WO2019025717A1 - Composition photopolymérisable, matériau obtenu par polymérisation d'une telle composition et procédé d'impression 3d utilisant une telle composition - Google Patents

Composition photopolymérisable, matériau obtenu par polymérisation d'une telle composition et procédé d'impression 3d utilisant une telle composition Download PDF

Info

Publication number
WO2019025717A1
WO2019025717A1 PCT/FR2018/051963 FR2018051963W WO2019025717A1 WO 2019025717 A1 WO2019025717 A1 WO 2019025717A1 FR 2018051963 W FR2018051963 W FR 2018051963W WO 2019025717 A1 WO2019025717 A1 WO 2019025717A1
Authority
WO
WIPO (PCT)
Prior art keywords
annihilator
photosensitizer
molecule
composition
photoinitiator
Prior art date
Application number
PCT/FR2018/051963
Other languages
English (en)
Inventor
Patrice Baldeck
Akos BANYASZ
Original Assignee
Ecole Normale Superieure De Lyon
Universite Claude Bernard Lyon 1
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecole Normale Superieure De Lyon, Universite Claude Bernard Lyon 1, Centre National De La Recherche Scientifique filed Critical Ecole Normale Superieure De Lyon
Priority to JP2020528515A priority Critical patent/JP2021502466A/ja
Priority to EP18752608.2A priority patent/EP3661974A1/fr
Priority to KR1020207005599A priority patent/KR20200037815A/ko
Priority to CN201880064139.9A priority patent/CN111164108A/zh
Priority to US16/636,008 priority patent/US11629203B2/en
Publication of WO2019025717A1 publication Critical patent/WO2019025717A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/364Conditioning of environment
    • B29C64/371Conditioning of environment using an environment other than air, e.g. inert gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F122/00Homopolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F122/10Esters
    • C08F122/1006Esters of polyhydric alcohols or polyhydric phenols, e.g. ethylene glycol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/12Esters of monohydric alcohols or phenols
    • C08F20/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F20/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/022Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations
    • C08F299/024Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polycondensates with side or terminal unsaturations the unsaturation being in acrylic or methacrylic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/106Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09D11/107Printing inks based on artificial resins containing macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from unsaturated acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • C09K11/07Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials having chemically interreactive components, e.g. reactive chemiluminescent compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0037Production of three-dimensional images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • G03F7/2055Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser for the production of printing plates; Exposure of liquid photohardening compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/704162.5D lithography
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd

Definitions

  • Photopolymerizable composition material obtained by polymerization of such a composition and 3D printing method using such a composition
  • the invention relates to the field of three-dimensional printing of objects by photopolymerization of a resin, and more precisely in this field, a photopolymerizable composition, a material obtained by photopolymerization of such a composition and a 3D printing process using a such composition.
  • 3D microfabrication based on photopolymerization induced by multiphoton absorption is a technique invented in the 1990s, based on the non-linear absorption of photosensitizers. This technique is described in particular in US8197722, US20040067451 or US20110021653. This technique is very effective for three-dimensional printing of objects. But it leads to a localized photopolymerization only at the focal point, that is to say a light curing limited to volumes of very small dimensions with submicron spatial resolution; the use of this particularly slow technique is limited to the realization of objects of small dimensions, of the order of a millimeter. It also requires particularly powerful pulsed lasers, having an irradiance typically of the order of magnitude of TWatt / cm 2 .
  • a non-linear photosensitization technique based on a fluorescence up-conversion mechanism of inorganic materials has also been developed to excite polymerization photoinitiators suitable for radical generation (for radical polymerization) or acids (for cationic polymerization).
  • This technique is described in particular in document US20040198857. This technique makes it possible to use lasers having an irradiance of about MWatt / cm 2 , which remains high.
  • the massively parallel manufacturing approach by simultaneous projection of multiple laser spots can exceed the contradiction between resolution and manufacturing speed. It is commonly used with 3D printers that use mask projection, including high resolution micro-stereolithography systems. In these cases the photopolymerization is triggered by a simultaneous single photon absorption of several million laser spots, which correspond to the pixels of the projected image.
  • the axial resolution is obtained by a mechanical means for renewing the photopolymer between each layer, which imposes a minimum thickness, typically from 5 to 10 microns. This is to be compared with multiphoton absorption photopolymerization for which the axial resolution, determined by the optical thickness of the projected image in the volume of the resin, is very easily submicron.
  • PCT / EP2016079661 discloses an inhomogeneous material comprising optical conversion components, liquid form components entrapped in a photopolymerized resin matrix.
  • the polymerization of the resin is initiated by a direct action of an external light signal on a polymerization photoinitiator, which has no effect on the components for optical conversion.
  • the material obtained makes it possible to protect said components, in particular from a degradation of their properties by the ambient oxygen.
  • the "Low-Threshold Photon Upconversion Capsules Obtained by Photoinduced Interfacial Polymerization" document by J-Hwan Kang and Eisa Reichmanis describes a similar material obtained under similar conditions.
  • This document describes a material comprising components for optical conversion, oily liquid phase components trapped in a photopolymerized resin bubble.
  • the polymerization of the resin is initiated by a direct action of an external light signal on an aqueous liquid composition comprising a resin and a polymerization photoinitiator, which has no effect on the components for optical conversion.
  • the invention proposes a novel non-linear photopolymerizable composition in continuous and ultra-sensitive light irradiance, as an alternative to photopolymerizable multiphoton compositions, especially when the manufacturing processes require the projection of 2D or 3D distributions of irradiances, for example comprising numerous laser spots in the composition.
  • a novel photopolymerizable composition comprising at least:
  • a photoinitiator the photosensitizer being capable of absorbing an excitation light signal received in a first wavelength range, the annihilator being capable of emitting a light signal in a second wavelength range different from the first wavelength range, wherein, upon absorption of light by the photosensitizer in said first wavelength range, the annihilator emits a light signal in the second wavelength range, a photonic energy of the light signal emitted by the annihilator being greater than a photonic energy of the light signal received by the photosensitizer, wherein the annihilator is capable of implementing a mechanism of energy transfer to excite the photoinitiator of polymerization of the resin, and wherein the excited photoinitiator is capable of generating at least one polymerization initiator capable of causing a polymerization reaction of the resin.
  • the invention thus proposes a photopolymerizable composition, not directly by the action of the excitation signal received, as is the case with the previous compositions, but indirectly by the action the light signal emitted by the annihilator.
  • the received excitation light signal whose wavelength is in the first range of lengths of wavelength. wave, has no action on the photoinitiator.
  • the photoinitiator reacts against the effect of the light signal emitted by the annihilator whose central wavelength is in the second range of wavelengths.
  • the photonic energy of the light signal emitted by the annihilator is greater than the photonic energy of the light signal received by the photosensitizer, it becomes possible to photoplymerise the resin under much more advantageous conditions, by using a light signal.
  • light excitation whose energy is lower than the energy of the signals which it is necessary to use in the previous solutions.
  • the photosensitizer and the annihilator are capable of implementing together an absorption reaction, by the photosensitizer, of two photons of the light excitation signal, followed by an additive conversion reaction of triplet annihilation energy (STTA-UC) to obtain an excited annihilator whose photon energy over the second wavelength range is greater than the photon energy of the excitation signal.
  • the excited annihilator and the photoinitiator are capable of implementing a mechanism of energy transfer between said annihilator and said photoinitiator to produce an excited photoinitiator capable of generating at least one polymerization initiator capable of causing a polymerization reaction of the resin .
  • the mechanism of energy transfer between the annihilator and the photosensitizer can be for example by emission / absorption of a secondary signal whose photon energy is greater than the photonic energy of the excitation signal or by resonant transfer of energy.
  • the annihilator may also be the photoinitiator and may, if appropriate, directly generate a polymerization initiator after having been excited.
  • the invention thus proposes a composition that is particularly sensitive to external irradiations, adapted to be polymerized by the implementation of an efficient STTA-UC mechanism with irradiances of the order of the irradiance of the sun, that is to say say of the order of 0.1 W / cm 2 , much lower than the necessary irradiances with known prior art.
  • the STTA-UC mechanism the effectiveness of which is nonlinear in irradiance, makes it possible to obtain confined photopolymerization in controlled three-dimensional radiation zones and with continuous light sources.
  • the photosensitizer (PS) comprises at least one molecule capable of passing from a singlet state to a triplet state when it absorbs the photonic energy of the external excitation signal.
  • the annihilator (AN) comprises molecules capable of:
  • the photopolymerizable resin may comprise monomers, oligomers or radical polymerizable polymers or by addition or crosslinking mechanisms such as:
  • acrylated monomers such as acrylates, polyacrylates, methacrylates, for example a pentaerythritol triacrylate, a polyethylene glycol diacrylate or an acrylate such as aronix D-800 marketed by the company TAOGOSEI Ltd. or
  • acrylated oligomers such as unsaturated amides, or
  • methacrylated polymers polymers which have a hydrocarbyl backbone and pendant peptide groups with a free radical polymerizable functionality, or
  • vinyl compounds such as styrenes, diallyl phthalate, divinyl succinate, divinyl adipate and divinyl phthalate, or
  • the resin may comprise cationically polymerizable monomers and oligomers and cationically crosslinkable polymers, for example epoxy resins such as monomeric epoxides and polymeric epoxides having one or more epoxy groups, vinyl ethers, cyanate esters, and mixtures of several of these compounds.
  • the photosensitizer, the annihilator, and a photoinitiator, as well as the mechanism used for the polymerization will be detailed below.
  • the composition according to the invention may also comprise an antioxidant.
  • the photosensitizer, the annihilator and / or the photoinitiator may have antioxidant properties.
  • An antioxidant makes it possible to limit the harmful effect of dissolved oxygen in the composition.
  • the molecular oxygen dissolved in the resin deactivates molecules in the triplet state ("3PS *", "3AN *” and "3PI *") very quickly and reduces their lifetime.
  • the presence of molecular oxygen in the resin may decrease triplet-triplet energy transfer efficiency and annihilation triplet-triplet, finally it can prevent photoinitiation or reduce its effectiveness.
  • this deactivation often induces the formation of singlet oxygen which can react with the components of the composition and impair their function.
  • compositions within the scope of the invention may contain one or more chemical additives with antioxidant properties.
  • methods can be used to reduce molecular oxygen-inhibiting effects, by reducing the molecular oxygen concentration before and / or during irradiation by the external light source as will be seen further below.
  • the invention also relates to a process for the photopolymerization of a composition according to any one of the preceding claims, comprising a polymerizable resin, a photosensitizer, an annihilator and a photoinitiator, in which process:
  • the photosensitizer absorbs a light signal received in a first wavelength range, and transfers the energy received from the light signal to the annihilator,
  • the annihilator emits a light signal in a second wavelength range different from the first wavelength range, a photonic energy of the light signal emitted by the annihilator being greater a photonic energy of the light signal received by the photosensitizer,
  • the annihilator transfers energy to the photoinitiator to excite the photoinitiator of polymerization of the resin
  • the photoinitiator excited by the annihilator generates at least one polymerization initiator
  • the polymerization initiator causes a polymerization reaction of the resin.
  • the invention also relates to a material obtained by a photopolymerization process as described above, a composition according to the invention, including but not limited to a material having the shape of a thin-layered object such as a film or a three-dimensional solid object.
  • the material obtained is homogeneous.
  • the invention also relates to a three-dimensional printing process, comprising a step of transforming a volume of composition according to the invention by irradiation of said volume.
  • the irradiation of the composition volume according to the invention to be light-cured can be carried out by an excitation source emitting an external excitation light signal of a power of less than 1000 W / cm 2 , preferably less than 1 W / cm 2 and even more preferably less than 0.1 W / cm 2 over the first range of wavelengths.
  • a power much lower than the powers necessary for the implementation of existing techniques, allows to consider the development of 3D printing techniques on an industrial scale.
  • the irradiation may for example be carried out by a three-dimensional photolithography technique, a three-dimensional holographic projection technique or a so-called direct laser writing technique (or “3D direct laser writing”). ").
  • the method according to the invention may also comprise an initialization step during which oxygen molecules contained in the composition are eliminated.
  • the irradiation of the composition volume can be carried out under a flow of inert gas, for example argon, nitrogen or carbon dioxide. This eliminates the inhibiting effects of oxygen.
  • the invention finally relates to a use of a composition according to the invention in a three-dimensional printing device comprising a reservoir containing said composition and an external excitation light source capable of emitting a light signal in the first range. wavelengths and arranged to irradiate a predefined volume of composition within the reservoir, the irradiated volume having a thickness preferably of less than 1 cm.
  • the optical excitation source comprises an optical system adapted to be immersed and moved in the liquid composition. This allows in particular to polymerize a composition thickness greater than 1 cm.
  • the invention relates to a photopolymerizable composition
  • a photopolymerizable composition comprising at least one photopolymerizable resin, a photosensitizer of PS triplets, an annihilator of triplets AN and a photoinitiator of polymerization Pl.
  • the invention also relates to various procedures and additives adapted to reduce the inhibitory effect of molecular oxygen and thereby improve the efficiency of the polymerization process.
  • Composition Example No. 1 Composition Example No. 1
  • polymerizable resin a monomer of the acrylic acid ester type, more specifically an Aronix D-800 resin (TOAGOSEI CO. LTD),
  • PS photosensitizer a porphyrin, more specifically an octaethylporphyrin platinum, commonly known as PtOEP
  • anthracene derivative more specifically a 9,10-diphenylanthracene, commonly abbreviated DPA, and
  • CQ Camphorquinone
  • the concentrations of the various components have been chosen on the one hand to allow penetration of at least one millimeter of the composition of at least 50% of the energy of the excitation signal and secondly for obtain the implementation of an STTA-UC mechanism with an efficient quantum yield for the polymerization.
  • the first length range of The waves may be between 520 and 550 nm, whose terminals are on either side of the central wavelength of the absorption spectrum of the photosensitizer
  • the DPA annihilator does not absorb at the emission wavelengths of the PtOEP, nor at the 532 nm wavelength.
  • the DPA emits efficiently at the wavelength of absorption of the photoinitiator CQ between 400 and 500 nm (second wavelength range): the experiment thus shows that the light power emitted by the DPA at 440 nm is This is a function of the square of the light power of the excitation source, which is characteristic of a high energy emission following the absorption of two photons by the STTA-UC mechanism.
  • a concentration of 6 mM of DPA was used, a concentration 60 times greater than the concentration of photosensitizer PtOEP.
  • DPA is also an antioxidant that helps reduce the limiting effects of molecular oxygen dissolved in the resin.
  • the photoinitiator PI used camphorquinone, is a photoinitiator producing free radicals able to trigger a polymerization chain reaction.
  • the CQ photoinitiator does not absorb green light at 532 nm, but absorbs in the blue between 400 and 500 nm (second wavelength range) and therefore absorbs the photons emitted by the annihilator AN. In the example used, a concentration of 0.5 mM PI was used.
  • the selected resin is photopolymerizable by a radical-type mechanism, and able to react with the photoinitiator.
  • the initiation of STTA-UC induced photopolymerization proceeds as follows.
  • a light source illuminates the part of the composition to be polymerized by an excitation signal emitting on a first wavelength range corresponding to the PS absorption.
  • a green laser emitting at 532 nm was used.
  • Only the PS molecules in the example PtOEP) absorb photons at 532 nm and form predominantly triplet states "3PS *".
  • these molecules "1AN *” transfer their energies to the molecules of the photoinitiator PI (in the example the CQ). This energy transfer can be done either by a non-radiative mechanism or by the emission of a secondary signal in a second range of lengths waveform (400-500 nm in the examples) different from the first range of wavelengths. Then, the photoinitiators PI generate radicals "R *” after conversion in their triplet states "3PI *". Finally, these "R” radicals cause the radical polymerization reaction of the monomers which constitute the base of the resin.
  • the polymerization is limited to three-dimensional areas in which the irradiance of the excitation source has created enough radicals by the STTA-UC mechanism.
  • the excitation signal was focused in a millimeter-thick composition layer according to the invention by a microscope objective to create a submicron sized polymerization voxel. The continuous displacement of the focusing point during the light excitation made it possible to manufacture polymerization lines inside the composition.
  • the front face of a 3D hologram of the edges of an 8 mm side cube was projected into a composition tank with a thickness of about 1 mm; the polymerization of the resin made it possible to obtain a solid reproduction of this 3D image.
  • Embodiment No. 2 The nonlinear polymerization initiated by the STTA-UC mechanism was obtained in a second practical example of a homogeneous composition according to the invention comprising: As polymerizable resin, an acrylate-type monomer, more specifically pentaerythriol triacrylate,
  • PS photosensitizer a porphyrin, more specifically an octaethylporphyrin platinum, commonly known as PtOEP
  • anthracene derivative more specifically a 9,10-diphenylanthracene, commonly abbreviated DPA, and
  • phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide commonly abbreviated BAPO.
  • the concentration of PtOEP was 8 ⁇ 1 , about 17-fold lower than in Example No.1, allowing a transmission of about 70% to the 1-cm crossing of resin at 532 nm. ie at the wavelength of the external excitation source.
  • the DPA concentration was 0.22 mmol-L 1 , 27-fold lower than the concentration in Example No.1 and 27-fold higher than that of PtOEP.
  • the photoinitiator, BAPO is able to initiate radical polymerization.
  • This photoinitiator PI does not absorb light at the wavelength of the external excitation source (at 532 nm, included in the first wavelength range 520 nm at 550 nm), but absorbs in the spectral range 400 - 450 nm (second range of wavelengths) to absorb the secondary signal emitted by the annihilator.
  • the concentration of PI was 32 mmol-L ⁇ in this example.
  • the composition was bubbled through an inert gas, argon (Ar), prior to polymerization.
  • argon Ar
  • the composition was placed in a strip-culture chamber system (Lab-Tek TM) under a continuous argon stream to decrease the oxygen re-diffusion in the composition.
  • the polymerization was carried out under micro-manufacturing conditions in an inverted microscope.
  • the intensity of the external excitation source at 532 nm was 100 mW / cm 2
  • composition according to the invention comprised:
  • an acrylate-type monomer more specifically poly (ethylene glycol) diacrylate,
  • PS photosensitizer a porphyrin, more specifically an octaethylporphyrin platinum, commonly known as PtOEP As annihilator AN, an anthracene derivative, more specifically a 9,10-diphenylanthracene, commonly abbreviated DPA, and
  • phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide commonly abbreviated BAPO.
  • the concentration of PtOEP was this time 7 ⁇ 1 , 20-fold lower than in Example No. 1.
  • the transmission of the resin is 51% at the crossing of 1 cm of resin to the length of the 532 nm wavelength external excitation source included in this example in a first wavelength range of 520-550 nm.
  • the concentration of DPA was 0.22 mmol-L 1 , 27-fold lower than the concentration in Example No. 1.
  • the photoinitiator, BAPO does not absorb at the irradiation wavelength (532 nm), but absorbs in the spectral range 400-450 nm (second range of wavelengths in this example) to absorb the secondary signal emitted by the annihilator.
  • the concentration of PI was 30 mmol-L ⁇ in the example.
  • the resin was sparged with an inert gas, this time nitrogen (N 2 ), to decrease its oxygen content before polymerization. Then the tank was sealed to prevent the return of oxygen into the resin. The resin was exposed to an external irradiation source emitting at 532 nm with irradiance of about 50 mW-cnY 2 to initiate polymerization.
  • the photosensitizer is chosen from photosensitizers having at least one of the following properties. The best results are obtained for photosensitizers having all the following properties.
  • the photosensitizer PS must absorb the external excitation signal in order to make maximum use of the energy of the external light source emitted on the first wavelength range to generate the triplet states "1PS *". It must also be as transparent as possible to the light radiation (secondary signal) emitted by the annihilator over the second wavelength range so that the energy of the secondary signal is available to the photoinitiator.
  • a photosensitizer PS comprising at least one molecule whose molar absorption coefficient on the first wavelength range is greater than at least two times, and preferably at least ten times, a coefficient of molar absorption of said molecule over the second wavelength range.
  • the PtOEP thus absorbs ten times more the external excitation signal than the secondary signal emitted by the annihilator.
  • a photosensitizer comprising a single molecule PtOEP was used.
  • a photosensitizer comprising several types of photosensitizer molecules each photosensitizer molecule having, over at least a portion of the first wavelength range, a molar absorption coefficient greater than at least two time, and preferably at least ten times, the molar absorption coefficient of the same photosensitizer molecule over at least a portion of the second wavelength range.
  • Molecules having similar absorption spectra are thus chosen, exhibiting a high absorption coefficient on adjacent parts of the first wavelength range, so that it is possible to illuminate the composition with a source of d excitation having a wider, more diffuse emission spectrum of the same limited power, while having a maximum of energy of the excitation signal absorbed by one or the other of the different molecules of the photosensitizer.
  • a composition according to the invention is more or less liquid, more or less viscous or even solid and, to be used, it is stored in a tank of a shape suitable for the intended use or deposited on a substrate. In order for the composition to be polymerized to a thickness d, the external excitation signal must be able to penetrate the composition over the thickness d with sufficient energy.
  • is the molar extinction coefficient (also called molar absorptivity or molar absorption coefficient) of the photosensitizer
  • d the thickness of the composition to be light cured.
  • the optical system can also be immersed in the composition to be polymerized, liquid, to manufacture objects whose thickness is greater than d.
  • the photosensitizer molecule must have a triplet state generation quantum yield greater than 0.1, and preferably greater than 0.5.
  • that of PtOEP is 0.5 in polystyrene matrix and close to unity in solution.
  • the photosensitizer molecule is chosen to have a lifetime in the triplet state greater than 10 ⁇ . This makes it possible to have effective energy transfer by diffusion and collision with the AN annihilator molecules.
  • the triplet state PtOEP has a lifetime of 91 ⁇ en in polystyrene matrix and 50 ⁇ in a deoxygenated solvent.
  • the photosensitizer PS molecule is chosen so that an energy level of the photosensitizer molecule in the triplet state "3PS *" is greater than an energy level of the molecule of the annihilator in the triplet state. 3 AM* "and so that an energy level of the photosensitizer molecule in the singlet state” 1PS * "is lower than an energy level of the molecule of the annihilator in the singlet state” 1 AM * ".
  • This makes it possible to obtain efficient energy transfer from the triplet state "3PS *" to the triplet state "3 AM” and to limit or even prohibit a transfer of energy from the singlet state "1 AM". to the singlet state "1PS *".
  • the photosensitizer molecules PS that may be used in the context of the invention, mention may be made in particular of:
  • Metalloporphyrins for example an octaethyl-porphyrin platinium (PtOEP), an octaethyl-porphyrin palladium (PdOEP), a paladium-tetratolylporphyrin (PdTPP), a platinum (II) -tetraphenyltetrabenzoporphyrin (PtTPBP), or 9-paladium 10-dinaphthylanthracene (PdMeTPP), a paladium-meso-tetraphenyltetrabenzoporphyrin 1 (PdPh4TBP), a 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine (PdPc (OBu) g),
  • the molecules comprising an Ru (dmb) 3-, Ru-polypyridyl- radical, for example the Ru (dmb) 3-An molecule, with dmb a 4,4'-dimethyl, 2,2'-bipyridine and An of the anthracene,
  • These molecules are likely to be excited, depending on the molecule, with a source emitting at a wavelength in the visible or near infrared. For example at wavelengths of 450 nm, 532 nm, 635 nm, 725 nm, depending on the molecules. Other molecules could be optimized for other wavelengths in near UV, visible or near infrared.
  • the annihilator AN is chosen from annihilators having at least one of the following properties, the best results in the context of the invention being obtained for the annihilators having all the following properties.
  • the annihilator AN must be as transparent as possible to the external excitation signal so that in no case the annihilator alone emits more than 10% of the photons, and preferably more than 1% of the photons, issued by the STTA-UC mechanism in the presence of the PS photosensitizer.
  • the annihilator (AN) has a relative molar absorption coefficient over the first wavelength range less than 20%, and preferably less than 10%.
  • a molar concentration of annihilator AN is greater than at least 10-fold and preferably at least 30-fold the molar concentration of the photosensitizer. This makes it possible to obtain a good energy transfer between the triplet state "3PS *" and the triplet state "3 AM”.
  • the annihilator AN must have an emission quantum yield greater than 10% and preferably 50%.
  • the DPA has a fluorescence yield of 0.9 in a cyclohexane solution.
  • the molecule of annihilator AN is chosen to have a lifetime in the triplet state greater than 10 ⁇ . This makes it possible to have a collision probability between two molecules "3 AM” sufficient to have an effective annihilation between two molecules "3 AM” to obtain a molecule "1AM” in the singlet state excited to two photons.
  • the molecule AN is chosen to have a singlet energy level "1 AM” less than twice its energy level in triplet state "3 AM". This facilitates the annihilation between two "3 AM” molecules to obtain a "1AM” molecule in the two-photon excited singlet state.
  • an annihilator comprising a single molecule, for example DPA, was used.
  • an annihilator comprising a plurality of molecules, a relative molar absorption coefficient of each molecule of the acceptor being less than 20% and preferably less than 10% over at least a part of the first range of wavelengths.
  • the most transparent AM molecules are thus selected from the external excitation signal so that the energy transmitted by the external excitation signal is absorbed essentially by the photosensitizer and not by the annihilator.
  • Using several AN annihilator molecules makes it possible to have a probability of collision between two molecules "3 AM” sufficient to have an effective triplet-triplet annihilation by diffusion and collision between two molecules "3 AM” to obtain a molecule "1 AM” in the singlet state excited at two photons.
  • a derivative of anthracene for example anthracene (An), 9,10-diphenylanthracene (DPA), 9,10-dimethylanthracene (DMA), 9,10-dipolyanthracene (DTA), 2-chloro-9,10-diphtylanthracene (DTACI, 2-carbonitrile-9,10-dip-tolylanthracene (DTACN), 2-carbonitrile-9,10-dinaphthylanthracene (DNACN), 2-methyl- 9,10-dinaphthylanthracene (DNAME), 2-chloro-9,10-dinaphthylanthracene (DNACI), 9,10 bis (phenylethynyl) anthracene (BPEA), 2-chloro-9,10 bis (phenylethynyl) anthracene (2CB)
  • a derivative of anthracene and a benzofuran derivative for example 1,3-diphenylisobenzofuran (DPBF)
  • These molecules are capable of emitting a secondary signal whose emission peak is centered, according to the molecule, on the following wavelengths: 380-400 nm, 435-440 nm, 446-464 nm, 470-475 nm , 550-600 nm, ...
  • a compound comprising a radical ruthenium (polypyridyl) 3- (Ru (dmb) 3), with a 4,4'-dmb dimethyl, 2,2'-bipyridine, such as the ruthenium compound (polypyridyl) 3- anthracene combined with 9,10-diphenylanthracene (DPA)
  • DPA 9,10-diphenylanthracene
  • PdPh 4 TBP a paladium-meso-tetraphenyltetrabenzoporphyrin 1 associated with 5,6,11,12- Tetraphenyl-naphthacene (rubrene)
  • PdTAP paladium-raffantraporphyrin
  • Rubrene 5,6,11,12-Tetraphenylnaphthacene
  • PtOEP platinum octaethyl-porphyrin associated with 9,10-diphenylanthracene
  • PdTPP palladium-meso-tetratolylporphyrin
  • DPA 9,10-diphenylanthracene
  • PdBrTPP palladium-tetrabromophenylporphyrin
  • PdMeTPP palladium-tetramethylphenylporphyrin
  • a 9,10-dinaphthylanthracene for example 2-carbonitrile-9,10-dinaphthylanthracene (DNACN), 2-methyl-9,10-dinaphthylanthracene (DNAMe) or 2- chloro-9,10-dinaphthylanthracene (DNACI)
  • PtTPBP platinum (II) -tetraphenyltetrabenzoporphyrin (PtTPBP) associated with perylene, 9,10bis (phenylethynyl) anthracene (BPEA),
  • the photosensitizer 1r (ppy) 3 is capable of efficiently absorbing a light signal having a wavelength in the first range 440 nm-460 nm (blue light signal), around the wavelength 450 nm which corresponds to an absorption peak for the compound Ir (ppy) 3.
  • the pyrene, annihilator is capable of transmitting a light signal in the second range 380-400 nm (ultraviolet), around the wavelength 390 nm which corresponds to an emission peak for pyrene.
  • the pair 1r (ppy) 3 / pyrene is capable of efficiently implementing an STTA-UC mechanism.
  • the photosensitizer PdPc (OBu) 8 is capable of efficiently absorbing a light signal having a wavelength in the first range 710 nm-730 nm (red light), around the wavelength 725. nm which corresponds to an absorption peak for the compound PdPc (OBu) 8.
  • the rubrene, annihilator, is able meanwhile to emit a light signal in the second range 550-600 nm (yellow light signal), around the wavelength 560 nm which corresponds to a peak emission for rubrene .
  • the pair PdPc (OBu) 8 / rubrene is capable of efficiently implementing an STTA-UC mechanism.
  • the first range and the second range of wavelengths can thus vary from one photosensitizer / annihilator couple to another, the essential point being, in the context of the invention, that the two ranges of wavelengths are distinct.
  • the photoinitiator PI must not absorb the external excitation light signal so that more of the energy of this signal can be absorbed by the photosensitizer.
  • the photoinitiator must best absorb the energy of the secondary signal emitted by the annihilator.
  • the absorption spectrum of the photoinitiator must cover significantly (at least 80%) of the fluorescence emission spectrum of the annihilator in the singlet state. So in the examples described above, camphorquinone (CQ) and BAPO absorb well the secondary signal emitted by the annihilator over the 400-500 nm range.
  • the photoinitiator must also be adapted to the resin to be polymerized.
  • camphorquinone (CQ) and BAPO generate free radicals capable of initiating the polymerization of the selected acrylate resin, more specifically the pentaerythriol triacrylate or diacrylate of poly (ethylene glycol).
  • CQ camphorquinone
  • BAPO generate free radicals capable of initiating the polymerization of the selected acrylate resin, more specifically the pentaerythriol triacrylate or diacrylate of poly (ethylene glycol).
  • other photoinitiators can be used, for example a photoinitiator capable of generating, depending on the case, acids or bases capable of initiating the ionic polymerization of certain resins.
  • the photoinitiator may be associated with other co-initiator molecules, such as camphorquinone when combined with tertiary amines.
  • the photoinitiator molecule is chosen to have a triplet state energy level " 3 PI *" higher than the energy level at the triplet state " 3 PS *” of the photosensitizer and at the level of triplet state energy " 3 AN *" of the annihilator. This makes it possible to avoid any unwanted reaction between the molecule " 3 PI *” and the molecule “ 3 PS *” or between the molecule " 3 PI *” and the molecule " 3 AN *".
  • camphorquinone has a triplet energy level of the order of 2.2 eV, ie at least 0.3 eV more than the PtOEP (whose energy level at the triplet state is of the order of 1.9 eV) and that the DPA (whose energy level in the triplet state is of the order of 1.77 eV).
  • the same molecule can be used for the annihilator and the photoinitiator.
  • composition according to the invention are in particular:
  • the reservoir containing the polymerizable resin is sealed or that the resin is polymerized under an inert atmosphere because of the diffusion of oxygen back.
  • the first two methods consist of a step of removing the oxygen present in the composition, an initialization step carried out before a polymerization step of the composition.
  • the third method consists in adding an antioxidant in the composition according to the invention.
  • One or more types of antioxidant molecules that react with singlet oxygen resulting from the deactivation of triplet states of PS, AN and PI by molecular oxygen can be selected.
  • the antioxidant molecule and its concentration are chosen so that singlet oxygen reacts preferentially with the antioxidant.
  • the antioxidant reduces the concentration of singlet oxygen and therefore the dissolved molecular oxygen concentration in the resin also decreases.
  • the oxygen concentration is sufficiently reduced so that its interaction with the triplet states of the components ( 3 PS *, 3 AN * and 3 PI *) is negligible, the STTA-UC phenomenon and the polymerization are triggered.
  • the use of the antioxidant in the formulation induces a delay time (induction time) in the polymerization.
  • Antioxidants can have several functions, more specifically they can be both antioxidants and annihilators, antioxidants and photoinitiators, antioxidants and photosensitizers or antioxidants and polymerizable monomers.
  • the derivatives of anthracene, pyrene, rubrene may be used in the composition as annihilators and antioxidants at a time.
  • the antioxidant is chosen to absorb at least 5 times less than the other compounds in the first and second wavelength ranges, with the exception of antioxidants that have multiple functions.
  • the antioxidant is chosen such that its molar absorption coefficient is at least five times lower than the molar absorption coefficient of the photosensitizer (PS), the molar absorption coefficient of the annihilator (AN) and the molar photoinitiator (PI) absorption coefficient over the first wavelength range and the second wavelength range.
  • the antioxidant is chosen so that it does not react with photosensitizers, annihilators and photoinitiators or with these components in their triplet or singlet states.
  • the antioxidants that may be used in a composition according to the invention are in particular:
  • Polycyclic aromatic hydrocarbon derivatives for example anthracene, pyrene, rubrene, naphthalene,
  • Furan derivatives for example 2,5-dimethylfuran
  • Unsaturated carboxylic acids for example oleic acid, Tertiary amines and their derivatives, for example N-methyldiethanolamine (MDEA) or triethylamine (TEA),
  • MDEA N-methyldiethanolamine
  • TAA triethylamine
  • the resin used in the context of the invention may be any photopolymerizable resin, whatever the mechanism to implement to trigger the polymerization (radical mechanism, ionic mechanism, ).
  • a photoinitiator appropriate to the mechanism to be used for initiating the polymerization and more specifically suitable for the resin to be polymerized will then be chosen, and then a photosensitizer / annihilator pair compatible with the photoinitiator and suitable for implementation of an STTA-UC mechanism.
  • the resins that may be used include, for example:
  • Monomers, oligomers or polymers radically polymerizable by addition or crosslinking mechanisms such as:
  • acrylated monomers such as acrylates, polyacrylates, methacrylates, or
  • acrylated oligomers such as unsaturated amides, or
  • methacrylated polymers polymers which have a hydrocarbyl backbone and pendant peptide groups with a free radical polymerizable functionality, or
  • vinyl compounds such as styrenes, diallyl phthalate, divinyl succinate, divinyl adipate and divinyl phthalate, or
  • Cationically polymerizable monomers and oligomers and cationically crosslinkable polymers for example epoxy resins such as monomeric epoxides and epoxy polymers having one or more epoxy groups, vinyl ethers, cyanate esters, etc. and mixtures of several of these compounds.

Abstract

L'invention concerne une composition photopolymérisable comprenant au moins : une résine polymérisable, un photosensibilisateur (PS), un annihilateur (AN), et un photoinitiateur (PI) le photosensibilisateur étant capable d'absorber un signal lumineux d'excitation reçu dans une première plage de longueurs d'ondes, l'annihilateur étant capable d'émettre un signal lumineux dans une deuxième plage de longueurs d'ondes différente de la première plage de longueurs d'ondes, dans laquelle, lors de l'absorption de lumière par le photosensibilisateur dans la dite première plage de longueurs d'ondes, l'annihilateur émet un signal lumineux dans la deuxième plage de longueurs d'ondes, une énergie photonique du signal lumineux émis par l'annihilateur étant supérieure à une énergie photonique du signal lumineux reçu par le photosensibilisateur, dans laquelle l'annihilateur est capable de mettre en œuvre un mécanisme de transfert d'énergie pour exciter le photoinitiateur (PI) de polymérisation de la résine, et dans laquelle le photoinitiateur excité est capable de générer au moins un initiateur de polymérisation apte à provoquer une réaction de polymérisation de la résine. L'invention concerne également un procédé de polymérisation par polymérisation d'une composition telle que décrite ci-dessus et un matériau obtenu par le procédé. L'invention concerne également un procédé d'impression 3D utilisant une composition telle que décrite ci-dessus.

Description

Composition photopolymérisable. matériau obtenu par polymérisation d'une telle composition et procédé d'impression 3D utilisant une telle composition
Domaine technique et état de l'art
L'invention concerne le domaine l'impression tridimensionnelle d'objets par photopolymérisation d'une résine, et plus précisément dans ce domaine, une composition photopolymérisable, un matériau obtenu par photopolymérisation d'une telle composition et un procédé d'impression 3D utilisant une telle composition.
La microfabrication 3D basée sur la photopolymérisation induite par absorption multiphotonique est une technique inventée dans les années 1990, basée sur l'absorption non-linéaire de photosensibilisateurs. Cette technique est notamment décrite dans les documents US8197722, US20040067451 ou US20110021653. Cette technique est très efficace pour l'impression tridimensionnelle d'objets. Mais elle conduit à une photopolymérisation localisée uniquement au point focal, c'est à dire à une photopolymérisation limitée à des volumes de très petites dimensions avec une résolution spatiale submicronique ; l'utilisation de cette technique particulièrement lente est donc limitée à la réalisation d'objets de petites dimensions, de l'ordre du millimètre. Elle nécessite de plus des lasers à impulsions particulièrement puissants, ayant une irradiance typiquement de l'ordre de grandeur du TWatt/cm2.
A également été développée une technique de photosensibilisation non linéaire basée sur un mécanisme de up-conversion de fluorescence de matériaux inorganiques pour exciter des photoinitiateurs de polymérisation adaptés pour la génération de radicaux (pour une polymérisation radicalaire) ou d'acides (pour une polymérisation cationique). Cette technique est notamment décrite dans le document US20040198857. Cette technique permet d'utiliser des lasers ayant une irradiance de l'ordre du MWatt/cm2, ce qui reste élevé.
D'autres documents encore décrivent des procédés de microfabrication 3D avec des lasers continus CW, par exemple US8846160 ou « M. Thiel, J. Fischer, G. V. Freymann and M. Wegener, « Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532mm », Appl. Phys. Lett. 97, 221102 (2010) ». Les dimensions des objets réalisables restent très limitées de l'ordre de quelques dizaines de micromètres et l'irradiance nécessaire à la mise en oeuvre reste très élevée de l'ordre de 10 MWatt/cm2.
Des publications récentes montrent les possibilités et les limitations dans l'état de l'art des résines de photopolymérisation à deux photons. On peut citer par exemple « Guney, M. G., and G.K. Fedder « Estimation of line dimensions in 3D direct laser writing lithography » Journal of Micromechanics and Microengineering 26.10 (2016):105011 » et « Nelson, Garrett et al. « Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery » Optics Express 24.14 (2016):11515-11530 ». C'est aujourd'hui la technique d'impression 3D ayant la meilleure résolution spatiale, submicronique et nanométrique, mais les seuils d'irradiance restent élevés, dans la gamme des MWatt/cm2 et des TWatt/cm2, la technique nécessite l'utilisation de lasers à impulsions ultracourtes, les vitesses de fabrication linéaire sont limitées à quelques cm/s et les vitesses de fabrication volumique à plusieurs heures par mm3.
L'approche de fabrication massivement parallèle par projection simultanée de multiples spots lasers peut dépasser la contradiction entre résolution et vitesse de fabrication. Elle est couramment utilisée avec les imprimantes 3D qui utilisent la projection de masques, dont les systèmes à haute résolution de microstéréolithographie. Dans ces cas la photopolymérisation est déclenchée par une absorption monophotonique simultanée de plusieurs millions de spots lasers, qui correspondent aux pixels de l'image projetée. La résolution axiale est obtenue par un moyen mécanique de renouvellement du photopolymère entre chaque couche, ce qui impose une épaisseur minimale, typiquement de 5 à 10 microns. Ce qui est à comparer avec la photopolymérisation par absorption multiphotonique pour laquelle la résolution axiale, déterminée par l'épaisseur optique de l'image projetée dans le volume de la résine, est très facilement submicronique.
La photopolymérisation parallèle en régime d'absorption multiphotonique a déjà été proposée. On peut citer par exemple « Jun-ichi Kato et al. « Multiple-spot parallel processing for laser micronanofabrication", Applied Physics Letters 86, 044102 (2005) ». Compte-tenu des fortes irradiances nécessaires, dans la gamme des MWatt/cm2 à TWatt/cm2, elle reste limitée à quelques centaines de spots lasers, à moins d'utiliser des lasers à impulsions extrêmement intenses.
Ces conditions et ces résultats limités freinent considérablement le développement de cette technologie dans des applications industrielles.
Le document PCT/EP2016079661 décrit un matériau inhomogène comprenant des composants pour conversion optique, composants sous forme liquide piégés dans une matrice en résine photopolymérisée. La polymérisation de la résine est initiée par une action directe d'un signal lumineux externe sur un photoinitiateur de polymérisation, action sans effet sur les composants pour conversion optique. Le matériau obtenu permet de protéger les dits composants, notamment d'une dégradation de leurs propriétés par l'oxygène ambiant. Le document "Low-Threshold Photon Upconversion capsules Obtained by Photoinduced Interfacial Polymerization"de J i-Hwan Kang and Eisa Reichmanis, décrit un matériau similaire obtenu dans des conditions similaires. Ce document décrit en effet un matériau comprenant des composants pour conversion optique, composants en phase liquide huileuse piégés dans une bulle de résine photopolymérisée. La polymérisation de la résine est initiée par une action directe d'un signal lumineux externe sur une composition liquide aqueuse comprenant une résine et un photoinitiateur de polymérisation, action sans effet sur les composants pour conversion optique.
Description de l'invention Pour pallier les inconvénients des techniques connues exposées ci-dessus, l'invention propose une nouvelle composition photopolymérisable non linéaire en irradiance lumineuse continue et ultrasensible, comme alternative aux compositions photopolymérisables multiphotoniques surtout lorsque les procédés de fabrication nécessitent de projeter des distributions 2D ou 3D d'irradiances, par exemple comprenant de nombreux spots lasers dans la composition. A cet effet, l'invention propose une nouvelle composition photopolymérisable comprenant au moins :
• une résine polymérisable,
• un photosensibilisateur,
• un annihilateur, et
• un photoinitiateur, le photosensibilisateur étant capable d'absorber un signal lumineux d'excitation reçu dans une première plage de longueurs d'ondes, l'annihilateur étant capable d'émettre un signal lumineux dans une deuxième plage de longueurs d'ondes différente de la première plage de longueurs d'ondes, dans laquelle, lors de l'absorption de lumière par le photosensibilisateur dans la dite première plage de longueurs d'ondes, l'annihilateur émet un signal lumineux dans la deuxième plage de longueurs d'ondes, une énergie photonique du signal lumineux émis par l'annihilateur étant supérieure à une énergie photonique du signal lumineux reçu par le photosensibilisateur, dans laquelle l'annihilateur est capable de mettre en œuvre un mécanisme de transfert d'énergie pour exciter le photoinitiateur de polymérisation de la résine, et dans laquelle le photoinitiateur excité est capable de générer au moins un initiateur de polymérisation apte à provoquer une réaction de polymérisation de la résine. L'invention propose ainsi une composition photopolymérisable, non pas directement par l'action du signal d'excitation reçu, comme c'est le cas avec les compositions antérieures, mais indirectement par l'action du signal lumineux émis par l'annihilateur. En effet, dans la mesure où la première plage de longueurs d'ondes est distincte de la deuxième plage de longueurs d'ondes, le signal lumineux d'excitation reçu, dont la longueur d'ondes est comprise dans la première plage de longueurs d'ondes, n'a pas d'action sur le photoinitiateur. Le photoinitiateur réagit par contre sous l'effet du signal lumineux émis par l'annihilateur dont la longueur d'onde centrale est comprise dans la deuxième plage de longueurs d'ondes. De plus, comme l'énergie photonique du signal lumineux émis par l'annihilateur est supérieure à l'énergie photonique du signal lumineux reçu par le photosensibilisateur, il devient possible de photoplymériser la résine dans des conditions bien plus avantageuses, en utilisant un signal d'excitation lumineuse dont l'énergie est plus faible que l'énergie des signaux qu'il est nécessaire d'utiliser dans les solutions antérieures.
Selon un mode de mise en oeuvre, le photosensibilisateur et l'annihilateur sont capables de mettre en œuvre ensemble une réaction d'absorption, par le photosensibilisateur, de deux photons du signal d'excitation lumineuse , suivie d'une réaction de conversion additive d'énergie par annihilation de triplets (STTA-UC) pour obtenir un annihilateur excité dont l'énergie photonique sur la deuxième plage de longueurs d'ondes est supérieure à l'énergie photonique du signal d'excitation. L'annihilateur excité et le photoinitiateur sont capables de mettre en œuvre un mécanisme de transfert d'énergie entre ledit annihilateur et ledit photoinitiateur pour produire un photoinitiateur excité capable de générer au moins un initiateur de polymérisation capable de provoquer une réaction de polymérisation de la résine. Le mécanisme de transfert d'énergie entre l'annihilateur et le photosensibilisateur peut être par exemple par émission / absorption d'un signal secondaire dont l'énergie photonique est supérieure à l'énergie photonique du signal d'excitation ou par transfert résonant d'énergie.
Selon une variante, l'annihilateur peut aussi être le photoinitiateur et peut, le cas échéant, générer directement un initiateur de polymérisation après avoir été excité.
L'invention propose ainsi une composition particulièrement sensible aux irradiances externes, adaptée pour être polymérisée par la mise en œuvre d'un mécanisme STTA-UC efficace avec des irradiances de l'ordre de l'irradiance du soleil, c'est-à-dire de l'ordre de 0,1 W/cm2, bien inférieure donc aux irradiances nécessaires avec les techniques antérieures connues. Par ailleurs, le mécanisme STTA-UC, dont l'efficacité est non linéaire en irradiance, permet d'obtenir une photopolymérisation confinée dans des zones tridimensionnelles d'irradiation contrôlées et avec des sources lumineuses continues. Le photosensibilisateur (PS) comprend au moins une molécule capable de passer d'un état singulet à un état triplet lorsqu'elle absorbe l'énergie photonique du signal d'excitation externe. L'annihilateur (AN) comprend des molécules capables de :
• passer d'un état singulet à un état triplet lorsqu'elles reçoivent une énergie lors d'une interaction (ou rencontre) avec une molécule du photosensibilisateur dans l'état triplet, et
• passer d'un état triplet à un état singulet à deux photons lors d'une collision entre molécules d'annihilateur et
• mettre en œuvre un mécanisme de transfert d'énergie pour exciter le photosensibilisateur de polymérisation de la résine.
Selon un mode de réalisation, la résine photopolymérisable peut comprendre des monomères, des oligomères ou des polymères polymérisables par voie radicalaire ou par des mécanismes d'addition ou de réticulation tels que :
-des monomères acrylés, tels que des acrylates, des polyacrylates, des méthacrylates, par exemple un triacrylate de pentaaerythritol, un diacrylate de polyéthylène glycol ou un acrylate tel que l'aronix D-800 commercialisé par la société TAOGOSEI Ltd. ou
-des oligomères acrylés tels que des amides insaturés, ou
-des polymères méthacrylés, des polymères qui ont un squelette hydrocarbyle et des groupes peptidiques pendants avec une fonctionnalité polymérisable par radicaux libres, ou
-des composés vinyliques tels que les styrènes, le phtalate de diallyle, le succinate de divinyle, l'adipate de divinyle et le phtalate de divinyle, ou
-des mélanges de plusieurs des monomères, oligomères ou polymères précédents, Selon un autre mode de réalisation, la résine peut comprendre des monomères et des oligomères cationiquement polymérisables et des polymères réticulables par voie cationique, par exemple des résines époxydes tels que des époxydes monomères et des époxydes polymères ayant un ou plusieurs groupes epoxy, des éthers de vinyle, des esters de cyanates, ... et des mélanges de plusieurs de ces composés.
Le photosensibilisateur, l'annihilateur, et un photoinitiateur, ainsi que le mécanisme mis en œuvre pour la polymérisation seront détaillés plus loin.
La composition selon l'invention peut également comprendre un antioxydant. Selon une variante, le photosensibilisateur, l'annihilateur et / ou le photoinitiateur peuvent avoir des propriétés antioxydantes. Un antioxydant permet de limiter l'effet néfaste de l'oxygène dissout dans la composition. En effet, l'oxygène moléculaire dissout dans la résine désactive très rapidement les molécules en état triplet (« 3PS* », « 3AN* » et « 3PI* ») et réduit leur durée de vie. En conséquence la présence de l'oxygène moléculaire dans la résine peut diminuer l'efficacité de transfert d'énergie triplet-triplet et l'annihilation triplet-triplet, enfin elle peut empêcher la photoinitiation ou réduire son efficacité. De plus cette désactivation induit souvent la formation d'oxygène singulet qui peut réagir avec les composants de la composition et altérer leur fonction. I l est connu que l'oxygène singulet réagit rapidement avec les hydrocarbures aromatiques polycycliques par exemple : anthracène (dans l'exemple le DPA), rubrène, pyrène et avec les dérivées d'isobenzofurane qui sont susceptibles d'être utilisés comme annihilateurs AN dans les compositions dans la cadre de l'invention. La composition peut contenir un ou plusieurs additifs chimiques aux propriétés antioxydantes. En variante, des procédés peuvent être utilisées pour réduire des effets inhibant l'oxygène moléculaire, en réduisant la concentration d'oxygène moléculaire avant ou/ et pendant l'irradiation par la source lumineuse extérieure comme on le verra mieux plus loin.
L'invention concerne également un procédé de photopolymérisation d'une composition selon l'une quelconque des revendications précédentes, composition comprenant une résine polymérisable, un photosensibilisateur, un annihilateur et un photoinitiateur, procédé au cours duquel :
• le photosensibilisateur absorbe un signal lumineux reçu dans une première plage de longueurs d'ondes, et transfère l'énergie reçue du signal lumineux à l'annihiliteur,
• excité par l'énergie reçue du photosensibilisateur, l'annihilateur émet un signal lumineux dans une deuxième plage de longueurs d'ondes différente de la première plage de longueurs d'ondes, une énergie photonique du signal lumineux émis par l'annihilateur étant supérieure à une énergie photonique du signal lumineux reçu par le photosensibilisateur,
· l'annihilateur transfère de l'énergie au photoinitiateur pour exciter le photoinitiateur de polymérisation de la résine,
• le photoinitiateur excité par l'annihilateur génère au moins un initiateur de polymérisation,
• l'initiateur de polymérisation provoque une réaction de polymérisation de la résine.
L'invention concerne également un matériau obtenu par un procédé de photopolymérisation tel que décrit ci-dessus, d'une composition selon l'invention, notamment mais non exclusivement, un matériau présentant la forme d'un objet en couche mince tel qu'un film ou un objet volumique en trois dimensions. Le matériau obtenu est homogène.
L'invention concerne également un procédé d'impression en trois dimensions, comprenant une étape de transformation d'un volume de composition selon l'invention par irradiation du dit volume. Grâce à l'exploitation du mécanisme STTA-UC, l'irradiation du volume de composition selon l'invention à photopolymériser peut être réalisée par une source d'excitation émettant un signal lumineux d'excitation externe d'une puissance inférieure à 1000 W/cm2 , de préférence inférieure à 1 W/cm2 et encore plus préférentiellement inférieure à 0,1 W/cm2 sur la première plage de longueurs d'ondes. Une telle puissance, bien plus faible que les puissances indispensables pour la mise en œuvre des techniques existantes, permet d'envisager le développement de techniques d'impression 3D à l'échelle industrielle.
Dans le cadre de l'invention, l'irradiation peut par exemple être réalisée par une technique de photolithographie en trois dimensions, une technique de projection holographique en trois dimensions ou une technique dite d'écriture directe par laser (ou « 3D direct laser writing »).
Le procédé selon l'invention peut également comprendre une étape d'initialisation au cours de laquelle des molécules d'oxygène contenues dans la composition sont éliminées. Egalement, l'irradiation du volume de composition peut être réalisée sous un flux de gaz inerte, par exemple de l'argon, de l'azote ou du gaz carbonique. Ceci permet d'éliminer les effets inhibants de l'oxygène.
L'invention concerne enfin une utilisation d'une composition selon l'invention dans un dispositif d'impression en trois dimensions comprenant un réservoir contenant la dite composition et une source lumineuse d'excitation externe capable d'émettre un signal lumineux dans la première plage de longueurs d'ondes et agencée pour irradier un volume prédéfini de composition à l'intérieur du réservoir, le volume irradié ayant une épaisseur de préférence inférieure à 1 cm.
Selon un mode de réalisation, adapté pour la polymérisation de compositions liquides, la source d'excitation optique comprend un système optique adapté pour être plongé et déplacé dans la composition liquide. Ceci permet notamment de polymériser une épaisseur de composition supérieure à 1 cm.
Description de modes de réalisation de l'invention
Comme dit précédemment, l'invention concerne une composition photopolymérisable comprenant au moins une résine photopolymérisable, un photosensibilisateur de triplets PS, un annihilateur de triplets AN et un photoinitiateur de polymérisation Pl . L'invention concerne également différentes procédures et additifs adaptés pour réduire l'effet inhibant de l'oxygène moléculaire et ainsi améliorer l'efficacité du processus de polymérisation. Exemple de composition n°l
A titre d'exemple non limitatif, des essais concluants ont permis de photopolymériser avec un signal excitation externe émis par une source laser à 532 nm avec une puissance d'émission de l'ordre de 150 mW/cm2 seulement, une composition selon l'invention comprenant :
• comme résine polymérisable, un monomère de type ester d'acide acrylique plus spécifiquement une résine Aronix D-800 (TOAGOSEI CO. LTD),
• comme photosensibilisateur PS, une porphyrine, plus spécifiquement une platinium octaethyl- porphyrine, communément nommée PtOEP
• comme annihilateur AN, un dérivé de l'anthracène, plus spécifiquement un 9,10- Diphénylanthracène, communément abrégé DPA, et
• comme photoinitiateur PI, de la Camphorquinone communément abrégée CQ
Pour cet exemple spécifique, les concentrations des différents composants ont été choisies d'une part pour permettre une pénétration sur au moins un millimètre de la composition d'au moins 50 % de l'énergie du signal d'excitation et d'autre part pour obtenir la mise en œuvre d'un mécanisme STTA-UC avec un rendement quantique efficace pour la polymérisation.
Le mécanisme STTA-UC ainsi que d'autres exemples concrets de composition selon l'invention seront détaillés plus loin.
Le photosensibilisateur PtOEP a un spectre d'absorption avec un pic à 536 nm ; il a un coefficient d'absorption molaire (encore appelé coefficient d'extinction molaire ou absorptivité molaire) de 6,52.104 L.mo cnr1 à la longueur d'onde 536 nm et 4,17.104L.mol"1cm_1 à la longueur d'onde 532 nm (soit, à 532 nm, un coefficient d'absorption molaire relatif égal à 64 % du coefficient molaire maximal (= 100 % à 536 nm). Dans cet exemple, la première plage de longueur d'ondes peut être comprise 520 et 550 nm, dont les bornes sont de part et d'autre de la longueur d'onde centrale du spectre d'absorption du photosensibilisateur. Dans l'exemple mis en œuvre, une concentration de 0,14 mM = 0,14 mmol.L"1 a été utilisée, ce qui correspond à coefficient d'absorption molaire relatif de 44 % à la traversée d'1 mm de résine. Le PtOEP est en revanche beaucoup plus transparent entre 405 et 500nm ; en effet, la transmission due au PtOEP de concentration 0,14 mmol.L"1 est supérieure à 90 % entre 405 et 500 nm à la traversée d'1 mm de composition ; son coefficient d'extinction molaire est d'environ 4.103 L.mo cnr1, ce qui correspond à un coefficient d'absorption molaire relatif de 5 % dans les mêmes conditions. L'annihilateur DPA n'absorbe pas aux longueurs d'onde d'émission du PtOEP, ni à la longueur d'onde 532 nm. Par contre le DPA émet efficacement à la longueur d'onde d'absorption du photoinitiateur CQ entre 400 et 500 nm (deuxième plage de longueurs d'ondes): l'expérience montre ainsi que la puissance lumineuse émise par le DPA à 440 nm est fonction du carré de la puissance lumineuse de la source d'excitation, ce qui est caractéristique d'une émission de haute énergie suite à l'absorption de deux photons par le mécanisme STTA-UC. Dans l'exemple mis en œuvre, une concentration de 6 mM de DPA a été utilisée, soit une concentration 60 fois plus importante que la concentration en photosensibilisateur PtOEP. En complément, le DPA est aussi un antioxydant qui participe à la réduction des effets limitants de l'oxygène moléculaire dissout dans la résine. Le photoinitiateur PI utilisé, la camphorquinone, est un photoinitiateur produisant des radicaux libres aptes à déclencher une réaction en chaîne de polymérisation. Le photoinitiateur CQ n'absorbe pas la lumière verte à 532 nm, mais absorbe dans le bleu entre 400 et 500 nm (deuxième plage de longueur d'ondes) et donc absorbe les photons émis par l'annihilateur AN. Dans l'exemple mis en œuvre, une concentration de 0,5 mM de PI a été utilisée. Enfin, la résine choisie est photopolymérisable par un mécanisme de type radicalaire, et apte à réagir avec le photoinitiateur.
Pour la composition homogène ci-dessus, l'initiation de la photopolymérisation induite par STTA-UC se déroule de la manière suivante. Une source de lumière (source d'excitation externe à la composition) éclaire la partie de la composition à polymériser par un signal d'excitation émettant sur une première plage de longueurs d'ondes correspondant à l'absorption des PS. Dans les exemples mis en œuvre, un laser vert émettant à 532 nm a été utilisé. Seules les molécules PS (dans l'exemple le PtOEP) absorbent les photons à 532 nm et forment majoritairement les états triplets « 3PS* ». De nombreuses molécules d'annihilateur AN (dans l'exemple le DPA) entourent les molécules PS de sorte que, lors de collisions entre « 3PS* » et AN, l'énergie d'excitation des molécules « 3PS* » est transférée vers les molécules AN qui deviennent excitées en états triplets « 3AN* ». Puis, lors de collisions entre deux molécules d'annihilateurs à l'état « 3AN* », il y a l'annihilation des états excitées triplets et l'addition de l'énergie de deux « 3AN* » dans l'une des deux molécules d'annihilateur qui devient alors excitée avec l'énergie d'environ deux états triplets (deux photons) dans l'état singulet « 1AN* », d'énergie supérieure à l'énergie photonique du signal excitateur. Puis, ces molécules « 1AN* », transfèrent leurs énergies aux molécules du photoinitiateur PI (dans l'exemple la CQ). Ce transfert d'énergie peut se faire soit par un mécanisme non radiatif, soit par l'émission d'un signal secondaire dans une deuxième plage de longueurs d'ondes (400-500 nm dans les exemples) différente de la première plage de longueurs d'ondes. Puis, les photoinitiateurs PI génèrent des radicaux « R*» après conversion dans leurs états triplets « 3PI* ». Enfin, ces radicaux « R* » provoquent la réaction de polymérisation radicalaire des monomères qui constituent la base de la résine. L'exemple ci-dessus a été mis en œuvre et une polymérisation a été amorcée avec une source d'excitation laser continue à 532 nm à partir d'une irradiance lumineuse de 150 mW/cm2, bien inférieure donc aux irradiances habituellement nécessaires pour une réaction à deux photons classiques telle que rappelée plus haut dans la partie état de l'art. Des mesures ont mis en évidence une relation quadratique entre la puissance lumineuse moyenne du signal d'excitation fournie par la source l'annihilateur d'excitation laser externe et la puissance lumineuse moyenne du signal secondaire émis par fluorescence par l'accepteur après le transfert d'énergie du photosensibilisateur à l'annihilateur et l'annihilation des états triplets des molécules de l'annihilateur. Dans la composition, la polymérisation est limitée aux zones tridimensionnelles dans lesquelles l'irradiance de la source d'excitation a créé suffisamment de radicaux par le mécanisme STTA-UC. Dans une mise en œuvre concrète, le signal d'excitation a été focalisé dans une couche de composition selon l'invention d'un millimètre d'épaisseur par un objectif de microscope pour créer un voxel de polymérisation de taille submicronique. Le déplacement continu du point de focalisation durant l'excitation lumineuse a permis de fabriquer des lignes de polymérisation à l'intérieur de la composition.
Dans une autre mise en œuvre concrète, la face avant d'un hologramme 3D des arêtes d'un cube de 8 mm de côté a été projetée dans un réservoir de composition d'épaisseur environ 1 mm ; la polymérisation de la résine a permis d'obtenir une reproduction solide de cette image 3D.
La polymérisation d'une composition à base de résine selon l'invention vient d'être décrite ci-dessus dans le cadre d'un exemple particulier de composition. Néanmoins, l'invention ne saurait être réduite à cet exemple particulier, et d'autres photosensibilisateurs, d'autres annihilateurs et d'autres photoinitiateurs peuvent être choisis, notamment en fonction de la résine choisie et de la source lumineuse externe choisie. D'autres moyens pour limiter l'effet inhibant de l'oxygène peuvent également être mis en œuvre.
Exemple de réalisation No. 2 La polymérisation non linéaire initiée par le mécanisme STTA-UC a été obtenue dans un deuxième exemple pratique d'une composition homogène selon l'invention comprenant : • comme résine polymérisable, un monomère de type acrylate, plus spécifiquement le pentaerythriol triacrylate,
• comme photosensibilisateur PS, une porphyrine, plus spécifiquement une platinium octaethyl- porphyrine, communément nommée PtOEP
• comme annihilateur AN, un dérivé de l'anthracène, plus spécifiquement un 9,10- diphénylanthracène, communément abrégé DPA, et
• comme photoinitiateur PI, de la phenylbis (2,4,6-trimethylbenzoyl)phosphine oxide) communément abrégé BAPO.
La concentration de PtOEP a été de 8 μιηοΚ1, soit environ 17-fois plus faible que dans l'exemple No.1, permettant une transmission d'environ 70 % à la traversé d'1 cm de résine à 532 nm, c'est à dire à la longueur d'onde de la source d'excitation externe.
La concentration de DPA a été de 0,22 mmol-L1, soit 27-fois plus faible que la concentration dans l'exemple No.1 et 27-fois plus élevée que celle du PtOEP.
Le photoinitiateur, BAPO est capable d'initier la polymérisation radicalaire. Ce photoinitiateur PI n'absorbe pas la lumière à la longueur d'onde de la source d'excitation externe (à 532 nm, comprise dans la première plage de longueurs d'ondes 520nm à 550 nm), mais absorbe dans la gamme spectrale 400- 450 nm (deuxième plage de longueurs d'ondes) pour absorber le signal secondaire émis par l'annihilateur. La concentration du PI a été de 32 mmol-L Λ dans cet exemple.
Pour diminuer l'oxygène contenu dans la composition à base de résine, la composition a été barbotée par un gaz inerte, de l'argon (Ar), avant la polymérisation. Ensuite, la composition a été placée dans un système de chambre de culture sur lame (Lab-Tek™) sous flux d'argon continu pour diminuer la rediffusion d'oxygène dans la composition. La polymérisation a été exécutée dans les conditions de micro fabrication dans un microscope inversé. L'intensité de la source d'excitation externe à 532 nm a été de 100 mW/cm2
Exemple de réalisation No.3
Dans un troisième exemple pratique la polymérisation a été réalisée dans un réservoir transparent de volume intérieur de 10 χ 10 χ 40 mm (largeur χ profondeur χ hauteur). La composition selon l'invention comprenait :
• comme résine polymérisable, un monomère de type acrylate, plus spécifiquement du diacrylate du poly (éthylène glycol),
• comme photosensibilisateur PS, une porphyrine, plus spécifiquement une platinium octaethyl- porphyrine, communément nommée PtOEP • comme annihilateur AN, un dérivé de l'anthracène, plus spécifiquement un 9,10- diphénylanthracène, communément abrégé DPA, et
• comme photoinitiateur PI, de la phenylbis (2,4,6-trimethylbenzoyl)phosphine oxide) communément abrégé BAPO.
La concentration de PtOEP a été cette fois de 7 μιηο 1, soit 20-fois plus faible que dans l'exemple No. 1., la transmission de la résine est de 51 % à la traversée d'1 cm de résine à la longueur d'onde de la source d'excitation externe de longueur d'ondes 532 nm comprise dans cet exemple dans une première plage de longueurs d'ondes 520-550 nm.
La concentration de DPA a été de 0,22 mmol-L 1, soit 27-fois plus faible que la concentration dans l'exemple No. 1.
Le photoinitiateur, BAPO n'absorbe pas à la longueur d'onde d'irradiation (532 nm), mais absorbe dans la gamme spectrale 400-450 nm (deuxième plage de longueurs d'ondes dans cet exemple) pour absorber le signal secondaire émit par l'annihilateur. La concentration du PI a été de 30 mmol-L Λ dans l'exemple. La résine a été barbotée par un gaz inerte, cette fois de l'azote (N 2), pour diminuer son contenu d'oxygène avant la polymérisation. Ensuite le réservoir a été scellé pour éviter le retour de l'oxygène dans la résine. La résine a été exposée à une source d'irradiation externe émettant à 532 nm avec l'éclairement énergétique d'environ 50 mW-cnY2 pour déclencher la polymérisation.
Choix du photosensibilisateur Le photosensibilisateur est choisi parmi les photosensibilateurs présentant l'une au moins des propriétés suivantes. Les meilleurs résultats sont obtenus pour les photosensibilisateurs présentant toutes les propriétés suivantes.
Le photosensibilisateur PS doit absorber le signal d'excitation externe afin d'utiliser au maximum l'énergie de la source lumineuse externe émise sur la première plage de longueurs d'ondes pour générer les états triplets « 1PS* ». Il doit aussi être le plus possible transparent au rayonnement lumineux (signal secondaire) émis par l'annihilateur sur la deuxième plage de longueurs d'ondes afin que l'énergie du signal secondaire soit disponible pour le photoinitiateur. Pour ces raisons, on choisira un photosensibilisateur PS comprenant au moins une molécule dont un coefficient d'absorption molaire sur la première plage de longueurs d'ondes est supérieur à au moins deux fois, et de préférence au moins dix fois, un coefficient d'absorption molaire de ladite molécule sur la deuxième plage de longueurs d'onde. Dans l'exemple précédent, le PtOEP a un coefficient d'absorption molaire (encore appelé coefficient d'extinction molaire ou absorptivité molaire) ε = 4.103 L.mo .cnr1 sur la deuxième plage 400-500 nm et un coefficient molaire ε = 4,17.104 L.mo .cnr1 pour une longueur d'onde de 532 nm, soit cinq fois supérieur à la valeur du coefficient molaire à 532 nm. Le PtOEP absorbe ainsi dix fois plus le signal d'excitation externe que le signal secondaire émis par l'annihilateur.
Dans les exemples mis en oeuvre, un photosensibilisateur comprenant une seule molécule, le PtOEP a été utilisé. Mais il est aussi possible d'utiliser un photosensibilisateur comprenant plusieurs types de molécules de photosensibilisateur, chaque molécule de photosensibilisateur présentant, sur au moins une partie de la première plage de longueurs d'onde, un coefficient d'absorption molaire supérieur à au moins deux fois, et de préférence au moins dix fois, le coefficient d'absorption molaire de la même molécule de photosensibilisateur sur au moins une partie de la deuxième plage de longueurs d'onde. On choisit ainsi des molécules ayant des spectres d'absorption voisins, présentant un coefficient d'absorption important sur des parties voisines de la première plage de longueurs d'ondes, de sorte qu'il est possible d'éclairer la composition avec une source d'excitation ayant un spectre d'émission plus large, plus diffus, de même puissance limitée, tout en ayant un maximum d'énergie du signal d'excitation absorbé par l'une ou l'autre des différentes molécules du photosensibilisateur. Une composition selon l'invention est plus ou moins liquide, plus ou moins visqueuse voire même solide et, pour être utilisée, elle est stockée dans un réservoir de forme appropriée à l'usage souhaité ou déposée sur un substrat. Afin que la composition puisse être polymérisée sur une épaisseur d, le signal d'excitation externe doit pouvoir pénétrer dans la composition sur l'épaisseur d avec une énergie suffisante. A cet effet, on choisit une concentration de photosensibilisateur C ps inférieure à Cpsmax = - logio(0,3) /(s*d), et de préférence inférieure à Cpsmax = - log10(0,7) /(s*d), sur la première plage de longueurs d'ondes, où ε est le coefficient d'extinction molaire (encore appelé absorptivité molaire ou coefficient d'absorption molaire) du photosensibilisateur et d est l'épaisseur de la composition à photopolymériser. Avec une telle concentration, 30 % et de préférence 70 % de l'énergie du signal d'excitation pénètre au moins jusqu'à une épaisseur d à l'intérieur de la composition. Dans l'exemple du PtOEP, de préférence Cpsmax = 3,7 μΐΎΐοΙ -1 pour d = 1 cm, le PtOEP ayant un coefficient d'extinction molaire égal à ε = 4,17.104 L. mol-1. cm-1. Si nécessaire, le système optique peut également être plongé dans la composition à polymériser, liquide, pour fabriquer des objets dont l'épaisseur est supérieure à d.
En complément, la molécule du photosensibilisateur doit avoir un rendement quantique de génération d'état triplet supérieure à 0,1, et de préférence supérieure à 0,5. A titre d'exemple, celle du PtOEP est de 0,5 en matrice de polystyrène et proche de l'unité en solution.
Egalement, la molécule de photosensibilisateur est choisie pour avoir une durée de vie dans l'état triplet supérieure à 10 μ≤. Ceci permet d'avoir un transfert d'énergie efficace par diffusion et collision avec les molécules d'annihilateur AN. A titre d'exemple, le PtOEP à l'état triplet a une durée de vie de 91 μ≤ en matrice de polystyrène et de 50 μιη dans un solvant désoxygéné.
La molécule du photosensibilisateur PS est choisie de sorte que un niveau d'énergie de la molécule du photosensibilisateur à l'état triplet « 3PS* » est supérieur à un niveau d'énergie de la molécule de l'annihilateur à l'état triplet « 3AM* »et de sorte qu'un niveau d'énergie de la molécule du photosensibilisateur à l'état singulet « 1PS* » est inférieur à un niveau d'énergie de la molécule de l'annihilateur à l'état singulet « 1AM* ». Ceci permet d'obtenir un transfert d'énergie efficace depuis l'état triplet « 3PS* » vers l'état triplet « 3AM* » et de limiter, voire interdire, un transfert d'énergie depuis l'état singulet « 1AM* » vers l'état singulet « 1PS* ». Parmi les molécules de photosensibilisateur PS susceptibles d'être utilisées dans le cadre de l'invention, on peut citer notamment :
• les métallo-porphyrines, par exemple une platinium octaethyl-porphyrine (PtOEP), une paladium octaethyl-porphyrine (PdOEP), une paladium-tetratolylporphyrine (PdTPP), une platinum(ll)- tetraphenyltetrabenzoporphyrine (PtTPBP), du paladium methyl-9, 10-dinaphthylanthracène (PdMeTPP), une paladium-meso-tetraphenyltetrabenzoporphyrine 1 (PdPh4TBP), une 1,4,8,11, 15,18,22,25-octabutoxyphthalocyanine (PdPc(OBu)g),
• la molécule lr(ppy)3, avec ppy une 2-phenylpyridine ,
• les molécules comprenant un radical Ru(dmb)3-, Ru-polypyridyl- par exemple la molécule Ru(dmb)3-An, avec dmb un 4,4'-dimethyl, 2,2'-bipyridine et An de l'anthracène,
· la molécule 2, 3-butanedione (ou diacétyl),
• ou une combinaison de plusieurs des molécules ci-dessus.
Ces molécules sont susceptibles d'être excitées, selon la molécule, avec une source émettrice à une longueur d'ondes dans le visible ou le proche infrarouge. Par exemple aux longueurs d'ondes de 450 nm, 532 nm, 635 nm, 725 nm, selon les molécules. D'autres molécules pourraient être optimisées pour d'autres longueurs d'ondes dans le proche UV, le visible ou le proche infrarouge.
Choix de l'annihilateur
L'annihilateur AN est choisi parmi les annihilateurs présentant l'une au moins des propriétés suivantes, les meilleurs résultats dans le cadre de l'invention étant obtenus pour les annihilateurs présentant toutes les propriétés suivantes. L'annihilateur AN doit quant à lui être le plus transparent possible au signal d'excitation externe de sorte qu'en aucun cas l'annihilateur seul n'émette plus de 10 % des photons, et de préférence plus de 1 % des photons, émis par le mécanisme STTA-UC en présence du photosensibilisateur PS. L'annihilateur (AN) présente un coefficient d'absorption molaire relatif sur la première plage de longueurs d'ondes inférieur à 20 %, et de préférence inférieur à 10 %.
De préférence, une concentration molaire de l'annihilateur AN est supérieure à au moins 10 fois et de préférence au moins 30 fois la concentration molaire du photosensibilisateur. Ceci permet d'obtenir un bon transfert d'énergie entre l'état triplet « 3PS* » et l'état triplet « 3AM* ».
De préférence, l'annihilateur AN doit avoir un rendement quantique d'émission supérieure à 10% et de préférence à 50%. A titre d'exemple, le DPA a un rendement de fluorescence de 0.9 dans une solution de cyclohexane.
Egalement, la molécule de l'annihilateur AN est choisie pour avoir une durée de vie dans l'état triplet supérieure à 10 μ≤. Ceci permet d'avoir une probabilité de collision entre deux molécules « 3AM* » suffisante pour avoir une annihilation efficace entre deux molécules « 3AM* » pour obtenir une molécule « 1AM » dans l'état singulet excitée à deux photons.
De préférence encore, la molécule AN est choisie pour avoir un niveau d'énergie à l'état singulet « 1AM* » inférieure à deux fois son niveau d'énergie à l'état triplet « 3AM* ». Ceci facilite l'annihilation entre deux molécules « 3AM* » pour obtenir une molécule « 1AM » dans l'état singulet excitée à deux photons. Dans les exemples décrits ci-dessus, un annihilateur comprenant une seule molécule, le DPA par ex., a été utilisé. Mais il est aussi possible d'utiliser un annihilateur comprenant une pluralité de molécules, un coefficient d'absorption molaire relatif de chaque molécule de l'accepteur étant inférieur à 20 % et de préférence inférieur à 10 % sur au moins une partie de la première plage de longueurs d'onde. On choisit ainsi des molécules AM les plus transparentes possibles au signal d'excitation externe de sorte que l'énergie transmise par le signal d'excitation externe est absorbé essentiellement par le photosensibilisateur et non par l'annihilateur. Utiliser plusieurs molécules d'annihilateur AN permet d'avoir une probabilité de collision entre deux molécules « 3AM* » suffisante pour avoir une annihilation triplet-triplet efficace par diffusion et collision entre deux molécules « 3AM* » pour obtenir une molécule « 1AM » dans l'état singulet excitée à deux photons.
Parmi les molécules d'annihilateur AN susceptibles d'être utilisées dans le cadre de l'invention, on peut citer notamment : • un dérivé de l'anthracène, par exemple de l'anthracène (An), du 9, 10-diphenylanthracene (DPA), du 9,10-dimethylanthracène (DMA), du 9, 10-dip-tolyanthracène (DTA), du 2-chloro-9,10-dip- tolylanthracene (DTACI, du 2-carbonitrile-9,10-dip-tolylanthracene (DTACN), du 2-carbonitrile-9,10- dinaphthylanthracène (DNACN), du 2-methyl-9,10-dinaphthylanthracène (DNAMe), du 2-chloro-9,10- dinaphthylanthracène (DNACI), du 9,10bis(phenylethynyl)anthracènce (BPEA), du 2-chloro- 9,10bis(phenylethynyl)anthracènce (2CBPEA), du 5,6,11,12-tetra-phenylnaphthacène (rubrène), du pyrène ou du pérylène
• un dérivé de l'anthracène et un dérivé du benzofurane, par exemple du 1,3- diphenylisobenzofurane (DPBF)
· la molécule 2, 5-diphényloxazole (PPO).
Ces molécules sont susceptibles d'émettre un signal secondaire dont un pic d'émission est centré, selon la molécule, sur les longueurs d'ondes suivantes : 380-400 nm, 435-440 nm, 446-464 nm, 470-475 nm, 550- 600 nm, ...
Choix d'un couple photosensibilisateur / annihilateur
Et de préférence, une bonne compatibilité entre photosensibilisateur et annihilateur peut être obtenue avec un couple phtosensibilisateur/annihilateur parmi les couples suivants :
un composé comprenant un radical ruthenium-(polypyridyl)3- (Ru(dmb)3-), avec dmb un 4,4'- dimethyl, 2,2'-bipyridine, par exemple le composé ruthenium-(polypyridyl) 3-anthracène associé au 9, 10-diphenylanthracène (DPA)
• un composé lr(ppy)3, où ppy est une 2-phenylpyridine, associé au pyrène,
• une paladium-meso-tetraphenyltetrabenzoporphyrine 1 (PdPh4TBP) associée au 5,6,11,12- Tetraphenyl-naphthacene (rubrène)
• une 1,4,8,11,15,18,22,25-octabutoxyphthalocyanine (PdPc(OBu)g) associée au 5,6,11,12- Tetraphenyl-naphthacene (rubrène)
• une paladium-retraantraporphyrin (PdTAP) associée au 5,6,11,12-Tetraphenylnaphthacene (Rubrène),
• une platinium octaethyl-porphyrine (PtOEP) associée au 9, 10-diphenylanthracène (DPA)
• une paladium-meso-tetratolylporphyrine (PdTPP) associée au 9, 10-diphenylanthracène (DPA) · une palladium-tetrabromophenylporphyrin (PdBrTPP) associée au 9, 10-diphenylanthracène (DPA) • une palladium-tetramethylphenylporphyrine (PdMeTPP) associée à un 9,10-dinaphthylanthracène, par exemple le 2-carbonitrile-9,10-dinaphthylanthracène (DNACN), le 2-methyl-9,10- dinaphthylanthracène (DNAMe) ou le 2-chloro-9,10-dinaphthylanthracène (DNACI)
• une platinum(ll)-tetraphenyltetrabenzoporphyrine (PtTPBP) associée au pérylène, au 9,10bis(phenylethynyl)-anthracènce (BPEA),
• une molécule 2, 3-butanedione (diacétyl) associée au 2, 5-diphényloxazole (PPO).
A titre d'exemple, le photosensibilisateur lr(ppy)3 est capable d'absorber efficacement un signal lumineux ayant une longueur d'onde comprise dans la première plage 440nm-460 nm (signal lumineux bleu), autour de la longueur d'onde 450 nm qui correspond à un pic d'absorption pour le composé lr(ppy)3. Le pyrène, annihilateur, est capable quant à lui d'émettre un signal lumineux dans la deuxième plage 380- 400 nm (ultraviolet), autour de la longueur d'onde 390 nm qui correspond à un pic d'émission pour le pyrène. Le couple lr(ppy)3 / pyrène est capable de mettre en oeuvre efficacement un mécanisme STTA- UC.
Dans un autre exemple, le photosensibilisateur PdPc(OBu)8 est capable d'absorber efficacement un signal lumineux ayant une longueur d'onde comprise dans la première plage 710 nm-730 nm (lumière rouge), autour de la longueur d'onde 725 nm qui correspond à un pic d'absorption pour le composé PdPc(OBu)8. Le rubrène, annihilateur, est capable quant à lui d'émettre un signal lumineux dans la deuxième plage 550-600 nm (signal lumineux jaune), autour de la longueur d'onde 560 nm qui correspond à un pic d'émission pour le rubrène. Le couple PdPc(OBu)8 / rubrène est capable de mettre en oeuvre efficacement un mécanisme STTA-UC.
La première plage et la deuxième plage de longueurs d'ondes peuvent ainsi varier d'un couple photosensibilisateur / annihilateur à l'autre, l'essentiel étant, dans le cadre de l'invention, que les deux plages de longueurs d'ondes soient distinctes.
Choix du photoinitiateur
Le photoinitiateur PI doit quant à lui ne pas absorber le signal lumineux d'excitation externe afin qu'une plus grande partie de l'énergie de ce signal puisse être absorbée par le photosensibilisateur. Le photoinitiateur doit par contre absorber au mieux l'énergie du signal secondaire émis par l'annihilateur. Pour cela, le spectre d'absorption du photoinitiateur doit recouvrir de manière significative (au moins 80%) du spectre d'émission de fluorescence de l'annihilateur à l'état singulet. Ainsi, dans les exemples décrits plus haut, la camphorquinone (CQ) et la BAPO absorbent bien le signal secondaire émis par l'annihilateur sur la plage 400-500 nm.
Le photoinitiateur doit également être adapté à la résine à polymériser. Ainsi, dans l'exemple décrit plus haut, la camphorquinone (CQ) et la BAPO génèrent des radicaux libres capables d'initier la polymérisation de la résine choisie de type acrylate, plus spécifiquement du pentaerythriol triacrylate ou diacrylate du poly(éthylène glycol). Mais d'autres photoinitiateurs peuvent être utilisés, par exemple un photoinitiateur capable de générer selon le cas des acides ou des bases capables d'initier la polymérisation ionique de certaines résines. En variante, le photoinitiateur peut être associé à d'autres molécules co-initiatrices, comme la camphorquinone lorsqu'elle est associée avec des aminés tertiaires. De préférence encore, la molécule de photoinitiateur est choisie pour avoir un niveau d'énergie à l'état triplet « 3PI* » supérieur au niveau d'énergie à l'état triplet « 3PS* » du photosensibilisateur et au niveau d'énergie à l'état triplet « 3AN* » de l'annihilateur. Ceci permet d'éviter une éventuelle réaction non souhaitée entre la molécule « 3PI * » et la molécule « 3PS* » ou entre la molécule « 3PI* » et la molécule « 3AN* ». A titre d'exemple, la camphorquinone a un niveau d'énergie à l'état triplet de l'ordre de 2,2 eV, soit au moins 0,3 eV de plus que le PtOEP (dont le niveau d'énergie à l'état triplet est de l'ordre de 1,9 eV) et que le DPA (dont le niveau d'énergie à l'état triplet est de l'ordre de 1,77 eV). A titre d'un autre d'exemple, le bis(acyl)phosphine oxide (BAPO), dont le niveau d'énergie à l'état triplé est de l'ordre de 2,6 eV soit au moins 0,5 eV de plus que le PtOEP ou le DPA. En variante encore, la même molécule peut être utilisée pour l'annihilateur et le photoinitiateur.
Solutions pour réduire les effets de l'oxygène présent dans la composition selon l'invention.
Les méthodes pour réduire la concentration d'oxygène moléculaire dans la composition selon l'invention sont notamment :
• le dégazage de la résine sous vide par cycles congélation-décongélation,
· le barbotage d'un gaz inerte, par exemple argon (Ar), azote (N2), dioxyde de carbone (C02) ou autre à travers la résine,
• l'addition à la composition d'un réducteur fort en grande concentration qui réagit avec l'oxygène, par exemple différentes sulfites.
En utilisant les méthodes décrites au-dessus, il est préférable que le réservoir contenant la résine polymérisable soit scellé ou que la résine soit polymérisée sous atmosphère inerte à cause du retour d'oxygène par diffusion. Les deux premières méthodes consistent en une étape d'élimination de l'oxygène présent dans la composition, étape d'initialisation réalisée avant une étape de polymérisation de la composition.
La troisième méthode consiste à ajouter un antioxydant dans la composition selon l'invention. Peuvent être choisies un ou plusieurs types de molécules d'antioxydants qui réagissent avec l'oxygène singulet résultant de la désactivation des états triplet de PS, AN et PI par l'oxygène moléculaire. La molécule antioxydant et sa concentration sont choisies pour que l'oxygène singulet réagisse préférentiellement avec l'antioxydant. Au début de l'exposition de la composition au signal d'excitation extérieur, l'antioxydant réduit la concentration de l'oxygène singulet et par conséquent la concentration d'oxygène moléculaire dissout dans la résine diminue aussi. Dès que la concentration d'oxygène est suffisamment réduite pour que son interaction avec les états triplets des composants (3PS*, 3AN* et 3PI*) soit négligeable, le phénomène STTA-UC et la polymérisation se déclenchent. L'utilisation de l'antioxydant dans la formulation induit un temps de retard (temps d'induction) dans la polymérisation.
Les antioxydants peuvent avoir plusieurs fonctions, plus précisément ils peuvent être à la fois antioxydants et annihilateurs, antioxydants et photoinitiateurs, antioxydants et photosensibilisateurs ou antioxydants et monomères polymérisables. Notamment, les dérivés de l'anthracène, du pyrène, du rubrène sont susceptibles d'être utilisés dans la composition en tant qu'annihilateurs et antioxydants à la fois.
L'antioxydant est choisi de façon à ce qu'il absorbe au moins 5 fois moins que les autres composées dans la première et dans la deuxième plages de longueurs d'ondes, à l'exception des antioxydants qui ont des fonctions multiples. Dit autrement, l'antioxydant est choisi de sorte que son coefficient d'absorption molaire soit au moins cinq fois inférieur au coefficient d'absorption molaire du photosensibilisateur (PS), au coefficient d'absorption molaire de l'annihilateur (AN) et au coefficient d'absorption molaire photoinitiateur (PI) sur la première plage de longueurs d'ondes et sur la deuxième plage de longueurs d'ondes. De préférence l'antioxydant est choisi pour qu'il ne réagisse ni avec les photosensibilisateurs, annihilateurs et photoinitiateurs ni avec ces composants dans leurs états triplet ou singulet. Les antioxydants susceptibles d'être utilisés dans une composition selon l'invention sont notamment :
• les dérivés d'hydrocarbures aromatiques polycycliques par exemple d'anthracène, du pyrène, du rubrène, du naphtalène,
· les dérivés d'isobenzofurane, comme 1,4-diphenylisobenzofurane,
• les dérivatives de furane, comme par exemple 2,5-dimethylfurane,
• les acides carboxyliques insaturés, par exemple l'acide oléique, • les aminés tertiaires et leurs dérivées, comme par exemple le N-méthyldiéthanolamine (MDEA) ou triéthylamine (TEA),
• les sulfites.
Choix de la résine polvmérisable
Enfin, la résine utilisée dans le cadre de l'invention peut être toute résine photopolymérisable, quel que soit le mécanisme à mettre en œuvre pour déclencher la polymérisation (mécanisme radicalaire, mécanisme ionique, ...). On choisira ensuite dans le cadre de l'invention un photoinitiateur approprié au mécanisme à mettre en œuvre pour initier la polymérisation et approprié plus spécifiquement à la résine à polymériser, puis on choisira un couple photosensibilisateur / annihilateur compatible avec le photoinitiateur et apte à la mise en œuvre d'un mécanisme STTA-UC.
Les résines susceptibles d'être utilisées comprennent par exemple :
• des monomères, des oligomères ou des polymères polymérisables par voie radicalaire par des mécanismes d'addition ou de réticulation tels que :
-des monomères acrylés, tels que des acrylates, des polyacrylates, des méthacrylates, ou
-des oligomères acrylés tels que des amides insaturés, ou
-des polymères méthacrylés, des polymères qui ont un squelette hydrocarbyle et des groupes peptidiques pendants avec une fonctionnalité polymérisable par radicaux libres, ou
-des composés vinyliques tels que les styrènes, le phtalate de diallyle, le succinate de divinyle, l'adipate de divinyle et le phtalate de divinyle, ou
-des mélanges de plusieurs des monomères, oligomères ou polymères précédents,
• des monomères et des oligomères cationiquement polymérisables et des polymères réticulables par voie cationique, par exemple des résines époxydes tels que des époxydes monomères et des époxydes polymères ayant un ou plusieurs groupes epoxy, des éthers de vinyle, des esters de cyanates, ... et des mélanges de plusieurs de ces composés.

Claims

REVENDICATIONS
1. Composition photopolymérisable comprenant au moins :
• une résine polymérisable,
• un photosensibilisateur (PS),
· un annihilateur (AN), et
• un photoinitiateur (PI) le photosensibilisateur étant capable d'absorber un signal lumineux d'excitation reçu dans une première plage de longueurs d'ondes, l'annihilateur étant capable d'émettre un signal lumineux dans une deuxième plage de longueurs d'ondes différente de la première plage de longueurs d'ondes, dans laquelle, lors de l'absorption de lumière par le photosensibilisateur dans la dite première plage de longueurs d'ondes, l'annihilateur émet un signal lumineux dans la deuxième plage de longueurs d'ondes, une énergie photonique du signal lumineux émis par l'annihilateur étant supérieure à une énergie photonique du signal lumineux reçu par le photosensibilisateur, dans laquelle l'annihilateur est capable de mettre en œuvre un mécanisme de transfert d'énergie pour exciter le photoinitiateur (PI) de polymérisation de la résine, et dans laquelle le photoinitiateur excité est capable de générer au moins un initiateur de polymérisation apte à provoquer une réaction de polymérisation de la résine.
2. Composition selon la revendication 1 dans laquelle ledit photosensibilisateur (PS) et ledit annihilateur (AN) sont capables de mettre en œuvre ensemble une réaction d'absorption, par le photosensibilisateur (PS), de deux photons du signal d'excitation lumineuse reçu , suivie d'une réaction de conversion additive d'énergie par annihilation de triplets (STTA-UC) pour obtenir un annihilateur excité (1AN*) dont une énergie photonique dans la deuxième plage de longueurs d'ondes est supérieure à l'énergie photonique du signal d'excitation dans la première plage de longueurs d'ondes, ledit annihilateur excité (1AN*) et ledit photoinitiateur (PI) étant capables de mettre en œuvre un mécanisme de transfert d'énergie entre ledit annihilateur et ledit photoinitiateur pour produire un photoinitiateur excité (3PI*) capable de générer au moins un initiateur de polymérisation apte à provoquer une réaction de polymérisation de la résine.
3. Composition selon la revendication 1 ou 2 dans laquelle le photosensibilisateur (PS) comprend au moins une molécule capable de passer d'un état singulet (PS) à un état triplet (3PS*) lorsqu'elle absorbe l'énergie photonique du signal d'excitation externe.
4. Composition selon la revendication 3 dans laquelle l'annihilateur (AN) comprend des molécules capables de : • passer d'un état singulet (1AN*) à un état triplet (3AN*) lorsqu'elles reçoivent une énergie lors d'une interaction avec une molécule du photosensibilisateur dans l'état triplet (3PS*), et
• passer d'un état triplet (3AN*) à un état singulet (1AN*) à deux photons lors d'une collision entre molécules d'annihilateur et
• mettre en œuvre un mécanisme de transfert d'énergie pour exciter le photoinitiateur (PI) de polymérisation de la résine.
5. Composition selon l'une des revendications précédentes dans laquelle la résine photopolymérisable comprend :
• des monomères, des oligomères ou des polymères polymérisables par voie radicalaire par des mécanismes d'addition ou de réticulation tels que :
-des monomères acrylés, tels que des acrylates, des polyacrylates, des méthacrylates, ou
-des oligomères acrylés tels que des amides insaturés, ou
-des polymères méthacrylés, des polymères qui ont un squelette hydrocarbyle et des groupes peptidiques pendants avec une fonctionnalité polymérisable par radicaux libres, ou
-des composés vinyliques tels que les styrènes, le phtalate de diallyle, le succinate de divinyle, l'adipate de divinyle et le phtalate de divinyle, ou
-des mélanges de plusieurs des monomères, oligomères ou polymères précédents,
• des monomères et des oligomères cationiquement polymérisables et des polymères réticulables par voie cationique, par exemple des résines époxydes tels que des époxydes monomères et des époxydes polymères ayant un ou plusieurs groupes epoxy, des éthers de vinyle, des esters de cyanates, ... et des mélanges de plusieurs de ces composés.
6. Composition selon l'une des revendications précédentes dans laquelle le photosensibilisateur est choisi parmi les photosensibilisateurs présentant l'une au moins des propriétés suivantes :
• le photosensibilisateur comprend au moins une molécule dont un coefficient d'absorption molaire sur la première plage de longueurs d'ondes est supérieur à au moins deux fois, et de préférence au moins dix fois, un coefficient d'absorption molaire de ladite molécule sur la deuxième plage de longueurs d'onde.
• le photosensibilisateur comprend une pluralité de molécules de photosensibilisateur, chaque molécule de photosensibilisateur présentant, sur au moins une partie de la première plage de longueurs d'onde, un coefficient d'absorption molaire supérieur à au moins deux fois, et de préférence au moins dix fois, le coefficient d'absorption molaire de la même molécule de photosensibilisateur sur au moins une partie de la deuxième plage de longueurs d'onde. • le photosensibilisateur présente une concentration molaire Cps inférieure à Cpsmax = - log10(0,3) / (s.d) sur la première plage de longueurs d'ondes, où ε est le coefficient d'extinction molaire du photosensibilisateur et d est l'épaisseur de la composition à photopolymériser, et / ou
• la molécule de photosensibilisateur a une durée de vie dans l'état triplet supérieure à 10 μ≤, et / ou « un niveau d'énergie de la molécule de photosensibilisateur à l'état triplet est supérieur à un niveau d'énergie de la molécule de l'annihilateur à l'état triplet et un niveau d'énergie de la molécule du photosensibilstateur à l'état singulet est inférieur à un niveau d'énergie de la molécule de l'annihilateur à l'état singulet.
7. Composition selon l'une des revendications précédentes, dans laquelle le photosensibilisateur est choisi parmi :
• les métallo-porphyrines, le photosensibilisateur étant par exemple une platinum octaethyl- porphyrine (PtOEP), une palladium octaethyl-porphyrine (PdOEP), une palladium-tetratolylporphyrine (PdTPP), une platinum(ll)-tetraphenyltetrabenzoporphyrine (PtTPBP), du palladium methyl-9, 10- dinaphthylanthracène (PdMeTPP), une paladium-meso-tetraphenyltetrabenzoporphyrine 1 (PdPh4TBP), une 1,4,8,11, 15,18,22,25-octabutoxyphthalocyanine (PdPc(OBu)g),
• la molécule lr(ppy)3, avec ppy une 2-phenylpyridine,
• les molécules comprenant un radical Ru(dmb)3-, Ru-polypyridyl- par exemple la molécule Ru(dmb)3-An, avec dmb un 4,4'-dimethyl, 2,2'-bipyridine et An de l'anthracène,
• la molécule 2,3-butanedione,
· ou une combinaison de plusieurs des molécules ci-dessus.
8. Composition selon l'une des revendications précédentes dans laquelle l'annihilateur (AN) est choisi parmi les annihilateurs présentant l'une au moins des propriétés suivantes :
• l'annihilateur (AN) présente un coefficient d'absorption molaire relatif sur la première plage de longueurs d'ondes inférieur à 20 %, et de préférence inférieur à 10 %, et / ou
· une concentration molaire de l'annihilateur est supérieure à au moins 10 fois et de préférence au moins 30 fois la concentration molaire du photosensibilisateur, et / ou
• un niveau d'énergie de la molécule d'annihilateur à l'état singulet est inférieure à deux fois un niveau d'énergie de la dite molécule d'annihilateur à l'état triplet et /ou
• la molécule de l'annihilateur a une durée de vie dans l'état triplet supérieure à 10 μ≤, et / ou · l'annihilateur comprend une pluralité de molécules, le coefficient d'absorption molaire relatif de chaque molécule de l'annihilateur étant inférieur à 20 % et de préférence inférieur à 10 % sur au moins une partie de la première plage de longueurs d'onde.
9. Composition selon l'une des revendications précédentes dans laquelle l'annihilateur est choisi parmi :
• un dérivé de l'anthracène, par exemple de l'anthracène (An), un 9, 10-diphenylanthracène (DPA), du 9,10-dimethylanthracène (DMA), un 9, 10-dip-tolyanthracène (DTA), un 2-chloro-9,10-dip- tolylanthracene (DTACI, un 2-carbonitrile-9,10-dip-tolylanthracene (DTACN), un 2-carbonitrile-9,10- dinaphthylanthracène (DNACN), un 2-methyl-9,10-dinaphthylanthracène (DNAMe), un 2-chloro-9,10- dinaphthylanthracène (DNACI), un 9,10bis(phenylethynyl)anthracènce (BPEA), un 2-chloro- 9,10bis(phenylethynyl)anthracènce (2CBPEA), un 5,6,11,12-tetra-phenylnaphthacène (rubrène), un pyrène ou un pérylène,
• une combinaison d'un dérivé de l'anthracène et d'un dérivé de l'isobenzofurane, par exemple du 1,3-diphenylisobenzofurane (DPBF),
• une molécule 2, 5-diphenyloxazole (PPO).
10. Composition selon l'une des revendications précédentes dans laquelle l'annihilateur et le photoinitiateur sont identiques.
11. Composition selon l'une des revendications précédentes, comprenant également un antioxydant.
12. Composition selon la revendication 11, dans laquelle le photosensibilisateur (PS), l'annihilateur (AN), et / ou photoinitiateur (PI) ont des propriétés antioxydantes.
13. Composition selon la revendication 12, dans laquelle un coefficient d'absorption molaire de l'antioxydant est au moins cinq fois inférieur au coefficient d'absorption molaire du photosensibilisateur (PS), au coefficient d'absorption molaire de l'annihilateur (AN) et au coefficient d'absorption molaire photoinitiateur (PI) sur la première plage de longueurs d'ondes et sur la deuxième plage de longueurs d'ondes.
14. Procédé de photopolymérisation d'une composition selon l'une quelconque des revendications précédentes, composition comprenant une résine polymérisable, un photosensibilisateur, un annihilateur et un photoin itiateur, procédé au cours duquel :
• le photosensibilisateur absorbe un signal lumineux reçu dans une première plage de longueurs d'ondes, et transfère l'énergie reçue du signal lumineux à l'annihiliteur,
• excité par l'énergie reçue du photosensibilisateur, l'annihilateur émet un signal lumineux dans une deuxième plage de longueurs d'ondes différente de la première plage de longueurs d'ondes, une énergie photonique du signal lumineux émis par l'annihilateur étant supérieure à une énergie photonique du signal lumineux reçu par le photosensibilisateur, • l'annihilateur transfère de l'énergie au photoinitiateur pour exciter le photoinitiateur (PI) de polymérisation de la résine,
• le photoinitiateur excité par l'annihilateur génère au moins un initiateur de polymérisation,
• l'initiateur de polymérisation provoque une réaction de polymérisation de la résine.
15. Matériau obtenu par un procédé de photopolymérisation selon la revendication 14 d'une composition selon l'une quelconque des revendications 1 à 13 .
16. Matériau selon la revendication précédente présentant la forme d'un objet en couche mince tel qu'un film ou un objet volumique en trois dimensions.
17. Procédé d'impression en trois dimensions, comprenant une étape de transformation d'un volume de composition selon l'une des revendications 1 à 13 par irradiation du dit volume.
18. Procédé selon la revendication 17 dans lequel l'irradiation du volume de composition à transformer est réalisée par une source d'excitation émettant un signal lumineux d'une puissance inférieure à 1000 W/cm2, et de préférence inférieure à 1 W/cm2, sur la première plage de longueurs d'ondes.
19. Procédé selon l'une des revendications 17 à 18 au cours duquel l'irradiation du volume de composition est réalisée par une technique de photolithographie en trois dimensions, une technique de projection holographique en trois dimensions ou une technique dite d'écriture directe par laser .
20. Procédé selon l'une des revendications 17 à 19, comprenant également une étape d'initialisation au cours de laquelle des molécules d'oxygène contenues dans la composition sont éliminées.
21. Procédé selon l'une des revendications 17 à 20 au cours duquel l'irradiation du volume de composition est réalisée sous un flux de gaz inerte, par exemple de l'argon ou de l'azote.
22. Utilisation d'une composition photopolymérisable selon l'une des revendications 1 à 13, dans un dispositif d'impression en trois dimensions comprenant un réservoir contenant ladite composition et une source lumineuse d'excitation externe agencée pour irradier un volume prédéfini de composition à l'intérieur du réservoir, le volume irradié ayant une épaisseur supérieure à 0,5 μιη et de préférence inférieure à 1 cm.
23. Utilisation selon la revendication précédente, dans laquelle la composition photopolymérisable est liquide.
24. Utilisation selon la revendication précédente dans laquelle la source lumineuse d'excitation externe comprend un système optique d'irradiation plongé dans la résine liquide et des moyens pour déplacer le système optique dans la résine liquide.
PCT/FR2018/051963 2017-08-02 2018-07-31 Composition photopolymérisable, matériau obtenu par polymérisation d'une telle composition et procédé d'impression 3d utilisant une telle composition WO2019025717A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020528515A JP2021502466A (ja) 2017-08-02 2018-07-31 光重合性組成物、該組成物を重合して得られる材料、および該組成物を用いた3d印刷方法
EP18752608.2A EP3661974A1 (fr) 2017-08-02 2018-07-31 Composition photopolymérisable, matériau obtenu par polymérisation d'une telle composition et procédé d'impression 3d utilisant une telle composition
KR1020207005599A KR20200037815A (ko) 2017-08-02 2018-07-31 광중합성 조성물, 이러한 조성물의 중합에 의해 수득되는 재료 및 이러한 조성물을 사용한 3d 인쇄 방법
CN201880064139.9A CN111164108A (zh) 2017-08-02 2018-07-31 光聚合性组合物、通过聚合该组合物获得的材料和使用该组合物的3d打印方法
US16/636,008 US11629203B2 (en) 2017-08-02 2018-07-31 Photopolymerisable composition, material obtained by polymerising such a composition and 3D printing method using such a composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1757401A FR3069862B1 (fr) 2017-08-02 2017-08-02 Composition photopolymerisable, materiau obtenu par polymerisation d'une telle composition et procede d'impression 3d utilisant une telle composition
FR1757401 2017-08-02

Publications (1)

Publication Number Publication Date
WO2019025717A1 true WO2019025717A1 (fr) 2019-02-07

Family

ID=60765742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2018/051963 WO2019025717A1 (fr) 2017-08-02 2018-07-31 Composition photopolymérisable, matériau obtenu par polymérisation d'une telle composition et procédé d'impression 3d utilisant une telle composition

Country Status (7)

Country Link
US (1) US11629203B2 (fr)
EP (1) EP3661974A1 (fr)
JP (1) JP2021502466A (fr)
KR (1) KR20200037815A (fr)
CN (1) CN111164108A (fr)
FR (1) FR3069862B1 (fr)
WO (1) WO2019025717A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154895A1 (fr) * 2020-01-28 2021-08-05 Quadratic 3D, Inc. Impression tridimensionnelle (3d) comprenant une photopolymérisation par conversion ascendante
EP3909748A1 (fr) 2020-05-12 2021-11-17 TIGER Coatings GmbH & Co. KG Matériau thermodurcissant destiné à être utilisé dans une fabrication additive
WO2021247930A1 (fr) * 2020-06-03 2021-12-09 Quadratic 3D, Inc. Procédés d'impression volumétrique en trois dimensions comprenant une feuille de lumière et systèmes
WO2022008673A1 (fr) 2020-07-09 2022-01-13 Universite Claude Bernard Lyon 1 Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3d associé
FR3119562A1 (fr) 2021-02-09 2022-08-12 Universite Claude Bernard Lyon 1 Procédé d'impression d'un objet à imprimer, et imprimante adaptée pour la mise en oeuvre du procédé.
EP4094942A1 (fr) 2021-05-26 2022-11-30 TIGER Coatings GmbH & Co. KG Composition durable par rayonnement pour une fabrication additive adaptée aux applications électroniques

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020257231A1 (fr) * 2019-06-21 2020-12-24 President And Fellows Of Harvard College Accepteurs d'excitons triplets pour augmenter les seuils de conversion-élévation pour l'impression 3d
CN115873156B (zh) * 2021-09-27 2023-12-15 四川大学 一种利用三线态-三线态湮灭上转换实现可见光光固化微纳3d打印的组合物
CN115028759A (zh) * 2022-06-28 2022-09-09 华中科技大学 一种基于三线态上转换的激光制造方法及其应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567668A1 (fr) * 1984-07-16 1986-01-17 Cilas Alcatel Dispositif pour realiser un modele de piece industrielle
EP0535828A1 (fr) * 1991-09-30 1993-04-07 Zeneca Limited Procédé photostéréolithographique
US20040067451A1 (en) 2000-06-15 2004-04-08 Devoe Robert J. Multiphoton photochemical process and articles preparable thereby
US20040198857A1 (en) 2003-04-01 2004-10-07 Dejneka Matthew J. Photochemical reactions using multi-photon upconverting fluorescent inorganic materials
US20110021653A1 (en) 2009-07-22 2011-01-27 Lixin Zheng Hydrogel compatible two-photon initiation system
US8197722B2 (en) 1996-11-12 2012-06-12 The California Institute Of Technology Two-photon or higher-order absorbing optical materials and methods of use
US8846160B2 (en) 2008-12-05 2014-09-30 3M Innovative Properties Company Three-dimensional articles using nonlinear thermal polymerization
WO2017093530A1 (fr) * 2015-12-02 2017-06-08 Adolphe Merkle Institute, University Of Fribourg Matériaux polymères remplis de liquide à conversion optiquement ascendante

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035527A (ja) * 2012-08-10 2014-02-24 Konica Minolta Inc 有機感光体およびその製造方法
CN103483495B (zh) 2013-09-16 2016-08-17 复旦大学 基于三线态-三线态湮灭上转换发光的光致形变高分子材料
JP2015122470A (ja) * 2013-11-19 2015-07-02 シャープ株式会社 液体アップコンヴァージョンマイクロカプセルの製造方法、液体アップコンヴァージョンマイクロカプセルを用いたアップコンヴァージョン層を有する太陽電池モジュールおよび表示装置
WO2015103352A2 (fr) * 2013-12-31 2015-07-09 Dentsply International Inc. Compositions dentaires comprenant des luminophores de conversion ascendante et procédés d'utilisation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2567668A1 (fr) * 1984-07-16 1986-01-17 Cilas Alcatel Dispositif pour realiser un modele de piece industrielle
EP0535828A1 (fr) * 1991-09-30 1993-04-07 Zeneca Limited Procédé photostéréolithographique
US8197722B2 (en) 1996-11-12 2012-06-12 The California Institute Of Technology Two-photon or higher-order absorbing optical materials and methods of use
US20040067451A1 (en) 2000-06-15 2004-04-08 Devoe Robert J. Multiphoton photochemical process and articles preparable thereby
US20040198857A1 (en) 2003-04-01 2004-10-07 Dejneka Matthew J. Photochemical reactions using multi-photon upconverting fluorescent inorganic materials
US8846160B2 (en) 2008-12-05 2014-09-30 3M Innovative Properties Company Three-dimensional articles using nonlinear thermal polymerization
US20110021653A1 (en) 2009-07-22 2011-01-27 Lixin Zheng Hydrogel compatible two-photon initiation system
WO2017093530A1 (fr) * 2015-12-02 2017-06-08 Adolphe Merkle Institute, University Of Fribourg Matériaux polymères remplis de liquide à conversion optiquement ascendante

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANGELO MONGUZZI ET AL: "High Efficiency Up-Converting Single Phase Elastomers for Photon Managing Applications", ADVANCED ENERGY MATERIALS, vol. 3, no. 5, 1 May 2013 (2013-05-01), DE, pages 680 - 686, XP055461441, ISSN: 1614-6832, DOI: 10.1002/aenm.201200897 *
GUNEY, M. G.; G.K. FEDDER: "Estimation of line dimensions in 3D direct laser writing lithography", JOURNAL OF MICROMECHANICS AND MICROENGINEERING, vol. 26.10, 2016, pages 105011
JI-HWAN KANG ET AL: "Low-Threshold Photon Upconversion Capsules Obtained by Photoinduced Interfacial Polymerization", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 51, no. 47, 17 October 2012 (2012-10-17), pages 11841 - 11844, XP055476546, ISSN: 1433-7851, DOI: 10.1002/anie.201205540 *
JUN-ICHI KATO ET AL.: "Multiple-spot parallel processing for laser micronanofabrication", APPLIED PHYSICS LETTERS, vol. 86, 2005, pages 044102
M. THIEL; J. FISCHER; G. V. FREYMANN; M. WEGENER: "Direct laser writing of three-dimensional submicron structures using a continuous-wave laser at 532mm", APPL. PHYS. LETT., vol. 97, 2010, pages 221102, XP012137893, DOI: doi:10.1063/1.3521464
NELSON, GARRETT ET AL.: "Three-dimensional-printed gas dynamic virtual nozzles for x-ray laser sample delivery", OPTICS EXPRESS, vol. 24.14, 2016, pages 11515 - 11530

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154895A1 (fr) * 2020-01-28 2021-08-05 Quadratic 3D, Inc. Impression tridimensionnelle (3d) comprenant une photopolymérisation par conversion ascendante
EP3909748A1 (fr) 2020-05-12 2021-11-17 TIGER Coatings GmbH & Co. KG Matériau thermodurcissant destiné à être utilisé dans une fabrication additive
WO2021229006A1 (fr) 2020-05-12 2021-11-18 Tiger Coatings Gmbh & Co. Kg Matériau thermodurcissable destiné à être utilisé dans la fabrication additive
WO2021247930A1 (fr) * 2020-06-03 2021-12-09 Quadratic 3D, Inc. Procédés d'impression volumétrique en trois dimensions comprenant une feuille de lumière et systèmes
WO2021247926A1 (fr) * 2020-06-03 2021-12-09 Quadratic 3D, Inc. Procédés d'impression tridimensionnelle volumétrique
WO2022008673A1 (fr) 2020-07-09 2022-01-13 Universite Claude Bernard Lyon 1 Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3d associé
FR3112345A1 (fr) 2020-07-09 2022-01-14 Universite Claude Bernard Lyon 1 Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3D associé.
FR3119562A1 (fr) 2021-02-09 2022-08-12 Universite Claude Bernard Lyon 1 Procédé d'impression d'un objet à imprimer, et imprimante adaptée pour la mise en oeuvre du procédé.
WO2022171704A1 (fr) 2021-02-09 2022-08-18 Universite Claude Bernard Lyon 1 Procédé d'impression d'un objet 3d dans une composition photoréactive, et imprimante adaptée pour la mise en oeuvre du procédé.
EP4094942A1 (fr) 2021-05-26 2022-11-30 TIGER Coatings GmbH & Co. KG Composition durable par rayonnement pour une fabrication additive adaptée aux applications électroniques
WO2022248575A1 (fr) 2021-05-26 2022-12-01 Tiger Coatings Gmbh & Co. Kg Composition durcissable par rayonnement pour la fabrication additive appropriée pour des applications électroniques

Also Published As

Publication number Publication date
FR3069862B1 (fr) 2019-11-01
US20210189156A1 (en) 2021-06-24
JP2021502466A (ja) 2021-01-28
US11629203B2 (en) 2023-04-18
FR3069862A1 (fr) 2019-02-08
KR20200037815A (ko) 2020-04-09
EP3661974A1 (fr) 2020-06-10
CN111164108A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
FR3069862B1 (fr) Composition photopolymerisable, materiau obtenu par polymerisation d'une telle composition et procede d'impression 3d utilisant une telle composition
Forman et al. Radical diffusion limits to photoinhibited superresolution lithography
EP3887480B1 (fr) Nanocapsules de conversion ascendante de photons pour l'impression 3d et d'autres applications
JP2023520027A (ja) 高スループットボリューメトリック3d印刷のためのシステムおよび方法
EP3774933A1 (fr) Procédé pour la réalisation d'un objet tridimensionnel par un processus de photopolymérisation multi-photonique et dispositif associé
EP2206115A1 (fr) Appareil et procédés pour le contrôle de seuil de la photopolymérisation pour le stockage de données holographiques au moyen d'au moins deux longueurs d'onde
US7964333B1 (en) FRET-based two photon three dimensional optical data storage
RU2689970C1 (ru) Способ создания активной среды на основе полупроводниковых люминесцентных нанокристаллов в полимерной матрице
WO2022008673A1 (fr) Molécule amorceur pour une réaction d'absorption non linéaire, composition photopolymérisable activable par absorption biphotonique, et procédé d'impression 3d associé
EP3286912B1 (fr) Matériaux nanocomposites hybrides, système de balayage laser, et leur application en projection d'imagerie volumétrique
WO2022171704A1 (fr) Procédé d'impression d'un objet 3d dans une composition photoréactive, et imprimante adaptée pour la mise en oeuvre du procédé.
Gallego et al. Monomer diffusion in sustainable photopolymers for diffractive optics applications
FR2697646A1 (fr) Procédé pour la préparation de compositions photosensibles à base de résines polymérisables et dispositif pour l'exécution de ce procédé.
Ortuño et al. Pyrromethene dye and non-redox initiator system in a hydrophilic binder photopolymer
JP2007231178A (ja) 光重合性組成物及び光重合方法
CN117055297A (zh) 一种基于光学/化学三维暗斑的超分辨激光直写方法和装置
Pacheco et al. PVA/Acridine Orange Recording Material for Holography
FR2735717A1 (fr) Procede de fabrication de plaques photopolymeres par double irradiation par le dessous
Yu et al. Quantum Dots Facilitate 3D Two‐Photon Laser Lithography
RU2244335C2 (ru) Фотополимеризующая композиция для лазерной стереолитографии видимого диапазона
WO2005105662A2 (fr) Procede de fabrication de structures periodiques bi-dimensionnelles, en milieu polymere
CH703675B1 (fr) Procédé de réalisation d'agrégats J.
Katarkevich et al. Flavin-mononucleotide-doped jelly-like gelatin as a new fully biological photosensitive medium for holography and biophotonics applications
Belfield et al. Photosensitive polymeric media for two-photon-based optical data storage
CN114895535A (zh) 一种基于双步吸收效应与sted原理的超分辨光刻方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18752608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020528515

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207005599

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018752608

Country of ref document: EP

Effective date: 20200302