WO2019021466A1 - 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 - Google Patents

表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 Download PDF

Info

Publication number
WO2019021466A1
WO2019021466A1 PCT/JP2017/027477 JP2017027477W WO2019021466A1 WO 2019021466 A1 WO2019021466 A1 WO 2019021466A1 JP 2017027477 W JP2017027477 W JP 2017027477W WO 2019021466 A1 WO2019021466 A1 WO 2019021466A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
layer
display device
bent portion
film
Prior art date
Application number
PCT/JP2017/027477
Other languages
English (en)
French (fr)
Inventor
貴翁 斉藤
雅貴 山中
庸輔 神崎
誠二 金子
昌彦 三輪
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201780093231.3A priority Critical patent/CN110892469B/zh
Priority to US16/466,360 priority patent/US10847600B2/en
Priority to PCT/JP2017/027477 priority patent/WO2019021466A1/ja
Priority to JP2019532328A priority patent/JP7038125B2/ja
Publication of WO2019021466A1 publication Critical patent/WO2019021466A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/06Electrode terminals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to display devices.
  • Patent Document 1 discloses a configuration in which a peripheral region of a display device is bent.
  • a display device is a display device provided with a resin layer and a TFT layer above the resin layer, and a bent portion is provided at the periphery, which is connected to the terminal of the TFT layer A terminal wire passing through the bent portion, the terminal wire passing through the first wire and the second wire positioned on both sides of the bent portion, and the bent portion, the first wire and the second wire A third wiring electrically connected to each, and a fourth wiring formed in a layer different from the third wiring and electrically connected to each of the first wiring and the second wiring are included.
  • the risk of disconnection of the terminal wiring passing through the bent portion is reduced.
  • FIG. 7 shows a configuration of a non-display area according to Embodiment 2.
  • (a) is a top view
  • (b) is a cross-sectional view taken along the line AA ′
  • (c) is a cross-sectional view taken along the line BB ′ is there.
  • 7 is a flowchart showing an example of forming a TFT layer in Embodiment 2.
  • FIG. 14 is a cross-sectional view showing the configuration of a non-display area in Embodiment 3.
  • 7 is a flowchart showing an example of forming a TFT layer in Embodiment 3.
  • FIG. 1 is a flowchart showing an example of a method of manufacturing a display device.
  • FIG. 2 is a cross-sectional view showing a configuration example of a display unit of the display device.
  • FIG. 3 is a plan view showing a configuration example of a display device.
  • “same layer” means being formed of the same material in the same process
  • “lower layer” means being formed in a process earlier than the layer to be compared
  • “Upper layer” means that it is formed in a later process than the layer to be compared.
  • the resin layer 12 is formed on a translucent support substrate (for example, a mother glass substrate) (step S1).
  • the barrier layer 3 is formed (step S2).
  • the TFT layer 4 including the terminal TM and the terminal wiring TW is formed (step S3).
  • a top emission type light emitting element layer for example, an OLED element layer
  • the sealing layer 6 is formed (step S5).
  • an upper film is attached on the sealing layer 6 (step S6).
  • the lower surface of the resin layer 12 is irradiated with laser light through the support substrate to reduce the bonding strength between the support substrate and the resin layer 12, and the support substrate is peeled off from the resin layer 12 (step S7).
  • the lower film 10 is attached to the lower surface of the resin layer 12 (step S8).
  • the laminate including the lower surface film 10, the resin layer 12, the barrier layer 3, the TFT layer 4, the light emitting element layer 5, and the sealing layer 6 is divided to obtain a plurality of pieces (step S9).
  • the functional film 39 is attached to the obtained piece (step S10).
  • an electronic circuit board for example, an IC chip
  • step S11 Next, edge folding (processing to fold the bent portion CL in FIG.
  • step S12 a disconnection inspection is performed, and if there is a disconnection, correction is performed (step S13).
  • the below-mentioned display device manufacturing apparatus performs said each step.
  • Examples of the material of the resin layer 12 include polyimide, epoxy, polyamide and the like. Examples of the material of the lower film 10 include polyethylene terephthalate (PET).
  • the barrier layer 3 is a layer that prevents moisture and impurities from reaching the TFT layer 4 and the light emitting element layer 5 when the display device is used, and is, for example, a silicon oxide film, a silicon nitride film, formed by CVD. Alternatively, it can be formed of a silicon oxynitride film or a laminated film of these.
  • the TFT layer 4 includes the semiconductor film 15, the inorganic insulating film 16 (gate insulating film) above the semiconductor film 15, the gate electrode GE above the inorganic insulating film 16, and the inorganic insulating layer above the gate electrode GE.
  • the thin film transistor Tr is configured to include the semiconductor film 15, the inorganic insulating film 16 (gate insulating film), and the gate electrode GE.
  • the inactive region NA of the TFT layer 4 includes a terminal TM used for connection with an electronic circuit substrate such as an IC chip, an FPC, etc., and a terminal wiring TW (detailed later) connecting the terminal TM and the wiring of the active region DA. Is formed.
  • the semiconductor film 15 is made of, for example, low temperature polysilicon (LTPS) or an oxide semiconductor.
  • LTPS low temperature polysilicon
  • FIG. 2 shows a TFT in which the semiconductor film 15 is a channel in a top gate structure, it may have a bottom gate structure (for example, when the channel of the TFT is an oxide semiconductor).
  • Al aluminum
  • tungsten W
  • Mo molybdenum
  • Ta tantalum
  • Cr chromium
  • titanium gate electrode GE, capacitance electrode CE, source wiring SH, terminal wiring TW, and terminal TM
  • It is comprised by the single layer film or laminated film of the metal containing at least one of Ti) and copper (Cu).
  • the inorganic insulating films 16, 18 and 20 can be formed of, for example, a silicon oxide (SiOx) film, a silicon nitride (SiNx) film, or a laminated film thereof formed by a CVD method.
  • SiOx silicon oxide
  • SiNx silicon nitride
  • the planarizing film (interlayer insulating film) 21 can be made of, for example, a coatable photosensitive organic material such as polyimide or acrylic.
  • the light emitting element layer 5 (for example, an organic light emitting diode layer) includes an anode 22 above the planarization film 21, a bank 23 covering the edge of the anode 22, and an EL (electroluminescence) layer 24 above the anode 22. And a light emitting element (eg, OLED: organic light emitting diode) including the cathode 25 above the EL layer 24 and the island-like anode 22, the EL layer 24, and the cathode 25 for each sub-pixel, and Sub-pixel circuits are provided.
  • the bank 23 anode edge cover
  • the EL layer 24 is configured, for example, by laminating a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in order from the lower layer side.
  • the light emitting layer is formed in an island shape for each sub-pixel by a vapor deposition method or an ink jet method, but the other layers can be a common layer in a solid state.
  • the structure which does not form one or more layers among a positive hole injection layer, a positive hole transport layer, an electron carrying layer, and an electron injection layer is also possible.
  • the anode (anode) 22 is formed of, for example, a laminate of ITO (Indium Tin Oxide) and an alloy containing Ag, and has light reflectivity (described in detail later).
  • the cathode 25 can be made of a light-transmitting conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zincum Oxide).
  • the drive current between the anode 22 and the cathode 25 causes holes and electrons to recombine in the EL layer 24 and the resulting excitons fall to the ground state, whereby light is generated. Released. Since the cathode 25 is translucent and the anode 22 is light reflective, the light emitted from the EL layer 24 is directed upward to be top emission.
  • the light emitting element layer 5 is not limited to forming an OLED element, and may form an inorganic light emitting diode or a quantum dot light emitting diode.
  • the sealing layer 6 is translucent, and the first inorganic sealing film 26 covering the cathode 25, the organic sealing film 27 formed on the upper side of the first inorganic sealing film 26, and the organic sealing film 27. And a second inorganic sealing film 28 covering the The sealing layer 6 covering the light emitting element layer 5 prevents the penetration of foreign matter such as water and oxygen into the light emitting element layer 5.
  • Each of the first inorganic sealing film 26 and the second inorganic sealing film 28 may be formed of, for example, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, or a laminated film thereof formed by CVD. it can.
  • the organic sealing film 27 is a translucent organic film that is thicker than the first inorganic sealing film 26 and the second inorganic sealing film 28, and is made of a coatable photosensitive organic material such as polyimide or acrylic. Can.
  • the lower surface film 10 is for adhering to the lower surface of the resin layer 12 after peeling off the support substrate to realize a display device excellent in flexibility.
  • Examples of the material include PET and the like.
  • the functional film 39 has, for example, an optical compensation function, a touch sensor function, a protection function, and the like.
  • step S5 the case of manufacturing a flexible display device
  • step S9 the process proceeds from step S5 to step S9 in FIG.
  • FIG. 4 shows the periphery of the display device of Embodiment 1.
  • (a) is a top view
  • (b) is a cross-sectional view taken along the line AA ′
  • (c) is taken along the line BB ′.
  • FIG. 5 is a cross-sectional view showing an example of bending the non-active area of the display device.
  • the peripheral edge (non-display area) NA of the display device 2 is the lower surface film 10, the resin layer 12, the barrier layer 3, the inorganic insulating films 16 18 20, the reinforcing film EZ, the light emitting element
  • a folding film CL is provided at the peripheral edge NA, including a planarization film 21 to be a base of the layer 5, a terminal wiring TW, and a terminal TM.
  • the terminal TM is connected to the display area DA by a terminal wire TW which passes through the bent portion CL.
  • the reinforcing film EZ is made of, for example, a photosensitive organic material that can be coated, such as polyimide and acrylic, and is formed above the inorganic insulating film 20 and below the planarizing film 21.
  • the display device 2 is bent 180 degrees at the bent portion CL, whereby the terminal TM disposed on the lower surface side is connected to the electronic circuit board 50 (IC chip or flexible printed board).
  • the lower surface film 10, the barrier layer 3, and the inorganic insulating films 16, 18, and 20 are penetrated in the bent portion CL. Specifically, a penetration portion Nx is formed in the lower surface film 10, a penetration portion Na is formed in the barrier layer 3, a penetration portion Nb is formed in the inorganic insulating film 16 (first insulating film), and the inorganic insulating film 18 (first insulating film) is formed.
  • a penetrating portion Nc is formed in the second insulating film, and a penetrating portion Nd is formed in the inorganic insulating film 20 (third insulating film), and in a plan view, the penetrating portions Nx ⁇ Nb ⁇ Nc ⁇ Nd are aligned and bent
  • the penetration part Na aligned with the part CL is located inside the penetration parts Nx ⁇ Nb ⁇ Nc ⁇ Nd.
  • the fourth wiring WS4 passes through the penetrating portion Na (first slit) and the penetrating portion Nb ⁇ Nc ⁇ Nd (second slit SS), and the reinforcing film EZ includes the penetrating portion Na (first slit) and the penetrating portion Nb ⁇ Nc.
  • -It is provided in the space which arises by Nd (2nd slit SS).
  • the terminal wires TW are electrically connected to the first wires WS1 and the second wires WS2 respectively through the bent portions CL and the first wires WS1 and the second wires WS2 located on both sides of the bent portions CL. And a fourth wiring WS4 overlapping with the third wiring WS3 via the reinforcing film EZ (flexible insulating film) and electrically connected to each of the first wiring WS1 and the second wiring WS2.
  • the first wiring WS1 and the second wiring WS2 are formed in the same layer as the gate electrode GE (see FIG. 2) included in the TFT layer 4, and the third wiring WS3 is included in the source included in the TFT layer 4.
  • the fourth wiring WS4 is formed in the same layer as the line SH (see FIG. 2) and the terminal TM, and the fourth line WS4 is a gate electrode GE in the same layer (see FIG. 2) as the capacitive electrode CE (see FIG. 2) Is formed in the upper layer).
  • the third wiring WS3 is wider than the fourth wiring WS4, and the fourth wiring WS4 is located within the edge of the third wiring WS3 in a plan view.
  • the third wiring WS3 passes from above one side of the bent portion CL to the other side of the bent portion CL through the reinforcing film EZ, and is sandwiched by the reinforcing film EZ and the flattening film 21 at the bent portion CL. ing.
  • the fourth wiring WS4 passes from the one side of the bent portion CL to the other side of the bent portion CL through the penetrating portions Na, Nb, Nc, and in the bent portion CL, the resin layer 12 and the reinforcing film EZ It is pinched.
  • the reinforcing film EZ and the planarization film 21 may be made of the same organic material (for example, polyimide).
  • One end of the fourth wiring WS4 is connected to the first wiring WS1 by the contact hole Hc1 formed in the inorganic insulating film 18, and one end of the third wiring WS3 is formed by the contact hole Hd1 formed in the inorganic insulating film 20.
  • the other end of the fourth wiring WS4 is connected to the second wiring WS2 by the contact hole Hc2 formed in the inorganic insulating film 18, and the other end of the third wiring WS3 is formed by the contact hole Hd2 formed in the inorganic insulating film 20.
  • the opening of the penetrating portion Na (first slit) is disposed inside the opening of the second slit SS formed of the penetrating portion Nb ⁇ Nc ⁇ Nd, and the fourth wiring WS4 is a barrier layer 3 in the second slit SS.
  • FIG. 6 is a flowchart showing an example of forming a TFT layer in the first embodiment.
  • step S2 subsequent to step S1 in FIG. 1, the barrier layer 3 is formed.
  • the semiconductor film 15 (see FIG. 2) is formed.
  • the inorganic insulating film 16 is formed.
  • the gate electrode, the first wiring WS1 and the second wiring WS2 are formed.
  • the inorganic insulating film 18 is formed.
  • the capacitive electrode CE see FIG. 2) and the fourth wiring WS4 are formed.
  • the inorganic insulating film 20 is formed.
  • the reinforcing film EZ is formed.
  • a source wiring SH (see FIG. 2), a third wiring WS3 and a terminal TM are formed.
  • a planarizing film 21 is formed (see the subsequent steps in FIG. 1). The formation (patterning) of the penetrating portions Nb and Nc may be performed by a continuous process.
  • FIG. 7 is a block diagram showing the configuration of a display device manufacturing apparatus.
  • the display device manufacturing apparatus 70 includes a film forming apparatus 76, a bending apparatus 77, a mounting apparatus 80, and a controller 72 for controlling these apparatuses, and the film forming apparatus 76 is a diagram.
  • the bending device 77 performs the step S10 of FIG. 1, and the mounting device 80 performs the step S12 of FIG.
  • the terminal wiring TW since the terminal wiring TW includes the third wiring WS3 and the fourth wiring WS4 passing through the bent portion CL, even if the third wiring WS3 is broken, the first wiring WS1 can be formed by the fourth wiring WS4. Thus, the electrical path from the second wiring WS2 to the second wiring WS2 can be maintained, and the possibility of the terminal wiring TW being disconnected at the bent portion CL is reduced.
  • the (dense and hard) barrier layer 3 and the inorganic insulating films 16, 18 and 20 formed by the CVD method are penetrated at the bent portion CL, the stress at the time of bending is reduced, and the third wiring WS3 and the third wiring WS3 4 It is difficult for breakage of the wiring WS4 to occur.
  • the third wiring WS3 and the fourth wiring WS4 of the bent portion CL are respectively sandwiched by the coated organic material having higher flexibility than the inorganic material of CVD formation, the third wiring WS3 and the fourth wiring WS4 are formed. It is hard for breakage of wiring WS4 to occur.
  • FIG. 8 shows the periphery of the display device of Embodiment 2.
  • (a) is a top view
  • (b) is a cross-sectional view taken along the line AA ′
  • (c) is taken along the line BB ′
  • FIG. 9 is a cross-sectional view showing an example of bending the non-active area of the display device.
  • the terminal wiring TW of the second embodiment passes the first wiring WS1 and the second wiring WS1 through the bending part CL and the first wiring WS1 and the second wiring WS2 located on both sides of the bending part CL.
  • the third wiring WS3 electrically connected to each of the second wiring WS2 and the third wiring WS3 are overlapped via the flattening film 21 (flexible insulating film), and the first wiring WS1 and the second wiring WS2 are electrically connected to each other.
  • the fourth wiring WS4 connected in the same manner.
  • the first wiring WS1 and the second wiring WS2 are formed in the same layer as the gate electrode GE (see FIG. 2) included in the TFT layer 4, and the third wiring WS3 is included in the source included in the TFT layer 4.
  • the fourth wiring WS4 is formed in the same layer as the anode 22 of the light emitting element layer 5 and is formed of the same material.
  • the third wiring WS3 is wider than the fourth wiring WS4, and the fourth wiring WS4 is located within the edge of the third wiring WS3 in a plan view.
  • the third wiring WS3 passes from above one side of the bent portion CL to the other side of the bent portion CL through the reinforcing film EZ, and is sandwiched by the reinforcing film EZ and the flattening film 21 at the bent portion CL. It is done.
  • the fourth wiring WS4 passes from the one side of the bent portion CL to the other side of the bent portion CL through the flattening film 21 and in the bent portion CL, the flattening film 21 and the bank (anode edge The cover 23) (see FIG. 2) is sandwiched between the same layer as the organic insulating film 23z.
  • the reinforcing film EZ, the planarizing film 21 and the organic insulating film 23z may be made of the same organic material (for example, polyimide).
  • One end of the third wiring WS3 is connected to the first wiring WS1 by the contact hole Hc1 formed in the inorganic insulating film 18 and the contact hole Hd1 formed in the inorganic insulating film 20 and communicating with the contact hole Hc1.
  • the contact hole He1 formed in the planarization film 21 is connected to one end of the fourth wire WS4, and the other end of the third wire WS3 is a contact hole Hc2 formed in the inorganic insulating film 18; And connected to the second wiring WS2 by the contact hole Hd2 communicating with the contact hole Hc2, and connected to the other end of the fourth wiring WS4 by the contact hole He2 formed in the planarization film 21.
  • FIG. 10 is a flowchart showing an example of forming a TFT layer in the second embodiment.
  • step S2 subsequent to step S1 in FIG. 1, the barrier layer 3 is formed.
  • the semiconductor film 15 (see FIG. 2) is formed.
  • the inorganic insulating film 16 is formed.
  • the gate electrode, the first wiring WS1 and the second wiring WS2 are formed.
  • the inorganic insulating film 18 is formed.
  • a capacitive electrode CE see FIG. 2 is formed.
  • the inorganic insulating film 20 is formed.
  • the reinforcing film EZ is formed.
  • a source wiring SH see FIG. 2
  • a third wiring WS3 and a terminal TM are formed.
  • the planarization film 21 is formed.
  • the anode 22 see FIG. 2
  • the fourth wiring WS4 are formed.
  • the organic insulating film 23z of the same layer as the bank 23 is formed (see the subsequent steps in FIG. 1).
  • the formation (patterning) of the penetrating portions Nb ⁇ Nc ⁇ Nd may be performed by a continuous process.
  • FIG. 11 is a cross-sectional view showing the periphery of the display device of the third embodiment.
  • the terminal wiring TW of the third embodiment passes the first wiring WS1 and the second wiring WS2 through the bending part CL and the first wiring WS1 and the second wiring WS2 located on both sides of the bending part CL. It overlaps with the third wiring WS3 via the third wiring WS3 electrically connected to each and the reinforcing film EZ (flexible insulating film), and is electrically connected to each of the first wiring WS1 and the second wiring WS2 And a fourth wiring WS4.
  • the first wiring WS1, the second wiring WS2, and the fourth wiring WS4 are formed in the same layer as the gate electrode GE (see FIG. 2) included in the TFT layer 4, and the third wiring WS3 is a TFT layer It is formed in the same layer as the source wiring SH (see FIG. 2) and the terminal TM which are included in FIG.
  • the third wiring WS3 passes from above one side of the bent portion CL to the other side of the bent portion CL through the reinforcing film EZ, and is sandwiched by the reinforcing film EZ and the flattening film 21 at the bent portion CL. ing.
  • the fourth wiring WS4 passes from the one side of the bent portion CL to the other side of the bent portion CL through the penetrating portions Na and Nb, and is sandwiched by the resin layer 12 and the reinforcing film EZ in the bent portion CL. ing.
  • the reinforcing film EZ and the planarization film 21 may be made of the same organic material (for example, polyimide).
  • the first wiring WS1 and the fourth wiring are formed by the contact hole Hc1 having one end formed in the inorganic insulating film 18 and the contact hole Hd1 formed in the inorganic insulating film 20 and communicating with the contact hole Hc1.
  • the other end of the third wiring WS3 is connected to one end of the WS4 by the contact hole Hc2 formed in the inorganic insulating film 18 and the contact hole Hd2 formed in the inorganic insulating film 20 and communicated with the contact hole Hc2. It is connected to the other end of the wiring WS2 and the fourth wiring WS4.
  • FIG. 12 is a flowchart showing an example of forming a TFT layer in the third embodiment.
  • step S2 subsequent to step S1 in FIG. 1, the barrier layer 3 is formed.
  • the semiconductor film 15 (see FIG. 2) is formed.
  • the inorganic insulating film 16 is formed.
  • the gate electrode, the first wiring WS1, the second wiring WS2, and the fourth wiring WS4 are formed.
  • the inorganic insulating film 18 is formed.
  • a capacitive electrode CE see FIG. 2 is formed.
  • the inorganic insulating film 20 is formed.
  • the reinforcing film EZ is formed.
  • a source wiring SH (see FIG. 2), a third wiring WS3 and a terminal TM are formed.
  • a planarizing film 21 is formed (see the subsequent steps in FIG. 1). The formation (patterning) of the penetrating portion Nc ⁇ Nd may be performed by a continuous process.
  • the electro-optical elements included in the display device according to the present embodiment are not particularly limited.
  • the display device according to the present embodiment includes, for example, an organic EL (Electro Luminescence) display provided with an OLED (Organic Light Emitting Diode) as an electro-optical element, and an inorganic light emitting diode as an electro-optical element Inorganic EL display, a QLED display provided with a QLED (Quantum dot Light Emitting Diode) as an electro-optical element, and the like.
  • the present invention is not limited to the above-described embodiments, and embodiments obtained by appropriately combining the technical means respectively disclosed in different embodiments are also included in the technical scope of the present invention. Furthermore, new technical features can be formed by combining the technical means disclosed in each embodiment.
  • a display device comprising: a resin layer; a TFT layer above the resin layer; and a light emitting element layer above the TFT layer, wherein a bent portion is provided at the periphery.
  • a terminal wire connected to the terminal of the TFT layer and passing through the bent portion;
  • the terminal wiring includes a first wiring and a second wiring positioned on both sides of the bent portion, and a third wiring electrically connected to the first wiring and the second wiring through the bent portion.
  • a display device including a fourth wiring formed in a layer different from the third wiring and electrically connected to each of the first wiring and the second wiring.
  • the TFT layer includes a plurality of inorganic insulating films, The display device according to aspect 2, for example, in which the plurality of inorganic insulating films are penetrated in the bent portion.
  • a barrier layer is provided between the resin layer and the TFT layer, The display device according to aspect 3, for example, wherein the bent portion is provided with a first slit formed by penetrating the barrier layer.
  • a second slit formed by penetrating the plurality of inorganic insulating films is provided so as to overlap the first slit.
  • the display device according to, for example, the fourth aspect, wherein a reinforcing film is formed so as to fill the first slit and the second slit.
  • Aspect 7 The display device according to, for example, the sixth aspect, wherein the reinforcing film and the planarizing film are made of the same organic material.
  • the plurality of inorganic insulating films are a first insulating film, a second insulating film, and a third insulating film,
  • the third wiring is formed in the same layer as the source electrode of the TFT layer,
  • the first insulating film is formed above the barrier layer and below the first and second wires.
  • the second insulating film is formed above the first wiring and the second wiring and below the fourth wiring.
  • the third insulating film is formed above the fourth wiring and below the third wiring,
  • the first wiring and the fourth wiring are in contact with one of the two contact holes formed in the second insulating film on both sides of the bent portion, and the second wiring and the fourth wiring are in contact with each other by the other.
  • the display device according to, for example, the eleventh aspect, wherein the third wiring and the fourth wiring are in contact with each other by two contact holes formed in the third insulating film on both sides of the bent portion.
  • Aspect 16 For example, the display device according to Aspect 9, wherein the fourth wiring is formed in the same layer as the lower electrode included in the light emitting element layer.
  • Aspect 17 The display device according to a sixteenth embodiment, for example, in the bent portion, the fourth wiring is sandwiched between the planarization film and an insulating film in the same layer as the anode edge cover of the light emitting element layer.
  • the light emitting element layer is a top emission type
  • a method of manufacturing a display device comprising: a resin layer; a TFT layer above the resin layer; and a light emitting element layer above the TFT layer, wherein a bent portion is provided at the periphery. Forming a first wire and a second wire positioned on both sides of the bent portion; and forming a third wire electrically connected to the first wire and the second wire through the bent portion. And a step of forming a fourth wiring which is disposed in a layer different from the third wiring and which is electrically connected to each of the first wiring and the second wiring.
  • a display device manufacturing apparatus comprising: a resin layer; a TFT layer above the resin layer; and a light emitting element layer above the TFT layer, wherein a bent portion is provided at the periphery. Forming a first wire and a second wire positioned on both sides of the bent portion; and forming a third wire electrically connected to the first wire and the second wire through the bent portion. And an apparatus for manufacturing a display device, which is arranged in a layer different from the third wiring, and forms a fourth wiring electrically connected to each of the first wiring and the second wiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

樹脂層(12)と、前記樹脂層よりも上層のTFT層(4)とを備え、周縁に折り曲げ部(CL)が設けられている表示デバイスであって、前記TFT層の端子に接続し、前記折り曲げ部を通る端子配線(TW)を有し、前記端子配線は、前記折り曲げ部の両側に位置する第1配線(WS1)および第2配線(WS2)と、前記折り曲げ部を通り、前記第1配線および前記第2配線それぞれと電気的に接続する第3配線(WS3)と、前記第3配線と異なる層に配され、前記第1配線および前記第2配線それぞれと電気的に接続する第4配線(WS4)とを含む。

Description

表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
 本発明は表示デバイスに関する。
 特許文献1には、表示装置の周辺領域を折り曲げる構成が開示されている。
特開2016-170266号公報(2016年9月23日公開)
 表示デバイスの周縁に折り曲げ部を形成する場合に、折り曲げ部を通る端子配線が断線するおそれがある。
 本発明の一態様に係る表示デバイスは、樹脂層と、前記樹脂層よりも上層のTFT層とを備え、周縁に折り曲げ部が設けられている表示デバイスであって、前記TFT層の端子に接続し、前記折り曲げ部を通る端子配線を有し、前記端子配線は、前記折り曲げ部の両側に位置する第1配線および第2配線と、前記折り曲げ部を通り、前記第1配線および前記第2配線それぞれと電気的に接続する第3配線と、前記第3配線とは異なる層に形成され、前記第1配線および前記第2配線それぞれと電気的に接続する第4配線とを含む。
 本発明の一態様によれば、折り曲げ部を通る端子配線が断線するおそれが低減する。
表示デバイスの製造方法の一例を示すフローチャートである。 表示デバイスの表示部の構成例を示す断面図である。 表示デバイスの構成例を示す平面図である。 実施形態1の非アクティブ領域の構成を示すものであり、(a)は上面図、(b)はA-A’ラインでの断面図、(c)はB-B’ラインでの断面図である。 表示デバイスの非表示領域の折り曲げ構成を示す断面図である。 実施形態1におけるTFT層の形成例を示すフローチャートである。 表示デバイス製造装置の構成を示すブロック図である。 実施形態2における非表示領域の構成を示すものであり、(a)は上面図、(b)はA-A’ラインでの断面図、(c)はB-B’ラインでの断面図である。 表示デバイスの非表示領域の折り曲げ構成を示す断面図である。 実施形態2におけるTFT層の形成例を示すフローチャートである。 実施形態3における非表示領域の構成を示す断面図である。 実施形態3におけるTFT層の形成例を示すフローチャートである。
 図1は表示デバイスの製造方法の一例を示すフローチャートである。図2は表示デバイスの表示部の構成例を示す断面図である。図3は、表示デバイスの構成例を示す平面図である。以下においては、「同層」とは同一プロセスにて同材料で形成されていることを意味し、「下層」とは、比較対象の層よりも先のプロセスで形成されていることを意味し、「上層」とは比較対象の層よりも後のプロセスで形成されていることを意味する。
 フレキシブルな表示デバイスを製造する場合、図1~図3に示すように、まず、透光性の支持基板(例えば、マザーガラス基板)上に樹脂層12を形成する(ステップS1)。次いで、バリア層3を形成する(ステップS2)。次いで、端子TMおよび端子配線TWを含むTFT層4を形成する(ステップS3)。次いで、トップエミッション型の発光素子層(例えば、OLED素子層)5を形成する(ステップS4)。次いで、封止層6を形成する(ステップS5)。次いで、封止層6上に上面フィルムを貼り付ける(ステップS6)。
 次いで、支持基板越しに樹脂層12の下面にレーザ光を照射して支持基板および樹脂層12間の結合力を低下させ、支持基板を樹脂層12から剥離する(ステップS7)。次いで、樹脂層12の下面に下面フィルム10を貼り付ける(ステップS8)。次いで、下面フィルム10、樹脂層12、バリア層3、TFT層4、発光素子層5、封止層6を含む積層体を分断し、複数の個片を得る(ステップS9)。次いで、得られた個片に機能フィルム39を貼り付ける(ステップS10)。次いで、外部接続用の端子に電子回路基板(例えば、ICチップ)をマウントする(ステップS11)。次いで、縁折り加工(図3の折り曲げ部CLを180度折り曲げる加工)を施し、表示デバイス2とする(ステップS12)。次いで、断線検査を行い、断線があれば修正を行う(ステップS13)。なお、前記各ステップは、後述の表示デバイス製造装置が行う。
 樹脂層12の材料としては、例えば、ポリイミド、エポキシ、ポリアミド等が挙げられる。下面フィルム10の材料としては、例えばポリエチレンテレフタレート(PET)が挙げられる。
 バリア層3は、表示デバイスの使用時に、水分や不純物が、TFT層4や発光素子層5に到達することを防ぐ層であり、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。
 TFT層4は、半導体膜15と、半導体膜15よりも上層の無機絶縁膜16(ゲート絶縁膜)と、無機絶縁膜16よりも上層のゲート電極GEと、ゲート電極GEよりも上層の無機絶縁膜18と、無機絶縁膜18よりも上層の容量配線CEと、容量配線CEよりも上層の無機絶縁膜20と、無機絶縁膜20よりも上層の、ソース配線SHおよび端子TMと、ソース配線SHおよび端子TMよりも上層の平坦化膜21とを含む。
 半導体膜15、無機絶縁膜16(ゲート絶縁膜)、およびゲート電極GEを含むように薄層トランジスタTr(TFT)が構成される。
 TFT層4の非アクティブ領域NAには、ICチップ、FPC等の電子回路基板との接続に用いられる端子TMと、端子TMとアクティブ領域DAの配線等を繋ぐ端子配線TW(後に詳述)とが形成される。
 半導体膜15は、例えば低温ポリシリコン(LTPS)あるいは酸化物半導体で構成される。なお、図2では、半導体膜15をチャネルとするTFTがトップゲート構造で示されているが、ボトムゲート構造でもよい(例えば、TFTのチャネルが酸化物半導体の場合)。
 ゲート電極GE、容量電極CE、ソース配線SH、端子配線TW、および端子TMは、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)の少なくとも1つを含む金属の単層膜あるいは積層膜によって構成される。
 無機絶縁膜16・18・20は、例えば、CVD法によって形成された、酸化シリコン(SiOx)膜あるいは窒化シリコン(SiNx)膜またはこれらの積層膜によって構成することができる。
 平坦化膜(層間絶縁膜)21は、例えば、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。
 発光素子層5(例えば、有機発光ダイオード層)は、平坦化膜21よりも上層のアノード22と、アノード22のエッジを覆うバンク23と、アノード22よりも上層のEL(エレクトロルミネッセンス)層24と、EL層24よりも上層のカソード25とを含み、サブピクセルごとに、島状のアノード22、EL層24、およびカソード25を含む発光素子(例えば、OLED:有機発光ダイオード)と、これを駆動するサブ画素回路とが設けられる。バンク23(アノードエッジカバー)は、例えば、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。
 EL層24は、例えば、下層側から順に、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層を積層することで構成される。発光層は、蒸着法あるいはインクジェット法によって、サブピクセルごとに島状に形成されるが、その他の層はベタ状の共通層とすることもできる。また、正孔注入層、正孔輸送層、電子輸送層、電子注入層のうち1以上の層を形成しない構成も可能である。
 アノード(陽極)22は、例えばITO(Indium Tin Oxide)とAgを含む合金との積層によって構成され、光反射性を有する(後に詳述)。カソード25は、ITO(Indium Tin Oxide)、IZO(Indium Zincum Oxide)等の透光性の導電材で構成することができる。
 発光素子層5がOLED層である場合、アノード22およびカソード25間の駆動電流によって正孔と電子がEL層24内で再結合し、これによって生じたエキシトンが基底状態に落ちることによって、光が放出される。カソード25が透光性であり、アノード22が光反射性であるため、EL層24から放出された光は上方に向かい、トップエミッションとなる。
 発光素子層5は、OLED素子を構成する場合に限られず、無機発光ダイオードあるいは量子ドット発光ダイオードを構成してもよい。
 封止層6は透光性であり、カソード25を覆う第1無機封止膜26と、第1無機封止膜26よりも上側に形成される有機封止膜27と、有機封止膜27を覆う第2無機封止膜28とを含む。発光素子層5を覆う封止層6は、水、酸素等の異物の発光素子層5への浸透を防いでいる。
 第1無機封止膜26および第2無機封止膜28はそれぞれ、例えば、CVDにより形成される、酸化シリコン膜、窒化シリコン膜、あるいは酸窒化シリコン膜、またはこれらの積層膜で構成することができる。有機封止膜27は、第1無機封止膜26および第2無機封止膜28よりも厚い、透光性有機膜であり、ポリイミド、アクリル等の塗布可能な感光性有機材料によって構成することができる。
 下面フィルム10は、支持基板を剥離した後に樹脂層12の下面に貼り付けることで、柔軟性に優れた表示デバイスを実現するためのものであり、その材料としては、PET等が挙げられる。機能フィルム39は、例えば、光学補償機能、タッチセンサ機能、保護機能等を有する。
 以上、フレキシブルな表示デバイスを製造する場合について説明したが、非フレキシブルな表示デバイスを製造する場合は、基板の付け替え等が不要であるため、例えば、図1のステップS5からステップS9に移行する。
 〔実施形態1〕
 図4は、実施形態1の表示デバイスの周縁を示すものであり、(a)は上面図、(b)はA-A’ラインでの断面図、(c)はB-B’ラインでの断面図である。図5は、表示デバイスの非アクティブ領域の折り曲げ例を示す断面図である。
 図4・図5に示すように、表示デバイス2の周縁(非表示領域)NAは、下面フィルム10、樹脂層12、バリア層3、無機絶縁膜16・18・20、補強膜EZ、発光素子層5の下地となる平坦化膜21、端子配線TW、および端子TMを含み、この周縁NAには折り曲げ部CLが設けられる。端子TMは、折り曲げ部CLを通る端子配線TWによって表示領域DAに接続される。補強膜EZは、例えば、ポリイミド、アクリル等の塗布可能な感光性有機材で構成され、無機絶縁膜20よりも上層かつ平坦化膜21よりも下層に形成される。図5に示すように、表示デバイス2は、折り曲げ部CLで180度折り曲げられ、これによって下面側に配された端子TMと電子回路基板50(ICチップやフレキシブルプリント基板)とが接続される。
 図4に示すように、折り曲げ部CLでは、下面フィルム10、バリア層3、無機絶縁膜16・18・20が貫かれている。具体的には、下面フィルム10に貫き部Nxが形成され、バリア層3に貫き部Naが形成され、無機絶縁膜16(第1絶縁膜)に貫き部Nbが形成され、無機絶縁膜18(第2絶縁膜)に貫き部Ncが形成され、無機絶縁膜20(第3絶縁膜)に貫き部Ndが形成され、平面視においては、貫き部Nx・Nb・Nc・Ndが整合し、折り曲げ部CLに整合する貫き部Naが、貫き部Nx・Nb・Nc・Ndの内側に位置する。第4配線WS4は、貫き部Na(第1スリット)および貫き部Nb・Nc・Nd(第2スリットSS)を通り、補強膜EZは、貫き部Na(第1スリット)および貫き部Nb・Nc・Nd(第2スリットSS)によって生じる空間に設けられる。
 端子配線TWは、折り曲げ部CLの両側に位置する第1配線WS1および第2配線WS2と、折り曲げ部CLを通り、第1配線WS1および第2配線WS2それぞれと電気的に接続する第3配線WS3と、補強膜EZ(可撓性絶縁膜)を介して第3配線WS3と重畳し、第1配線WS1および第2配線WS2それぞれと電気的に接続する第4配線WS4とを含む。
 具体的には、第1配線WS1および第2配線WS2は、TFT層4に含まれるゲート電極GE(図2参照)と同層に形成され、第3配線WS3は、TFT層4に含まれるソース配線SH(図2参照)および端子TMと同層に形成され、第4配線WS4は、TFT層4に含まれる容量電極CE(図2参照)と同層(端子TMよりも下層でゲート電極GEよりも上層)に形成されている。第3配線WS3は第4配線WS4よりも幅広であり、平面視においては、第3配線WS3のエッジ内に第4配線WS4が位置する。
 第3配線WS3は、折り曲げ部CLの一方の側から、補強膜EZ上を通って折り曲げ部CLの他方の側へ到り、折り曲げ部CLにおいては、補強膜EZおよび平坦化膜21で挟まれている。第4配線WS4は、折り曲げ部CLの一方の側から、貫き部Na・Nb・Ncを通って折り曲げ部CLの他方の側へ到り、折り曲げ部CLにおいては、樹脂層12および補強膜EZで挟まれている。補強膜EZおよび平坦化膜21は同一の有機材料(例えば、ポリイミド)で構成してもよい。
 第4配線WS4は、その一端が、無機絶縁膜18に形成されたコンタクトホールHc1によって第1配線WS1に接続されるとともに、無機絶縁膜20に形成されたコンタクトホールHd1によって第3配線WS3の一端に接続される。第4配線WS4の他端は、無機絶縁膜18に形成されたコンタクトホールHc2によって第2配線WS2に接続されるとともに、無機絶縁膜20に形成されたコンタクトホールHd2によって第3配線WS3の他端に接続される。
 平面視においては、貫き部Nb・Nc・Ndからなる第2スリットSSの開口の内側に貫き部Na(第1スリット)の開口が配され、第2スリットSSにおいて第4配線WS4がバリア層3に接する。
 図6は、実施形態1におけるTFT層の形成例を示すフローチャートである。図1のステップS1に次いでステップS2ではバリア層3を形成する。次のステップS3aでは、半導体膜15(図2参照)を形成する。次のステップS3bでは、無機絶縁膜16を形成する。次のステップS3cでは、ゲート電極、第1配線WS1および第2配線WS2を形成する。次のステップS3dでは、無機絶縁膜18を形成する。次のステップS3eでは、容量電極CE(図2参照)および第4配線WS4を形成する。次のステップS3fでは、無機絶縁膜20を形成する。次のステップS3gでは、補強膜EZを形成する。次のステップS3hでは、ソース配線SH(図2参照)、第3配線WS3および端子TMを形成する。次のステップS3iでは、平坦化膜21を形成する(この後の工程は図1を参照)。なお、貫き部Nb・Ncの形成(パターニング)は連続プロセスで行ってもよい。
 図7は、表示デバイス製造装置の構成を示すブロック図である。図7に示すように、表示デバイス製造装置70は、成膜装置76と、折り曲げ装置77と、実装装置80と、これらの装置を制御するコントローラ72とを含んでおり、成膜装置76が図6のステップS3a~S3iを行い、折り曲げ装置77が図1のステップS10を行い、実装装置80が図1のステップS12を行う。
 実施形態1では、端子配線TWが、折り曲げ部CLを通る第3配線WS3および第4配線WS4を含んでいるため、仮に第3配線WS3が破断しても、第4配線WS4によって第1配線WS1から第2配線WS2への電気的な経路を維持することができ、端子配線TWが折り曲げ部CLで断線するおそれが低減する。
 また、CVD法で形成される(緻密で硬い)バリア層3および無機絶縁膜16・18・20が折り曲げ部CLにおいて貫かれているため、折り曲げ時の応力が低減し、第3配線WS3および第4配線WS4の破断が生じにくい。
 また、折り曲げ部CLの第3配線WS3および第4配線WS4それぞれが、CVD形成の無機材料よりも可撓性の高い塗付形成の有機材料で挟まれているため、第3配線WS3および第4配線WS4の破断が生じにくい。
 〔実施形態2〕
 実施形態1では第4配線WS4を容量電極と同層に設けているがこれに限定されない。図8は、実施形態2の表示デバイスの周縁を示すものであり、(a)は上面図、(b)はA-A’ラインでの断面図、(c)はB-B’ラインでの断面図である。図9は、表示デバイスの非アクティブ領域の折り曲げ例を示す断面図である。
 図8・図9に示すように、実施形態2の端子配線TWは、折り曲げ部CLの両側に位置する第1配線WS1および第2配線WS2と、折り曲げ部CLを通り、第1配線WS1および第2配線WS2それぞれと電気的に接続する第3配線WS3と、平坦化膜21(可撓性絶縁膜)を介して第3配線WS3と重畳し、第1配線WS1および第2配線WS2それぞれと電気的に接続する第4配線WS4とを含む。
 具体的には、第1配線WS1および第2配線WS2は、TFT層4に含まれるゲート電極GE(図2参照)と同層に形成され、第3配線WS3は、TFT層4に含まれるソース配線SH(図2参照)および端子TMと同層に形成され、第4配線WS4は、発光素子層5のアノード22と同層に、同一材料にて形成されている。第3配線WS3は第4配線WS4よりも幅広であり、平面視においては、第3配線WS3のエッジ内に第4配線WS4が位置する。
 第3配線WS3は、折り曲げ部CLの一方の側から、補強膜EZ上を通って折り曲げ部CLの他方の側へ到り、折り曲げ部CLにおいては、補強膜EZと平坦化膜21とで挟まれている。第4配線WS4は、折り曲げ部CLの一方の側から、平坦化膜21上を通って折り曲げ部CLの他方の側へ到り、折り曲げ部CLにおいては、平坦化膜21と、バンク(アノードエッジカバー)23(図2参照)と同層の有機絶縁膜23zとで挟まれている。補強膜EZ、平坦化膜21および有機絶縁膜23zは同一の有機材料(例えば、ポリイミド)で構成してもよい。
 第3配線WS3は、その一端が、無機絶縁膜18に形成されたコンタクトホールHc1と、無機絶縁膜20に形成され、コンタクトホールHc1に連通するコンタクトホールHd1とによって第1配線WS1に接続されるとともに、平坦化膜21に形成されたコンタクトホールHe1によって第4配線WS4の一端に接続され、第3配線WS3の他端は、無機絶縁膜18に形成されたコンタクトホールHc2と、無機絶縁膜20に形成され、コンタクトホールHc2に連通するコンタクトホールHd2とによって第2配線WS2に接続されるとともに、平坦化膜21に形成されたコンタクトホールHe2によって第4配線WS4の他端に接続される。
 図10は、実施形態2におけるTFT層の形成例を示すフローチャートである。図1のステップS1に次いでステップS2ではバリア層3を形成する。次のステップS3aでは、半導体膜15(図2参照)を形成する。次のステップS3bでは、無機絶縁膜16を形成する。次のステップS3cでは、ゲート電極、第1配線WS1および第2配線WS2を形成する。次のステップS3dでは、無機絶縁膜18を形成する。次のステップS3eでは、容量電極CE(図2参照)を形成する。次のステップS3fでは、無機絶縁膜20を形成する。次のステップS3gでは、補強膜EZを形成する。次のステップS3hでは、ソース配線SH(図2参照)、第3配線WS3および端子TMを形成する。次のステップS3iでは、平坦化膜21を形成する。次のステップS3jでは、アノード22(図2参照)および第4配線WS4を形成する。次のステップS3kでは、バンク23と同層の有機絶縁膜23zを形成する(この後の工程は図1を参照)。なお、貫き部Nb・Nc・Ndの形成(パターニング)は連続プロセスで行ってもよい。
 〔実施形態3〕
 第4配線WS4を、第1配線WS1および第2配線WS2と同層に設けることもできる。図11は、実施形態3の表示デバイスの周縁を示す断面図である。
 図11に示すように、実施形態3の端子配線TWは、折り曲げ部CLの両側に位置する第1配線WS1および第2配線WS2と、折り曲げ部CLを通り、第1配線WS1および第2配線WS2それぞれと電気的に接続する第3配線WS3と、補強膜EZ(可撓性絶縁膜)を介して第3配線WS3と重畳し、第1配線WS1および第2配線WS2それぞれと電気的に接続する第4配線WS4とを含む。
 具体的には、第1配線WS1、第2配線WS2および第4配線WS4は、TFT層4に含まれるゲート電極GE(図2参照)と同層に形成され、第3配線WS3は、TFT層4に含まれるソース配線SH(図2参照)および端子TMと同層に形成されている。
 第3配線WS3は、折り曲げ部CLの一方の側から、補強膜EZ上を通って折り曲げ部CLの他方の側へ到り、折り曲げ部CLにおいては、補強膜EZおよび平坦化膜21で挟まれている。第4配線WS4は、折り曲げ部CLの一方の側から、貫き部Na・Nbを通って折り曲げ部CLの他方の側へ到り、折り曲げ部CLにおいては、樹脂層12および補強膜EZで挟まれている。補強膜EZおよび平坦化膜21は同一の有機材料(例えば、ポリイミド)で構成してもよい。
 第3配線WS3は、その一端が、無機絶縁膜18に形成されたコンタクトホールHc1と、無機絶縁膜20に形成され、コンタクトホールHc1に連通するコンタクトホールHd1とによって第1配線WS1および第4配線WS4の一端に接続され、第3配線WS3の他端は、無機絶縁膜18に形成されたコンタクトホールHc2と、無機絶縁膜20に形成され、コンタクトホールHc2に連通するコンタクトホールHd2とによって第2配線WS2および第4配線WS4の他端に接続される。
 図12は、実施形態3におけるTFT層の形成例を示すフローチャートである。図1のステップS1に次いでステップS2ではバリア層3を形成する。次のステップS3aでは、半導体膜15(図2参照)を形成する。次のステップS3bでは、無機絶縁膜16を形成する。次のステップS3cでは、ゲート電極、第1配線WS1、第2配線WS2および第4配線WS4を形成する。次のステップS3dでは、無機絶縁膜18を形成する。次のステップS3eでは、容量電極CE(図2参照)を形成する。次のステップS3fでは、無機絶縁膜20を形成する。次のステップS3gでは、補強膜EZを形成する。次のステップS3hでは、ソース配線SH(図2参照)、第3配線WS3および端子TMを形成する。次のステップS3iでは、平坦化膜21を形成する(この後の工程は図1を参照)。なお、貫き部Nc・Ndの形成(パターニング)は連続プロセスで行ってもよい。
 〔まとめ〕
 本実施形態にかかる表示デバイスが備える電気光学素子(電流によって輝度や透過率が制御される電気光学素子)は特に限定されるものではない。本実施形態にかかる表示装置としては、例えば、電気光学素子としてOLED(Organic Light Emitting Diode:有機発光ダイオード)を備えた有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイ、電気光学素子として無機発光ダイオードを備えた無機ELディスプレイ、電気光学素子としてQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えたQLEDディスプレイ等が挙げられる。
 本発明は上述した実施形態に限定されるものではなく、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 〔態様1〕
 樹脂層と、前記樹脂層よりも上層のTFT層と、前記TFT層よりも上層の発光素子層とを備え、周縁に折り曲げ部が設けられている表示デバイスであって、
 前記TFT層の端子に接続し、前記折り曲げ部を通る端子配線を有し、
 前記端子配線は、前記折り曲げ部の両側に位置する第1配線および第2配線と、前記折り曲げ部を通り、前記第1配線および前記第2配線それぞれと電気的に接続する第3配線と、前記第3配線とは異なる層に形成され、前記第1配線および前記第2配線それぞれと電気的に接続する第4配線とを含む表示デバイス。
 〔態様2〕
 前記第4配線は、可撓性絶縁膜を介して前記第3配線と重畳する例えば態様1記載の表示デバイス。
 〔態様3〕
 前記TFT層には複数の無機絶縁膜が含まれ、
 前記折り曲げ部では、前記複数の無機絶縁膜が貫かれている例えば態様2記載の表示デバイス。
 〔態様4〕
 前記樹脂層と前記TFT層との間にバリア層を備え、
 前記折り曲げ部には、前記バリア層が貫かれて形成される第1スリットが設けられている例えば態様3に記載の表示デバイス。
 〔態様5〕
 前記折り曲げ部には、前記複数の無機絶縁膜が貫かれて形成される第2スリットが、前記第1スリットに重なるように設けられ、
 前記第1スリットおよび前記第2スリットを埋めるように補強膜が形成されている例えば態様4に記載の表示デバイス。
 〔態様6〕
 前記折り曲げ部においては、前記第3配線が前記補強膜と前記発光素子層の下地となる平坦化膜とで挟まれている例えば態様5に記載の表示デバイス。
 〔態様7〕
 前記補強膜および前記平坦化膜が同一の有機材料で構成されている例えば態様6に記載の表示デバイス。
 〔態様8〕
 前記第3配線は、前記端子と同層に形成されている例えば態様6に記載の表示デバイス。
 〔態様9〕
 前記第1配線および前記第2配線が、前記TFT層に含まれるゲート電極と同層に形成されている例えば態様8に記載の表示デバイス。
 〔態様10〕
 前記第4配線は、前記TFT層のゲート電極よりも上層かつ前記端子よりも下層に形成されている例えば態様9に記載の表示デバイス。
 〔態様11〕
 前記第4配線は、前記第1スリットおよび前記第2スリットを通る例えば態様10に記載の表示デバイス。
 〔態様12〕
 前記第1スリットにおいて、前記第4配線と前記樹脂層とが接する例えば態様11に記載の表示デバイス。
 〔態様13〕
 前記折り曲げ部においては、前記第4配線が前記樹脂層と前記補強膜とで挟まれている例えば態様12に記載の表示デバイス。
 〔態様14〕
 平面視においては前記第2スリットの開口の内側に前記第1スリットの開口が配され、
 前記第2スリットにおいて前記第4配線が前記バリア層に接する例えば態様11に記載の表示デバイス。
 〔態様15〕
 前記複数の無機絶縁膜は、第1絶縁膜、第2絶縁膜、および第3絶縁膜であり、
 前記第3配線は、前記TFT層のソース電極と同層に形成され、
 前記第1絶縁膜は、前記バリア層よりも上層かつ前記第1配線および第2配線よりも下層に形成され、
  前記第2絶縁膜は、前記第1配線および第2配線よりも上層かつ前記第4配線よりも下層に形成され、
 前記第3絶縁膜は、前記第4配線よりも上層かつ前記第3配線よりも下層に形成され、
 前記折り曲げ部の両側において前記第2絶縁膜に形成された2つのコンタクトホールの一方によって前記第1配線および前記第4配線が接触し、他方によって前記第2配線および前記第4配線が接触し、
 前記折り曲げ部の両側において前記第3絶縁膜に形成された2つのコンタクトホールそれぞれによって前記第3配線および前記第4配線が接触する例えば態様11に記載の表示デバイス。
 〔態様16〕
 前記第4配線は、前記発光素子層に含まれる下側電極と同層に形成されている例えば態様9に記載の表示デバイス。
 〔態様17〕
 前記折り曲げ部においては、前記第4配線が、前記平坦化膜と、前記発光素子層のアノードエッジカバーと同層の絶縁膜とで挟まれている例えば態様16に記載の表示デバイス。
 〔態様18〕
 前記第4配線は、前記第1配線および前記第2配線と同層に形成されている例えば態様9に記載の表示デバイス。
 〔態様19〕
 前記発光素子層がトップエミッション型であり、
 前記折り曲げ部で折り曲げられることによって下面側に配された前記端子と電子回路基板とが接続される例えば態様1~18のいずれか1項に記載の表示デバイス。
 〔態様20〕
 樹脂層と、前記樹脂層よりも上層のTFT層と、前記TFT層よりも上層の発光素子層とを備え、周縁に折り曲げ部が設けられている表示デバイスの製造方法であって、
 前記折り曲げ部の両側に位置する第1配線および第2配線を形成する工程と、前記折り曲げ部を通り、前記第1配線および前記第2配線それぞれと電気的に接続する第3配線を形成する工程と、前記第3配線とは異なる層に配され、前記第1配線および前記第2配線それぞれと電気的に接続する第4配線を形成する工程とを含む表示デバイスの製造方法。
 〔態様21〕
 樹脂層と、前記樹脂層よりも上層のTFT層と、前記TFT層よりも上層の発光素子層とを備え、周縁に折り曲げ部が設けられている表示デバイスの製造装置であって、
 前記折り曲げ部の両側に位置する第1配線および第2配線を形成する工程と、前記折り曲げ部を通り、前記第1配線および前記第2配線それぞれと電気的に接続する第3配線を形成する工程と、前記第3配線とは異なる層に配され、前記第1配線および前記第2配線それぞれと電気的に接続する第4配線を形成する工程とを行う表示デバイスの製造装置。
 2  表示デバイス
 3  バリア層
 4  TFT層
 5  発光素子層
 6  封止層
 12 樹脂層
 16・18・20 無機絶縁膜
 21 平坦化膜
 23 バンク(アノードエッジカバー)
 23z 有機絶縁膜
 24 EL層
 70 表示デバイス製造装置
 EZ 補強膜
 TM 端子
 TW 端子配線
 WS1~WS4 第1配線~第4配線

Claims (21)

  1.  樹脂層と、前記樹脂層よりも上層のTFT層と、前記TFT層よりも上層の発光素子層とを備え、周縁に折り曲げ部が設けられている表示デバイスであって、
     前記TFT層の端子に接続し、前記折り曲げ部を通る端子配線を有し、
     前記端子配線は、前記折り曲げ部の両側に位置する第1配線および第2配線と、前記折り曲げ部を通り、前記第1配線および前記第2配線それぞれと電気的に接続する第3配線と、前記第3配線とは異なる層に形成され、前記第1配線および前記第2配線それぞれと電気的に接続する第4配線とを含む表示デバイス。
  2.  前記第4配線は、可撓性絶縁膜を介して前記第3配線と重畳する請求項1記載の表示デバイス。
  3.  前記TFT層には複数の無機絶縁膜が含まれ、
     前記折り曲げ部では、前記複数の無機絶縁膜が貫かれている請求項2記載の表示デバイス。
  4.  前記樹脂層と前記TFT層との間にバリア層を備え、
     前記折り曲げ部には、前記バリア層が貫かれて形成される第1スリットが設けられている請求項3に記載の表示デバイス。
  5.  前記折り曲げ部には、前記複数の無機絶縁膜が貫かれて形成される第2スリットが、前記第1スリットに重なるように設けられ、
     前記第1スリットおよび前記第2スリットを埋めるように補強膜が形成されている請求項4に記載の表示デバイス。
  6.  前記折り曲げ部においては、前記第3配線が前記補強膜と前記発光素子層の下地となる平坦化膜とで挟まれている請求項5に記載の表示デバイス。
  7.  前記補強膜および前記平坦化膜が同一の有機材料で構成されている請求項6に記載の表示デバイス。
  8.  前記第3配線は、前記端子と同層に形成されている請求項6に記載の表示デバイス。
  9.  前記第1配線および前記第2配線が、前記TFT層に含まれるゲート電極と同層に形成されている請求項8に記載の表示デバイス。
  10.  前記第4配線は、前記TFT層のゲート電極よりも上層かつ前記端子よりも下層に形成されている請求項9に記載の表示デバイス。
  11.  前記第4配線は、前記第1スリットおよび前記第2スリットを通る請求項10に記載の表示デバイス。
  12.  前記第1スリットにおいて、前記第4配線と前記樹脂層とが接する請求項11に記載の表示デバイス。
  13.  前記折り曲げ部においては、前記第4配線が前記樹脂層と前記補強膜とで挟まれている請求項12に記載の表示デバイス。
  14.  平面視においては前記第2スリットの開口の内側に前記第1スリットの開口が配され、
     前記第2スリットにおいて前記第4配線が前記バリア層に接する請求項11に記載の表示デバイス。
  15.  前記複数の無機絶縁膜は、第1絶縁膜、第2絶縁膜、および第3絶縁膜であり、
     前記第3配線は、前記TFT層のソース電極と同層に形成され、
     前記第1絶縁膜は、前記バリア層よりも上層かつ前記第1配線および第2配線よりも下層に形成され、
      前記第2絶縁膜は、前記第1配線および第2配線よりも上層かつ前記第4配線よりも下層に形成され、
     前記第3絶縁膜は、前記第4配線よりも上層かつ前記第3配線よりも下層に形成され、
     前記折り曲げ部の両側において前記第2絶縁膜に形成された2つのコンタクトホールの一方によって前記第1配線および前記第4配線が接触し、他方によって前記第2配線および前記第4配線が接触し、
     前記折り曲げ部の両側において前記第3絶縁膜に形成された2つのコンタクトホールそれぞれによって前記第3配線および前記第4配線が接触する請求項11に記載の表示デバイス。
  16.  前記第4配線は、前記発光素子層に含まれる下側電極と同層に形成されている請求項9に記載の表示デバイス。
  17.  前記折り曲げ部においては、前記第4配線が、前記平坦化膜と、前記発光素子層のアノードエッジカバーと同層の絶縁膜とで挟まれている請求項16に記載の表示デバイス。
  18.  前記第4配線は、前記第1配線および前記第2配線と同層に形成されている請求項9に記載の表示デバイス。
  19.  前記発光素子層がトップエミッション型であり、
     前記折り曲げ部で折り曲げられることによって下面側に配された前記端子と電子回路基板とが接続される請求項1~18のいずれか1項に記載の表示デバイス。
  20.  樹脂層と、前記樹脂層よりも上層のTFT層と、前記TFT層よりも上層の発光素子層とを備え、周縁に折り曲げ部が設けられている表示デバイスの製造方法であって、
     前記折り曲げ部の両側に位置する第1配線および第2配線を形成する工程と、前記折り曲げ部を通り、前記第1配線および前記第2配線それぞれと電気的に接続する第3配線を形成する工程と、前記第3配線とは異なる層に配され、前記第1配線および前記第2配線それぞれと電気的に接続する第4配線を形成する工程とを含む表示デバイスの製造方法。
  21.  樹脂層と、前記樹脂層よりも上層のTFT層と、前記TFT層よりも上層の発光素子層とを備え、周縁に折り曲げ部が設けられている表示デバイスの製造装置であって、
     前記折り曲げ部の両側に位置する第1配線および第2配線を形成する工程と、前記折り曲げ部を通り、前記第1配線および前記第2配線それぞれと電気的に接続する第3配線を形成する工程と、前記第3配線とは異なる層に配され、前記第1配線および前記第2配線それぞれと電気的に接続する第4配線を形成する工程とを行う表示デバイスの製造装置。
PCT/JP2017/027477 2017-07-28 2017-07-28 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置 WO2019021466A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780093231.3A CN110892469B (zh) 2017-07-28 2017-07-28 显示器件、显示器件的制造方法、显示器件的制造装置
US16/466,360 US10847600B2 (en) 2017-07-28 2017-07-28 Display device and manufacturing method for display device
PCT/JP2017/027477 WO2019021466A1 (ja) 2017-07-28 2017-07-28 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
JP2019532328A JP7038125B2 (ja) 2017-07-28 2017-07-28 表示デバイス、表示デバイスの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/027477 WO2019021466A1 (ja) 2017-07-28 2017-07-28 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Publications (1)

Publication Number Publication Date
WO2019021466A1 true WO2019021466A1 (ja) 2019-01-31

Family

ID=65039526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/027477 WO2019021466A1 (ja) 2017-07-28 2017-07-28 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置

Country Status (4)

Country Link
US (1) US10847600B2 (ja)
JP (1) JP7038125B2 (ja)
CN (1) CN110892469B (ja)
WO (1) WO2019021466A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422631B2 (en) 2016-03-31 2022-08-23 Sensel, Inc. Human-computer interface system
US11460926B2 (en) 2016-03-31 2022-10-04 Sensel, Inc. Human-computer interface system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6843710B2 (ja) * 2017-07-12 2021-03-17 株式会社ジャパンディスプレイ 表示装置、および表示装置の製造方法
US10847733B2 (en) * 2017-08-04 2020-11-24 Sharp Kabushiki Kaisha Display device
JP7068800B2 (ja) * 2017-10-30 2022-05-17 株式会社ジャパンディスプレイ 表示装置
US11659746B2 (en) * 2018-03-09 2023-05-23 Sharp Kabushiki Kaisha Display device
WO2020039591A1 (ja) * 2018-08-24 2020-02-27 シャープ株式会社 表示デバイス
CN109785754B (zh) * 2019-02-01 2021-04-02 京东方科技集团股份有限公司 一种柔性显示模组、柔性显示装置
CN110928004A (zh) * 2019-12-12 2020-03-27 武汉华星光电技术有限公司 显示屏及显示装置
KR20220010692A (ko) * 2020-07-17 2022-01-26 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299773A (ja) * 2001-03-28 2002-10-11 Seiko Epson Corp フレキシブル配線基板及び電気光学装置
JP2008233452A (ja) * 2007-03-20 2008-10-02 Epson Imaging Devices Corp 実装構造体、電気光学装置、電子機器及び電気光学装置の製造方法
WO2016204056A1 (ja) * 2015-06-16 2016-12-22 シャープ株式会社 表示装置の製造方法及び表示装置
US20170040406A1 (en) * 2015-08-06 2017-02-09 Samsung Display Co., Ltd. Flexible display device and manufacturing method thereof
JP2017097163A (ja) * 2015-11-24 2017-06-01 株式会社ジャパンディスプレイ 表示装置
US20170194411A1 (en) * 2015-12-31 2017-07-06 Lg Display Co., Ltd. Electronic device with flexible display panel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298828A (ja) * 2007-05-29 2008-12-11 Panasonic Corp プラズマディスプレイ装置
WO2010038514A1 (ja) * 2008-10-02 2010-04-08 シャープ株式会社 表示装置用基板、表示装置用基板の製造方法、表示装置、液晶表示装置、液晶表示装置の製造方法及び有機エレクトロルミネセンス表示装置
CN202534323U (zh) * 2012-04-24 2012-11-14 合肥京东方光电科技有限公司 一种显示面板及显示器
JP6289286B2 (ja) * 2014-06-25 2018-03-07 株式会社ジャパンディスプレイ 表示装置および表示装置の製造方法
JP6419608B2 (ja) * 2015-03-12 2018-11-07 株式会社ジャパンディスプレイ 表示装置
JP6329925B2 (ja) * 2015-06-26 2018-05-23 株式会社ジャパンディスプレイ 表示装置
JP6775376B2 (ja) * 2016-10-14 2020-10-28 株式会社ジャパンディスプレイ 表示装置
KR102631257B1 (ko) * 2016-11-18 2024-01-31 삼성디스플레이 주식회사 디스플레이 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002299773A (ja) * 2001-03-28 2002-10-11 Seiko Epson Corp フレキシブル配線基板及び電気光学装置
JP2008233452A (ja) * 2007-03-20 2008-10-02 Epson Imaging Devices Corp 実装構造体、電気光学装置、電子機器及び電気光学装置の製造方法
WO2016204056A1 (ja) * 2015-06-16 2016-12-22 シャープ株式会社 表示装置の製造方法及び表示装置
US20170040406A1 (en) * 2015-08-06 2017-02-09 Samsung Display Co., Ltd. Flexible display device and manufacturing method thereof
JP2017097163A (ja) * 2015-11-24 2017-06-01 株式会社ジャパンディスプレイ 表示装置
US20170194411A1 (en) * 2015-12-31 2017-07-06 Lg Display Co., Ltd. Electronic device with flexible display panel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11422631B2 (en) 2016-03-31 2022-08-23 Sensel, Inc. Human-computer interface system
US11460926B2 (en) 2016-03-31 2022-10-04 Sensel, Inc. Human-computer interface system

Also Published As

Publication number Publication date
JP7038125B2 (ja) 2022-03-17
CN110892469A (zh) 2020-03-17
US20200066821A1 (en) 2020-02-27
JPWO2019021466A1 (ja) 2020-07-27
CN110892469B (zh) 2021-11-02
US10847600B2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
JP7038125B2 (ja) 表示デバイス、表示デバイスの製造方法
US10811488B2 (en) Display device
WO2019064534A1 (ja) 可撓性表示装置及び可撓性表示装置の製造方法
US11653547B2 (en) Display device
WO2019021467A1 (ja) 表示デバイス、表示デバイスの製造方法、表示デバイスの製造装置
WO2019187159A1 (ja) 表示デバイス
WO2019187137A1 (ja) 表示装置
WO2019187151A1 (ja) 表示デバイス
WO2019150503A1 (ja) 表示装置
US10672854B2 (en) Display device
WO2019064591A1 (ja) 表示デバイス、表示デバイスの製造方法
CN111868809B (zh) 显示装置和显示装置的制造方法
WO2019187156A1 (ja) 表示デバイス
CN112425264B (zh) 显示装置
WO2019167279A1 (ja) 表示装置
US10777633B2 (en) Display device, display device manufacturing method, and display device manufacturing apparatus
US20210343812A1 (en) Display device
WO2019130427A1 (ja) 表示デバイス
US11404525B2 (en) Display device and method for manufacturing display device
CN112753059B (zh) 显示装置
WO2020255350A1 (ja) 表示装置
WO2020202281A1 (ja) 表示装置
WO2021064820A1 (ja) 表示装置
WO2020065750A1 (ja) 表示デバイス及び表示デバイスの製造方法
WO2019187161A1 (ja) 表示デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17919234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532328

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17919234

Country of ref document: EP

Kind code of ref document: A1