WO2019021845A1 - 校正装置、エンコーダ装置、駆動装置、ステージ装置、ロボット装置、エンコーダ装置の製造方法、及び校正プログラム - Google Patents

校正装置、エンコーダ装置、駆動装置、ステージ装置、ロボット装置、エンコーダ装置の製造方法、及び校正プログラム Download PDF

Info

Publication number
WO2019021845A1
WO2019021845A1 PCT/JP2018/026343 JP2018026343W WO2019021845A1 WO 2019021845 A1 WO2019021845 A1 WO 2019021845A1 JP 2018026343 W JP2018026343 W JP 2018026343W WO 2019021845 A1 WO2019021845 A1 WO 2019021845A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
unit
detection unit
detection signal
calibration
Prior art date
Application number
PCT/JP2018/026343
Other languages
English (en)
French (fr)
Inventor
昭宏 渡邉
政久 高崎
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to US16/634,065 priority Critical patent/US11579001B2/en
Priority to CN201880048937.2A priority patent/CN110959101B/zh
Priority to JP2019532506A priority patent/JP7173010B2/ja
Publication of WO2019021845A1 publication Critical patent/WO2019021845A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24485Error correction using other sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2449Error correction using hard-stored calibration data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales

Definitions

  • the present invention relates to a calibration device, an encoder device, a drive device, a stage device, a robot device, a method of manufacturing an encoder device, and a calibration program.
  • a rotary encoder that detects rotational position information is mounted on various devices such as a drive device (for example, a motor device) (for example, see Patent Document 1 below).
  • a technique for obtaining a calibration value of an error in an angle detector such as a rotary encoder has been proposed.
  • a storage unit for storing error information output from the calibration device of the first aspect, a scale attached to the second rotating body, and a detection unit disposed for the scale And a correction unit that corrects the rotational position information of the second rotating body obtained from the detection result of the detection unit based on the error information stored in the storage unit.
  • the first detection unit, the second detection unit, and the third detection unit arranged with respect to the scale attached to the second rotating body, and the first detection unit and the second detection Calculation unit for calculating the relative position between the first detection unit and the second detection unit based on detection signals obtained from each of the unit and the third detection unit, the relative position calculated by the position calculation unit, and the detection And an error calculating unit configured to calculate error information with respect to rotational position information of the second rotating body based on the signal.
  • the scale attached to the rotation shaft, the first detection unit that detects the scale and outputs the first detection signal, and the first detection signal and the first detection unit are different 2 Error information calculated using the relative position between the first detection unit and at least one of the two detection units calculated based on the second detection signal and the third detection signal that one detection unit detects and outputs the scale
  • An encoder device includes: a storage unit that stores the correction information; and a correction unit that corrects rotational position information of a rotation shaft obtained from a first detection signal using error information.
  • an encoder device for calculating rotational position information of a rotating shaft, the scale attached to the rotating shaft and the substrate being fixed, detecting the scale and outputting a first detection signal And a processing unit that calculates rotational position information based on the first detection signal, and a correction unit that corrects the rotational position information using the error information stored in the storage unit.
  • the two calibration detection units are attached to the substrate, and the error information includes the first detection signal and the second detection signal and the third detection signal output by the two calibration detection units.
  • An encoder device is provided that is calculated based on the relative position between the calibration detection unit and the at least one calibration detection unit, which is calculated using the detection signal.
  • a drive device comprising the encoder device of the second aspect or the third aspect, and a drive unit for supplying a driving force to the second rotating body.
  • a drive device comprising the encoder device of the fourth aspect or the fifth aspect, and a drive unit for supplying a drive force to the rotation shaft.
  • a stage device comprising the drive device of the sixth or seventh aspect and a stage moved by the drive device.
  • a robot apparatus comprising the drive device of the sixth aspect or the seventh aspect, and an arm moved by the drive device.
  • the first detection unit, the second detection unit, and the third detection unit are arranged on the scale attached to the rotating body, based on detection signals obtained from each of the first detection unit, the second detection unit, and the third detection unit. Calculating the relative position between the first detection unit and the second detection unit; calculating error information with respect to the rotational position information of the rotating body based on the calculated relative position and the detection signal; And storing the data in a storage unit of the device.
  • the eleventh aspect of the present invention based on the detection signal obtained from each of the first detection unit, the second detection unit, and the third detection unit arranged to the scale attached to the rotating body in the computer Calculating the relative position between the first detection unit and the second detection unit, and calculating error information with respect to the rotational position information of the rotating body based on the calculated relative position and the detection signal.
  • a calibration program to be run is provided.
  • the first embodiment will be described.
  • 1 and 2 are diagrams showing an encoder device and a calibration device according to a first embodiment.
  • the encoder device EC detects rotational position information of a rotating body to be measured.
  • the rotational position information includes one or both of multi-rotation information and an angular position within one rotation.
  • the multi-rotation information is information indicating the number of rotations (for example, 1 rotation, 2 rotations).
  • the angular position is information indicating a rotation angle of less than one rotation (e.g., 30 [deg], ⁇ [rad]).
  • the calibration device 1 executes a calibration process on the encoder device EC.
  • the calibration device 1 is used, for example, when manufacturing the encoder device EC.
  • the calibration device 1 calculates (generates) error information used to correct the detection result of the encoder device EC in the calibration process.
  • FIG. 1 shows the operation of the encoder device EC in the calibration process and the operation of the calibration device 1.
  • FIG. 2 shows the operation of the encoder device EC after the calibration process.
  • the encoder device EC when the calibration device 1 performs the calibration process, the encoder device EC is attached to the rotating body SF1. In the calibration process, the encoder device EC detects the scale S attached to the rotating body SF1. The calibration device 1 calculates error information with respect to rotational position information of the rotating body SF1 based on a detection signal obtained by the encoder device EC detecting the scale S. The calibration device 1 stores the calculated error information in the encoder device EC to be calibrated. The encoder device EC is removed from the calibration device 1 after the above-described calibration process is completed.
  • the encoder device EC after the calibration process detects, for example, rotational position information of the rotating body SF2.
  • the rotating body SF2 may be the same as the rotating body SF1 used for the calibration process, or may be a rotating body different from the rotating body SF1.
  • the encoder device EC may be removed from the rotating body SF1 (first rotating body) after the calibration process, and attached to the rotating body SF2 (second rotating body) to be detected that is different from the rotating body SF1.
  • the encoder device EC after the calibration process corrects the detected rotational position information of the rotating body SF2 based on the error information stored in the calibration process. Then, the encoder device EC outputs the corrected rotational position information to the outside.
  • each part of the encoder apparatus EC and each part of the calibration device 1 will be described.
  • the encoder device EC includes a scale S, a detection unit 2, a processing unit 3, a storage unit 4, and a correction unit 5.
  • the scale S is attached to the calibration rotating body SF1 when the calibration device 1 performs the calibration process.
  • the scale S is disposed to face at least a part of the detection unit 2 and rotates together with the rotating body SF1.
  • the detection unit 2 detects the scale S.
  • the detection unit 2 includes a first detection unit 11, a second detection unit 12, and a third detection unit 13.
  • the encoder device EC includes the first head 6, the second head 7, and the third head 8.
  • Each of the first head 6, the second head 7, and the third head 8 includes, for example, an encoder head (detection head).
  • the first detection unit 11 is provided to the first head 6.
  • the second detection unit 12 is provided to the second head 7.
  • the third detection unit 13 is provided to the third head 8.
  • the detection unit 2 (a plurality of detection heads) is fixed to an encoder main body described later and disposed.
  • the first head 6, the second head 7, and the third head 8 are disposed to face the scale S.
  • the scale S rotates relative to each of the first head 6, the second head 7, and the third head 8 by the rotation of the rotating body SF1.
  • the first head 6, the second head 7 and the third head 8 each detect the pattern of the scale S.
  • the first head 6 is, for example, a detection head for calibration (a detection head for calibration (detection unit)).
  • the second head 7 and the third head 8 are each a detection head for calibration.
  • the calibration detection head acquires information used in the calibration process for the first head 6.
  • the first head 6 is used to detect rotational position information of the second rotating body (eg, the rotating body SF2 of FIG. 2) after the calibration process. Note that one or both of the second head 7 and the third head 8 may be used to detect the rotational position of the second rotating body, or may not be used to detect the rotational position of the second rotating body .
  • FIG. 3 is a view showing a scale and a detection unit according to the first embodiment.
  • an XYZ orthogonal coordinate system shown in FIG. In this XYZ orthogonal coordinate system, the Z direction is a direction parallel to the rotation axis AX of the rotating body SF1. The X direction and the Y direction are directions perpendicular to the Z direction, respectively.
  • FIG. 3A is a view seen from the direction of the rotation axis AX (axial direction, Z direction). In the following description, the state viewed from the direction of the rotation axis is appropriately referred to as the state viewed in the rotation axis direction.
  • FIG. 3B is a view as seen from a direction (radial direction) perpendicular to the rotating body SF1.
  • the encoder device EC includes an optical encoder.
  • the encoder device EC optically detects the scale S.
  • the scale S is, for example, a disk-like or flange-like member.
  • the scale S includes a reflective or transmissive incremental pattern INC and an absolute pattern ABS.
  • the incremental pattern INC and the absolute pattern ABS are respectively annular.
  • the incremental pattern INC and the absolute pattern ABS are arranged concentrically with respect to the center of the scale S on the XY plane.
  • the encoder device EC may be configured to include a magnetic encoder.
  • the first head 6, the second head 7, and the third head 8 are disposed around the rotating body SF1.
  • the first head 6, the second head 7 and the third head 8 are arranged to face the incremental pattern INC and the absolute pattern ABS, respectively.
  • the first head 6, the second head 7 and the third head 8 are arranged such that the distances from the rotating body SF1 are substantially the same.
  • the first head 6 includes an irradiation unit 10 a and a first detection unit 11.
  • the irradiating unit 10a irradiates light to each of the incremental pattern INC and the absolute pattern ABS.
  • the first detection unit 11 includes a sensor unit 11a and a sensor unit 11b.
  • the sensor unit 11a and the sensor unit 11b each include a light receiving element (for example, a photodiode, a photoelectric conversion element, a light receiving unit) that detects light.
  • the sensor unit 11a detects light from the incremental pattern INC.
  • the sensor unit 11 b detects light from the absolute pattern ABS.
  • the second head 7 and the third head 8 each have the same configuration as the first head 6.
  • the second head 7 includes an irradiation unit 10 b and a second detection unit 12.
  • the third head 8 includes an irradiation unit 10 c and a third detection unit 13.
  • the irradiation part 10b and the irradiation part 10c are respectively the same as the above-mentioned irradiation part 10a.
  • the irradiating unit 10 b and the irradiating unit 10 c respectively irradiate light to the incremental pattern INC and the absolute pattern ABS.
  • Each of the second detection unit 12 and the third detection unit 13 has the same configuration as that of the first detection unit 11.
  • the second detection unit 12 and the third detection unit 13 respectively detect the light from the incremental pattern INC and the light from the absolute pattern ABS.
  • the first head 6, the second head 7 and the third head 8 in the present embodiment are each a reflection type detection head.
  • the first head 6, the second head 7 and the third head 8 respectively detect the light reflected by the incremental pattern INC and the light reflected by the absolute pattern ABS.
  • the first head 6 may be a transmissive detection head. In this case, the first head 6 detects each of the light transmitted through the incremental pattern INC and the light transmitted through the absolute pattern ABS. Further, one or both of the second head 7 and the third head 8 may be a transmission type detection head.
  • the first detection unit 11, the second detection unit 12, and the third detection unit 13 are each connected to the processing unit 3.
  • the first detection unit 11 outputs a detection signal S1a to the processing unit 3 as a detection result of detection of the scale S.
  • the second detection unit 12 outputs a detection signal S2a to the processing unit 3 as a detection result of detection of the scale S.
  • the third detection unit 13 outputs a detection signal S3a to the processing unit 3 as a detection result of detection of the scale S.
  • the processing unit 3 processes detection signals (detection signal S1a, detection signal S2a, detection signal S3a) obtained from the detection unit 2.
  • the processing unit 3 detects a rotating body to be detected (the rotating body SF1 in FIG. 1, the rotating body SF2 in FIG. 2) based on the detection signals (detection signal S1a, detection signal S2a, detection signal S3a) obtained from the detection unit 2.
  • the processing unit 3 detects angular position information of the first resolution using a result of detection of light from the absolute pattern ABS.
  • the processing unit 3 performs angular position information of the first resolution by using the result of detection of light from the incremental pattern INC, thereby performing angular position information of the second resolution higher than the first resolution.
  • the processing unit 3 calculates rotational position information S1b of the rotating body SF1 based on the detection signal S1a obtained from the first detection unit 11.
  • the rotational position information S1b is a detection signal obtained from the first detection unit 11.
  • the processing unit 3 also calculates rotational position information S2b of the rotating body SF1 based on the detection signal S2a obtained from the second detection unit 12.
  • the rotational position information S2b is a detection signal obtained from the second detection unit 12.
  • the processing unit 3 also calculates rotational position information S3b of the rotating body SF1 based on the detection signal S3a obtained from the third detection unit 13.
  • the rotational position information S3b is a detection signal obtained from the third detection unit 13.
  • the processing unit 3 outputs the calculated rotational position information S1b, rotational position information S2b, and rotational position information S3b to the calibration device 1, respectively.
  • the calibration apparatus 1 is based on detection signals (eg, rotational position information S1b, rotational position information S2b, rotational position information S3b) obtained from each of the first detection unit 11, the second detection unit 12, and the third detection unit 13. To calculate error information.
  • the calibration device 1 outputs the calculated error information to the encoder device EC.
  • the storage unit 4 of the encoder device EC stores error information output from the calibration device 1. Each part of the calibration device 1 will be described later.
  • the encoder device EC is mounted on, for example, a drive device MTR (rotary body SF2) shown in FIG. 2 after the calibration process.
  • the driving device MTR is, for example, an electric motor.
  • the drive device MTR includes a rotating body SF2, a drive unit MD, and a control unit MC.
  • the rotating body SF2 includes, for example, an output shaft (e.g., a shaft) in the drive device MTR.
  • the rotating body SF2 may be a working shaft connected to the output shaft of the drive device MTR.
  • the drive unit MD includes, for example, an armature and a stator, and rotates the rotating body SF2.
  • the control unit MC controls the drive unit MD such that at least one of the angular position, the angular velocity, and the angular acceleration of the rotating body SF2 approaches a target value.
  • the scale S of the encoder device EC is attached to the rotating body SF2.
  • the first detection unit 11 detects the scale S that rotates with the rotating body SF2.
  • the first detection unit 11 outputs a detection signal S1a to the processing unit 3 as a detection result of detection of the scale S.
  • the processing unit 3 calculates rotational position information S1b of the rotating body SF2 based on the detection signal S1a.
  • the processing unit 3 outputs the calculated rotational position information S1b to the correction unit 5.
  • the rotational position information calculated by the processing unit 3 is appropriately referred to as first rotational position information.
  • the first rotational position information is rotational position information before correction
  • the correction unit 5 corrects the first rotation position information (for example, rotation position information S1 b) output from the processing unit 3 based on the error information stored in the storage unit 4 (self-calibration process). For example, the correction unit 5 calculates (generates) second rotational position information based on the first rotational position information (for example, rotational position information S1 b) and the error information.
  • the second rotational position information is rotational position information after correction.
  • the correction unit 5 outputs the calculated second rotational position information (rotational position information after correction).
  • the control unit MC of the drive device MTR controls the drive unit MD based on the second rotational position information.
  • the first rotation position information calculated by the processing unit 3 is, for example, a read value (measurement value) based on the detection result of the detection unit 2.
  • a periodic error a periodic error component due to rotation
  • a position error eg, an assembly error
  • the manufacturing error of the scale S includes, for example, distortion of the shape of the absolute pattern ABS or the incremental pattern INC, or a positional deviation on the absolute pattern ABS or the incremental pattern INC scale S.
  • the above error information includes calibration values for readings.
  • the calibration value includes, for example, a value (estimated value of true value) estimated as the true value for the read value. For example, if the reading is 89 ° and the calibration value for this reading is 90 °, the above error information is a combination of the reading (eg, 89 °) and the calibration (eg, 90 °). Contains the information you When the read value (for example, 89 °) is input, the correction unit 5 of the encoder device EC refers to the error information and outputs the calibration value (for example, 90 °) with respect to the read value to obtain the rotational position. Correct the information.
  • the above error information may include information of an error between the calibration value and the read value. For example, if the reading is 89 ° and the calibration value for this reading is 90 °, then the error for the reading is -1 °.
  • the above-mentioned error information may include information in which a reading (for example, 89 °) and an error (for example, -1 °) are paired.
  • the correction unit 5 of the encoder device EC refers to the error information and subtracts the error (e.g., -1 °) from the read value from the read value (e.g. , 89 °-(-1 °)) to correct the rotational position information.
  • the above error information may include information on the correction amount for the read value. For example, if the reading is 89 ° and the calibration value for this reading is 90 °, then the amount of correction for the reading is + 1 °.
  • the above-mentioned error information may include information in which a read value (for example, 89 °) and a correction amount (for example, + 1 °) are paired.
  • the correction unit 5 of the encoder device EC refers to the error information and adds the correction amount (for example, + 1 °) to the read value to the read value (for example , 89 ° + (+ 1 °) may be performed to correct the rotational position information.
  • the error information as described above is calculated, for example, by a method using an equal division averaging method.
  • detection results of detection of an object from a plurality of detection positions and a plurality of detection positions are used to calculate error information.
  • error information is calculated using preset values set as a plurality of detection positions, for example, the accuracy of the error information is lowered due to an error between an actual detection position and the setting value.
  • the cost of alignment increases.
  • the calibration device 1 detects the relative detection position in the detection unit 2 (the angular position centered on the rotation axis AX of the rotation body in the direction of the rotation axis of the rotation body (eg, the first detection unit and the second detection unit) The position based on the angle with the detection unit) is calculated, and error information is generated using the calculated detection position (for example, relative positions in two detection units). Since the calibration device 1 uses the actual detection position calculated by the position calculation unit 15 even when the detection position of the detection unit 2 includes an error with respect to the set value, for example, high-precision error information can be generated. is there. Hereinafter, each part of the calibration device 1 will be described with reference to FIG.
  • the calibration device 1 includes a position calculation unit 15 and an error calculation unit 16.
  • the position calculation unit 15 generates the first detection unit 11 and the first detection unit 11 based on detection signals (in this case, three detection signals) obtained from each of the first detection unit 11, the second detection unit 12, and the third detection unit 13.
  • the relative position with respect to the second detection unit 12 is calculated (a calculation process of the relative position is performed).
  • the position calculation unit 15 uses, for example, rotational position information S1b, rotational position information S2b, and rotational position information S3b as detection signals obtained from each of the first detection unit 11, the second detection unit 12, and the third detection unit 13. Use The calculation process of the relative position will be described later with reference to FIG. 4 and equations (1) to (21) and the like.
  • the position calculation unit 15 outputs the calculated relative position to the error calculation unit 16.
  • the error calculation unit 16 calculates error information with respect to rotational position information of the rotating body SF1 based on the relative position calculated by the position calculation unit 15 and the detection signal obtained from the detection unit 2 (performs calculation processing of error information) To do).
  • the error calculating unit 16 uses, for example, at least a part of the rotational position information S1b, the rotational position information S2b, and the rotational position information S3b as a detection signal obtained from the detection unit 2.
  • the error calculation unit 16 outputs the calculated error information.
  • the calibration device 1 stores the error information output from the error calculation unit 16 in the storage unit 4 of the encoder device EC.
  • FIG. 4 is a diagram showing parameters used in the relative position calculation process according to the first embodiment.
  • reference symbol P1 is a position at which the first detection unit 11 is disposed in the rotational direction of the scale S or the axial direction of the rotation axis AX, and a detection position (a region to be detected) by the first detection unit 11 It is.
  • the first detection unit 11 detects, for example, light from the detection position P1 on the scale S.
  • the first detection unit 11 detects an image of a portion of the detection position P1 on the scale S.
  • reference symbol P2 is a position at which the second detection unit 12 is disposed in the rotational direction of the scale S or the axial direction of the rotation axis AX, and is a detection position (area to be detected) by the second detection unit 12. .
  • the second detection unit 12 detects, for example, the light from the detection position P2 on the scale S. For example, the second detection unit 12 detects an image of a portion of the detection position P1 on the scale S.
  • a symbol P3 is a position at which the third detection unit 13 is disposed in the rotational direction of the scale S or the axial direction of the rotation axis AX, and is a detection position (area to be detected) by the third detection unit 13. .
  • the third detection unit 13 detects, for example, light from the detection position P3 on the scale S. For example, the third detection unit 13 detects an image of a portion of the detection position P3 on the scale S.
  • symbol (phi) 1 is an angle which the 1st detection part 11 and the 2nd detection part 12 which were shown to FIG. 3A make about the rotation axis AX of rotary body SF1.
  • the angle ⁇ 1 is a difference (rotational angle) between the angular position of the first detection unit 11 and the angular position of the second detection unit 12 in the rotation direction of the scale S.
  • the angle ⁇ 1 is a parameter indicating the relative position (relative angular position) between the first detection unit 11 and the second detection unit 12.
  • the angle ⁇ 1 is formed, for example, by a line L1 connecting the rotation axis AX and the detection position P1 and a line L2 connecting the rotation axis AX and the detection position P2 when viewed in the rotational direction of the scale S or the axial direction of the rotation axis AX. It is an angle.
  • the line L1 is a line connecting, for example, a predetermined point (e.g., the center) in an area (e.g., the detection position P1) on the scale S to be detected by the first detection unit 11 and the rotation axis AX on the scale S It is.
  • the line L2 is, for example, a predetermined point (eg, center) in an area (eg, detection position P2) on the scale S to be detected by the second detection unit 12 and the rotation axis AX on the scale S It is a connecting line.
  • a code ⁇ 2 is an angle formed by the first detection unit 11 and the third detection unit 13 shown in FIG. 3A about the rotation axis AX of the rotating body SF1.
  • the angle ⁇ 2 is a difference (rotational angle) between the angular position of the first detection unit 11 and the angular position of the third detection unit 13 in the rotation direction of the scale S.
  • the angle ⁇ 2 is a parameter indicating the relative position (relative angular position) of the first detection unit 11 and the third detection unit 13.
  • the angle ⁇ 2 is, for example, an angle formed by the line L1 and a line L3 connecting the rotation axis AX and the detection position P3 in the rotational direction of the scale S or the axial direction of the rotation axis AX.
  • the line L3 is, for example, a line connecting a predetermined point (e.g., the center) in an area (e.g., detection position P3) on the scale S to be detected by the third detection unit 13 and the rotation axis AX on the scale S It is.
  • the read value (for example, rotational position information S1b, measured value) of the angular position obtained from the first detection unit 11 is represented by f ( ⁇ ) [rad].
  • is the angular position of the detection position P1 on the circumference centered on the rotation axis AX.
  • is, for example, a value estimated to be a true value, and a calibration target value (calibration value).
  • the read value (for example, rotational position information S2b, measured value) of the angular position obtained from the second detection unit 12 is represented by f ( ⁇ + ⁇ 1) [rad].
  • a read value (for example, rotational position information S3b, measured value) of the angular position obtained from the third detection unit 13 is represented by f ( ⁇ + ⁇ 2) [rad].
  • f ( ⁇ ), f ( ⁇ + ⁇ 1), and f ( ⁇ + ⁇ 2) are periodic functions each having a period of 2 ⁇ [rad].
  • f ((theta)) is represented by following formula (1) using a Fourier series.
  • n is a natural number (1, 2, 3,...) Representing the order of harmonics.
  • An is the amplitude of the n-th harmonic, and ⁇ n is the initial phase of the n-th harmonic.
  • N is the number of data points (e.g., the number of scale S scales).
  • f ( ⁇ + ⁇ 1) is expressed by the following equation (2) using a Fourier series.
  • f ( ⁇ + ⁇ 2) is expressed by the following equation (3) using a Fourier series.
  • the position calculation unit 15 shown in FIG. 1 calculates the relative position (for example, ⁇ 1 in FIG. 4) between the first detection unit 11 and the second detection unit 12 in the calculation process of the relative processing.
  • the position calculation unit 15 calculates the difference between the detection signal (eg, rotational position information S1b) obtained from the first detection unit 11 and the detection signal (eg, rotational position information S2b) obtained from the second detection unit 12, and the first
  • the relative position is calculated based on the difference between the detection signal (for example, rotational position information S1b) obtained from the detection unit 11 and the detection signal (for example, rotational position information S3b) obtained from the third detection unit 13.
  • the difference between the rotational position information S1b and the rotational position information S2b is represented by f ( ⁇ + ⁇ 1) ⁇ f ( ⁇ ).
  • f ( ⁇ ) will be referred to as a reference waveform (reference signal, reference curve) as appropriate.
  • f ( ⁇ + ⁇ 1) ⁇ f ( ⁇ ) is appropriately referred to as a difference waveform (difference signal, difference curve) regarding the second detection unit 12.
  • the differential waveform relating to the second detection unit 12 is represented by superposition of sine waves (first to n-th harmonics).
  • the following equation (5) can be obtained by modifying the equation in the brackets of equation (4).
  • the amplitude of the n-th harmonic in the differential waveform related to the second detection unit 12 is Bn1.
  • Bn1 is represented by the following formula (6).
  • ⁇ n1 is the difference between the phase of the n th harmonic relative to the second detection unit 12 and n ⁇ .
  • ⁇ n1 is represented by the following formula (7).
  • the difference between the rotational position information S1b and the rotational position information S3b is represented by f ( ⁇ + ⁇ 2) ⁇ f ( ⁇ ).
  • f ( ⁇ + ⁇ 2) ⁇ f ( ⁇ ) is appropriately referred to as a difference waveform (difference signal, difference curve) regarding the third detection unit 13.
  • the differential waveform relating to the third detection unit 13 is obtained by taking the difference between Equation (1) and Equation (3) above.
  • the difference waveform related to the third detection unit 13 is modified in the same manner as the difference waveform related to the second detection unit 12, and the amplitude of the n-th harmonic in the difference waveform related to the third detection unit 13 is Bn2.
  • Bn2 is represented by the following formula (8).
  • ⁇ n2 is the difference between the phase of the n-th harmonic with respect to the third detection unit 13 and n ⁇ .
  • ⁇ n2 is represented by the following formula (9).
  • the angle ⁇ 1 indicating the relative position between the first detection unit 11 and the second detection unit 12 and the angle ⁇ 2 indicating the relative position between the first detection unit 11 and the third detection unit 13 are the above equation (11) and the equation Calculated by simultaneously solving (13) and solving.
  • ⁇ 1 is represented by the following equation (19).
  • the angle ⁇ 1 can be calculated (specifiable) with high accuracy.
  • n is a natural number (1, 2,...) In this embodiment, but n may include 0.
  • the zeroth-order component may be used to calculate the angle ⁇ 1.
  • the scale S includes the incremental pattern INC and does not include the absolute pattern ABS, the angle is measured using the zero-order component when the scale S is at a predetermined angular position (eg, reference position, 0 °, origin) It is also possible to calculate ⁇ 1.
  • the position calculation unit 15 shown in FIG. 1 also calculates the relative position (for example, the angle ⁇ 2 in FIG. 4) between the first detection unit 11 and the third detection unit 13.
  • the solution of ⁇ 2 will be described below. If ⁇ 1 is eliminated from the equation (11) using the above equation (12), the following equation (22) is obtained.
  • Err is an error curve that represents the difference (error) between the measured value f ( ⁇ ) and the true value ⁇ .
  • the true value ⁇ is calculated by the following equation (29).
  • the error calculation unit 16 shown in FIG. 1 calculates ⁇ (calibration value) using f ( ⁇ ) and the calculated Err (error).
  • the error calculation unit 16 generates, for example, information in which f ( ⁇ ) and ⁇ are paired as error information.
  • the error calculating unit 16 calculates An and ⁇ n based on ⁇ 1.
  • the error calculating unit 16 calculates Err using An and ⁇ n based on ⁇ 1. In the following description, Err calculated based on ⁇ 1 is appropriately described as Err1.
  • the error calculation unit 16 calculates ⁇ using f ( ⁇ ) and Err1. In the following description, ⁇ calculated based on ⁇ 1 is appropriately described as ⁇ 1. The error calculating unit 16 generates information in which f ( ⁇ ) and ⁇ 1 are paired as first error information.
  • Err can also be calculated from ⁇ 2.
  • the error calculating unit 16 calculates An and ⁇ n based on ⁇ 2.
  • the error calculating unit 16 calculates Err using An and ⁇ n based on ⁇ 2.
  • Err calculated based on ⁇ 2 is appropriately described as Err2.
  • the error calculating unit 16 calculates ⁇ using f ( ⁇ ) and Err2.
  • ⁇ calculated based on ⁇ 2 will be appropriately described as ⁇ 2.
  • the error calculation unit 16 generates information in which f ( ⁇ ) and ⁇ 2 are paired as second error information.
  • the error calculation unit 16 calculates error information based on the first error information and the second error information. For example, the error calculator 16 calculates the amplitude of the difference between the first detection signal (eg, rotational position information S1b, f ( ⁇ )) and the second detection signal (eg, rotational position information S2b, f ( ⁇ + ⁇ 1)), and The error information is calculated based on the amplitude of the difference between the first detection signal and the third detection signal (eg, rotational position information S3b, f ( ⁇ + ⁇ 2)). For example, the difference between the first detection signal and the second detection signal is f ( ⁇ + ⁇ 1) ⁇ f ( ⁇ ), and the amplitude thereof is Bn1. Further, the difference between the first detection signal and the third detection signal is f ( ⁇ + ⁇ 2) ⁇ f ( ⁇ ), and the amplitude thereof is Bn2.
  • the difference between the first detection signal and the third detection signal is f ( ⁇ + ⁇ 2) ⁇ f ( ⁇ ), and the amplitude thereof is Bn2.
  • the error calculation unit 16 may select ⁇ 1 or ⁇ 2 as ⁇ based on the magnitude relationship between Bn1 and Bn2. For example, the error calculation unit 16 may compare Bn1 and Bn2 and select (adopt) ⁇ 1 corresponding to Bn1 as ⁇ when Bn1 has a larger value. Further, the error calculation unit 16 may calculate an average value (for example, an addition average value, a weighted average value) of ⁇ 1 and ⁇ 2 as ⁇ . For example, the error calculating unit 16 may adopt ( ⁇ 1 + ⁇ 2) / 2, which is the above-mentioned average value, as ⁇ . Further, the error calculating unit 16 may calculate ⁇ by weighting using Bn1 and Bn2. For example, the error calculating unit 16 may adopt the above-described weighted average value (Bn1 ⁇ ⁇ 1 + Bn2 ⁇ ⁇ 2) / (Bn1 + Bn2) as ⁇ .
  • the error calculation unit 16 calculates the error information based on the first error information and the second error information, for example, an error (for example, noise, quantization error) occurring at the time of acquisition of the read value, and at the time of calculation of the error information.
  • the effects of errors that occur eg, rounding errors
  • the error calculating unit 16 may calculate one of the first error information and the second error information as the error information. For example, the error calculation unit 16 may calculate the first error information as the error information and may not calculate the second error information.
  • the error calculating unit 16 may generate information in which f ( ⁇ ) and Err (error) are combined as error information. In addition, the error calculation unit 16 may generate, as error information, information in which f ( ⁇ ) and a correction amount (eg, -Err) calculated from Err are combined.
  • the error calculation unit 16 may calculate Err based on the first error information and the second error information.
  • the error calculating unit 16 may select Err1 or Err2 as Err based on Bn1 and Bn2. For example, the error calculating unit 16 may compare Bn1 and Bn2 and select Err1 corresponding to Bn1 as Err when Bn1 has a larger value.
  • the error calculating unit 16 may calculate an average value (for example, an addition average value, a weighted average value) of Err1 and Err2 as Err.
  • the error calculating unit 16 may calculate Err by weighting using Bn1 and Bn2. For example, the error calculation unit 16 may calculate a weighted average value (Bn1 ⁇ Err1 + Bn2 ⁇ Err2) / (Bn1 + Bn2) as Err.
  • the error calculating unit 16 calculates an error of the ith component of the Fourier series representing the detection result of the first detection unit 11 for i which is an integer of 2 or more.
  • the set value of ⁇ 1 and the set value of ⁇ 2 are set to an angle that equally divides the circumference by i, the difference between the read values (eg, f ( ⁇ + ⁇ 1) -f ( ⁇ ), f ( ⁇ + ⁇ 2) -f ( ⁇ )
  • the Fourier series of does not include components of the order of integral multiples of i. Therefore, one or both of the set value of ⁇ 1 and the set value of ⁇ 2 are set to angles other than 2 ⁇ / j ⁇ i [rad] for j which is an integer of 2 or more.
  • FIG. 5 is a flowchart showing the method of manufacturing the encoder device according to the embodiment. About each part of encoder apparatus EC and each part of the calibration apparatus 1, FIG. 1 etc. is referred suitably.
  • step S1 the first detection unit 11, the second detection unit 12, and the third detection unit 13 (see FIG. 1) are disposed with respect to the scale S, respectively.
  • step S2 the scale S is rotated by at least one turn (one rotation), and the first detection unit 11, the second detection unit 12, and the third detection unit 13 each detect the scale S.
  • the first detection unit 11, the second detection unit 12, and the third detection unit 13 each output a detection signal to the processing unit 3 (see FIG. 1).
  • the processing unit 3 processes the detection result of the first detection unit 11 to calculate rotational position information S1 b (for example, f ( ⁇ )). Further, the processing unit 3 processes the detection result of the second detection unit 12 to calculate rotational position information S2b (for example, f ( ⁇ + ⁇ 1)). Further, the processing unit 3 processes the detection result of the third detection unit 13 to calculate rotational position information S3b (for example, f ( ⁇ + ⁇ 2)). The processing unit 3 calibrates the rotational position information S1b, the rotational position information S2b, and the rotational position information S3b as detection signals obtained from the first detection unit 11, the second detection unit 12, and the third detection unit 13, respectively. Output to 1 (see FIG. 1).
  • the method for manufacturing an encoder device in the present embodiment includes calibrating the encoder device (performing calibration processing) by the calibration method according to the embodiment.
  • This calibration process includes the process of step S3 (calculation process of relative position) in FIG. 5 and the process of step S4 (calculation process of error information).
  • step S3 the position calculation unit 15 (see FIG. 1) detects the relative position between the first detection unit 11 and the second detection unit 12 based on the detection signal from the encoder device EC (for example, the processing unit 3). , The first relative position ⁇ 1).
  • the position calculation unit 15 according to the present embodiment calculates ⁇ 1 by the method described in the above equations (1) to (21).
  • the position calculation unit 15 according to the present embodiment is the relative position between the first detection unit 11 and the third detection unit 13 according to the method described in the above equations (22) to (27) (example, second Calculate the relative position, ⁇ 2).
  • step S4 the error calculation unit 16 (see FIG. 1) calculates error information based on the relative position calculated by the position calculation unit 15 and the detection signal (eg, rotational position information) from the encoder device EC.
  • the process of step S4 includes the processes of steps S5 to S7.
  • step S5 the error calculation unit 16 generates the first detection signal (eg, rotational position information S1b, f ( ⁇ )), the second detection signal (eg, rotational position information S2b, f ( ⁇ + ⁇ 1)), and the first relative First error information is calculated based on the position (for example, ⁇ 1).
  • the first error information includes, for example, information that associates f ( ⁇ ) with ⁇ 1 calculated from ⁇ 1.
  • step S6 the error calculation unit 16 generates a second detection signal (for example, rotational position information S1b, f ( ⁇ )), a third detection signal (for example, rotational position information S3b, f ( ⁇ + ⁇ 2)), and a second relative Second error information is calculated based on the position (eg, ⁇ 2).
  • the second error information includes, for example, information that associates f ( ⁇ ) with ⁇ 2 calculated from ⁇ 2.
  • the error calculation unit 16 calculates the above-mentioned error information based on the first error information and the second error information.
  • the error information includes, for example, information in which the read value f ( ⁇ ) is associated with the calibration value ⁇ .
  • the error calculation unit 16 may calculate the error information by calculating an average value (for example, an addition average value, a weighted average value) of ⁇ 1 in the first error information and ⁇ 2 in the second error information as ⁇ . Further, the error calculation unit 16 may select ⁇ 1 in the first error information or ⁇ 2 in the second error information as ⁇ , and generate error information.
  • the calibration device 1 (see FIG. 1) outputs the error information calculated by the error calculation unit 16.
  • the calibration device 1 stores the error information calculated by the error calculation unit 16 in the storage unit 4 (see FIG. 1) of the encoder device EC.
  • step S9 the encoder device EC is removed from the calibration device 1, for example.
  • the encoder device EC removed from the calibration device 1 is attached to, for example, the rotating body SF2 (see FIG. 2) to be detected.
  • At least a part of the detection unit 2 of the encoder device EC detects the scale S attached to the rotating body SF2.
  • the first detection unit 11 illustrated in FIG. 2 detects the scale S and outputs the detection signal S1a.
  • One or both of the second detection unit 12 and the third detection unit 13 are attached to the rotating body SF2
  • the detected scale S may not be detected.
  • the processing unit 3 calculates the first rotation position information of the rotating body SF2 based on the detection signal output from the detection unit 2. For example, the processing unit 3 calculates the rotational position information S1b based on the detection signal S1a output from the first detection unit 11. The processing unit 3 outputs the calculated rotational position information to the correction unit 5. The correction unit 5 corrects the rotational position information calculated by the processing unit 3 based on the error information stored in the storage unit 4. Then, the encoder device EC outputs the rotational position information after the correction to an external device (for example, the control unit MC).
  • an external device for example, the control unit MC
  • step S3 of FIG. 5 the position calculation unit 15 does not have to calculate the relative position (eg, the second relative position ⁇ 2) between the first detection unit 11 and the third detection unit 13.
  • the error calculating unit 16 may calculate the first error information as the error information in step S4, and may not execute the process of step S6 and the process of step S7.
  • the encoder device EC may include at least a part of the calibration device 1 (for example, the position calculation unit 15 and the error calculation unit 16).
  • the encoder device EC includes a scale S attached to the rotating body SF1, a first detection unit 11, a second detection unit 12, a third detection unit 13, and a first detection unit 11 arranged with respect to the scale S.
  • a position calculation unit 15 that calculates the relative position between the first detection unit 11 and the second detection unit 12 based on detection signals obtained from each of the second detection unit 12 and the third detection unit 13;
  • the error calculation unit 16 may be configured to calculate error information with respect to rotational position information of the rotary body SF1 based on the relative position calculated by the unit 15 and the detection signal.
  • the third detection unit 13 may be arranged on the scale S after the detection process by the second detection unit 12 is finished.
  • the second detection unit 12 may be arranged as the third detection unit 13 with the angular position changed after the end of the detection process.
  • the position calculation unit 15 uses the detection signal obtained from the second detection unit 12 after the change of the angular position as the detection signal obtained from the third detection unit 13 to obtain the first detection unit 11 and the second detection unit.
  • the relative position to 12 may be calculated. Since the calibration device 1 according to the embodiment calculates the relative position in the detection unit 2, the error information can be calculated with high accuracy even when the angular position of the second detection unit 12 is changed.
  • the position calculation unit 15 uses the detection signal S1a, the detection signal S2a, and the detection signal S3a as detection signals obtained from the detection unit 2 to determine the relative position between the first detection unit 11 and the second detection unit 12 It may be calculated.
  • FIG. 6 is a view showing an encoder device and a calibration device according to a second embodiment.
  • at least one of the first detection unit 11, the second detection unit 12, and the third detection unit 13 is removable from the detection unit 2.
  • FIG. 6A shows a state in which the first detection unit 11, the second detection unit 12, and the third detection unit 13 are provided in the detection unit 2.
  • FIG. 6B shows a state in which the third detection unit 13 is removed from the detection unit 2.
  • the first detection unit 11, the second detection unit 12, and the third detection unit 13 each detect the scale S.
  • the first detection unit 11 outputs the detection signal S1a to the processing unit 3.
  • the second detection unit 12 outputs the detection signal S2a to the processing unit 3.
  • the third detection unit 13 outputs the detection signal S3a to the processing unit 3.
  • the processing unit 3 calibrates rotational position information S1b based on the detection signal S1a, rotational position information S2b based on the detection signal S2a, and rotational position information S3b based on the detection signal S3a as detection signals obtained from the detection unit 2 Output to device 1
  • the calibration device 1 includes a position calculation unit 15, an error calculation unit 16, and a storage unit 17.
  • the position calculation unit 15 of the calibration device 1 determines the relative position (e.g., .phi.1) of the first detection unit 11 and the second detection unit 12 based on the rotational position information S1b, the rotational position information S2b, and the rotational position information S3b. calculate.
  • the position calculation unit 15 stores the calculated relative position between the first detection unit 11 and the second detection unit 12 in the storage unit 17.
  • the third detection unit 13 is removed from the detection unit 2 after acquiring the detection result used for the calculation process of the relative position by the position calculation unit 15.
  • the first detection unit 11 and the second detection unit 12 each detect the scale S.
  • the first detection unit 11 outputs the detection signal S1a to the processing unit 3.
  • the second detection unit 12 outputs the detection signal S2a to the processing unit 3.
  • the processing unit 3 outputs rotational position information S1b based on the detection signal S1a and rotational position information S2b based on the detection signal S2a to the calibration device 1 as detection signals obtained from the detection unit 2.
  • the error calculation unit 16 of the calibration device 1 uses the relative position calculated by the position calculation unit 15 in FIG. 6A, and the rotational position information S1b and the rotational position information S2b output from the processing unit 3 in FIG. Based on the error information is calculated.
  • the error calculation unit 16 reads the relative position calculated by the position calculation unit 15 in FIG. 6A from the storage unit 17 and calculates the error information based on the read relative position and the rotational position information S1b and the rotational position information S2b. Do.
  • the calibration device 1 stores the error information calculated by the error calculation unit 16 in the storage unit 4 of the encoder device EC.
  • FIG. 7 is a view showing an encoder device and a calibration device according to a third embodiment.
  • the detection unit 2 (the first detection unit 11, the second detection unit 12, and the third detection unit 13) is divided into an encoder device EC and a calibration device 1.
  • the encoder device EC includes a first detection unit 11.
  • the calibration device 1 also includes a second detection unit 12 and a third detection unit 13.
  • the second detection unit 12 and the third detection unit 13 are removable from the detection unit 2.
  • the scale S is attached to the rotating body SF1 (first rotating body).
  • Each of the first detection unit 11, the second detection unit 12, and the third detection unit 13 detects the scale S.
  • the first detection unit 11 outputs the detection signal S1a to the processing unit 3.
  • the second detection unit 12 outputs the detection signal S2a to the processing unit 3.
  • the third detection unit 13 outputs the detection signal S3a to the processing unit 3.
  • the processing unit 3 calibrates rotational position information S1b based on the detection signal S1a, rotational position information S2b based on the detection signal S2a, and rotational position information S3b based on the detection signal S3a as detection signals obtained from the detection unit 2 Output to device 1
  • the position calculation unit 15 of the calibration device 1 determines the relative position (e.g., .phi.1) of the first detection unit 11 and the second detection unit 12 based on the rotational position information S1b, the rotational position information S2b, and the rotational position information S3b. calculate.
  • the error calculation unit 16 is based on the relative position calculated by the position calculation unit 15 and a detection signal obtained by detecting the scale S by the detection unit 2 (for example, based on the rotation position information S1b, the rotation position information S2b, and the rotation position information S3b
  • the calibration apparatus 1 stores the error information calculated by the error calculation unit 16 in the storage unit 4 of the encoder device EC.
  • the encoder device EC is removed from the calibration device 1 after the storage unit 4 stores the error information.
  • the second detection unit 12 and the third detection unit 13 are removed from the detection unit 2.
  • the scale S is attached to the rotating body SF2 (second rotating body).
  • the rotating body SF2 may be the same as the rotating body SF1 of FIG. 7A, or may be different from the rotating body SF1.
  • the first detection unit 11 detects the scale S attached to the rotating body SF2.
  • the first detection unit 11 outputs the detection signal S1a to the processing unit 3.
  • the processing unit 3 calculates rotational position information S1b of the rotating body SF2 based on the detection signal S1a.
  • the processing unit 3 outputs the calculated rotational position information S1b to the correction unit 5.
  • the correction unit 5 reads the error information from the storage unit 4 and corrects the rotational position information S1b of the rotating body SF2 based on the error information.
  • the encoder device EC outputs the corrected rotational position information to the outside.
  • FIG. 8 is a view showing an encoder device and a calibration device according to a fourth embodiment.
  • the encoder device EC includes a first detection unit 11, a processing unit 3, a storage unit 4, and a correction unit 5.
  • the calibration device 1 includes the second detection unit 12, the third detection unit 13, the processing unit 18, the position calculation unit 15, and the error calculation unit 16.
  • the first detection unit 11 of the encoder device EC detects the scale S.
  • the first detection unit 11 outputs the detection signal S1a to the processing unit 3.
  • the processing unit 3 calculates rotational position information S1b based on the detection signal S1a.
  • the encoder device EC (for example, the processing unit 3) outputs the calculated rotational position information S1b to the calibration device 1.
  • the second detection unit 12 and the third detection unit 13 of the calibration device 1 each detect the scale S.
  • the second detection unit 12 and the third detection unit 13 respectively detect the scale S in parallel with the detection process of the scale S by the first detection unit 11.
  • the second detection unit 12 outputs the detection signal S2a to the processing unit 18.
  • the processing unit 18 calculates the rotational position information S2b based on the detection signal S2a.
  • the third detection unit 13 outputs the detection signal S3a to the processing unit 18.
  • the processing unit 18 calculates rotational position information S3b based on the detection signal S3a.
  • the processing unit 18 outputs the rotational position information S2b and the rotational position information S3b to each of the position calculation unit 15 and the error calculation unit 16.
  • the position calculation unit 15 outputs rotational position information output from the encoder device EC (e.g., the processing unit 3) as a detection signal obtained from each of the first detection unit 11, the second detection unit 12, and the third detection unit 13.
  • the relative position (e.g., .phi.1) of the first detection unit 11 and the second detection unit 12 is calculated using S1b and the rotational position information S2b and the rotational position information S3b output from the processing unit 18 of the calibration device 1 .
  • the position calculation unit 15 may calculate the relative position (for example, ⁇ 2) between the first detection unit 11 and the third detection unit 13.
  • the position calculation unit 15 outputs the calculated relative position to the error calculation unit 16.
  • the error calculation unit 16 includes the rotational position information S1b output from the encoder device EC (eg, the processing unit 3), the rotational position information S2b calculated by the processing unit 18, and the relative position (eg, ⁇ 1) calculated by the position calculation unit 15.
  • the first error information is calculated based on.
  • the error calculation unit 16 calculates second error information based on the rotational position information S1 b, the rotational position information S3 b calculated by the processing unit 18, and the relative position (e.g., ⁇ 2) calculated by the position calculation unit 15.
  • the error calculation unit 16 calculates error information based on the first error information and the second error information.
  • the error calculating unit 16 may not calculate the second error information by calculating the first error information as the error information.
  • the calibration device 1 stores the error information calculated by the error calculation unit 16 in the storage unit 4 of the encoder device EC.
  • the encoder device EC is removed from the calibration device 1 as illustrated in FIG. 8B after the storage unit 4 stores the error information.
  • the first detection unit 11 detects the scale S attached to the rotating body (second rotating body) SF2.
  • the first detection unit 11 outputs the detection signal S1a to the processing unit 3.
  • the processing unit 3 calculates rotational position information S1b based on the detection signal S1a.
  • the processing unit 3 outputs the calculated rotational position information S1b to the correction unit 5.
  • the correction unit 5 reads the error information from the storage unit 4 and corrects the rotational position information S1b based on the error information.
  • the encoder device EC outputs the corrected rotational position information to the outside.
  • the encoder EC according to the present embodiment can omit, for example, the connection between the processing unit 3 and the second detection unit 12 and the connection between the processing unit 3 and the third detection unit 13. Further, the encoder device EC according to the present embodiment includes, for example, input processing of the detection signal S2a to the processing unit 3 and input processing of the detection signal S3a, and output processing of the rotation position information S2b from the processing unit 3 and rotation position information S3b. Can be omitted, and the processing of the processing unit 3 is simplified.
  • FIG. 9 is a view showing an encoder device and a calibration device according to a fifth embodiment.
  • the calibration device 1 calculates error information based on the information output from the correction unit 5 of the encoder device EC.
  • the encoder device EC updates the error information stored in the storage unit 4 to the error information calculated by the calibration device 1.
  • initial error information is stored in the storage unit 4.
  • the initial error information is, for example, error information in which the correction amount is zero.
  • the first detection unit 11 of the encoder device EC detects the scale S attached to the rotating body SF1.
  • the first detection unit 11 outputs the detection signal S1a to the processing unit 3.
  • the processing unit 3 calculates rotational position information S1b based on the detection signal S1a.
  • the processing unit 3 outputs the calculated rotational position information S1b to the correction unit 5.
  • the correction unit 5 corrects the rotational position information S1b based on the error information stored in the storage unit 4.
  • the correction unit 5 outputs rotational position information after correction.
  • the rotational position information after the correction is the same as the rotational position information S1 b before the correction.
  • the second detection unit 12 and the third detection unit 13 of the calibration device 1 respectively detect the scale S attached to the rotating body SF1.
  • the second detection unit 12 outputs the detection signal S2a to the processing unit 18.
  • the processing unit 18 calculates the rotational position information S2b based on the detection signal S2a.
  • the third detection unit 13 outputs the detection signal S3a to the processing unit 18.
  • the processing unit 18 calculates rotational position information S3b based on the detection signal S3a.
  • the processing unit 18 outputs the rotational position information S2b and the rotational position information S3b to each of the position calculation unit 15 and the error calculation unit 16.
  • the position calculation unit 15 corrects the correction signal output from the encoder device EC (for example, the correction unit 5) as a detection signal obtained from each of the first detection unit 11, the second detection unit 12, and the third detection unit 13.
  • the relative position between the first detection unit 11 and the second detection unit 12 eg, using the rotational position information (eg, rotational position information S1 b), and the rotational position information S2 b and the rotational position information S3 b output from the processing unit 18 , ⁇ 1).
  • the position calculation unit 15 may calculate the relative position (for example, ⁇ 2) between the first detection unit 11 and the third detection unit 13.
  • the position calculation unit 15 outputs the calculated relative position to the error calculation unit 16.
  • the error calculation unit 16 includes the rotational position information S1b output from the encoder device EC (eg, the processing unit 3), the rotational position information S2b calculated by the processing unit 18, and the relative position (eg, ⁇ 1) calculated by the position calculation unit 15.
  • the first error information is calculated based on.
  • the error calculation unit 16 calculates second error information based on the rotational position information S1 b, the rotational position information S3 b calculated by the processing unit 18, and the relative position (e.g., ⁇ 2) calculated by the position calculation unit 15.
  • the error calculation unit 16 calculates error information based on the first error information and the second error information.
  • the error calculating unit 16 may not calculate the second error information by calculating the first error information as the error information.
  • the calibration device 1 outputs the error information calculated by the error calculation unit 16 to the encoder device EC.
  • the encoder device EC updates the error information stored in the storage unit 4 to the error information calculated by the error calculation unit 16.
  • the encoder device EC is removed from the calibration device 1 as shown in FIG. 9 (B) after the error information is updated.
  • the first detection unit 11 detects the scale S.
  • the first detection unit 11 outputs the detection signal S1a to the processing unit 3.
  • the processing unit 3 calculates rotational position information S1b based on the detection signal S1a.
  • the processing unit 3 outputs the calculated rotational position information S1b to the correction unit 5.
  • the correction unit 5 reads the updated error information from the storage unit 4 and corrects the rotational position information S1b based on the error information.
  • the encoder device EC outputs the corrected rotational position information to the outside.
  • the processing of the correction unit 5 is the same in FIG. 9A and FIG. 9B, and the processing relating to the input and output of the signal in the correction unit 5 is simplified.
  • the encoder device EC outputs an output system (for example, an external output terminal) that outputs rotational position information after correction to the control unit MC shown in FIG. Can be used as an output system to avoid the complexity of the configuration of the encoder device EC.
  • the storage unit 4 in FIG. 9A may store the error information calculated by the calibration device 1 in the previous calibration process.
  • the encoder device EC may update the error information stored in the storage unit 4 to the error information calculated by the calibration device 1 in the present calibration process.
  • FIG. 10 is a view showing an encoder device and a calibration device according to a sixth embodiment.
  • the first detection unit 11 includes a plurality of detection units (detection unit 21a and detection unit 21b).
  • detection unit 21a and detection unit 21b One or both of the position calculation unit 15 and the error calculation unit 16 use, as a detection signal of the first detection unit 11, a signal obtained by averaging the signals obtained from the plurality of detection units (the detection unit 21a and the detection unit 21b).
  • FIG. 10B is a view showing a scale and a detection head according to the present embodiment.
  • the encoder device EC is provided with a first head 6 and a fourth head 9.
  • the detection unit 21 a is provided to the first head 6.
  • the detection unit 21 b is provided to the fourth head 9.
  • the fourth head 9 has the same configuration as the first head 6.
  • the detecting unit 21a and the detecting unit 21b respectively detect the incremental pattern INC of the scale S and the absolute pattern ABS.
  • the number of detection units (for example, detection unit 21a and detection unit 21b) included in the first detection unit 11 (see FIG. 10A) is set to Sk (for example, 2).
  • An angle ⁇ (difference in angular position) between the detection position of the first head 6 and the detection position of the fourth head 9 about the rotation axis AX is set to, for example, 2 ⁇ / Sj [rad].
  • Sj is 2 and ⁇ is set to ⁇ [rad] (180 °).
  • the first detection unit 11 of FIG. 10A includes a signal processing unit 22.
  • the detection unit 21 a and the detection unit 21 b each output a detection signal corresponding to the detection result of the detection of the scale S to the signal processing unit 22.
  • the signal processing unit 22 averages the detection signal from the detection unit 21 a and the detection signal from the detection unit 21 b.
  • the signal processing unit 22 outputs the averaged signal as a detection signal S1a of the first detection unit 11.
  • the error calculation unit 16 calculates error information for even-order components when the rotational position information obtained from the detection signal S1a is represented by a Fourier series.
  • FIG. 11 is a view showing an encoder device and a calibration device according to a seventh embodiment.
  • FIG. 11A shows the encoder device EC and the calibration device 1 in the calibration process.
  • the calibration device 1 includes the detection unit 2 and the storage unit 25.
  • the detection unit 2 includes a first detection unit 11, a second detection unit 12, and a third detection unit 13.
  • the position calculation unit 15 generates detection signals (eg, rotational position information S1 b, rotational position information S2 b, and rotational position information S3 b) obtained from each of the first detection unit 11, the second detection unit 12, and the third detection unit 13. Based on the relative position between the first detection unit 11 and the second detection unit 12 is calculated.
  • the error calculation unit 16 calculates error information based on the relative position calculated by the position calculation unit 15 and the detection signal (eg, rotational position information S1 b, rotational position information S2 b) obtained from the detection unit 2.
  • the storage unit 25 stores the error information calculated by the error calculation unit 16.
  • the calibration device 1 outputs the error information stored in the storage unit 25 to the encoder device EC.
  • the storage unit 4 of the encoder device EC stores the error information output from the calibration device 1.
  • the encoder device EC is removed from the calibration device 1 after the storage unit 4 stores the error information (for example, after the end of the calibration process).
  • FIG. 11B shows the encoder device EC and the calibration device 1 after the calibration process.
  • the encoder device EC includes a scale S, a storage unit 4, a correction unit 5, and a detection unit 26.
  • the scale S is attached to the rotating body SF2.
  • the rotating body SF2 may be the same as the rotating body SF1 of FIG. 11A, or may be different from the rotating body SF1.
  • the detection unit 26 (fourth detection unit) is disposed with respect to the scale S.
  • the detection unit 26 is different from any of the first detection unit 11, the second detection unit 12, and the third detection unit 13 shown in FIG.
  • the detection unit 26 is attached to, for example, the encoder device EC (for example, the encoder device EC after the calibration process) removed from the calibration device 1.
  • the detection unit 26 is arranged with respect to the scale S based on the position of the first detection unit 11.
  • the detection unit 26 is positioned such that the relative position between the detection unit 26 and the scale S is the same as the relative position between the first detection unit 11 and the scale S.
  • FIG. 12 is a diagram illustrating an example of an arrangement method of detection units of the encoder device according to the seventh embodiment.
  • FIG. 12A is a diagram showing the calibration device 1 in the calibration process.
  • the calibration device 1 includes a first head 6, a second head 7, and a third head 8.
  • the first detection unit 11 is provided to the first head 6.
  • the second detection unit 12 is provided to the second head 7.
  • the third detection unit 13 is provided to the third head 8.
  • the first head 6 is positioned by the alignment member 27.
  • the alignment member 27 includes, for example, a positioning pin.
  • the first head 6 is positioned relative to the scale S, for example, by being arranged to be in contact with the alignment member 27.
  • the first detection unit 11 is positioned with respect to the scale S by positioning the first head 6.
  • FIG. 12B is a view showing the encoder device from which the calibration device 1 of FIG. 12A is removed.
  • the encoder device EC comprises a detection head 28.
  • the detection head 28 has the same configuration as the first head 6 in FIG. 12 (A).
  • the detection head 28 includes a detection unit 26 and an irradiation unit 29.
  • the irradiating unit 29 irradiates light to each of the incremental pattern INC and the absolute pattern ABS.
  • the detection unit 26 detects the light from the incremental pattern INC and the light from the absolute pattern ABS, respectively.
  • the detection head 28 is positioned by the alignment member 27 similarly to the first head 6 of FIG. 12 (A).
  • the detection head 28 is positioned relative to the scale S, for example, by being arranged to be in contact with the alignment member 27.
  • the detection unit 26 is positioned with respect to the scale S by positioning the detection head 28.
  • the detection unit 26 detects the scale S attached to the rotating body SF2.
  • the detection unit 26 outputs the detection signal S4a to the processing unit 3.
  • the processing unit 3 calculates rotational position information S4b of the rotating body SF2 based on the detection signal S4a.
  • the processing unit 3 outputs the calculated rotational position information S4b to the correction unit 5.
  • the correction unit 5 corrects, based on the error information stored in the storage unit 4, the rotational position information S 4 b of the rotating body SF 2 obtained from the detection result of the detection unit 26.
  • the encoder device EC outputs the corrected rotational position information to the outside.
  • FIG. 13 is a view showing an encoder device according to the eighth embodiment.
  • the encoder device EC includes a scale S, a detection unit 26, an irradiation unit 29, a processing unit 3, a storage unit 4, a correction unit 5, and an encoder main unit 51.
  • the encoder main body portion 51 is fixed to the main body portion BD of the drive device MTR on which the encoder device EC is mounted.
  • the main body part BD (drive part) accommodates the mover (for example, armature) and the stator (for example, permanent magnet) of the drive device MTR.
  • the mover of the driving device MTR moves (eg, rotates) with respect to the stator.
  • the rotating body SF2 is connected to the mover of the drive device MTR, and moves (eg, rotates) together with the mover.
  • the encoder main body 51 includes a first support 52 (first support member) and a second support 53 (second support member).
  • the first support portion 52 is fixed to a member (for example, the main body portion BD) on the stator side in the drive device MTR.
  • the first support 52 includes, for example, a mold or a spacer.
  • the first support portion 52 is, for example, a hollow member (for example, a cylindrical member).
  • the first support portion 52 accommodates the scale S therein.
  • the scale S is, for example, a flange-like member, and is supported by the first support 52 via the bearing 54.
  • the scale S is rotatably supported relative to the first support 52.
  • the second support portion 53 is disposed on the side (+ Z side) opposite to the drive device MTR with respect to the first support portion 52.
  • the second support portion 53 is fixed to the first support portion 52.
  • the second support portion 53 is provided, for example, so as to close one opening of the cylindrical first support portion 52.
  • the scale S is disposed (accommodated) in a space surrounded by the body portion BD of the drive device MTR, the first support portion 52, and the second support portion 53.
  • the second support portion 53 includes a processing substrate (eg, a printed circuit board). For example, a processing circuit, a wire, a terminal, and the like are formed on the second support portion 53. For example, an electronic component including a processing circuit is mounted on the second support portion 53.
  • the detection head 28 (detection unit 26, irradiation unit 29) is supported by the second support unit 53 on the surface facing the scale S.
  • the processing unit 3, the storage unit 4, and the correction unit 5 shown in FIG. 11B are mounted on the second support unit 53.
  • the encoder device EC is manufactured, for example, by assembling the scale S and the encoder main body 51.
  • the scale S is supported by the encoder main body 51 (for example, the first support 52) via the bearing 54, for example, in the direction (X direction, Y direction) perpendicular to the rotation axis AX. It is positioned.
  • FIG. 14 is a view showing a calibration apparatus according to the ninth embodiment.
  • the calibration device 1 eg, calibration system, manufacturing device
  • the calibration device 1 includes a drive device 61, a movement device 62, a detection device 63, an alignment device 64, and a processing device 65.
  • the drive device 61 and the detection device 63 are arranged in the measurement area ARa.
  • the drive device 61 includes a rotating body SF1 and a drive unit 66.
  • the scale S of the encoder device EC is attached to the rotating body SF1.
  • the drive unit 66 includes, for example, an electric motor, and rotates the rotating body SF1.
  • the detection device 63 includes the first head 6, the second head 7, and the third head 8 shown in FIG.
  • the detection device 63 is disposed at a position facing the scale S attached to the rotating body SF1.
  • the detection device 63 detects the scale S, and outputs the detection signal S1a, the detection signal S2a, and the detection signal S3a to the processing device 65.
  • the processing device 65 includes a position calculation unit 15, an error calculation unit 16, a processing unit 18, a storage unit 25, and a control unit 67.
  • the position calculation unit 15, the error calculation unit 16, the processing unit 18, and the storage unit 25 are the same as those in FIG. 11A.
  • the processing unit 18 outputs rotational position information (e.g., rotational position information S1 b and rotational position information S2 b of FIG. 11A) for each of the detection signal S1a, detection signal S2a, and detection signal S3a output from the detection device 63.
  • the rotational position information S3b is calculated.
  • the position calculation unit 15 is configured to use the first detection unit 11 (see FIG. 12A) and the second detection unit 12 (see FIG. 12A) based on the detection signal obtained from the detection device 63 (detection unit). Calculate the relative position of The position calculation unit 15 uses the rotational position information calculated by the processing unit 18 as a detection signal obtained from the detection device 63 (detection unit).
  • the error calculation unit 16 calculates error information based on the detection signal obtained from the detection device 63 (the detection unit 2 and the detection system) and the relative position calculated by the position calculation unit 15.
  • the error calculation unit 16 uses the rotational position information calculated by the processing unit 18 as a detection signal obtained from the detection device 63 (detection unit).
  • the error calculation unit 16 stores the calculated error information in the storage unit 25.
  • the moving device 62 moves the driving device 61 between the measurement area ARa and the assembly area ARb.
  • the moving device 62 moves the drive device 61 attached with the scale S from the measurement area ARa to the assembly area ARb as shown in FIG. 14B after the detection process of the scale S by the detection device 63 is completed.
  • Alignment device 64 is arranged in assembly area ARb.
  • the alignment device 64 includes a holding unit 68 and a moving unit 69.
  • the holder 68 holds the encoder main body 51 (see FIG. 13).
  • the encoder main body 51 is similar to that shown in FIG. 11B, and supports the processing unit 3, the storage unit 4, the correction unit 5, and the detection unit 26.
  • the holder 68 holds the encoder main body 51 at a position facing the scale S attached to the rotating body SF1 of the drive device 61.
  • the moving unit 69 brings the holding unit 68 holding the encoder main unit 51 close to the scale S attached to the rotating body SF1, and positions the scale S of the encoder device EC and the encoder main unit 51.
  • the scale S is disposed below the encoder main body 51, and the moving part 69 lowers the holding part 68 holding the encoder main body 51.
  • the scale S and the encoder body 51 are assembled in the assembly area ARb.
  • the scale S is attached to the encoder main body 51 via, for example, the bearing 54 illustrated in FIG. 13 in a state where the scale S is positioned with the encoder main body 51.
  • the alignment device 64 may perform at least a part of the assembly process of the scale S and the encoder main body 51.
  • the encoder device EC is assembled (manufactured) by attaching the scale S to the encoder main body 51.
  • the processing device 65 is communicably connected to the encoder main body 51 via the contact probe 70 (for example, an external connection terminal).
  • the processing device 65 outputs the error information stored in the storage unit 25 to the encoder main body 51 via the contact probe 70.
  • the storage unit 4 shown in FIG. 11B acquires error information via the contact probe 70, and stores the error information.
  • the control unit 67 of the processing device 65 controls each part of the calibration device 1.
  • the control unit 67 controls the drive device 61 in the state of FIG. 14A to rotate the rotating body SF1 to which the scale S is attached.
  • the control unit 67 also controls the detection device 63 to execute detection processing on the scale S that rotates with the rotating body SF1.
  • the control unit 67 causes the detection device 63 to output the detection signal S1a, the detection signal S2a, and the detection signal S3a.
  • the control unit 67 causes the position calculation unit 15 to execute relative position calculation processing. Further, the control unit 67 causes the error calculation unit 16 to execute calculation processing of error information.
  • the control unit 67 controls the moving device 62 to move the driving device 61 to the assembly area ARb after the detection process by the detecting device 63 is completed.
  • the control unit 67 controls the alignment device 64 to assemble the encoder device EC, for example, in the assembly area ARb.
  • the control unit 67 stores the error information stored in the storage unit 25 in the storage unit 4 (see FIG. 11B) of the encoder device EC.
  • the control unit 67 may be provided in an apparatus (for example, a control apparatus) different from the processing apparatus 65.
  • the control unit 67 may not execute at least a part of the control described above. For example, at least a portion of the control described above may be performed by an operator.
  • FIG. 15 is a view showing a calibration apparatus according to a tenth embodiment.
  • the calibration device 1 includes a drive device 61, a rotating body SF1, an encoder device EC2, and a processing device 65.
  • the calibration device 1 executes a calibration process on the encoder device EC2.
  • the calibration device 1 is based on the rotational position information of the rotating body SF1 detected by the calibrated encoder device EC2 and the rotational position information of the rotating body SF1 detected by the encoder device EC to be calibrated, error information for the encoder device EC Generate
  • the rotating body SF1 of the calibration device 1 is connected to the drive device 61 via the power transmission member 75.
  • the power transmission member 75 is, for example, a belt, and is stretched between the rotating body SF1 and the rotating body SF3 of the drive device 61.
  • the drive device 61 supplies the driving force (rotational force) to the rotating body SF1 via the power transmission member 75 by rotating the rotating body SF3, and rotates the rotating body SF1.
  • the encoder device EC to be calibrated has the same configuration as that shown in FIG.
  • the encoder device EC includes a scale S and an encoder body 51.
  • the scale S is attached to the rotating body SF1.
  • the scale S is attached to the end of the rotating body SF1.
  • the encoder device EC outputs a detection signal obtained by detecting the scale S attached to the rotating body SF1 to the processing device 65.
  • the encoder device EC2 is provided separately from the encoder device EC to be calibrated.
  • the encoder device EC2 includes a scale SB and an encoder body 76.
  • the scale SB is attached to the same rotating body SF1 as the scale S of the encoder device EC to be calibrated.
  • the scale SB is attached to the end of the rotating body SF1 opposite to the scale S.
  • the angle at which the scale SB rotates is the same as the angle at which the scale S rotates.
  • the encoder main body 76 is provided with the first head 6, the second head 7 and the third head 8 shown in FIG.
  • the encoder body 76 outputs a detection signal obtained by detecting the scale SB by the first head 6, the second head 7 and the third head 8 shown in FIG.
  • the encoder main body 76 outputs, for example, the rotational position information S1b, the rotational position information S2b, and the rotational position information S3b shown in FIG. 11A as a detection signal obtained by detecting the scale SB to the processing device 65.
  • the processing device 65 includes a position calculation unit 15, an error calculation unit 16, a storage unit 25, a control unit 67, and a comparison unit 77.
  • the position calculation unit 15 calculates the relative position between the first head 6 and the second head 7 shown in FIG. 12 based on the detection signal output from the encoder device EC2.
  • the error calculation unit 16 calculates error information for the encoder device EC based on the relative position calculated by the position calculation unit 15.
  • the processing unit 65 outputs the error information calculated by the error calculation unit 16 to the encoder main unit 76.
  • the encoder device EC2 corrects the rotational position information based on the error information.
  • the encoder device EC2 can output the rotational position information after correction to the processing device 65.
  • the comparison unit 77 compares the rotational position information output from the encoder device EC with the corrected rotational position information output from the encoder device EC2.
  • the comparison unit 77 calculates error information for the encoder EC by using, for example, rotational position information output from the encoder EC as a read value, and corrected rotational position information output from the encoder EC2 as a calibration value (generation ).
  • the comparison unit 77 is an encoder that is a combination of rotational position information (read value) output from the encoder device EC and corrected rotational position information (calibration value) output from the encoder device EC2 It is generated as error information for the device EC.
  • the storage unit 25 stores error information for the encoder device EC.
  • the processing device 65 outputs the error information calculated by the comparison unit 77 to the encoder device EC.
  • the encoder device EC stores the error information output from the processing device 65 in the storage unit 4 (see FIG. 11B).
  • the correction unit 5 (see FIG. 11B) of the encoder device EC corrects the rotational position information obtained from the detection result of the detection unit 26 based on the error information stored in the storage unit 4.
  • the encoder device EC outputs rotational position information after correction to an external device.
  • FIG. 16 is a diagram showing a drive device according to the embodiment.
  • the drive device MTR is a motor device including an electric motor.
  • the driving device MTR includes a rotating body SF, a main body portion BD, and an encoder device EC.
  • the rotating body SF is, for example, the rotating body SF1 shown in FIG. 1 or the rotating body SF2 shown in FIG.
  • the rotating body SF has a load side end SFa and a non-load side end SFb.
  • the load end SFa is connected to another power transmission mechanism such as a reduction gear.
  • the scale S is fixed to the non-load side end portion SFb via the fixing portion.
  • the main body portion BD rotationally drives the rotating body SF.
  • the encoder device EC is attached to the main body part BD together with the fixing of the scale S.
  • the encoder device EC is an encoder device according to the above-described embodiment or a combination thereof.
  • the driving device MTR controls the main body part BD using the detection result of the encoder device EC.
  • the drive device MTR can control the rotation of the rotating body SF with high accuracy because the encoder device EC outputs the corrected rotational position information.
  • the drive device MTR is not limited to the motor device, and may be another drive device having a shaft portion that rotates using oil pressure or air pressure.
  • FIG. 17 is a view showing a stage apparatus according to the embodiment.
  • the stage device STG has a configuration in which a stage (a rotating table TB, a moving object) is attached to a load side end portion SFa of the rotating body SF of the drive device MTR shown in FIG.
  • the stage device STG drives the drive device MTR to rotate the rotating body SF. This rotation is transmitted to the rotating table TB, and the encoder device EC detects rotational position information of the rotating body SF.
  • the stage device STG controls the position of the rotary table TB using the output from the encoder device EC.
  • the stage device STG can control the position of the rotary table TB with high accuracy because the encoder device EC outputs the corrected rotational position information.
  • a speed reducer or the like may be disposed between the load side end portion SFa of the drive device MTR and the rotation table TB.
  • the stage device STG can be applied to, for example, a rotary table or the like provided in a machine tool such as a lathe.
  • the stage device STG may be a device (for example, an X stage, an XY stage, or an XYZ stage) that moves the stage by converting the rotational motion of the rotating body SF into a linear motion.
  • FIG. 18 is a view showing a robot apparatus according to the embodiment.
  • FIG. 18 shows a part (joint part) of the robot apparatus RBT.
  • the robot apparatus RBT has a first arm AR1, a second arm AR2, and a joint JT.
  • the first arm AR1 is connected to the second arm AR2 through the joint JT.
  • the first arm AR1 includes an arm portion 101, a bearing 101a, and a bearing 101b.
  • the second arm AR2 has an arm portion 102 and a connection portion 102a.
  • the connection portion 102 a is disposed between the bearing 101 a and the bearing 101 b at the joint portion JT.
  • the connection portion 102 a is provided integrally with the rotating body SFR.
  • the rotating body SFR is inserted into both the bearing 101a and the bearing 101b at the joint JT.
  • the end of the rotating body SFR that is to be inserted into the bearing 101 b is connected to the reduction gear RG through the bearing 101 b.
  • the reduction gear RG is connected to the drive device MTR.
  • the reduction gear RG decelerates the rotation of the drive device MTR at a predetermined gear ratio and transmits the reduced rotation to the rotating body SFR.
  • the load side end of the rotating body of the drive device MTR is connected to the reduction gear RG.
  • the scale of the encoder device EC is attached to the non-load side end of the rotating body of the drive device MTR.
  • the robot device RBT drives the drive device MTR to rotate the rotating body, this rotation is transmitted to the rotating body SFR via the reduction gear RG.
  • the connection portion 102a is integrally rotated by the rotation of the rotating body SFR, and the second arm AR2 is rotated with respect to the first arm AR1.
  • the encoder device EC detects rotational position information of the rotating body of the drive device MTR.
  • the robot apparatus RBT controls the position of the second arm AR2 using the rotational position information output from the encoder apparatus EC.
  • the encoder apparatus EC since the encoder apparatus EC outputs rotational position information after correction, the position of the second arm AR2 is controlled with high accuracy.
  • the robot apparatus RBT is not limited to the above configuration, and the drive apparatus MTR can be applied to various robot apparatuses provided with joints.
  • the calibration device 1 includes, for example, a computer system.
  • the calibration device 1 reads the calibration program stored in the storage device (for example, the storage unit 25 of FIG. 14A), and executes various processes in accordance with the calibration program.
  • This calibration program is based on a detection signal obtained from each of a first detection unit, a second detection unit, and a third detection unit arranged on a scale attached to a rotating body in a computer. And calculating the error information with respect to the rotational position information of the rotary body based on the calculated relative position and the detection signal.
  • the calibration program may be provided by being recorded on a computer readable storage medium (eg, non-transitory storage medium, non-transitory tangible media).

Abstract

【課題】回転体の回転位置情報を高精度に検出する。 【解決手段】校正装置は、回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、第1検出部と第2検出部との相対位置を算出する位置算出部と、位置算出部が算出した相対位置、及び検出信号に基づいて、回転体の回転位置情報に対する誤差情報を算出する誤差算出部と、を備える。

Description

校正装置、エンコーダ装置、駆動装置、ステージ装置、ロボット装置、エンコーダ装置の製造方法、及び校正プログラム
 本発明は、校正装置、エンコーダ装置、駆動装置、ステージ装置、ロボット装置、エンコーダ装置の製造方法、及び校正プログラムに関する。
 回転位置情報を検出するロータリーエンコーダは、駆動装置(例、モータ装置)などの各種装置に搭載されている(例えば、下記の特許文献1参照)。また、ロータリーエンコーダ等の角度検出器における誤差の校正値を求める技術が提案されている。
特開平8-50034号公報
 本発明の第1の態様に従えば、回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、第1検出部と第2検出部との相対位置を算出する位置算出部と、位置算出部が算出した相対位置、及び検出信号に基づいて、回転体の回転位置情報に対する誤差情報を算出する誤差算出部と、を備える校正装置が提供される。
 本発明の第2の態様に従えば、第1の態様の校正装置から出力される誤差情報を記憶する記憶部と、第2回転体に取り付けられるスケールと、スケールに対して配置される検出部と、記憶部に記憶された誤差情報に基づいて、検出部の検出結果から得られる第2回転体の回転位置情報を補正する補正部と、を備えるエンコーダ装置が提供される。
 本発明の第3の態様に従えば、第2回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部と、第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、第1検出部と第2検出部との相対位置を算出する位置算出部と、位置算出部が算出した相対位置、及び検出信号に基づいて、第2回転体の回転位置情報に対する誤差情報を算出する誤差算出部と、を備えるエンコーダ装置が提供される。
 本発明の第4の態様に従えば、回転軸に取り付けられるスケールと、スケールを検出して第1検出信号を出力する第1検出部と、第1検出信号と第1検出部とは異なる2つの検出部がスケールを検出して出力する第2検出信号及び第3検出信号とに基づいて算出した第1検出部と2つの検出部の少なくとも1つとの相対位置を用いて算出された誤差情報を記憶する記憶部と、誤差情報を用いて、第1検出信号から得られる回転軸の回転位置情報を補正する補正部と、を備えるエンコーダ装置が提供される。
 本発明の第5の態様に従えば、回転軸の回転位置情報を算出するエンコーダ装置であって、回転軸に取り付けられるスケールと、基板に固定され、スケールを検出して第1検出信号を出力する被校正用検出部と、第1検出信号をもとに回転位置情報を算出する処理部と、記憶部に記憶された誤差情報を用いて回転位置情報を補正する補正部と、を備え、記誤差情報を算出する場合に2つの校正用検出部が基板に取り付けられ、誤差情報は、第1検出信号と2つの校正用検出部がスケールを検出して出力する第2検出信号及び第3検出信号とを用いて算出された、被校正用検出部と少なくとも1つの校正用検出部との相対位置に基づいて算出される、エンコーダ装置が提供される。
 本発明の第6の態様に従えば、第2の態様または第3の態様のエンコーダ装置と、第2回転体に駆動力を供給する駆動部と、を備える駆動装置が提供される。
 本発明の第7の態様に従えば、第4の態様または第5の態様のエンコーダ装置と、回転軸に駆動力を供給する駆動部と、を備える駆動装置が提供される。
 本発明の第8の態様に従えば、第6の態様又は第7の態様の駆動装置と、駆動装置によって移動するステージと、を備えるステージ装置が提供される。
 本発明の第9の態様に従えば、第6の態様又は第7の態様の駆動装置と、駆動装置によって移動するアームと、を備えるロボット装置が提供される。
 本発明の第10の態様に従えば、回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、第1検出部と第2検出部との相対位置を算出することと、算出された相対位置、及び検出信号に基づいて、回転体の回転位置情報に対する誤差情報を算出することと、誤差情報をエンコーダ装置の記憶部に記憶させることと、を含むエンコーダ装置の製造方法が提供される。
 本発明の第11の態様に従えば、コンピュータに、回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、第1検出部と第2検出部との相対位置を算出することと、算出された相対位置、及び検出信号に基づいて、回転体の回転位置情報に対する誤差情報を算出することと、を実行させる校正プログラムが提供される。
第1実施形態に係るエンコーダ装置および校正装置を示す図である。 第1実施形態に係るエンコーダ装置および校正装置を示す図である。 第1実施形態に係るスケールおよび検出部を示す図である。 第1実施形態に係る相対位置の算出処理のパラメータを示す図である。 実施形態に係るエンコーダ装置の製造方法を示すフローチャートである。 第2実施形態に係るエンコーダ装置および校正装置を示す図である。 第3実施形態に係るエンコーダ装置および校正装置を示す図である。 第4実施形態に係るエンコーダ装置および校正装置を示す図である。 第5実施形態に係るエンコーダ装置および校正装置を示す図である。 第6実施形態に係るエンコーダ装置および校正装置を示す図である。 第7実施形態に係るエンコーダ装置および校正装置を示す図である。 第7実施形態に係る検出部の配置方法の例を示す図である。 第8実施形態に係るエンコーダ装置を示す図である。 第9実施形態に係る校正装置を示す図である。 第10実施形態に係る校正装置を示す図である。 実施形態に係る駆動装置を示す図である。 実施形態に係るステージ装置を示す図である。 実施形態に係るロボット装置を示す図である。
[第1実施形態]
 第1実施形態について説明する。図1および図2は、第1実施形態に係るエンコーダ装置および校正装置を示す図である。エンコーダ装置ECは、測定対象の回転体の回転位置情報を検出する。回転位置情報は、多回転情報および1回転内の角度位置の一方または双方を含む。多回転情報は、回転の数を示す情報(例、1回転、2回転)である。角度位置は、1回転未満の回転角を示す情報(例、30[deg]、π[rad])である。
 校正装置1は、エンコーダ装置ECに対する校正処理を実行する。校正装置1は、例えば、エンコーダ装置ECの製造時に使用される。校正装置1は、校正処理において、エンコーダ装置ECの検出結果の補正に使われる誤差情報を算出(生成)する。図1には、校正処理におけるエンコーダ装置ECの動作および校正装置1の動作を示した。図2には、校正処理後のエンコーダ装置ECの動作を示した。
 図1に示すように、校正装置1が校正処理を実行する際に、エンコーダ装置ECは、回転体SF1に取り付けられる。校正処理において、エンコーダ装置ECは、回転体SF1に取り付けられるスケールSを検出する。校正装置1は、エンコーダ装置ECがスケールSを検出して得られる検出信号に基づいて、回転体SF1の回転位置情報に対する誤差情報を算出する。校正装置1は、算出した誤差情報を校正対象のエンコーダ装置ECに記憶させる。エンコーダ装置ECは、上記の校正処理の終了後に、校正装置1から取り外される。
 図2に示すように、校正処理後のエンコーダ装置ECは、例えば回転体SF2の回転位置情報を検出する。回転体SF2は、校正処理に用いられる回転体SF1と同じでもよいし、回転体SF1と別の回転体でもよい。エンコーダ装置ECは、校正処理の後に回転体SF1(第1回転体)から取り外され、回転体SF1と異なる検出対象の回転体SF2(第2回転体)に取り付けられてもよい。校正処理後のエンコーダ装置ECは、検出した回転体SF2の回転位置情報を、校正処理において記憶した誤差情報に基づいて補正する。そして、エンコーダ装置ECは、補正後の回転位置情報を外部へ出力する。以下、エンコーダ装置ECの各部、及び校正装置1の各部について説明する。
 図1に示すように、エンコーダ装置ECは、スケールS、検出部2、処理部3、記憶部4、及び補正部5を備える。スケールSは、校正装置1が校正処理を実行する際に、校正用の回転体SF1に取り付けられる。スケールSは、検出部2の少なくとも一部に対して対向配置され、回転体SF1ともに回転する。
 検出部2(検出系)は、スケールSを検出する。検出部2は、第1検出部11、第2検出部12、及び第3検出部13を含む。また、本実施形態において、エンコーダ装置ECは、第1ヘッド6、第2ヘッド7、及び第3ヘッド8を備える。第1ヘッド6、第2ヘッド7、及び第3ヘッド8は、それぞれ、例えばエンコーダヘッド(検出ヘッド)を含む。第1検出部11は、第1ヘッド6に設けられる。第2検出部12は、第2ヘッド7に設けられる。第3検出部13は、第3ヘッド8に設けられる。また、検出部2(複数の検出ヘッド)は、後述のエンコーダ本体部に固定されて配置される。
 第1ヘッド6、第2ヘッド7、及び第3ヘッド8は、スケールSに対向して配置される。スケールSは、回転体SF1の回転によって、第1ヘッド6、第2ヘッド7、及び第3ヘッド8のそれぞれに対して相対的に回転する。第1ヘッド6、第2ヘッド7、及び第3ヘッド8は、それぞれ、スケールSのパターンを検出する。
 第1ヘッド6は、例えば、被校正用の検出ヘッド(校正対象の検出ヘッド(検出部))である。第2ヘッド7および第3ヘッド8は、それぞれ、校正用の検出ヘッドである。校正用の検出ヘッドは、第1ヘッド6に対する校正処理に使われる情報を取得する。第1ヘッド6は、校正処理後において、第2回転体(例、図2の回転体SF2)の回転位置情報の検出に用いられる。なお、第2ヘッド7および第3ヘッド8の一方又は双方は、第2回転体の回転位置の検出に用いられてもよいし、第2回転体の回転位置の検出に用いられなくてもよい。
 図3は、第1実施形態に係るスケールおよび検出部を示す図である。以下の説明において、適宜、図3等に示すXYZ直交座標系を参照する。このXYZ直交座標系において、Z方向は、回転体SF1の回転軸AXと平行な方向である。X方向およびY方向は、それぞれ、Z方向に垂直な方向である。図3(A)は、回転軸AXの方向(アキシャル方向、Z方向)から見た図である。以下の説明において、回転軸の方向から見た状態を、適宜、回転軸方向視の状態という。図3(B)は、回転体SF1と垂直な方向(ラジアル方向)から見た図である。
 本実施形態において、エンコーダ装置ECは、光学式エンコーダを含む。エンコーダ装置ECは、スケールSを光学的に検出する。スケールSは、例えば、円板状あるいはフランジ状の部材である。スケールSは、反射型又は透過型のインクリメンタルパターンINCおよびアブソリュートパターンABSを含む。インクリメンタルパターンINCおよびアブソリュートパターンABSは、それぞれ、円環状である。インクリメンタルパターンINCおよびアブソリュートパターンABSは、XY平面上のスケールSの中心に関して、同心円状に配置される。なお、エンコーダ装置ECは、磁気式エンコーダを含む構成であってもよい。
 第1ヘッド6、第2ヘッド7、及び第3ヘッド8は、回転体SF1の周囲に配置される。第1ヘッド6、第2ヘッド7、及び第3ヘッド8は、それぞれ、インクリメンタルパターンINCおよびアブソリュートパターンABSと対向するように配置される。第1ヘッド6、第2ヘッド7、及び第3ヘッド8は、回転体SF1からの距離がほぼ同じになるように配置される。
 第1ヘッド6は、照射部10a、及び第1検出部11を備える。照射部10aは、インクリメンタルパターンINCおよびアブソリュートパターンABSのそれぞれに対して光を照射する。第1検出部11は、センサ部11aおよびセンサ部11bを含む。センサ部11aおよびセンサ部11bは、それぞれ、光を検出する受光素子(例、フォトダイオード、光電変換素子、受光部)を含む。センサ部11aは、インクリメンタルパターンINCからの光を検出する。センサ部11bは、アブソリュートパターンABSからの光を検出する。
 第2ヘッド7および第3ヘッド8は、それぞれ、第1ヘッド6と同様の構成である。第2ヘッド7は、照射部10bおよび第2検出部12を備える。第3ヘッド8は、照射部10cおよび第3検出部13を備える。照射部10bおよび照射部10cは、それぞれ、上述の照射部10aと同様である。照射部10bおよび照射部10cは、それぞれ、インクリメンタルパターンINCおよびアブソリュートパターンABSのそれぞれに対して光を照射する。第2検出部12および第3検出部13は、それぞれ、第1検出部11と同様の構成である。第2検出部12および第3検出部13は、それぞれ、インクリメンタルパターンINCからの光およびアブソリュートパターンABSからの光のそれぞれを検出する。
 図3(B)に示すように、本実施形態における第1ヘッド6、第2ヘッド7、及び第3ヘッド8は、それぞれ反射型の検出ヘッドである。第1ヘッド6、第2ヘッド7、及び第3ヘッド8は、それぞれ、インクリメンタルパターンINCで反射した光およびアブソリュートパターンABSで反射した光のそれぞれを検出する。第1ヘッド6は、透過型の検出ヘッドでもよい。この場合、第1ヘッド6は、インクリメンタルパターンINCを透過した光およびアブソリュートパターンABSを透過した光のそれぞれを検出する。また、第2ヘッド7と第3ヘッド8との一方または双方は、透過型の検出ヘッドでもよい。
 図1の説明に戻り、第1検出部11、第2検出部12、及び第3検出部13は、それぞれ、処理部3と接続される。第1検出部11は、スケールSを検出した検出結果として検出信号S1aを処理部3に出力する。第2検出部12は、スケールSを検出した検出結果として検出信号S2aを処理部3に出力する。第3検出部13は、スケールSを検出した検出結果として検出信号S3aを処理部3に出力する。
 処理部3は、検出部2から得られる検出信号(検出信号S1a、検出信号S2a、検出信号S3a)を処理する。処理部3は、検出部2から得られる検出信号(検出信号S1a、検出信号S2a、検出信号S3a)に基づいて、検出対象の回転体(図1では回転体SF1、図2では回転体SF2)の回転位置情報を算出する。例えば、処理部3は、アブソリュートパターンABSからの光を検出した結果を使って第1分解能の角度位置情報を検出する。また、処理部3は、インクリメンタルパターンINCからの光を検出した結果を使って、第1分解能の角度位置情報に内挿演算を行うことにより、第1分解能よりも高い第2分解能の角度位置情報を検出する。
 処理部3は、第1検出部11から得られる検出信号S1aに基づいて、回転体SF1の回転位置情報S1bを算出する。回転位置情報S1bは、第1検出部11から得られる検出信号である。また、処理部3は、第2検出部12から得られる検出信号S2aに基づいて、回転体SF1の回転位置情報S2bを算出する。回転位置情報S2bは、第2検出部12から得られる検出信号である。また、処理部3は、第3検出部13から得られる検出信号S3aに基づいて、回転体SF1の回転位置情報S3bを算出する。回転位置情報S3bは、第3検出部13から得られる検出信号である。
 処理部3は、算出した回転位置情報S1b、回転位置情報S2b、及び回転位置情報S3bを、それぞれ、校正装置1に出力する。校正装置1は、第1検出部11、第2検出部12、及び第3検出部13のそれぞれから得られる検出信号(例、回転位置情報S1b、回転位置情報S2b、回転位置情報S3b)に基づいて、誤差情報を算出する。校正装置1は、算出した誤差情報をエンコーダ装置ECに出力する。エンコーダ装置ECの記憶部4は、校正装置1から出力される誤差情報を記憶する。校正装置1の各部については、後に説明する。
 エンコーダ装置ECは、校正処理後に、例えば図2に示す駆動装置MTR(回転体SF2)に搭載される。駆動装置MTRは、例えば電動モータなどである。駆動装置MTRは、回転体SF2、駆動部MD、及び制御部MCを備える。回転体SF2は、例えば、駆動装置MTRにおける出力軸(例、シャフト)を含む。回転体SF2は、駆動装置MTRの出力軸と接続される作用軸でもよい。駆動部MDは、例えば電気子および固定子を含み、回転体SF2を回転させる。制御部MCは、回転体SF2の角度位置、角速度、及び角加速度の少なくとも1つが目標値に近づくように、駆動部MDを制御する。
 エンコーダ装置ECのスケールSは、回転体SF2に取り付けられる。第1検出部11は、回転体SF2とともに回転するスケールSを検出する。第1検出部11は、スケールSを検出した検出結果として検出信号S1aを処理部3に出力する。処理部3は、検出信号S1aに基づいて、回転体SF2の回転位置情報S1bを算出する。処理部3は、算出した回転位置情報S1bを補正部5に出力する。以下の説明において、処理部3が算出した回転位置情報を、適宜、第1の回転位置情報という。第1の回転位置情報は、補正前の回転位置情報である
 補正部5は、処理部3から出力された第1の回転位置情報(例、回転位置情報S1b)を、記憶部4に記憶されている誤差情報に基づいて補正する(自己校正処理)。例えば、補正部5は、第1の回転位置情報(例、回転位置情報S1b)および誤差情報に基づいて、第2の回転位置情報を算出(生成)する。第2の回転位置情報は、補正後の回転位置情報である。補正部5は、算出した第2の回転位置情報(補正後の回転位置情報)を出力する。駆動装置MTRの制御部MCは、第2の回転位置情報に基づいて、駆動部MDを制御する。
 ここで、誤差情報について説明する。処理部3が算出する第1の回転位置情報は、例えば、検出部2の検出結果に基づく読取値(測定値)である。この読取値は、例えば、スケールSの製造誤差、スケールSと検出部2との位置誤差(例、組み立て誤差)などの周期的な誤差(回転による周期誤差成分)によって、真の値からずれる場合がある。スケールSの製造誤差は、例えば、アブソリュートパターンABSあるいはインクリメンタルパターンINCの形状のゆがみ、アブソリュートパターンABSあるいはインクリメンタルパターンINCスケールS上での位置ずれを含む。
 上記の誤差情報は、読取値に対する校正値を含む。校正値は、例えば、読取値に対する真の値として推定される値(真の値の推定値)を含む。例えば、読取値が89°であって、この読取値に対する校正値が90°である場合、上記の誤差情報は、読取値(例、89°)と校正値(例、90°)とを組にした情報を含む。エンコーダ装置ECの補正部5は、読取値(例、89°)が入力された場合に、誤差情報を参照して、読取値に対する校正値(例、90°)を出力することで、回転位置情報を補正する。
 また、上記の誤差情報は、校正値と読取値との誤差の情報を含んでもよい。例えば、読取値が89°であって、この読取値に対する校正値が90°である場合、読取値に対する誤差は、-1°である。この場合、上記の誤差情報は、読取値(例、89°)と誤差(例、-1°)とを組にした情報を含んでもよい。エンコーダ装置ECの補正部5は、読取値(例、89°)が入力された場合に、誤差情報を参照して、読取値に対する誤差(例、-1°)を読取値から差し引く演算(例、89°-(-1°))を実行し、回転位置情報を補正してもよい。
 上記の誤差情報は、読取値に対する補正量の情報を含んでもよい。例えば、読取値が89°であって、この読取値に対する校正値が90°である場合、読取値に対する補正量は、+1°である。この場合、上記の誤差情報は、読取値(例、89°)と補正量(例、+1°)とを組にした情報を含んでもよい。エンコーダ装置ECの補正部5は、読取値(例、89°)が入力された場合に、誤差情報を参照して、読取値に対する補正量(例、+1°)を読取値に加える演算(例、89°+(+1°))を実行し、回転位置情報を補正してもよい。
 上述のような誤差情報は、例えば、等分割平均法を利用した手法によって算出される。このような手法において、誤差情報の算出には、複数の検出位置から対象物を検出した検出結果と、複数の検出位置(検出部(センサ)の位置)とが用いられる。複数の検出位置として予め設定された設定値を用いて誤差情報を算出する場合、例えば、実際の検出位置と設定値との誤差によって、誤差情報の精度が低下する。しかしながら、エンコーダ装置の製造工程において実際の検出位置を設定値と高精度に一致させる場合、例えば、位置合わせのコストが増加する。
 本実施形態において、校正装置1は、検出部2における相対的な検出位置(回転体の回転軸方向視において回転体の回転軸AXを中心とした角度位置(例、第1検出部と第2検出部とがなす角に基づく位置))を算出し、算出した該検出位置(例、2つの検出部における相対位置)を用いて誤差情報を生成する。校正装置1は、例えば、検出部2の検出位置が設定値に対して誤差を含む場合においても、位置算出部15によって算出した実際の検出位置を用いるので、高精度な誤差情報を生成可能である。以下、図1を参照して校正装置1の各部について説明する。
 校正装置1は、位置算出部15および誤差算出部16を備える。位置算出部15は、第1検出部11、第2検出部12、及び第3検出部13のそれぞれから得られる検出信号(この場合、3つの検出信号)に基づいて、第1検出部11と第2検出部12との相対位置を算出する(相対位置の算出処理を実行する)。位置算出部15は、第1検出部11、第2検出部12、及び第3検出部13のそれぞれから得られる検出信号として、例えば、回転位置情報S1b、回転位置情報S2b、及び回転位置情報S3bを用いる。相対位置の算出処理については、後に図4、式(1)から式(21)などを参照して説明する。位置算出部15は、算出した相対位置を誤差算出部16に出力する。
 誤差算出部16は、位置算出部15が算出した相対位置、及び検出部2から得られる検出信号に基づいて、回転体SF1の回転位置情報に対する誤差情報を算出する(誤差情報の算出処理を実行する)。誤差算出部16は、検出部2から得られる検出信号として、例えば、回転位置情報S1bと回転位置情報S2bと回転位置情報S3bとの少なくとも一部を用いる。誤差算出部16は、算出した誤差情報を出力する。校正装置1は、誤差算出部16が出力した誤差情報を、エンコーダ装置ECの記憶部4に記憶させる。
 次に、校正装置1による校正処理(相対位置の算出処理、誤差情報の算出処理)について説明する。図4は、第1実施形態に係る相対位置の算出処理に用いられるパラメータを示す図である。
 図4において、符号P1は、スケールSの回転方向又は回転軸AXの軸方向視において、第1検出部11が配置された位置であり、第1検出部11による検出位置(検出対象の領域)である。第1検出部11は、例えば、スケールSにおける検出位置P1からの光を検出する。例えば、第1検出部11は、スケールSにおける検出位置P1の部分の像を検出する。また、符号P2は、スケールSの回転方向又は回転軸AXの軸方向視において、第2検出部12が配置された位置であり、第2検出部12による検出位置(検出対象の領域)である。第2検出部12は、例えば、スケールSにおける検出位置P2からの光を検出する。例えば、第2検出部12は、スケールSにおける検出位置P1の部分の像を検出する。また、符号P3は、スケールSの回転方向又は回転軸AXの軸方向視において、第3検出部13が配置された位置であり、第3検出部13による検出位置(検出対象の領域)である。第3検出部13は、例えば、スケールSにおける検出位置P3からの光を検出する。例えば、第3検出部13は、スケールSにおける検出位置P3の部分の像を検出する。
 符号φ1は、回転体SF1の回転軸AXを中心にして、図3(A)に示した第1検出部11と第2検出部12とがなす角度である。角度φ1は、スケールSの回転方向における第1検出部11の角度位置と第2検出部12の角度位置との差(回転角)である。この場合、角度φ1は、第1検出部11と第2検出部12との相対位置(相対的な角度位置)を示すパラメータである。
 角度φ1は、例えば、スケールSの回転方向又は回転軸AXの軸方向視において、回転軸AXと検出位置P1とを結ぶ線L1と、回転軸AXと検出位置P2とを結ぶ線L2とがなす角度である。線L1は、例えば、第1検出部11が検出対象とするスケールS上の領域(例、検出位置P1)における所定の点(例、中心)と、スケールS上の回転軸AXとを結ぶ線である。また、線L2は、例えば、第2検出部12が検出対象とするスケールS上の領域(例、検出位置P2)における所定の点(例、中心)と、スケールS上の回転軸AXとを結ぶ線である。
 また、符号φ2は、回転体SF1の回転軸AXを中心にして、図3(A)に示した第1検出部11と第3検出部13とがなす角度である。角度φ2は、スケールSの回転方向における第1検出部11の角度位置と第3検出部13の角度位置との差(回転角)である。角度φ2は、第1検出部11と第3検出部13との相対位置(相対的な角度位置)を示すパラメータである。角度φ2は、例えば、スケールSの回転方向又は回転軸AXの軸方向視において、線L1と、回転軸AXと検出位置P3とを結ぶ線L3とがなす角度である。線L3は、例えば、第3検出部13が検出対象とするスケールS上の領域(例、検出位置P3)における所定の点(例、中心)と、スケールS上の回転軸AXとを結ぶ線である。
 以下の説明において、第1検出部11から得られる角度位置の読取値(例、回転位置情報S1b、測定値)を、f(θ)[rad]で表す。θは、回転軸AXを中心とする円周上の検出位置P1の角度位置である。θは、例えば、真の値と推定される値、校正の目標値(校正値)である。また、第2検出部12から得られる角度位置の読取値(例、回転位置情報S2b、測定値)を、f(θ+φ1)[rad]で表す。また、第3検出部13から得られる角度位置の読取値(例、回転位置情報S3b、測定値)を、f(θ+φ2)[rad]で表す。
 上記のf(θ)、f(θ+φ1)、及びf(θ+φ2)は、それぞれ、2π[rad]を周期とする周期関数である。f(θ)は、フーリエ級数を用いて下記の式(1)で表される。以下の式において、nは、高調波の次数を表す自然数(1、2、3、・・・)である。また、Anは、第n高調波の振幅であり、αnは第n高調波の初期位相である。Nは、データ点の数(例、スケールSの目盛の数)である。
Figure JPOXMLDOC01-appb-M000001
 また、f(θ+φ1)は、フーリエ級数を用いて下記の式(2)で表される。
Figure JPOXMLDOC01-appb-M000002
 また、f(θ+φ2)は、フーリエ級数を用いて下記の式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 まず、図1および図4を参照して、相対位置の算出処理について説明する。本実施形態において、図1に示した位置算出部15は、相対処理の算出処理において、第1検出部11と第2検出部12との相対位置(例、図4のφ1)を算出する。位置算出部15は、第1検出部11から得られる検出信号(例、回転位置情報S1b)と第2検出部12から得られる検出信号(例、回転位置情報S2b)との差、及び第1検出部11から得られる検出信号(例、回転位置情報S1b)と第3検出部13から得られる検出信号(例、例、回転位置情報S3b)との差に基づいて、相対位置を算出する。回転位置情報S1bと回転位置情報S2bとの差は、f(θ+φ1)-f(θ)で表される。上記の式(1)と式(2)との差を取ることで、下記の式(4)が得られる。
Figure JPOXMLDOC01-appb-M000004
 以下の説明において、適宜、f(θ)を基準波形(基準信号、基準曲線)と称する。また、f(θ+φ1)-f(θ)を、適宜、第2検出部12に関する差分波形(差分信号、差分曲線)という。上記の式(4)から分かるように、第2検出部12に関する差分波形は、正弦波(1次からn次の高調波)の重ね合わせで表される。式(4)の大括弧中の式を変形すると、下記の式(5)が得られる。
Figure JPOXMLDOC01-appb-M000005
 ここで、第2検出部12に関する差分波形における第n高調波の振幅をBn1とする。Bn1は下記の式(6)で表される。
Figure JPOXMLDOC01-appb-M000006
 また、第2検出部12に関する差分波形における第n高調波の位相について、nθに対する変化量をβn1とする。βn1は、第2検出部12に関する第n高調波の位相とnθとの差である。βn1は、下記の式(7)で表される。
Figure JPOXMLDOC01-appb-M000007
 また、回転位置情報S1bと回転位置情報S3bとの差は、f(θ+φ2)-f(θ)で表される。以下の説明において、f(θ+φ2)-f(θ)を、適宜、第3検出部13に関する差分波形(差分信号、差分曲線)という。第3検出部13に関する差分波形は、上記の式(1)と式(3)との差を取ることで得られる。また、第3検出部13に関する差分波形について、第2検出部12に関する差分波形と同様に変形し、第3検出部13に関する差分波形における第n高調波の振幅をBn2とする。Bn2は下記の式(8)で表される。
Figure JPOXMLDOC01-appb-M000008
 また、第3検出部13に関する差分波形における第n高調波の位相について、nθに対する変化量をβn2とする。βn2は、第3検出部13に関する第n高調波の位相とnθとの差である。βn2は、下記の式(9)で表される。
Figure JPOXMLDOC01-appb-M000009
 上記の式(6)および式(8)を用いてAnについて解くと、下記の式(10)が得られる。
Figure JPOXMLDOC01-appb-M000010
 上記の式(10)を変形すると、下記の式(11)が得られる。
Figure JPOXMLDOC01-appb-M000011
 また、上記の式(7)および式(9)を用いてαnについて解くと、下記の式(12)が得られる。
Figure JPOXMLDOC01-appb-M000012
 上記の式(12)を変形すると、下記の式(13)が得られる。
Figure JPOXMLDOC01-appb-M000013
 第1検出部11と第2検出部12との相対位置を示す角度φ1、及び第1検出部11と第3検出部13との相対位置を示す角度φ2は、上記の式(11)と式(13)とを連立して解くことで、算出される。上記の式(13)の右辺を上記の式(11)に代入することにより、上記の式(11)から角度φ2を消去すると、下記の式(14)が得られる。
Figure JPOXMLDOC01-appb-M000014
 上記の式(14)を変形すると、下記の式(15)が得られる。
Figure JPOXMLDOC01-appb-M000015
 式(15)におけるCn1は、下記の式(16)で表される。
Figure JPOXMLDOC01-appb-M000016
 また、式(15)におけるγn1は、下記の式(17)で表される。
Figure JPOXMLDOC01-appb-M000017
 式(15)において、Cn1が0でない条件で、sin(nφ1/2+γn1)=0である。この場合、自然数であるmを用いて、下記の式(18)が成り立つ。
Figure JPOXMLDOC01-appb-M000018
 式(18)を変形すると、φ1は、下記の式(19)で表される。
Figure JPOXMLDOC01-appb-M000019
 ここで、n=kである場合について、0より大きく2π以下の範囲におけるφ1の解を、φ1(n=k)で表す。例えば、n=1、かつ0<φ1≦2πを満たすφ1の解を、φ1(n=1)で表す。1次の成分(n=1の場合)については、0<φ1≦2πを満たす条件がm=1である。φ1(n=1)は、一意に定まり、下記の式(20)で表される。
Figure JPOXMLDOC01-appb-M000020
 2次以上の成分(nが2以上である場合)については、φ1の解の数がnと同じである。例えば、nが3である場合、φ1(n=3)は、下記の式(21)で表され、m=1,2,3のそれぞれに対応する解を含む3つの解がある。
Figure JPOXMLDOC01-appb-M000021
 このように、複数の解が得られる場合、m=1,2,・・・kのうち2つ以上のmの値について、それぞれφ1(n=k)の解を算出し、得られたφ1(n=k)の複数の解に基づいて、φ1を特定してもよい。例えば、n=3である場合、m=1,2,3のそれぞれについてφ1(n=3)の解を算出し、φ1(n=3)の複数の解のうち、上記の式(20)から得られるφ1(n=1)に最も値が近い解をφ1(n=3)の解として採用してもよい。また、φ1(n=3)の複数の解から演算される値(例、平均値)を、φ1(n=3)の解として採用してもよい。
 0次(n=0)の成分は、直流成分であり、例えばノイズの影響を受けやすい。1次以上の成分を用いると、例えば、角度φ1を高精度に算出可能(特定可能)である。なお、nは、本実施形態において自然数(1,2,・・・)であるが、0を含んでもよい。例えば、スケールSがアブソリュートパターンABSを含む場合、0次の成分を用いて角度φ1を算出してもよい。また、スケールSがインクリメンタルパターンINCを含み、アブソリュートパターンABSを含まない場合、スケールSが所定の角度位置(例、基準位置、0°、原点)にある際の0次の成分を用いて、角度φ1を算出してもよい。
 本実施形態において、図1に示した位置算出部15は、第1検出部11と第3検出部13との相対位置(例、図4の角度φ2)も算出する。以下、φ2の解について説明する。上記の式(12)を用いて式(11)からφ1を消去すると、下記の式(22)が得られる。
Figure JPOXMLDOC01-appb-M000022
 式(22)を変形すると、下記の式(23)が得られる。
Figure JPOXMLDOC01-appb-M000023
 上記の式(23)におけるCn2は、下記の式(24)で表される。
Figure JPOXMLDOC01-appb-M000024
 上記の式(23)におけるγn2は、下記の式(25)で表される。
Figure JPOXMLDOC01-appb-M000025
 上記の式(23)において、Cn2が0でない条件で、sin(nφ2/2+γn2)=0である。この場合、自然数であるmを用いて、下記の式(26)が成り立つ。
Figure JPOXMLDOC01-appb-M000026
 ここで、n=kである場合について、0より大きく2π以下の範囲におけるφ2の解を、φ2(n=k)で表す。例えば、n=1、0<φ2≦2πを満たす場合のφ2の解を、φ2(n=1)で表す。1次の成分(n=1である場合)については、0<φ2≦2πを満たす条件がm=1である。φ2(n=1)は、一意に定まり、下記の式(27)で表される。
Figure JPOXMLDOC01-appb-M000027
 また、2次以上の成分(nが2以上である場合)については、φ1の解について説明したように、m=1,2,・・・kのうち2つ以上のmの値について、それぞれφ2(n=k)の解を算出し、得られたφ2(n=k)の複数の解に基づいて、φ2を特定してもよい。
 次に、誤差情報の算出処理について説明する。上述のように算出されたφ1を、上記の式(10)に代入すると、Anが既知になる。また、相対位置の算出処理によって算出されたφ1を、上記の式(12)に代入すると、αnが既知になる。ここで、上記の式(1)における高調波成分(右辺の第2項)を、Errで表す。Errは、下記の式(28)で表され、既知になったAnおよびαnを用いて算出される。
Figure JPOXMLDOC01-appb-M000028
 Errは、測定値であるf(θ)と真の値であるθとの差(誤差)を表す誤差曲線である。第1検出部11の検出結果から得られるf(θ)と、算出されたErrとを用いると、真の値であるθは、下記の式(29)によって算出される。
Figure JPOXMLDOC01-appb-M000029
 図1に示した誤差算出部16は、f(θ)と算出したErr(誤差)とを用いて、θ(校正値)を算出する。誤差算出部16は、例えば、f(θ)とθとを一組にした情報を、誤差情報として生成する。例えば、誤差算出部16は、φ1に基づいてAnおよびαnを算出する。また、誤差算出部16は、φ1に基づくAnおよびαnを用いて、Errを算出する。以下の説明において、φ1に基づいて算出されるErrを、適宜、Err1と表記する。
 誤差算出部16は、f(θ)と、Err1とを用いてθを算出する。以下の説明において、φ1に基づいて算出されるθを、適宜、θ1と表記する。誤差算出部16は、f(θ)と、θ1とを一組にした情報を、第1誤差情報として生成する。
 また、Errは、φ2から算出することも可能である。例えば算出されたφ2を、上記の式(10)に代入すると、Anが既知になる。また、算出されたφ2を、上記の式(12)に代入すると、αnが既知になる。例えば、誤差算出部16は、φ2に基づいてAnおよびαnを算出する。また、誤差算出部16は、φ2に基づくAnおよびαnを用いて、Errを算出する。以下の説明において、φ2に基づいて算出されるErrを、適宜、Err2と表記する。誤差算出部16は、f(θ)と、Err2とを用いてθを算出する。以下の説明において、φ2に基づいて算出されるθを、適宜、θ2と表記する。誤差算出部16は、f(θ)と、θ2とを一組にした情報を、第2誤差情報として生成する。
 誤差算出部16は、第1誤差情報と第2誤差情報とに基づいて、誤差情報を算出する。例えば、誤差算出部16は、第1検出信号(例、回転位置情報S1b、f(θ))と第2検出信号(例、回転位置情報S2b、f(θ+φ1))との差の振幅、及び第1検出信号と第3検出信号(例、回転位置情報S3b、f(θ+φ2))との差の振幅に基づいて、誤差情報を算出する。例えば、第1検出信号と第2検出信号との差はf(θ+φ1)-f(θ)であり、その振幅はBn1である。また、第1検出信号と第3検出信号との差はf(θ+φ2)-f(θ)であり、その振幅はBn2である。
 誤差算出部16は、Bn1とBn2と大小関係に基づいて、θ1またはθ2をθとして選択してもよい。例えば、誤差算出部16は、Bn1とBn2とを比較し、Bn1の方が値が大きい場合にBn1に対応するθ1を、θとして選択(採用)してもよい。また、誤差算出部16は、θ1とθ2との平均値(例、加算平均値、加重平均値)を、θとして算出してもよい。例えば、誤差算出部16は、上記の加算平均値である(θ1+θ2)/2をθとして採用してもよい。また、誤差算出部16は、Bn1およびBn2を用いた重み付けによってθを算出してもよい。例えば、誤差算出部16は、上記の加重平均値である(Bn1×θ1+Bn2×θ2)/(Bn1+Bn2)を、θとして採用してもよい。
 誤差算出部16が第1誤差情報と第2誤差情報とに基づいて誤差情報を算出する場合、例えば、読取値の取得時に発生する誤差(例、ノイズ、量子化誤差)、誤差情報の算出時に発生する誤差(例、丸め誤差)の影響を低減することができる。なお、誤差算出部16は、第1誤差情報と第2誤差情報との一方を誤差情報として算出してもよい。例えば、誤差算出部16は、誤差情報として第1誤差情報を算出し、第2誤差情報を算出しなくてもよい。
 なお、誤差算出部16は、誤差情報として、f(θ)とErr(誤差)とを一組にした情報を生成してもよい。また、誤差算出部16は、f(θ)と、Errから算出される補正量(例、-Err)とを一組にした情報を、誤差情報として生成してもよい。
 誤差算出部16は、第1誤差情報および第2誤差情報に基づいて、Errを算出してもよい。誤差算出部16は、Bn1とBn2とに基づいて、Err1またはErr2をErrとして選択してもよい。例えば、誤差算出部16は、Bn1とBn2とを比較し、Bn1の方が値が大きい場合にBn1に対応するErr1を、Errとして選択してもよい。
 また、誤差算出部16は、Err1とErr2との平均値(例、加算平均値、加重平均値)をErrとして算出してもよい。誤差算出部16は、Bn1とBn2とを用いた重み付けによって、Errを算出してもよい。例えば、誤差算出部16は、加重平均値である(Bn1×Err1+Bn2×Err2)/(Bn1+Bn2)を、Errとして算出してもよい。
 ここで、第1検出部11と第2検出部12との相対位置(例、φ1)の設定値、及び第1検出部11と第3検出部13との相対位置(例、φ2)の設定値について説明する。本実施形態において、誤差算出部16は、2以上の整数であるiについて、第1検出部11の検出結果を表すフーリエ級数のi次成分の誤差を算出する。φ1の設定値およびφ2の設定値が円周をi等分する角度に設定される場合、読取値の差(例、f(θ+φ1)-f(θ)、f(θ+φ2)-f(θ))のフーリエ級数には、iの整数倍の次数の成分が含まれない。そのため、φ1の設定値とφ2の設定値との一方または双方は、2以上の整数であるjについて、2π/j×i[rad]以外の角度に設定される。
 次に、上述のエンコーダ装置ECおよび校正装置1の構成に基づき、実施形態に係るエンコーダ装置の製造方法について説明する。図5は、実施形態に係るエンコーダ装置の製造方法を示すフローチャートである。エンコーダ装置ECの各部、及び校正装置1の各部については、適宜、図1等を参照する。
 ステップS1において、第1検出部11、第2検出部12、及び第3検出部13(図1参照)は、それぞれ、スケールSに対して配置される。ステップS2において、スケールSを少なくとも1周分(1回転分)回転させて、第1検出部11、第2検出部12、及び第3検出部13は、それぞれ、スケールSを検出する。第1検出部11、第2検出部12、及び第3検出部13は、それぞれ、検出信号を処理部3(図1参照)に出力する。
 処理部3は、第1検出部11の検出結果を処理して、回転位置情報S1b(例、f(θ))を算出する。また、処理部3は、第2検出部12の検出結果を処理して、回転位置情報S2b(例、f(θ+φ1))を算出する。また、処理部3は、第3検出部13の検出結果を処理して、回転位置情報S3b(例、f(θ+φ2))を算出する。処理部3は、第1検出部11、第2検出部12、及び第3検出部13のそれぞれから得られる検出信号として、回転位置情報S1b、回転位置情報S2b、及び回転位置情報S3bを校正装置1(図1参照)に出力する。
 なお、本実施形態におけるエンコーダ装置の製造方法は、実施形態に係る校正方法によってエンコーダ装置を校正する(校正処理を実行する)ことを含む。この校正処理は、図5におけるステップS3の処理(相対位置の算出処理)、及びステップS4の処理(誤差情報の算出処理)を含む。
 ステップS3において、位置算出部15(図1参照)は、エンコーダ装置EC(例、処理部3)からの検出信号に基づいて、第1検出部11と第2検出部12との相対位置(例、第1相対位置、φ1)を算出する。本実施形態に係る位置算出部15は、上記の式(1)から式(21)で説明した手法によって、φ1を算出する。また、本実施形態に係る位置算出部15は、上記の式(22)から式(27)で説明した手法によって、第1検出部11と第3検出部13との相対位置(例、第2相対位置、φ2)を算出する。
 ステップS4において、誤差算出部16(図1参照)は、位置算出部15が算出した相対位置およびエンコーダ装置ECからの検出信号(例、回転位置情報)に基づいて、誤差情報を算出する。本実施形態において、ステップS4の処理(誤差情報の算出処理)は、ステップS5からステップS7の処理を含む。
 ステップS5において、誤差算出部16は、第1検出信号(例、回転位置情報S1b、f(θ))、第2検出信号(例、回転位置情報S2b、f(θ+φ1))、及び第1相対位置(例、φ1)に基づいて、第1誤差情報を算出する。第1誤差情報は、例えば、f(θ)と、φ1から算出されるθ1とを関係づけた情報を含む。
 ステップS6において、誤差算出部16は、第2検出信号(例、回転位置情報S1b、f(θ))、第3検出信号(例、回転位置情報S3b、f(θ+φ2))、及び第2相対位置(例、φ2)に基づいて、第2誤差情報を算出する。第2誤差情報は、例えば、f(θ)と、φ2から算出されるθ2とを関係づけた情報を含む。
 ステップS7において、誤差算出部16は、第1誤差情報と第2誤差情報とに基づいて、上記の誤差情報を算出する。誤差情報は、例えば、読取値であるf(θ)と、校正値であるθとを関係づけた情報を含む。誤差算出部16は、第1誤差情報におけるθ1と第2誤差情報におけるθ2との平均値(例、加算平均値、加重平均値)をθとして算出し、誤差情報を算出してもよい。また、誤差算出部16は、第1誤差情報におけるθ1または第2誤差情報におけるθ2をθとして選択し、誤差情報を生成してもよい。校正装置1(図1参照)は、誤差算出部16が算出した誤差情報を出力する。ステップS8において、校正装置1は、誤差算出部16が算出した誤差情報をエンコーダ装置ECの記憶部4(図1参照)に記憶させる。
 ステップS9において、エンコーダ装置ECは、例えば校正装置1から取り外される。校正装置1から取り外されたエンコーダ装置ECは、例えば、検出対象の回転体SF2(図2参照)に取り付けられる。エンコーダ装置ECの検出部2の少なくとも一部は、回転体SF2に取り付けられたスケールSを検出する。例えば、図2に示した第1検出部11は、スケールSを検出し、検出信号S1aを出力する、第2検出部12と第3検出部13との一方または双方は、回転体SF2に取り付けられたスケールSを検出しなくてもよい。
 処理部3は、検出部2から出力される検出信号に基づいて、回転体SF2の第1の回転位置情報を算出する。例えば、処理部3は、第1検出部11から出力される検出信号S1aに基づいて、回転位置情報S1bを算出する。処理部3は、算出した回転位置情報を補正部5に出力する。補正部5は、処理部3が算出した回転位置情報を、記憶部4に記憶された誤差情報に基づいて補正する。そして、エンコーダ装置ECは、補正後の回転位置情報を外部の装置(例、制御部MC)に出力する。
 なお、図5のステップS3において、位置算出部15は、第1検出部11と第3検出部13との相対位置(例、第2相対位置、φ2)を算出しなくてもよい。この場合、誤差算出部16は、ステップS4において、誤差情報として第1誤差情報を算出し、ステップS6の処理およびステップS7の処理を実行しなくてもよい。
 なお、実施形態に係るエンコーダ装置ECは、校正装置1の少なくとも一部(例、位置算出部15、誤差算出部16)を備えてもよい。例えば、エンコーダ装置ECは、回転体SF1に取り付けられるスケールSと、スケールSに対して配置される第1検出部11、第2検出部12、及び第3検出部13と、第1検出部11、第2検出部12、及び第3検出部13のそれぞれから得られる検出信号に基づいて、第1検出部11と第2検出部12との相対位置を算出する位置算出部15と、位置算出部15が算出した相対位置、及び検出信号に基づいて、回転体SF1の回転位置情報に対する誤差情報を算出する誤差算出部16と、を備えてもよい。
 なお、第3検出部13は、第2検出部12による検出処理の終了後に、スケールSに対して配置されてもよい。例えば、第2検出部12は、検出処理の終了後に角度位置が変更されて、第3検出部13として配置されてもよい。位置算出部15は、角度位置が変更された後の第2検出部12から得られる検出信号を、第3検出部13から得られる検出信号として用いて、第1検出部11と第2検出部12との相対位置を算出してもよい。実施形態に係る校正装置1は、検出部2における相対位置を算出するので、第2検出部12の角度位置が変更される場合においても誤差情報を高精度に算出可能である。
 なお、位置算出部15は、検出部2から得られる検出信号として、検出信号S1a、検出信号S2a、及び検出信号S3aを用いて、第1検出部11と第2検出部12との相対位置を算出してもよい。
[第2実施形態]
 次に、第2実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図6は、第2実施形態に係るエンコーダ装置および校正装置を示す図である。本実施形態において、第1検出部11、第2検出部12、及び第3検出部13の少なくとも1つは、検出部2から取り外し可能である。図6(A)は、検出部2に第1検出部11、第2検出部12、及び第3検出部13が設けられた状態である。図6(B)は、検出部2から第3検出部13が取り外された状態である。
 図6(A)の状態において、第1検出部11、第2検出部12、及び第3検出部13は、それぞれ、スケールSを検出する。第1検出部11は、検出信号S1aを処理部3に出力する。第2検出部12は、検出信号S2aを処理部3に出力する。第3検出部13は、検出信号S3aを処理部3に出力する。処理部3は、検出部2から得られる検出信号として、検出信号S1aに基づく回転位置情報S1bと、検出信号S2aに基づく回転位置情報S2bと、検出信号S3aに基づく回転位置情報S3bと、を校正装置1に出力する。
 校正装置1は、位置算出部15、誤差算出部16、及び記憶部17を備える。校正装置1の位置算出部15は、回転位置情報S1b、回転位置情報S2b、及び回転位置情報S3bに基づいて、第1検出部11と第2検出部12との相対位置(例、φ1)を算出する。位置算出部15は、算出した第1検出部11と第2検出部12との相対位置を、記憶部17に記憶させる。ここで、第3検出部13は、図6(B)に示すように、位置算出部15による相対位置の算出処理に用いられる検出結果を取得した後に、検出部2から取り外される。
 図6(B)の状態において、第1検出部11および第2検出部12は、それぞれ、スケールSを検出する。第1検出部11は、検出信号S1aを処理部3に出力する。第2検出部12は、検出信号S2aを処理部3に出力する。処理部3は、検出部2から得られる検出信号として、検出信号S1aに基づく回転位置情報S1bと、検出信号S2aに基づく回転位置情報S2bと、を校正装置1に出力する。
 校正装置1の誤差算出部16は、図6(A)において位置算出部15が算出した相対位置、並びに図6(B)において処理部3から出力された回転位置情報S1bおよび回転位置情報S2bに基づいて、誤差情報を算出する。誤差算出部16は、図6(A)において位置算出部15が算出した相対位置を記憶部17から読み出し、読み出した相対位置、並びに回転位置情報S1bおよび回転位置情報S2bに基づいて誤差情報を算出する。校正装置1は、誤差算出部16が算出した誤差情報をエンコーダ装置ECの記憶部4に記憶させる。
[第3実施形態]
 次に、第3実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図7は、第3実施形態に係るエンコーダ装置および校正装置を示す図である。本実施形態において、検出部2(第1検出部11、第2検出部12、及び第3検出部13)は、エンコーダ装置ECと校正装置1とに分かれている。図7において、エンコーダ装置ECは、第1検出部11を備える。また、校正装置1は、第2検出部12および第3検出部13を備える。第2検出部12および第3検出部13は、検出部2から取り外し可能である。
 図7(A)において、スケールSは、回転体SF1(第1回転体)に取り付けられている。第1検出部11、第2検出部12、及び第3検出部13は、それぞれ、スケールSを検出する。第1検出部11は、検出信号S1aを処理部3に出力する。第2検出部12は、検出信号S2aを処理部3に出力する。第3検出部13は、検出信号S3aを処理部3に出力する。処理部3は、検出部2から得られる検出信号として、検出信号S1aに基づく回転位置情報S1bと、検出信号S2aに基づく回転位置情報S2bと、検出信号S3aに基づく回転位置情報S3bと、を校正装置1に出力する。
 校正装置1の位置算出部15は、回転位置情報S1b、回転位置情報S2b、及び回転位置情報S3bに基づいて、第1検出部11と第2検出部12との相対位置(例、φ1)を算出する。誤差算出部16は、位置算出部15が算出した相対位置、及び検出部2がスケールSを検出して得られる検出信号(例、回転位置情報S1b、回転位置情報S2b、回転位置情報S3bに基づいて、誤差情報を算出する。校正装置1は、誤差算出部16が算出した誤差情報を、エンコーダ装置ECの記憶部4に記憶させる。
 エンコーダ装置ECは、記憶部4が誤差情報を記憶した後に、校正装置1から取り外される。校正装置1からエンコーダ装置ECが取り外されることで、図7(B)に示すように、検出部2から第2検出部12および第3検出部13が取り外された状態になる。図7(B)において、スケールSは、回転体SF2(第2回転体)に取り付けられている。回転体SF2は、図7(A)の回転体SF1と同じでもよいし、回転体SF1と異なってもよい。
 第1検出部11は、回転体SF2に取り付けられたスケールSを検出する。第1検出部11は、検出信号S1aを処理部3に出力する。処理部3は、検出信号S1aに基づいて、回転体SF2の回転位置情報S1bを算出する。処理部3は、算出した回転位置情報S1bを補正部5に出力する。補正部5は、記憶部4から誤差情報を読み出し、回転体SF2の回転位置情報S1bを誤差情報に基づいて補正する。エンコーダ装置ECは、補正後の回転位置情報を外部へ出力する。
[第4実施形態]
 次に、第4実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図8は、第4実施形態に係るエンコーダ装置および校正装置を示す図である。本実施形態において、エンコーダ装置ECは、第1検出部11、処理部3、記憶部4、及び補正部5を備える。また、本実施形態において、校正装置1は、第2検出部12、第3検出部13、処理部18、位置算出部15、及び誤差算出部16を備える。
 図8(A)において、エンコーダ装置ECの第1検出部11は、スケールSを検出する。第1検出部11は、検出信号S1aを処理部3に出力する。処理部3は、検出信号S1aに基づいて、回転位置情報S1bを算出する。エンコーダ装置EC(例、処理部3)は、算出した回転位置情報S1bを校正装置1に出力する。
 また、校正装置1の第2検出部12および第3検出部13は、それぞれ、スケールSを検出する。第2検出部12および第3検出部13は、それぞれ、第1検出部11によるスケールSの検出処理と並行して、スケールSを検出する。第2検出部12は、検出信号S2aを処理部18に出力する。処理部18は、検出信号S2aに基づいて、回転位置情報S2bを算出する。第3検出部13は、検出信号S3aを処理部18に出力する。処理部18は、検出信号S3aに基づいて、回転位置情報S3bを算出する。処理部18は、回転位置情報S2bおよび回転位置情報S3bを、位置算出部15と誤差算出部16とのそれぞれに出力する。
 位置算出部15は、第1検出部11、第2検出部12、及び第3検出部13のそれぞれから得られる検出信号として、エンコーダ装置EC(例、処理部3)から出力された回転位置情報S1b、並びに校正装置1の処理部18から出力された回転位置情報S2bおよび回転位置情報S3bを用いて、第1検出部11と第2検出部12との相対位置(例、φ1)を算出する。位置算出部15は、第1検出部11と第3検出部13との相対位置(例、φ2)を算出してもよい。位置算出部15は、算出した相対位置を誤差算出部16に出力する。
 誤差算出部16は、エンコーダ装置EC(例、処理部3)から出力された回転位置情報S1b、処理部18が算出した回転位置情報S2b、及び位置算出部15が算出した相対位置(例、φ1)に基づいて、第1誤差情報を算出する。誤差算出部16は、回転位置情報S1b、処理部18が算出した回転位置情報S3b、及び位置算出部15が算出した相対位置(例、φ2)に基づいて、第2誤差情報を算出する。誤差算出部16は、第1誤差情報および第2誤差情報に基づいて、誤差情報を算出する。なお、誤差算出部16は、誤差情報として第1誤差情報を算出し、第2誤差情報を算出しなくてもよい。校正装置1は、誤差算出部16が算出した誤差情報をエンコーダ装置ECの記憶部4に記憶させる。
 エンコーダ装置ECは、記憶部4が誤差情報を記憶した後に、図8(B)に示すように校正装置1から取り外される。図8(B)において、第1検出部11は、回転体(第2回転体)SF2に取り付けられたスケールSを検出する。第1検出部11は、検出信号S1aを処理部3に出力する。処理部3は、検出信号S1aに基づいて、回転位置情報S1bを算出する。処理部3は、算出した回転位置情報S1bを補正部5に出力する。補正部5は、記憶部4から誤差情報を読み出し、回転位置情報S1bを誤差情報に基づいて補正する。エンコーダ装置ECは、補正後の回転位置情報を外部へ出力する。
 本実施形態に係るエンコーダ装置ECは、例えば、処理部3と第2検出部12との接続、及び処理部3と第3検出部13との接続を省くことができる。また、本実施形態に係るエンコーダ装置ECは、例えば、処理部3に対する検出信号S2aの入力処理および検出信号S3aの入力処理、並びに処理部3からの回転位置情報S2bの出力処理および回転位置情報S3bの出力処理を省略することができ、処理部3の処理が簡略化される。
[第5実施形態]
 第5実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図9は、第5実施形態に係るエンコーダ装置および校正装置を示す図である。本実施形態において、校正装置1は、エンコーダ装置ECの補正部5から出力される情報に基づいて、誤差情報を算出する。エンコーダ装置ECは、記憶部4に記憶された誤差情報を、校正装置1が算出した誤差情報へ更新する。ここでは、図9(A)において、記憶部4に初期の誤差情報が記憶されているとする。初期の誤差情報は、例えば、補正量が0である誤差情報である。
 図9(A)において、エンコーダ装置ECの第1検出部11は、回転体SF1に取り付けられたスケールSを検出する。第1検出部11は、検出信号S1aを処理部3に出力する。処理部3は、検出信号S1aに基づいて、回転位置情報S1bを算出する。処理部3は、算出した回転位置情報S1bを補正部5に出力する。補正部5は、記憶部4に記憶された誤差情報に基づいて回転位置情報S1bを補正する。補正部5は、補正後の回転位置情報を出力する。記憶部4に記憶された誤差情報による補正量が0に相当する場合、補正後の回転位置情報は、補正前の回転位置情報S1bと同じである。
 また、校正装置1の第2検出部12および第3検出部13は、それぞれ、回転体SF1に取り付けられたスケールSを検出する。第2検出部12は、検出信号S2aを処理部18に出力する。処理部18は、検出信号S2aに基づいて、回転位置情報S2bを算出する。第3検出部13は、検出信号S3aを処理部18に出力する。処理部18は、検出信号S3aに基づいて、回転位置情報S3bを算出する。処理部18は、回転位置情報S2bおよび回転位置情報S3bを、位置算出部15と誤差算出部16とのそれぞれに出力する。
 位置算出部15は、第1検出部11、第2検出部12、及び第3検出部13のそれぞれから得られる検出信号として、エンコーダ装置EC(例、補正部5)から出力された補正後の回転位置情報(例、回転位置情報S1b)、並びに処理部18から出力された回転位置情報S2bおよび回転位置情報S3bを用いて、第1検出部11と第2検出部12との相対位置(例、φ1)を算出する。位置算出部15は、第1検出部11と第3検出部13との相対位置(例、φ2)を算出してもよい。位置算出部15は、算出した相対位置を誤差算出部16に出力する。
 誤差算出部16は、エンコーダ装置EC(例、処理部3)から出力された回転位置情報S1b、処理部18が算出した回転位置情報S2b、及び位置算出部15が算出した相対位置(例、φ1)に基づいて、第1誤差情報を算出する。誤差算出部16は、回転位置情報S1b、処理部18が算出した回転位置情報S3b、及び位置算出部15が算出した相対位置(例、φ2)に基づいて、第2誤差情報を算出する。誤差算出部16は、第1誤差情報および第2誤差情報に基づいて、誤差情報を算出する。なお、誤差算出部16は、誤差情報として第1誤差情報を算出し、第2誤差情報を算出しなくてもよい。校正装置1は、誤差算出部16が算出した誤差情報をエンコーダ装置ECに出力する。エンコーダ装置ECは、記憶部4に記憶される誤差情報を、誤差算出部16が算出した誤差情報へ更新する。
 エンコーダ装置ECは、誤差情報が更新された後に、図9(B)に示すように校正装置1から取り外される。図9(B)において、第1検出部11は、スケールSを検出する。第1検出部11は、検出信号S1aを処理部3に出力する。処理部3は、検出信号S1aに基づいて、回転位置情報S1bを算出する。処理部3は、算出した回転位置情報S1bを補正部5に出力する。補正部5は、更新された誤差情報を記憶部4から読み出し、回転位置情報S1bを誤差情報に基づいて補正する。エンコーダ装置ECは、補正後の回転位置情報を外部へ出力する。
 本実施形態に係るエンコーダ装置ECは、補正部5の処理が図9(A)と図9(B)とで同様になり、補正部5における信号の入力および出力に係る処理が簡略化される。例えば、エンコーダ装置ECは、図2に示した制御部MCに対して補正後の回転位置情報を出力する出力系統(例、外部出力端子)を、校正装置1に対して回転位置情報S1bを出力する出力系統として用いることができ、エンコーダ装置ECの構成が複雑になることを避けることができる。
 なお、図9(A)における記憶部4は、校正装置1が前回の校正処理で算出した誤差情報を記憶していてもよい。エンコーダ装置ECは、記憶部4に記憶される誤差情報を、校正装置1が今回の校正処理で算出した誤差情報へ更新してもよい。
[第6実施形態]
 第6実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図10は、第6実施形態に係るエンコーダ装置および校正装置を示す図である。本実施形態において、第1検出部11は、複数の検出部(検出部21a、検出部21b)を含む。位置算出部15および誤差算出部16の一方または双方は、複数の検出部(検出部21a、検出部21b)から得られる信号を平均化した信号を、第1検出部11の検出信号として用いる。
 図10(B)は、本実施形態に係るスケールおよび検出ヘッドを示す図である。エンコーダ装置ECには、第1ヘッド6および第4ヘッド9が設けられる。検出部21aは、第1ヘッド6に設けられる。検出部21bは、第4ヘッド9に設けられる。第4ヘッド9は、第1ヘッド6と同様の構成である。検出部21aおよび検出部21bは、それぞれ、スケールSのインクリメンタルパターンINCおよびアブソリュートパターンABSのそれぞれを検出する。
 ここで、第1検出部11(図10(A)参照)が備える検出部(例、検出部21a、検出部21b)の数をSk(例、2)とする。回転軸AXを中心とする第1ヘッド6の検出位置と第4ヘッド9の検出位置との角度Δθ(角度位置の差)は、例えば2π/Sj[rad]に設定される。例えば、図10(A)においてSjは2であり、Δθはπ[rad](180°)に設定される。
 図10(A)の第1検出部11は、信号処理部22を含む。検出部21aおよび検出部21bは、それぞれ、スケールSを検出した検出結果に相当する検出信号を信号処理部22へ出力する。信号処理部22は、検出部21aからの検出信号と検出部21bからの検出信号とを平均化する。信号処理部22は、平均化した信号を第1検出部11の検出信号S1aとして出力する。検出信号S1aから得られる回転位置情報をフーリエ級数で表す場合、奇数次の誤差が相殺される。そのため、本実施形態に係る誤差算出部16は、検出信号S1aから得られる回転位置情報をフーリエ級数で表した際の偶数次の成分について、誤差情報を算出する。
[第7実施形態]
 第7実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図11は、第7実施形態に係るエンコーダ装置および校正装置を示す図である。図11(A)には、校正処理におけるエンコーダ装置ECおよび校正装置1を示した。本実施形態において、校正装置1は、検出部2及び記憶部25を備える。検出部2は、第1検出部11、第2検出部12、及び第3検出部13を含む。
 位置算出部15は、第1検出部11、第2検出部12、及び第3検出部13のそれぞれから得られる検出信号(例、回転位置情報S1b、回転位置情報S2b、回転位置情報S3b)に基づいて、第1検出部11と第2検出部12との相対位置を算出する。誤差算出部16は、位置算出部15が算出した相対位置、及び検出部2から得られる検出信号(例、回転位置情報S1b、回転位置情報S2b)に基づいて、誤差情報を算出する。記憶部25は、誤差算出部16が算出した誤差情報を記憶する。校正装置1は、記憶部25に記憶された誤差情報をエンコーダ装置ECに出力する。エンコーダ装置ECの記憶部4は、校正装置1から出力された誤差情報を記憶する。エンコーダ装置ECは、記憶部4が誤差情報を記憶した後(例、校正処理の終了後)に、校正装置1から取り外される。
 図11(B)には、校正処理後のエンコーダ装置ECおよび校正装置1を示した。図11(B)において、エンコーダ装置ECは、スケールS、記憶部4、補正部5、及び検出部26を備える。スケールSは、回転体SF2に取り付けられる。回転体SF2は、図11(A)の回転体SF1と同じでもよいし、回転体SF1と異なってもよい。
 検出部26(第4検出部)は、スケールSに対して配置される。検出部26は、図11(A)に示した第1検出部11、第2検出部12、及び第3検出部13のいずれとも異なる。検出部26は、例えば、校正装置1から取り外されたエンコーダ装置EC(例、校正処理後のエンコーダ装置EC)に取り付けられる。検出部26は、第1検出部11の位置に基づいてスケールSに対して配置される。検出部26は、検出部26とスケールSとの相対位置が、第1検出部11とスケールSとの相対位置と同じになるように、位置決めされる。
 図12は、第7実施形態に係るエンコーダ装置の検出部の配置方法の例を示す図である。図12(A)は、校正処理における校正装置1を示す図である。校正装置1は、第1ヘッド6、第2ヘッド7、及び第3ヘッド8を備える。第1検出部11は、第1ヘッド6に設けられる。第2検出部12は、第2ヘッド7に設けられる。第3検出部13は、第3ヘッド8に設けられる。第1ヘッド6は、アライメント部材27によって位置決めされる。アライメント部材27は、例えば、位置決めピンを含む。第1ヘッド6は、例えば、アライメント部材27に接触するように配置されることで、スケールSに対して位置決めされる。第1検出部11は、第1ヘッド6が位置決めされることで、スケールSに対して位置決めされる。
 図12(B)は、図12(A)の校正装置1が取り外されたエンコーダ装置を示す図である。エンコーダ装置ECは、検出ヘッド28を備える。検出ヘッド28は、図12(A)の第1ヘッド6と同様の構成である。検出ヘッド28は、検出部26および照射部29を備える。照射部29は、インクリメンタルパターンINCおよびアブソリュートパターンABSのそれぞれに光を照射する。検出部26は、インクリメンタルパターンINCからの光およびアブソリュートパターンABSからの光をそれぞれ検出する。
 検出ヘッド28は、図12(A)の第1ヘッド6と同様に、アライメント部材27によって位置決めされる。検出ヘッド28は、例えば、アライメント部材27に接触するように配置されることで、スケールSに対して位置決めされる。検出部26は、検出ヘッド28が位置決めされることで、スケールSに対して位置決めされる。
 図11(B)の説明に戻り、検出部26は、回転体SF2に取り付けられたスケールSを検出する。検出部26は、検出信号S4aを処理部3に出力する。処理部3は、検出信号S4aに基づいて、回転体SF2の回転位置情報S4bを算出する。処理部3は、算出した回転位置情報S4bを補正部5に出力する。補正部5は、記憶部4に記憶された誤差情報に基づいて、検出部26の検出結果から得られる回転体SF2の回転位置情報S4bを補正する。エンコーダ装置ECは、補正後の回転位置情報を外部に出力する。
[第8実施形態]
 第8実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図13は、第8実施形態に係るエンコーダ装置を示す図である。本実施形態において、エンコーダ装置ECは、スケールS、検出部26、照射部29、処理部3、記憶部4、補正部5、及びエンコーダ本体部51を備える。
 エンコーダ本体部51は、エンコーダ装置ECが搭載される駆動装置MTRの本体部BDに固定される。本体部BD(駆動部)は、駆動装置MTRの可動子(例、電気子)と固定子(例、永久磁石)を収容する。駆動装置MTRの可動子は、固定子に対して移動(例、回転)する。回転体SF2は、駆動装置MTRの可動子と接続され、可動子とともに移動(例、回転)する。
 エンコーダ本体部51は、第1支持部52(第1支持部材)および第2支持部53(第2支持部材)を含む。第1支持部52は、駆動装置MTRにおける固定子側の部材(例、本体部BD)と固定される。第1支持部52は、例えばモールドあるいはスペーサを含む。第1支持部52は、例えば、中空の部材(例、円筒状の部材)である。第1支持部52は、その内部にスケールSを収容する。スケールSは、例えばフランジ状の部材であり、ベアリング54を介して第1支持部52に支持される。スケールSは、第1支持部52に対して回転可能に支持される。
 第2支持部53は、第1支持部52に対して駆動装置MTRと反対側(+Z側)に配置される。第2支持部53は、第1支持部52に固定されている。第2支持部53は、例えば、円筒状の第1支持部52の片方の開口を塞ぐように設けられる。スケールSは、駆動装置MTRの本体部BD、第1支持部52、及び第2支持部53に囲まれる空間に配置(収容)される。
 第2支持部53は、処理基板(例、プリント基板)を含む。第2支持部53には、例えば、処理回路、配線、端子等が形成される。第2支持部53には、例えば、処理回路を含む電子部品が実装される。検出ヘッド28(検出部26、照射部29)は、第2支持部53においてスケールSと対向する面に支持される。図11(B)に示した処理部3、記憶部4、及び補正部5は、それぞれ、第2支持部53に実装される。
 エンコーダ装置ECは、例えば、スケールSとエンコーダ本体部51とが組立られることで、製造される。スケールSは、例えば、ベアリング54を介してエンコーダ本体部51(例、第1支持部52)に支持されることで、回転軸AXに垂直な方向(X方向、Y方向)において検出部26と位置決めされる。
[第9実施形態]
 第9実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図14は、第9実施形態に係る校正装置を示す図である。この校正装置1(例、校正システム、製造装置)は、駆動装置61、移動装置62、検出装置63、アライメント装置64、及び処理装置65を備える。
 図14(A)の状態において、駆動装置61および検出装置63は、測定エリアARaに配置される。駆動装置61は、回転体SF1および駆動部66を備える。エンコーダ装置ECのスケールSは、回転体SF1に取り付けられる。駆動部66は、例えば電動モータを含み、回転体SF1を回転させる。検出装置63は、図12(A)に示した第1ヘッド6、第2ヘッド7、及び第3ヘッド8を備える。検出装置63は、回転体SF1に取り付けられたスケールSと対向する位置に配置される。検出装置63は、スケールSを検出し、検出信号S1a、検出信号S2a、及び検出信号S3aを処理装置65へ出力する。
 処理装置65は、位置算出部15、誤差算出部16、処理部18、記憶部25、及び制御部67を備える。位置算出部15、誤差算出部16、処理部18、及び記憶部25は、それぞれ、図11(A)と同様である。処理部18は、検出装置63から出力された検出信号S1a、検出信号S2a、及び検出信号S3aのそれぞれについて、回転位置情報(例、図11(A)の回転位置情報S1b、回転位置情報S2b、回転位置情報S3b)を算出する。
 位置算出部15は、検出装置63(検出部)から得られる検出信号に基づいて、第1検出部11(図12(A)参照)と第2検出部12(図12(A)参照)との相対位置を算出する。位置算出部15は、検出装置63(検出部)から得られる検出信号として、処理部18が算出した回転位置情報を用いる。誤差算出部16は、検出装置63(検出部2、検出系)から得られる検出信号、及び位置算出部15が算出した相対位置に基づいて、誤差情報を算出する。誤差算出部16は、検出装置63(検出部)から得られる検出信号として、処理部18が算出した回転位置情報を用いる。誤差算出部16は、算出した誤差情報を記憶部25に記憶させる。
 移動装置62は、駆動装置61を測定エリアARaと組立エリアARbとの間で移動させる。移動装置62は、検出装置63によるスケールSの検出処理が終了した後に、図14(B)に示すように、スケールSが取り付けられた駆動装置61を測定エリアARaから組立エリアARbに移動させる。アライメント装置64は、組立エリアARbに配置される。アライメント装置64は、保持部68および移動部69を備える。保持部68は、エンコーダ本体部51(図13参照)を保持する。
 エンコーダ本体部51は、図11(B)と同様であり、処理部3、記憶部4、補正部5、及び検出部26を支持する。保持部68は、エンコーダ本体部51を、駆動装置61の回転体SF1に取り付けられたスケールSと対向する位置に保持する。移動部69は、エンコーダ本体部51を保持した保持部68と、回転体SF1に取り付けられたスケールSとを接近させ、エンコーダ装置ECのスケールSとエンコーダ本体部51とを位置決めする。例えば、スケールSは、エンコーダ本体部51の下方に配置され、移動部69は、エンコーダ本体部51を保持した保持部68を下降させる。
 スケールSとエンコーダ本体部51とは、組立エリアARbにおいて組立られる。スケールSは、エンコーダ本体部51と位置決めされた状態で、例えば、図13に示したベアリング54を介してエンコーダ本体部51に取り付けられる。アライメント装置64は、スケールSとエンコーダ本体部51との組立処理の少なくとも一部を実行してもよい。スケールSがエンコーダ本体部51に取り付けられることで、エンコーダ装置ECが組み立てられる(製造される)。
 図14(C)に示すように、処理装置65は、コンタクトプローブ70(例、外部接続端子)を介して、エンコーダ本体部51と通信可能に接続される。処理装置65は、記憶部25に記憶された誤差情報を、コンタクトプローブ70を介してエンコーダ本体部51に出力する。図11(B)に示した記憶部4は、コンタクトプローブ70を介して誤差情報を取得し、誤差情報を記憶する。
 処理装置65の制御部67は、校正装置1の各部を制御する。制御部67は、図14(A)の状態において駆動装置61を制御し、スケールSが取り付けられた回転体SF1を回転させる。また、制御部67は、検出装置63を制御し、回転体SF1とともに回転するスケールSに対する検出処理を実行させる。制御部67は、検出装置63から、検出信号S1a、検出信号S2a、及び検出信号S3aをそれぞれ出力させる。制御部67は、位置算出部15に相対位置の算出処理を実行させる。また、制御部67は、誤差算出部16に誤差情報の算出処理を実行させる。
 制御部67は、移動装置62を制御し、検出装置63による検出処理の終了後に駆動装置61を組立エリアARbに移動させる。制御部67は、アライメント装置64を制御し、例えば組立エリアARbにおいてエンコーダ装置ECを組み立てさせる。制御部67は、記憶部25に記憶されている誤差情報を、エンコーダ装置ECの記憶部4(図11(B)参照)に記憶させる。なお、制御部67は、処理装置65と別の装置(例、制御装置)に設けられてもよい。また、制御部67は、上述の制御の少なくとも一部を実行しなくてもよい。例えば、上述の制御の少なくとも一部は、オペレータによって実行されてもよい。
[第10実施形態]
 第10実施形態について説明する。本実施形態において、上述の実施形態と同様の構成については、同じ符号を付してその説明を省略あるいは簡略化する。図15は、第10実施形態に係る校正装置を示す図である。校正装置1は、駆動装置61、回転体SF1、エンコーダ装置EC2、及び処理装置65を備える。校正装置1は、エンコーダ装置EC2に対して校正処理を実行する。校正装置1は、校正されたエンコーダ装置EC2が検出する回転体SF1の回転位置情報と、校正対象のエンコーダ装置ECが検出する回転体SF1の回転位置情報とに基づいて、エンコーダ装置ECに対する誤差情報を生成する。
 校正装置1の回転体SF1は、動力伝達部材75を介して、駆動装置61と接続されている。動力伝達部材75は、例えばベルトなどであり、回転体SF1と駆動装置61の回転体SF3とに掛け渡されている。駆動装置61は、回転体SF3を回転させることで、動力伝達部材75を介して駆動力(回転力)を回転体SF1に供給し、回転体SF1を回転させる。
 校正対象のエンコーダ装置ECは、図11(B)と同様の構成である。エンコーダ装置ECは、スケールSおよびエンコーダ本体部51を備える。スケールSは、回転体SF1に取り付けられる。例えば、スケールSは、回転体SF1の端部に取り付けられる。エンコーダ装置ECは、回転体SF1に取り付けられたスケールSを検出して得られる検出信号を処理装置65に出力する。
 エンコーダ装置EC2は、校正対象のエンコーダ装置ECと別に設けられる。エンコーダ装置EC2は、スケールSBおよびエンコーダ本体部76を備える。スケールSBは、校正対象のエンコーダ装置ECのスケールSと同じ回転体SF1に取り付けられる。例えば、スケールSBは、回転体SF1において、スケールSと反対側の端部に取り付けられる。回転体SF1が回転した際に、スケールSBが回転する角度は、スケールSが回転する角度と同じである。
 エンコーダ本体部76には、図12に示した第1ヘッド6、第2ヘッド7、及び第3ヘッド8が設けられる。エンコーダ本体部76は、図12に示した第1ヘッド6、第2ヘッド7、及び第3ヘッド8がスケールSBを検出して得られる検出信号を出力する。エンコーダ本体部76は、スケールSBを検出して得られる検出信号として、例えば図11(A)に示した回転位置情報S1b、回転位置情報S2b、及び回転位置情報S3bを処理装置65に出力する。
 処理装置65は、位置算出部15、誤差算出部16、記憶部25、制御部67、及び比較部77を備える。位置算出部15は、エンコーダ装置EC2から出力された検出信号に基づいて、図12に示した第1ヘッド6と第2ヘッド7との相対位置を算出する。誤差算出部16は、位置算出部15が算出した相対位置に基づいて、エンコーダ装置ECに対する誤差情報を算出する。処理装置65は、誤差算出部16が算出した誤差情報を、エンコーダ本体部76に出力する。エンコーダ装置EC2は、誤差情報に基づいて、回転位置情報を補正する。エンコーダ装置EC2は、補正後の回転位置情報を処理装置65に出力可能である。
 比較部77は、エンコーダ装置ECから出力される回転位置情報と、エンコーダ装置EC2から出力される補正後の回転位置情報とを比較する。比較部77は、例えば、エンコーダ装置ECから出力される回転位置情報を読取値とし、エンコーダ装置EC2から出力される補正後の回転位置情報を校正値として、エンコーダ装置ECに対する誤差情報を算出(生成)する。例えば、比較部77は、エンコーダ装置ECから出力される回転位置情報(読取値)と、エンコーダ装置EC2から出力される補正後の回転位置情報(校正値)とを一組にした情報を、エンコーダ装置ECに対する誤差情報として生成する。記憶部25は、エンコーダ装置ECに対する誤差情報を記憶する。
 処理装置65は、比較部77が算出した誤差情報をエンコーダ装置ECに出力する。エンコーダ装置ECは、処理装置65から出力された誤差情報を記憶部4(図11(B)参照)に記憶させる。エンコーダ装置ECの補正部5(図11(B)参照)は、記憶部4に記憶された誤差情報に基づいて、検出部26の検出結果から得られる回転位置情報を補正する。エンコーダ装置ECは、補正後の回転位置情報を外部の装置へ出力する。
[駆動装置]
 次に、実施形態に係る駆動装置について説明する。図16は、実施形態に係る駆動装置を示す図である。以下の説明において、上記した実施形態と同一または同等の構成部分については同一符号を付けて説明を省略または簡略化する。この駆動装置MTRは、電動モータを含むモータ装置である。駆動装置MTRは、回転体SFと、本体部BDと、エンコーダ装置ECとを備える。回転体SFは、例えば、図1に示した回転体SF1あるいは図2に示した回転体SF2である。
 回転体SFは、負荷側端部SFaと、反負荷側端部SFbとを有している。負荷側端部SFaは、減速機など他の動力伝達機構に接続される。反負荷側端部SFbには、固定部を介してスケールSが固定される。本体部BDは、回転体SFを回転駆動する。エンコーダ装置ECは、スケールSの固定とともに、本体部BDに取り付けられる。エンコーダ装置ECは、上述した実施形態あるいはその組み合わせに係るエンコーダ装置である。
 駆動装置MTRは、エンコーダ装置ECの検出結果を使って、本体部BDを制御する。駆動装置MTRは、エンコーダ装置ECが補正後の回転位置情報を出力するので、回転体SFの回転を高精度に制御することができる。なお、駆動装置MTRは、モータ装置に限定されず、油圧や空圧を利用して回転する軸部を有する他の駆動装置であってもよい。
[ステージ装置]
 次に、実施形態に係るステージ装置について説明する。以下の説明において、上記した実施形態と同一または同等の構成部分については同一符号を付けて説明を省略または簡略化する。図17は、実施形態に係るステージ装置を示す図である。このステージ装置STGは、図17に示した駆動装置MTRの回転体SFのうち負荷側端部SFaに、ステージ(回転テーブルTB、移動物体)を取り付けた構成である。
 ステージ装置STGは、駆動装置MTRを駆動して回転体SFを回転させる。この回転は、回転テーブルTBに伝達され、エンコーダ装置ECは、回転体SFの回転位置情報を検出する。ステージ装置STGは、エンコーダ装置ECからの出力を用いて回転テーブルTBの位置が制御される。ステージ装置STGは、エンコーダ装置ECが補正後の回転位置情報を出力するので、回転テーブルTBの位置を高精度に制御することができる。
 なお、駆動装置MTRの負荷側端部SFaと回転テーブルTBとの間に減速機等が配置されてもよい。また、ステージ装置STGは、例えば、旋盤等の工作機械に備える回転テーブル等に適用できる。また、ステージ装置STGは、回転体SFの回転運動を直線運動に変換して、ステージを移動させる装置(例、Xステージ、XYステージ、XYZステージ)でもよい。
[ロボット装置]
 次に、実施形態に係るロボット装置について説明する。図18は、実施形態に係るロボット装置を示す図である。図18には、ロボット装置RBTの一部(関節部分)を示した。以下の説明において、上記した実施形態と同一または同等の構成部分については同一符号を付けて説明を省略装置または簡略化する。このロボット装置RBTは、第1アームAR1と、第2アームAR2と、関節部JTとを有している。第1アームAR1は、関節部JTを介して、第2アームAR2と接続されている。
 第1アームAR1は、腕部101、軸受101a、及び軸受101bを備えている。第2アームAR2は、腕部102および接続部102aを有する。接続部102aは、関節部JTにおいて、軸受101aと軸受101bの間に配置されている。接続部102aは、回転体SFRと一体的に設けられている。回転体SFRは、関節部JTにおいて、軸受101aと軸受101bの両方に挿入されている。回転体SFRのうち軸受101bに挿入される側の端部は、軸受101bを貫通して減速機RGに接続されている。
 減速機RGは、駆動装置MTRに接続されている。減速機RGは、駆動装置MTRの回転を、所定の変速比で減速して回転体SFRに伝達する。駆動装置MTRの回転体の負荷側端部は、減速機RGに接続されている。また、駆動装置MTRの回転体の反負荷側端部には、エンコーダ装置ECのスケールが取り付けられている。
 ロボット装置RBTは、駆動装置MTRを駆動して回転体を回転させると、この回転が減速機RGを介して回転体SFRに伝達される。回転体SFRの回転により接続部102aが一体的に回転し、第2アームAR2が第1アームAR1に対して回転する。その際に、エンコーダ装置ECは、駆動装置MTRの回転体の回転位置情報を検出する。ロボット装置RBTは、エンコーダ装置ECから出力される回転位置情報を用いて、第2アームAR2の位置を制御する。ロボット装置RBTは、エンコーダ装置ECが補正後の回転位置情報を出力するので、第2アームAR2の位置が高精度に制御される。なお、ロボット装置RBTは、上記の構成に限定されず、駆動装置MTRは、関節を備える各種ロボット装置に適用できる。
 上述の実施形態において、校正装置1は、例えばコンピュータシステムを含む。校正装置1は、記憶装置(例、図14(A)の記憶部25)に記憶されている校正プログラムを読み出し、この校正プログラムに従って各種の処理を実行する。この校正プログラムは、コンピュータに、回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、第1検出部と第2検出部との相対位置を算出することと、算出された相対位置、及び検出信号に基づいて、回転体の回転位置情報に対する誤差情報を算出することと、を実行させる。この校正プログラムは、コンピュータ読み取り可能な記憶媒体(例、非一時的な記録媒体、non-transitory tangible media)に記録されて提供されてもよい。
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。
1・・・校正装置、2・・・検出部、4・・・記憶部、5・・・補正部、S・・・スケール、11・・・第1検出部、12・・・第2検出部、13・・・第3検出部、15・・・位置算出部、16・・・誤差算出部、EC・・・エンコーダ装置、EC2・・・エンコーダ装置、MTR・・・駆動装置、RBT・・・ロボット装置、SF1・・・回転体、SF2・・・回転体、STG・・・ステージ装置

Claims (32)

  1.  回転軸に取り付けられるスケールと、
     前記スケールを検出して第1検出信号を出力する第1検出部と、
     前記第1検出信号と前記第1検出部とは異なる2つの検出部が前記スケールを検出して出力する第2検出信号及び第3検出信号とに基づいて算出した前記第1検出部と前記2つの検出部の少なくとも1つとの相対位置を用いて算出された誤差情報を記憶する記憶部と、
     前記誤差情報を用いて、前記第1検出信号から得られる前記回転軸の回転位置情報を補正する補正部と
     を備えるエンコーダ装置。
  2.  前記第1検出信号に基づいて前記回転位置情報を算出する処理部を備える請求項1に記載のエンコーダ装置。
  3.  前記回転軸の回転軸方向視において、前記回転軸を中心にして前記第1検出部と前記2つの検出部のうちの1つとがなす角を前記相対位置として算出する位置算出部を備える請求項1又は請求項2に記載のエンコーダ装置。
  4.  前記位置算出部は、前記第1検出信号と前記第2検出信号との差、及び前記第1検出信号と前記第3検出信号との差に基づいて、前記相対位置を算出する、請求項3に記載のエンコーダ装置。
  5.  前記位置算出部は、前記第1検出信号と前記第2検出信号との差の振幅および位相、並びに前記第1検出信号と前記第3検出信号との差の振幅および位相に基づいて、前記相対位置を算出する、請求項3又は請求項4に記載のエンコーダ装置。
  6.  回転軸の回転位置情報を算出するエンコーダ装置であって、
     前記回転軸に取り付けられるスケールと、
     基板に固定され、前記スケールを検出して第1検出信号を出力する被校正用検出部と、
     前記第1検出信号をもとに前記回転位置情報を算出する処理部と、
     記憶部に記憶された誤差情報を用いて前記回転位置情報を補正する補正部と、を備え、
     前記誤差情報を算出する場合に2つの校正用検出部が前記基板に取り付けられ、前記誤差情報は、前記第1検出信号と前記2つの校正用検出部が前記スケールを検出して出力する第2検出信号及び第3検出信号とを用いて算出された、前記被校正用検出部と少なくとも1つの前記校正用検出部との相対位置に基づいて算出される、
     エンコーダ装置。
  7.  前記回転位置情報を算出する場合に前記2つの校正用検出部が前記基板から取り外された状態において、前記処理部は前記第1検出信号を用いて前記回転位置情報を算出する、請求項6に記載のエンコーダ装置。
  8.  前記回転軸の回転軸方向視において、前記回転軸を中心にして前記被校正用検出部と前記2つの校正用検出部のうちの1つとがなす角を前記相対位置として算出する位置算出部を備える請求項6又は請求項7に記載のエンコーダ装置。
  9.  前記位置算出部は、前記第1検出信号と前記第2検出信号との差、及び前記第1検出信号と前記第3検出信号との差に基づいて、前記相対位置を算出する、請求項8に記載のエンコーダ装置。
  10.  回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、前記第1検出部と前記第2検出部との相対位置を算出する位置算出部と、
     前記位置算出部が算出した前記相対位置、及び前記検出信号に基づいて、前記回転体の回転位置情報に対する誤差情報を算出する誤差算出部と、を備える校正装置。
  11.  前記位置算出部は、前記回転体の回転軸方向視において、前記回転体の回転軸を中心にして前記第1検出部と前記第2検出部とがなす角を前記相対位置として算出する、請求項10に記載の校正装置。
  12.  前記位置算出部は、前記第1検出部から得られる第1検出信号と前記第2検出部から得られる第2検出信号との差、及び前記第1検出信号と前記第3検出部から得られる第3検出信号との差に基づいて、前記相対位置を算出する、請求項10または請求項11に記載の校正装置。
  13.  前記位置算出部は、前記第1検出信号と前記第2検出信号との差の振幅および位相、並びに前記第1検出信号と前記第3検出信号との差の振幅および位相に基づいて、前記相対位置を算出する、請求項12に記載の校正装置。
  14.  前記誤差算出部は、前記位置算出部が算出した前記相対位置を用いて、前記誤差情報として、前記第1検出部から得られる第1検出信号に対する第1誤差情報を算出する、請求項10から請求項13のいずれか一項に記載の校正装置。
  15.  前記位置算出部は、前記第1検出部と前記第3検出部との第2の相対位置を算出し、
     前記誤差算出部は、前記位置算出部が算出した前記第2の相対位置を用いて、前記誤差情報として、前記第1検出部から得られる第1検出信号に対する第2誤差情報を算出する、請求項14に記載の校正装置。
  16.  前記位置算出部は、前記第1検出部から得られる第1検出信号と前記第2検出部から得られる第2検出信号との差、及び前記第1検出信号と前記第3検出部から得られる第3検出信号との差に基づいて、前記第2の相対位置を算出する、請求項15に記載の校正装置。
  17.  前記誤差算出部は、前記第1誤差情報と前記第2誤差情報とに基づいて、前記誤差情報を算出する、請求項15または請求項16に記載の校正装置。
  18.  前記誤差算出部は、前記第1誤差情報と前記第2誤差情報との平均によって、前記誤差情報を算出する、請求項17に記載の校正装置。
  19.  前記誤差算出部は、前記第1検出部から得られる第1検出信号と前記第2検出部から得られる第2検出信号との差の振幅、及び前記第1検出信号と前記第3検出部から得られる第3検出信号との差の振幅に基づいて、前記誤差情報を算出する、請求項10から請求項18のいずれか一項に記載の校正装置。
  20.  前記誤差算出部は、前記誤差情報として、前記回転体の回転位置情報に対する補正量を算出する、請求項10から請求項19のいずれか一項に記載の請求項校正装置。
  21.  前記第1検出部は、複数の検出部を含み、
     前記位置算出部および前記誤差算出部の一方または双方は、前記複数の検出部から得られる信号を平均化した信号を、前記第1検出部の検出信号として用いる、請求項10から請求項20のいずれか一項に記載の校正装置。
  22.  前記誤差算出部は、2以上の整数をiとして、前記第1検出部の検出結果を表すフーリエ級数のi次成分の誤差を算出し、
     前記回転体の回転方向における前記第1検出部と前記第2検出部との角度と、前記回転体の回転方向における前記第1検出部と前記第3検出部との角度との一方または双方は、2以上の整数をjとして、2π/j×i[rad]以外の角度に設定される、請求項10から請求項21のいずれか一項に記載の校正装置。
  23.  前記第1検出部、前記第2検出部、及び前記第3検出部を含む検出部を備え、
     前記第1検出部、前記第2検出部、及び前記第3検出部の少なくとも1つは、前記検出部から取り外し可能である、請求項10から請求項22のいずれか一項に記載の校正装置。
  24.  請求項1から請求項23のいずれか一項に記載のエンコーダ装置と、
     前記回転軸に駆動力を供給する駆動部と、を備える駆動装置。
  25.  請求項24に記載の駆動装置と、
     前記駆動装置によって移動するステージと、を備えるステージ装置。
  26.  請求項24に記載の駆動装置と、
     前記駆動装置によって移動するアームと、を備えるロボット装置。
  27.  回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、前記第1検出部と前記第2検出部との相対位置を算出することと、
     前記算出された前記相対位置、及び前記検出信号に基づいて、前記回転体の回転位置情報に対する誤差情報を算出することと、
     前記誤差情報をエンコーダ装置の記憶部に記憶させることと、を含むエンコーダ装置の製造方法。
  28.  前記相対位置は、前記回転体の回転軸方向視において前記第1検出部と前記第2検出部とがなす角である角度位置を含む、請求項27に記載のエンコーダ装置の製造方法。
  29.  前記誤差情報が算出された後に、前記第1検出部、前記第2検出部、及び前記第3検出部のうち少なくとも1つの検出部を前記エンコーダ装置から取り外すことを含む、請求項27又は請求項28に記載のエンコーダ装置の製造方法。
  30.  前記誤差情報が算出された後に、前記第1検出部、前記第2検出部、及び前記第3検出部を前記エンコーダ装置から取り外し、前記スケールに対して被校正用検出部を前記エンコーダ装置に取り付けることを含む、請求項27から請求項29のいずれか一項に記載のエンコーダ装置の製造方法。
  31.  前記第1検出部と前記第3検出部との第2の相対位置を算出し、前記第2の相対位置を用いて前記誤差情報として第2誤差情報を算出する、請求項27から請求項30のいずれか一項に記載のエンコーダ装置の製造方法。
  32.  コンピュータに、
     回転体に取り付けられるスケールに対して配置される第1検出部、第2検出部、及び第3検出部のそれぞれから得られる検出信号に基づいて、前記第1検出部と前記第2検出部との相対位置を算出することと、
     前記算出された前記相対位置、及び前記検出信号に基づいて、前記回転体の回転位置情報に対する誤差情報を算出することと、を実行させる校正プログラム。
PCT/JP2018/026343 2017-07-27 2018-07-12 校正装置、エンコーダ装置、駆動装置、ステージ装置、ロボット装置、エンコーダ装置の製造方法、及び校正プログラム WO2019021845A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/634,065 US11579001B2 (en) 2017-07-27 2018-07-12 Calibrator, encoder, driving device, stage device, robot, encoder manufacturing method, and calibration program
CN201880048937.2A CN110959101B (zh) 2017-07-27 2018-07-12 校正装置、编码器装置及其制造方法
JP2019532506A JP7173010B2 (ja) 2017-07-27 2018-07-12 校正装置、エンコーダ装置、駆動装置、ステージ装置、ロボット装置、エンコーダ装置の製造方法、及び校正プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145399 2017-07-27
JP2017145399 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021845A1 true WO2019021845A1 (ja) 2019-01-31

Family

ID=65039739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026343 WO2019021845A1 (ja) 2017-07-27 2018-07-12 校正装置、エンコーダ装置、駆動装置、ステージ装置、ロボット装置、エンコーダ装置の製造方法、及び校正プログラム

Country Status (4)

Country Link
US (1) US11579001B2 (ja)
JP (1) JP7173010B2 (ja)
CN (1) CN110959101B (ja)
WO (1) WO2019021845A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059750A1 (ja) * 2019-10-31 2022-03-24 株式会社ニコン エンコーダ装置、その使用方法、その位置決め方法、及び位置検出方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE542950C2 (en) * 2018-02-01 2020-09-22 Leine & Linde Ab Methods, computer programs, devices and encoders for signal error correction
DE102019209866A1 (de) * 2019-07-04 2021-01-07 Dr. Johannes Heidenhain Gmbh Winkelmesseinrichtung und Verfahren zum Betrieb einer Winkelmesseinrichtung
DE102019209862A1 (de) * 2019-07-04 2021-01-07 Dr. Johannes Heidenhain Gmbh Winkelmesseinrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140856A (ja) * 1993-06-22 1995-06-02 Fuji Xerox Co Ltd 回転部材駆動装置の故障検知装置
WO2010023896A1 (ja) * 2008-08-26 2010-03-04 株式会社ニコン エンコーダシステム、信号処理方法、及び送信信号生成出力装置
WO2011074103A1 (ja) * 2009-12-17 2011-06-23 キヤノン株式会社 ロータリエンコーダ及びそれを有する回転機構
JP2012163436A (ja) * 2011-02-07 2012-08-30 Nikon Corp エンコーダ装置、及び駆動装置
JP2016118491A (ja) * 2014-12-22 2016-06-30 Dmg森精機株式会社 ロータリーエンコーダ、ロータリーエンコーダの制御方法および制御プログラム

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0850034A (ja) * 1994-08-05 1996-02-20 Nikon Corp 多回転アブソリュートエンコーダ
CN1057605C (zh) * 1997-08-08 2000-10-18 致伸实业股份有限公司 线性光栅系统
JP4120425B2 (ja) * 2003-02-28 2008-07-16 株式会社ジェイテクト 回転角度検出装置及びトルク検出装置
DE102004024398B4 (de) * 2004-05-17 2008-05-15 Infineon Technologies Ag Verfahren und Vorrichtungen zum Einstellen einer Bestimmungsvorschrift eines Winkelsensors
JP3826207B2 (ja) * 2004-08-31 2006-09-27 独立行政法人産業技術総合研究所 自己校正機能付き角度検出器
JP2006220530A (ja) * 2005-02-10 2006-08-24 Matsushita Electric Ind Co Ltd 絶対回転角度検出装置
JP4602411B2 (ja) * 2005-11-28 2010-12-22 三菱電機株式会社 位置検出誤差補正方法
JP4005096B2 (ja) * 2005-11-29 2007-11-07 ファナック株式会社 エンコーダの信号処理回路
WO2007083758A1 (ja) * 2006-01-19 2007-07-26 Nikon Corporation 移動体駆動方法及び移動体駆動システム、パターン形成方法及びパターン形成装置、露光方法及び露光装置、並びにデバイス製造方法
CN101162139B (zh) * 2006-10-13 2011-09-28 深圳市大族电机科技有限公司 光栅尺信号误差补偿方法
JP4824635B2 (ja) * 2007-06-15 2011-11-30 株式会社 ソキア・トプコン ロータリエンコーダの角度補正方法
JP4940411B2 (ja) * 2007-06-27 2012-05-30 多摩川精機株式会社 アナログ角度センサ精度補正プログラム、補正方法、記録媒体およびサーボドライバ
JP4859903B2 (ja) * 2008-10-23 2012-01-25 三菱電機株式会社 移動方向検出装置
WO2011064317A2 (de) * 2009-11-26 2011-06-03 Leica Geosystems Ag Kalibrierverfahren und winkelmessverfahren für eine winkelmesseinrichtung sowie winkelmesseinrichtung
JP5866629B2 (ja) * 2011-10-25 2016-02-17 株式会社ミツトヨ 変位検出装置、目盛の校正方法及び目盛の校正プログラム
CN102506914B (zh) * 2011-11-04 2014-08-27 北京理工大学 一种光电编码器的误差补偿方法
JP5731569B2 (ja) * 2013-05-02 2015-06-10 ファナック株式会社 精度補正機能を備えたエンコーダ
WO2015050109A1 (ja) * 2013-10-02 2015-04-09 株式会社ニコン エンコーダ用スケール、エンコーダ、駆動装置及びステージ装置
CN103837169B (zh) * 2014-02-28 2016-05-11 哈尔滨工业大学 用于磁电编码器的自校正装置和方法以及磁电编码器
CN107850466B (zh) * 2015-07-17 2021-01-08 株式会社尼康 编码器装置、驱动装置、旋转信息取得方法以及记录介质
JP6649018B2 (ja) * 2015-09-16 2020-02-19 日本電産サンキョー株式会社 ロータリエンコーダ、およびロータリエンコーダの絶対角度位置検出方法
US11364950B2 (en) * 2016-12-27 2022-06-21 Xuzhou Heavy Machinery Co., Ltd. Steering control system and method as well as crane
JP7203584B2 (ja) * 2018-12-03 2023-01-13 キヤノンプレシジョン株式会社 アブソリュートロータリエンコーダ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140856A (ja) * 1993-06-22 1995-06-02 Fuji Xerox Co Ltd 回転部材駆動装置の故障検知装置
WO2010023896A1 (ja) * 2008-08-26 2010-03-04 株式会社ニコン エンコーダシステム、信号処理方法、及び送信信号生成出力装置
WO2011074103A1 (ja) * 2009-12-17 2011-06-23 キヤノン株式会社 ロータリエンコーダ及びそれを有する回転機構
JP2012163436A (ja) * 2011-02-07 2012-08-30 Nikon Corp エンコーダ装置、及び駆動装置
JP2016118491A (ja) * 2014-12-22 2016-06-30 Dmg森精機株式会社 ロータリーエンコーダ、ロータリーエンコーダの制御方法および制御プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022059750A1 (ja) * 2019-10-31 2022-03-24 株式会社ニコン エンコーダ装置、その使用方法、その位置決め方法、及び位置検出方法

Also Published As

Publication number Publication date
JPWO2019021845A1 (ja) 2020-07-09
CN110959101A (zh) 2020-04-03
CN110959101B (zh) 2023-01-17
JP7173010B2 (ja) 2022-11-16
US11579001B2 (en) 2023-02-14
US20200370927A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP7173010B2 (ja) 校正装置、エンコーダ装置、駆動装置、ステージ装置、ロボット装置、エンコーダ装置の製造方法、及び校正プログラム
JP6460697B2 (ja) 角度検出方法、角度検出装置、およびロボット装置
JP6166436B2 (ja) 光電式エンコーダ及びそのアライメント調整方法
US7711508B2 (en) Position detector
CN107883892B (zh) 偏心计算方法、旋转编码器、机器人臂和机器人装置
JP5038861B2 (ja) 位置測定装置
AU2010323118B2 (en) Calibration method and angle measuring method for an angle measuring device, and angle measuring device
CN108139232B (zh) 角度检测装置
JP5111031B2 (ja) 変位検出方法及びモータ制御装置
US10914614B2 (en) Encoder apparatus and method for calculating eccentricity information based on a phase difference between an incremental detection signal and an absolute detection signal used to correct rotational information
JP6525940B2 (ja) センサ、駆動機構、およびロボット
US20190022866A1 (en) Eccentricity error correction method for angle detector and robot system
JP2012137310A (ja) エンコーダ装置、駆動装置、及びロボット装置
JP2007024636A (ja) 検出装置および方法、走査装置および方法、並びにプログラム
US11045950B2 (en) Driving device and detecting device
JP2014010000A (ja) 一体型センサ、及びパワーステアリング装置
JP2019109093A (ja) ロータリエンコーダ、駆動装置、トルクセンサ、ロボット及びレーザ加工機
JP6953772B2 (ja) 誤差検出方法、誤差検出プログラム、誤差検出装置、エンコーダ装置の製造方法、エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
US20150292882A1 (en) System for measuring orthogonality of a stage and method for positioning stage home using same
Smirnov et al. Adjustment and evaluation of incremental optical rotary encoders
CN114636387A (zh) 一种圆光栅编码器双读数头非对称安装偏心误差补偿方法
JP2019027892A (ja) エンコーダ装置、駆動装置、ステージ装置、ロボット装置、及びエンコーダ装置の製造方法
JP5383887B2 (ja) 変位検出装置、制御装置、工作機械装置、照射装置および変位検出方法
CN113853729A (zh) 电机转子的旋转角度的测量方法、测量装置以及电机、云台和无人飞行器
JP2020134207A (ja) 検出装置、ロボット装置、検出方法、物品の製造方法、プログラム及び記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18839170

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18839170

Country of ref document: EP

Kind code of ref document: A1