激光扫描路径设置为S型正交层错;
4、将打印文件导入激光成型设备(Dimetal-280)中,密封成型室,用真空泵将成型室内抽至相对真空度为-60KPa,向成型室内输入保护气体-氩气;重复以上步骤,使成型室氧含量降至1ppm以下,并在激光成型过程中成型室内氧含量始终低于100ppm;用铺粉装置在不锈钢基板上预先均匀铺置厚度为50-100μm的黄铜合金粉末,并将多余的黄铜合金粉末送入回收缸中,之后收集重复使用;
5、激光器根据按照计算机设计的切片形状和激光扫描策略,根据设置的加工参数,熔化预先铺设的黄铜合金粉末,进而在基板上形成平整的黄铜合金熔化层,接下来成型基板下降一定厚度的距离,再在熔化层上重新预置相同厚度的黄铜粉末,再次扫描,每层只需要进行一次激光扫描;其中所述激光器为SPI光纤激光器,聚焦光斑的直径约为60μm,其最大功率为200W;加工参数设置为;激光功率为150W(激光功率超过150W时,锌元素挥发严重,成型室充满挥发气体,严重影响激光的成型质量和使用寿命,被迫中止),激光扫描功率为180mm/s,扫描间距为70μm,铺粉厚度为30μm,能量输入密度E=396J/mm3
6、不断重复上述步骤5,使黄铜合金粉末逐层熔化,直至试样堆积成型,将成型件从成型基板上切割下来,得到黄铜合金试样;
7、由以上步骤成型的黄铜合金试样,将其粗糙表面打磨至光亮的镜面状,通过阿基米德排水法测其致密度。
本实施例在加工参数范围内成型该成分的黄铜合金,由于激光功率较低,锌元素含量较高,挥发严重,成型的黄铜试样致密度最高能达到92.5%,且组织由面心立方结构α相(Zn溶于Cu中的固溶体)和体心立方结构β相(以CuZn为基的固溶体)组成,其硬度(180HV)高于同成分的铸造合金(160HV)。
以上所述,仅为本发明专利较佳的实施例,但本发明专利的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明专利所公开的范围内,根据本发明专利的技术方案及其发明专利构思加以等同替换或改变,都属于本发明专利的保护范围。

Claims (10)

  1. 一种无铅环保高强黄铜合金的增材制造方法,其特征在于,所述方法包括以下步骤:
    (1)制粉:把Cu、Zn、Si、Al和Ti各元素按如下的质量百分比配料,Zn 5.5~40wt.%,Si 0.5%~4 wt.%,微量元素Al和Ti的含量总共为0~0.5%wt.%,以及Cu余量,通过气雾化法制取黄铜合金粉末,对制得的黄铜合金粉末进行筛分处理,获得适用于增材制造的颗粒尺寸合适的球形粉末;
    (2)模型构建:构建所需制备结构零件的三维模型,将构建的三维模型输入Magics 15.01进行分层处理,将处理后的数据输入激光扫描路径生成软件RPPath进而生成打印文件;
    (3)成型室准备:将打印文件导入选区激光熔化成型设备,用真空泵将密封成型室内抽至相对真空度为-60KPa,向密封成型室内输入保护气体,重复以上步骤,直至密封成型室内氧含量降至1ppm以下,并保证激光成型过程中密封成型室内氧含量始终低于100ppm;
    (4)预铺粉:用铺粉装置在不锈钢基板上预先均匀铺置厚度为50-100μm的黄铜合金粉末,并将多余的黄铜合金粉末送入回收缸中,之后收集重复使用;
    (5)激光熔化成型:激光器根据计算机设计的切片形状和激光扫描策略,按照设置的加工参数,熔化预先铺设的黄铜合金粉末,进而在不锈钢基板上形成平整的黄铜合金熔化层,随后不锈钢基板下降设定厚度的距离,再在黄铜合金熔化层上重新预置与不锈钢基板下降厚度相同厚度的黄铜粉末,再次激光扫描铺设的黄铜粉末,每层只需要进行一次激光扫描,得到平整的黄铜合金熔化层;
    (6)重复步骤(5),直到被激光扫描的黄铜粉末达到预先设定的黄铜合金块体尺寸和形状,将成型件从不锈钢基板上切割下来,得到成型的黄铜合金试样。
  2. 根据权利要求1所述的一种无铅环保高强黄铜合金的增材制造方法,其特征在于:步骤(1)中通过气雾化法制取黄铜合金粉末的具体步骤如下:用感应炉将按上述质量百分比混合均匀的元素粉末熔炼成成分均匀的金属液体,然后将金属液体注入雾化喷嘴之上的中间包内,金属液体由中间包底部漏眼流出;金属液体流出时,与雾化喷嘴的高速气流相遇雾化为细小液滴,雾化液滴在封闭的雾化筒内快速凝固为粉末,其主要工艺参数为:保护气体为氮气或氩气,熔炼温度为1150℃~1300℃,熔炼时间为30~60min,在2.5~5MPa气压下,金属液体以5-10kg/min的流速喷出,得到黄铜合金 粉末。
  3. 根据权利要求1所述的一种无铅环保高强黄铜合金的增材制造方法,其特征在于:步骤(1)中,所述颗粒尺寸合适的球形粉末指的是粒径分布在15~51μm范围内的黄铜合金粉末。
  4. 根据权利要求1所述的一种无铅环保高强黄铜合金的增材制造方法,其特征在于:步骤(2)中所述激光扫描路径为S型正交层错扫描。
  5. 根据权利要求1所述的一种无铅环保高强黄铜合金的增材制造方法,其特征在于:步骤(3)中,所述选区激光熔化成型设备的型号为Dimetal 280。
  6. 根据权利要求1所述的一种无铅环保高强黄铜合金的增材制造方法,其特征在于:步骤(3)中所述的选区激光熔化成型设备包括激光器、气体净化装置、光路传输单元、密封成型室、铺粉装置、控制系统和工艺软件。
  7. 根据权利要求6所述的一种无铅环保高强黄铜合金的增材制造方法,其特征在于:所述激光器为SPI光纤激光器,波长为1090nm,最大功率不低于160W,聚焦光斑直径在30~70μm;所述铺粉装置设置在密封成型室内,由料斗和料斗下方的铺粉刷组成,铺粉刷为弹性齿柔性刮片,采用30~100μm厚度的304不锈钢片,各弹性齿柔性刮片由光纤激光器切割而成,弹性齿柔性刮片的间隙为激光切割的缝宽。
  8. 根据权利要求1所述的一种无铅环保高强黄铜合金的增材制造方法,其特征在于:步骤(5)中所述的加工参数为:激光器的输入功率P≥150W,激光扫描速度:ν≤500mm/s,激光扫描间距:h=60~90μm,不锈钢基板下降厚度:t=20~40μm,且能量输入密度E:E=P/ν×h×t,满足333≤E≤416 J/mm3
  9. 根据权利要求1所述的一种无铅环保高强黄铜合金的增材制造方法,其特征在于:所述无铅环保高强黄铜合金增材能够应用于卫浴、五金装饰、散热器、电子通讯、低温管路、耐压设备多种机械制造领域中。
  10. 一种无铅环保高强黄铜合金,其特征在于,所述无铅环保高强黄铜合金按如下的质量百分比配料:Zn 5.5~40wt.%、Si 0.5%~4 wt.%、微量元素Al和Ti的含量总共为0~0.5%wt.%、以及Cu余量,所制成的无铅环保高强黄铜合金的微观结构包括微米尺寸的胞状晶和树枝晶;当Zn含量为35~40wt.%时,其相组成为面心立方结构的α相,即Zn溶于Cu中的固溶体,和体心立方结构的β相,即以CuZn为基的固溶体;当锌含量低于35wt.%且硅含量高于2.0wt%时,其相组成为以Zn和Si为固溶元素的面心立方结构α-Cu相,以及密排六方结构的Cu7Si相。
PCT/CN2017/110097 2017-08-07 2017-11-09 一种无铅环保高强黄铜合金的增材制造方法 WO2019029031A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/094,190 US11401588B2 (en) 2017-08-07 2017-11-09 Additive manufacturing method of lead-free environmentally-friendly high-strength brass alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710666286.0 2017-08-07
CN201710666286.0A CN107498045B (zh) 2017-08-07 2017-08-07 一种无铅环保高强黄铜合金的增材制造方法

Publications (1)

Publication Number Publication Date
WO2019029031A1 true WO2019029031A1 (zh) 2019-02-14

Family

ID=60689091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110097 WO2019029031A1 (zh) 2017-08-07 2017-11-09 一种无铅环保高强黄铜合金的增材制造方法

Country Status (3)

Country Link
US (1) US11401588B2 (zh)
CN (1) CN107498045B (zh)
WO (1) WO2019029031A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2579601A (en) * 2018-12-05 2020-07-01 Copper Clothing Ltd Antimicrobial material
DE102019002260A1 (de) * 2019-03-29 2020-10-01 Grohe Ag Verfahren zur Herstellung eines Bauteils für eine Sanitärarmatur
CN111778503A (zh) * 2020-07-17 2020-10-16 长安大学 基于激光收光路径调控的无坩埚激光微区冶金方法及应用
CN111842914A (zh) * 2020-06-30 2020-10-30 同济大学 一种高强度铝铜合金的3d打印工艺方法
CN114346256A (zh) * 2021-12-03 2022-04-15 南京联空智能增材研究院有限公司 适用于高熵合金的变体能量密度激光增材方法
CN114985912A (zh) * 2022-06-15 2022-09-02 苏州瀚光精密设备有限公司 一种双光路的切割设备

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110340344B (zh) * 2018-04-08 2021-09-24 中国科学院金属研究所 一种提高激光增材制造合金钢粉末利用率的方法
CN108330321A (zh) * 2018-04-17 2018-07-27 北京科技大学 一种易偏析高弹性Cu-Ni-Sn合金的增材制造方法
CN108984853B (zh) * 2018-06-22 2020-07-07 同济大学 与主应力轨迹线相协调的非均匀异构胞状结构设计方法
CN109112346B (zh) * 2018-09-29 2020-08-25 西安欧中材料科技有限公司 一种增材制造用铜合金粉末的制备方法
CN109332694A (zh) * 2018-11-12 2019-02-15 五邑大学 高性能3d打印贵金属材料及利用贵金属材料制备3d打印饰品的方法
CN109365810B (zh) * 2018-11-22 2020-12-08 华中科技大学 激光原位制备任意形状铜基形状记忆合金的方法及产品
US11511362B2 (en) * 2019-02-05 2022-11-29 Cap Technologies, Llc Wire for electric discharge machining
CN109930025A (zh) * 2019-03-22 2019-06-25 广东出入境检验检疫局检验检疫技术中心 一种无铅环保易切削黄铜材料
CN110901063A (zh) * 2019-12-18 2020-03-24 杭州德迪智能科技有限公司 一种靶向诱导与定向能复合三维成形装置及方法
DE102020101697A1 (de) * 2020-01-24 2021-07-29 Lixil Corporation Verfahren zur additiven Herstellung eines entzinkungsbeständigen Messing-Bauteils für eine Sanitärarmatur
CN112458334A (zh) * 2020-11-27 2021-03-09 台州正兴阀门有限公司 水龙头本体铸造用低铅易切削铜合金及其制造方法
CN114131049B (zh) * 2021-12-21 2023-10-10 宜宾上交大新材料研究中心 一种铜及铜合金的增材制造方法
CN115233036B (zh) * 2022-06-17 2023-06-02 广州湘龙高新材料科技股份有限公司 一种锌合金义齿3d打印方法
CN115156553A (zh) * 2022-08-05 2022-10-11 江苏亚威创科源激光装备有限公司 一种闭孔泡沫钢及其激光增材制造技术制备方法
CN115747602B (zh) * 2022-11-16 2024-04-16 南京农业大学 一种高耐磨耕种机械触土刀具及其制备方法
CN117245101B (zh) * 2023-11-20 2024-03-01 西安赛隆增材技术股份有限公司 电子束粉末床熔融的增材制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117672A (zh) * 2014-07-31 2014-10-29 华中科技大学 一种制备/成形非晶合金及其复合材料的方法
EP2998059A1 (en) * 2014-09-17 2016-03-23 IMR Engineering & Technologies S.R.L. Method for the three-dimensional printing of an item made of metallic material and apparatus for performing the method
CN105478766A (zh) * 2015-12-16 2016-04-13 阳江市五金刀剪产业技术研究院 一种制备千层钢板的方法
CN105880594A (zh) * 2016-06-21 2016-08-24 广东电网有限责任公司电力科学研究院 一种铜合金粉末3d打印方法
CN106435270A (zh) * 2016-11-15 2017-02-22 东北大学 激光3d打印用tc21钛合金粉末及制备和使用方法
CN106862561A (zh) * 2015-12-14 2017-06-20 航天特种材料及工艺技术研究所 一种铝合金的成形方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6500583B1 (en) * 2000-07-17 2002-12-31 Energy Conversion Devices, Inc. Electrochemical hydrogen storage alloys for nickel metal hydride batteries, fuel cells and methods of manufacturing same
JP2003136629A (ja) * 2001-11-01 2003-05-14 Daido Metal Co Ltd 多層材料およびその製造方法
CA2448592C (en) * 2002-11-08 2011-01-11 Howmedica Osteonics Corp. Laser-produced porous surface
CN101440444B (zh) * 2008-12-02 2010-05-12 路达(厦门)工业有限公司 无铅易切削高锌硅黄铜合金及其制造方法
CN104475745B (zh) * 2014-12-04 2017-02-22 南京大学 球形黄铜合金粉末的制造方法
CN105274387B (zh) * 2015-10-27 2017-05-24 华南理工大学 一种无铅易切削高强耐蚀硅黄铜合金及制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117672A (zh) * 2014-07-31 2014-10-29 华中科技大学 一种制备/成形非晶合金及其复合材料的方法
EP2998059A1 (en) * 2014-09-17 2016-03-23 IMR Engineering & Technologies S.R.L. Method for the three-dimensional printing of an item made of metallic material and apparatus for performing the method
CN106862561A (zh) * 2015-12-14 2017-06-20 航天特种材料及工艺技术研究所 一种铝合金的成形方法
CN105478766A (zh) * 2015-12-16 2016-04-13 阳江市五金刀剪产业技术研究院 一种制备千层钢板的方法
CN105880594A (zh) * 2016-06-21 2016-08-24 广东电网有限责任公司电力科学研究院 一种铜合金粉末3d打印方法
CN106435270A (zh) * 2016-11-15 2017-02-22 东北大学 激光3d打印用tc21钛合金粉末及制备和使用方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2579601A (en) * 2018-12-05 2020-07-01 Copper Clothing Ltd Antimicrobial material
DE102019002260A1 (de) * 2019-03-29 2020-10-01 Grohe Ag Verfahren zur Herstellung eines Bauteils für eine Sanitärarmatur
CN111842914A (zh) * 2020-06-30 2020-10-30 同济大学 一种高强度铝铜合金的3d打印工艺方法
CN111778503A (zh) * 2020-07-17 2020-10-16 长安大学 基于激光收光路径调控的无坩埚激光微区冶金方法及应用
CN111778503B (zh) * 2020-07-17 2022-06-07 长安大学 基于激光收光路径调控的无坩埚激光微区冶金方法及应用
CN114346256A (zh) * 2021-12-03 2022-04-15 南京联空智能增材研究院有限公司 适用于高熵合金的变体能量密度激光增材方法
CN114346256B (zh) * 2021-12-03 2023-12-12 南京联空智能增材研究院有限公司 适用于高熵合金的变体能量密度激光增材方法
CN114985912A (zh) * 2022-06-15 2022-09-02 苏州瀚光精密设备有限公司 一种双光路的切割设备

Also Published As

Publication number Publication date
US20190276918A1 (en) 2019-09-12
CN107498045A (zh) 2017-12-22
CN107498045B (zh) 2019-05-14
US11401588B2 (en) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2019029031A1 (zh) 一种无铅环保高强黄铜合金的增材制造方法
CN108486433B (zh) 选区激光熔化技术用Al-Mg-Sc-Zr系铝合金组合物及成型件制备方法
Zhang et al. Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding
CN105950947B (zh) 用于3d打印的富铁高熵合金粉体材料及其制备方法
JP5777539B2 (ja) 管状スパッタターゲット
CN112368407A (zh) 制造铝合金零件的方法
CN107747019A (zh) 一种Ni‑Co‑Cr‑Al‑W‑Ta‑Mo系高熵高温合金及其制备方法
CN107096923A (zh) 基于激光增材制造的高熔点高熵合金球形粉末的制备方法
CN112935252A (zh) 一种基于激光选区熔化技术制备高强韧共晶高熵合金的方法
CN106967975B (zh) 一种镁合金表面梯度激光熔覆层及其制备工艺
CN102362002A (zh) Cu-Ga合金溅射靶及其制造方法
CN106834974A (zh) 铁基合金涂层与其形成方法
CN111001800A (zh) 一种3D打印高强度Al-Cr-Sc合金
CN107815618B (zh) 一种非晶生物镁合金及其制备方法
CN111872386A (zh) 一种高强度铝镁合金的3d打印工艺方法
CN112831698B (zh) 一种适用于激光增材制造的铝合金粉末的制备方法
CN104561995A (zh) 一种具有球形颗粒增强的钛合金激光强化涂层
Ma et al. Formation mechanism and microstructural and mechanical properties of in-situ Ti–Ni-based composite coatings by laser metal deposition
CN106119663B (zh) 水泥回转窑上过渡带内表面用合金粉体、制备及其涂层
CN104152891A (zh) 一种镁合金表面快速形成冶金合金层的方法
CN109943749B (zh) 一种应用于饰品3d打印首模的铜合金球形粉末材料
CN114450426B (zh) 合金、合金粉末、合金构件和复合构件
Liu et al. An investigation of the surface quality and corrosion resistance of laser remelted and extreme high-speed laser cladded Ni-based alloy coating
CN102560163A (zh) 一种采用超声分散制备弥散强化铜的方法
CN103602857B (zh) 专用于连续波光纤激光熔覆的合金粉末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 31/03/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17920665

Country of ref document: EP

Kind code of ref document: A1