WO2019019555A1 - 一种基于双环预测控制的切换型控制方法 - Google Patents
一种基于双环预测控制的切换型控制方法 Download PDFInfo
- Publication number
- WO2019019555A1 WO2019019555A1 PCT/CN2017/120375 CN2017120375W WO2019019555A1 WO 2019019555 A1 WO2019019555 A1 WO 2019019555A1 CN 2017120375 W CN2017120375 W CN 2017120375W WO 2019019555 A1 WO2019019555 A1 WO 2019019555A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control
- value
- sampling
- state
- variable
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/5387—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
- H02M7/53871—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
- H02M7/53873—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/123—Suppression of common mode voltage or current
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/12—Arrangements for reducing harmonics from ac input or output
- H02M1/126—Arrangements for reducing harmonics from ac input or output using passive filters
Definitions
- the invention relates to power electronic converter and industrial control technology, in particular to a switching type control method based on double loop prediction control, belonging to the technical field of power electronic converter.
- the outer ring mainly has Proportional-Integral (PI) control and synovial control, but its dynamic performance is not high.
- PI Proportional-Integral
- the system (system refers to the implementation of the control method, generally the power electronic converter, in the present invention refers to the single-phase voltage inverter) performance is closely related to the outer loop control and inner loop control, how to pass The overall performance of the outer loop control lift system is an area worthy of further study.
- the currently used predictive control methods are deadbeat control and limited control set model predictive control.
- the deadbeat control can realize the tracking of the reference quantity by the controlled quantity in one control period, has excellent steady state performance, and can realize a fixed switching frequency, but the presence of the modulation unit limits the dynamic performance of the deadbeat control.
- the finite control set model predictive control directly utilizes the discrete characteristics of the converter and the limited switching state. It has the advantages of no modulator, fast dynamic response and easy increase of nonlinear constraints. However, the switching frequency is not fixed, which makes the filter design difficult and control performance. Subject to certain restrictions. How to combine the advantages of the two control methods to achieve reasonable switching of the two control strategies has great practical significance.
- the present invention aims to provide a switching type control method based on dual loop predictive control.
- the method is based on double-loop predictive control.
- the outer loop control adopts deadbeat control to improve the overall performance of the system.
- the inner loop control adopts a switching control method: when the system is in steady state, the deadbeat control is used to ensure the stability of the system. State accuracy and achieve a fixed switching frequency, when the system is in a transient state, switching to a finite control set model predictive control ensures that the system transitions quickly to steady state.
- the object of the present invention can be achieved by one of the following technical solutions.
- a switching control method based on dual-loop predictive control the main steps are as follows:
- (S5) According to the judgment condition of (S4), when the system is judged to be in a steady state, the inner loop adopts deadbeat control; when the judgment system is in a transient state, the inner loop adopts a finite control set model predictive control.
- V 0 (k+1), i L (k+1) respectively represent the output voltage value and the filtered inductor current value at the k+1 sampling time as the state variables of the system;
- V 0 (k), i L (k) The output voltage value and the filter inductor current value of the inverter k sampling time are respectively indicated as the state variables of the system;
- V in (k) represents the AC side voltage value of the inverter bridge at the time of k sampling, as the disturbance variable of the system;
- i 0 ( k) represents the output current value at the time of k sampling as the disturbance variable of the system;
- y c (k) represents the value of the controlled output variable at the time of k sampling;
- L and C respectively represent the filter inductance value of the single-phase voltage type inverter and Filter capacitor value;
- T is the sampling period of the system.
- the outer loop control adopts the deadbeat control to improve the overall performance of the system;
- a switching function J sw (k)
- , J sw (k) represents the k-sampling time switching function value
- V 0 (k) represents the output voltage value at the k sampling time
- V r (k) represents the reference corresponding to the k sampling time V 0 (k) Voltage value
- V 0 (k-1) represents the output voltage value at the k-1 sampling time
- V r (k-1) represents the reference voltage value corresponding to the k-1 sampling time V 0 (k-1);
- the point threshold is e max , which compares J sw (k) with e max ; when J sw (k)>e max , the system is judged to be in a transient state; when J sw (k) ⁇ e max , the system is judged to be in a steady state.
- the inner loop control adopts the deadbeat control to reduce the steady state error of the system and realize the fixed switching frequency; In the transient state, the inner loop control uses a finite control set model predictive control to ensure that the system transitions quickly to steady state.
- the outer ring adopts the deadbeat control to greatly improve the overall performance of the system
- the fixed switching frequency can be achieved when the system is in steady state.
- FIG. 1 is a schematic diagram of a switching type control method based on dual loop predictive control according to the present invention.
- FIG. 2 is a rendering diagram of a steady state output voltage waveform simulated by MATLAB to which the present invention is applied.
- Fig. 3 is a diagram showing the effect of the steady state output voltage THD of the MATLAB to which the present invention is applied.
- FIG. 4 is a diagram showing the effect of output voltage dynamic response when the MATLAB simulation reference voltage is applied to the present invention.
- FIG. 1 a schematic diagram of a switching type control method based on dual-loop predictive control
- d[]/dt represents the differential value of the state variable
- L and C respectively represent the filter inductance value and the filter capacitance value of the single-phase voltage type inverter
- V 0 (k), i L (k) respectively represent the inverse
- the output voltage value and the filter inductor current value of the transformer k sampling time are used as the state variables of the system
- V in (k) represents the AC side voltage value of the inverter bridge at the time of k sampling, as the disturbance variable of the system
- i 0 (k) represents The output current value at the time of k sampling is used as the disturbance variable of the system
- y c (k) represents the value of the controlled output variable at the time of k sampling.
- V 0 (k+1), i L (k+1) represent the output voltage value and the filtered inductor current value at the time of k+1 sampling, respectively, as the state variables of the system;
- V 0 (k), i L ( k) respectively represent the output voltage value and the filter inductor current value of the sampling time of the inverter k as the state variable of the system;
- V in (k) represents the voltage value of the AC side of the inverter bridge at the time of k sampling, as the disturbance variable of the system;
- i 0 (k) represents the output current value at the k sampling time as the system's interference variable;
- y c (k) represents the controlled output variable value at the k sampling time;
- L and C respectively represent the filter inductance of the single-phase voltage type inverter Value and filter capacitor value;
- T is the sampling period of the system.
- V r (k+1)-V 0 (k+1) 0 (4)
- V 0 (k+1) represents the output voltage value at the k+1 sampling instant
- V r (k+1) represents the reference voltage value corresponding to the k+1 sampling instant V 0 (k+1).
- control rate of the outer loop control can be obtained by combining equations (3) and (4):
- i r (k) represents the reference current value of the filtered inductor current i L (k) at k sampling time
- V r (k+1) represents the reference voltage value corresponding to the k+1 sampling instant
- V 0 (k) represents the output voltage value at the k sampling time
- i 0 (k) represents the output current value at the k sampling time
- C represents the filter capacitance value
- T represents the sampling period of the system.
- the current value calculated by the equation (5) is input as a reference signal to the inner loop controller.
- J sw (k)
- J sw (k) represents the switching function value at the k sampling time
- V 0 (k) represents the output voltage value at the k sampling time
- V r (k) represents the reference voltage value corresponding to the k sampling time
- V 0 (k-1) represents the output voltage value at the k-1 sampling time
- V r (k-1) represents the reference voltage value corresponding to the k-1 sampling instant V 0 (k-1).
- V in (k) has another expression:
- V in (k) d * V dc (8)
- V in (k) represents the AC bridge voltage value of the inverter bridge of the inverter at the time of k sampling
- V dc represents the DC side voltage value
- d * represents the modulation signal.
- i L (k+1) represents the filtered inductor current value at the k+1 sampling instant
- i r (k+1) represents the reference current value corresponding to the k+1 sampling instant i L (k+1).
- the modulation signal is input to the modulation unit for comparison with the triangular wave, and the switch combination is calculated and applied to the inverter to control the output voltage.
- Power electronic converters achieve control objectives by controlling the turn-on and turn-off of controllable switching transistors, and each switch has only two states: on and off, and all switching functions are combined by these two states. Define the switch status as follows:
- V in (k) The relationship between the alternative voltage vector V in (k) and the switch combination is shown in Table 1 (V dc is the DC side voltage value of the inverter).
- i r (k+1) is the reference current value at time k+1
- i p (k+1) represents the predicted current value at time k+1
- J represents the objective function value
- FIG. 2 is a rendering diagram of a steady state output voltage waveform simulated by the MATLAB to which the present invention is applied (the abscissa indicates time and the ordinate indicates output voltage value).
- Fig. 3 is a diagram showing the steady state output voltage THD effect of the MATLAB to which the present invention is applied (the abscissa indicates the frequency value, and the ordinate indicates the voltage value at the corresponding frequency value after Fourier decomposition).
- FIG. 4 is a diagram showing the dynamic response of the output voltage when the MATLAB simulation reference voltage is applied by the present invention (the abscissa indicates time and the ordinate indicates the output voltage value; the solid curve and the dashed curve represent the reference voltage and the actual output voltage, respectively, except for the middle small Part, the rest are very close).
- the output voltage waveform is good at steady state, and the voltage distortion rate is low.
- the finite control set model predictive control makes the system transition to a steady state more quickly, and has good dynamic performance.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Feedback Control In General (AREA)
Abstract
Description
Claims (6)
- 一种基于双环预测控制的切换型控制方法,其特征在于,包括如下步骤:(S1)列出系统离散时刻的状态方程,并进行离散化;(S2)测量系统的状态变量,控制输入变量,被控输出变量和干扰变量;(S3)电压外环控制采用无差拍控制,计算电流内环参考值;(S4)定义一种切换函数,判断系统所处状态;(S5)根据(S4)的判断条件,当判断系统处于稳态时,内环采用无差拍控制;当判断系统处于暂态时,内环采用有限控制集模型预测控制。
- 根据权利要求1所述的一种基于双环预测控制的切换型控制方法,其特征在于:在(S1)中,根据基尔霍夫电压定律(Kirchhoff Voltage Law,KVL)和基尔霍夫电流定律(Kirchhoff Current Law,KCL)列出系统离散时刻的状态方程: d[]/dt表示状态变量的微分值;L、C分别表示单相电压型逆变器的滤波电感值和滤波电容值;V 0(k)、i L(k)分别表示逆变器k采样时刻的输出电压值和滤波电感电流值,作为系统的状态变量;V in(k)表示k采样时刻逆变桥交流侧电压值,作为系统的干扰变量;i 0(k)表示k采样时刻的输出电流值,作为系统的干扰变量;y c(k)表示k采样时刻的被控输出变量值;设定系统的采样周期为T,根据前进欧拉法对该状态方程进行离散化,可得:
- 根据权利要求1所述的一种基于双环预测控制的切换型控制方法,其特征在于:在(S2)中,测量系统的状态变量V 0(k)、i L(k),控制输入变量V r(k),被控输出变量y c(k)和干扰变量V in(k)、i 0(k)。
- 根据权利要求1所述的一种基于双环预测控制的切换型控制方法,其特征在于:在(S3)中,外环控制采用无差拍控制提升系统的总体性能;根据(S1)得到系统离散KCL方程: 结合无差拍控制原理:V r(k+1)-V 0(k+1)=0,V 0(k+1)表示k+1采样时刻的输出电压值;V r(k+1)表示k+1采样时刻V 0(k+1)对应的参考电压值,可得电流内环控制参考值的计算式: i r(k)表示k采样时刻滤波电感电流i L(k)的参考电流值;V r(k+1)表示k+1采样时刻V 0(k+1)对应的参考电压值;V 0(k)表示k采样时刻的输出电压值;i 0(k)表示k采样时刻的输出电流值;C表示滤波电容值;T表示系统的采样周期。
- 根据权利要求1所述的一种基于双环预测控制的切换型控制方法,其特征在于:在(S4)中,定义一种切换函数J sw(k)=|(V r(k)-V 0(k)) 2-(V r(k-1)-V 0(k-1)) 2|,J sw(k)表示k采样时刻切换函数值;V 0(k)表示k采样时刻的输出电压值;V r(k)表示k采样时刻V 0(k)对应的参考电压值;V 0(k-1)表示k-1采样时刻的输出电压值;V r(k-1)表示k-1采样时刻V 0(k-1)对应的的参考电压值;设切换点阈值为e max,将J sw(k)与e max进行对比;当J sw(k)>e max,判断系统处于暂态;当J sw(k)<e max,判断系统处于稳态。
- 根据权利要求1所述的一种基于双环预测控制的切换型控制方法,其特征在于:在(S5)中,根据(S4)的判断条件,当判断系统处于稳态时,内环控制采用无差拍控制,减小系统的稳态误差并实现固定开关频率;当判断系统处于暂态时,内环控制采用有限控制集模型预测控制保证系统快速过渡至稳态。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019548986A JP6866985B2 (ja) | 2017-07-25 | 2017-12-30 | デュアルループ予測制御に基づく切り替え制御方法 |
US16/089,383 US11012000B2 (en) | 2017-07-25 | 2017-12-30 | Switching type control method based on double loop predictive control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710614643.9 | 2017-07-25 | ||
CN201710614643.9A CN107546998B (zh) | 2017-07-25 | 2017-07-25 | 一种基于双环预测控制的切换型控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019019555A1 true WO2019019555A1 (zh) | 2019-01-31 |
Family
ID=60970792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/120375 WO2019019555A1 (zh) | 2017-07-25 | 2017-12-30 | 一种基于双环预测控制的切换型控制方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11012000B2 (zh) |
JP (1) | JP6866985B2 (zh) |
CN (1) | CN107546998B (zh) |
WO (1) | WO2019019555A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112684696A (zh) * | 2020-12-14 | 2021-04-20 | 广西电网有限责任公司电力科学研究院 | 一种光伏发电系统内部pi控制器的稳态控制方法及装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112865527B (zh) * | 2020-12-25 | 2022-03-25 | 重庆大学 | 基于二阶滑模控制的Boost DC-DC变换器固定频率的控制系统及控制方法 |
CN113422551B (zh) * | 2021-05-31 | 2022-06-21 | 江苏大学 | 一种带功率因数校正的开关磁阻电机速度控制系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102891615A (zh) * | 2012-10-26 | 2013-01-23 | 河南师范大学 | 不平衡电压下pwm整流器输出功率稳定的无差拍控制方法 |
CN103326609A (zh) * | 2012-03-22 | 2013-09-25 | 张家港智电柔性输配电技术研究所有限公司 | 一种三相电压型并网变流器控制方法 |
EP2908424A1 (en) * | 2014-02-17 | 2015-08-19 | ABB Technology AG | Control of an electrical modular multilevel converter with different sample rates |
CN105391285A (zh) * | 2015-11-01 | 2016-03-09 | 华南理工大学 | 一种基于无差拍和三角波比较的三相pwm整流控制方法 |
CN106911147A (zh) * | 2017-04-19 | 2017-06-30 | 福州大学 | 一种含延时补偿的有限集模型预测电压控制方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0744841B2 (ja) * | 1986-04-22 | 1995-05-15 | 三菱電機株式会社 | 電力変換器の制御回路 |
JPS6469265A (en) * | 1987-09-09 | 1989-03-15 | Mitsubishi Electric Corp | Controlling circuit for converter |
JP2567158B2 (ja) * | 1991-04-26 | 1996-12-25 | 株式会社東芝 | 制御装置 |
WO2002023289A2 (en) * | 2000-09-15 | 2002-03-21 | Advanced Micro Devices, Inc. | Adaptive sampling method for improved control in semiconductor manufacturing |
KR100545294B1 (ko) * | 2002-05-10 | 2006-01-24 | 에이에스엠엘 네델란즈 비.브이. | 리소그래피 장치, 디바이스 제조방법, 성능측정방법,캘리브레이션 방법 및 컴퓨터 프로그램 |
US7902803B2 (en) * | 2005-03-04 | 2011-03-08 | The Regents Of The University Of Colorado | Digital current mode controller |
US8295951B2 (en) * | 2007-12-21 | 2012-10-23 | The University Of Florida Research Foundation, Inc. | Systems and methods for offset-free model predictive control |
EP2725706A1 (en) * | 2012-10-23 | 2014-04-30 | ABB Technology AG | Model predictive control with reference tracking |
CN103078324B (zh) * | 2013-02-06 | 2015-10-28 | 河海大学常州校区 | 基于模糊pi复合控制的有源滤波器电流自适应控制方法 |
JP6097170B2 (ja) * | 2013-07-23 | 2017-03-15 | アズビル株式会社 | 制御装置および制御方法 |
AT513776B1 (de) * | 2014-04-08 | 2015-09-15 | Avl List Gmbh | Verfahren und Regler zur modellprädiktiven Regelung eines mehrphasigen DC/DC-Wandlers |
US20150299233A1 (en) * | 2014-04-21 | 2015-10-22 | Massachusetts Institute Of Technology | Compositions and methods comprising rhenium for the treatment of cancers |
CN103944190B (zh) * | 2014-04-30 | 2016-02-10 | 湖南大学 | 一种三相双模式逆变器的稳态控制方法 |
CN105356772A (zh) * | 2015-11-01 | 2016-02-24 | 华南理工大学 | 基于改进型模型预测控制的三相pwm整流的控制方法 |
CN105391271B (zh) * | 2015-11-01 | 2019-05-14 | 华南理工大学 | 应用于电力电子系统的低频快速有限集模型预测控制方法 |
CN105305448A (zh) * | 2015-11-20 | 2016-02-03 | 河海大学常州校区 | 基于模糊pi复合控制的有源滤波器自抗扰控制方法 |
TWI626459B (zh) * | 2016-08-17 | 2018-06-11 | 財團法人工業技術研究院 | 使用狀態觀察器之濾波電容電流無感測器偵測方法與裝置 |
-
2017
- 2017-07-25 CN CN201710614643.9A patent/CN107546998B/zh active Active
- 2017-12-30 US US16/089,383 patent/US11012000B2/en active Active
- 2017-12-30 JP JP2019548986A patent/JP6866985B2/ja active Active
- 2017-12-30 WO PCT/CN2017/120375 patent/WO2019019555A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103326609A (zh) * | 2012-03-22 | 2013-09-25 | 张家港智电柔性输配电技术研究所有限公司 | 一种三相电压型并网变流器控制方法 |
CN102891615A (zh) * | 2012-10-26 | 2013-01-23 | 河南师范大学 | 不平衡电压下pwm整流器输出功率稳定的无差拍控制方法 |
EP2908424A1 (en) * | 2014-02-17 | 2015-08-19 | ABB Technology AG | Control of an electrical modular multilevel converter with different sample rates |
CN105391285A (zh) * | 2015-11-01 | 2016-03-09 | 华南理工大学 | 一种基于无差拍和三角波比较的三相pwm整流控制方法 |
CN106911147A (zh) * | 2017-04-19 | 2017-06-30 | 福州大学 | 一种含延时补偿的有限集模型预测电压控制方法 |
Non-Patent Citations (1)
Title |
---|
RAZIEH NEJATI FARD ET AL.: "Analysis of a Modular Multilevel Inverter Under the Predicted Current Control Based on Finite-Control-Set Strategy", 2013 3RD INTERNATIONAL CONFERENCE ON ELECTRIC POWER AND ENERGY CONVERSION SYSTEMS, 4 October 2013 (2013-10-04), pages 1 - 6, XP055567030 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112684696A (zh) * | 2020-12-14 | 2021-04-20 | 广西电网有限责任公司电力科学研究院 | 一种光伏发电系统内部pi控制器的稳态控制方法及装置 |
CN112684696B (zh) * | 2020-12-14 | 2022-09-06 | 广西电网有限责任公司电力科学研究院 | 一种光伏发电系统内部pi控制器的稳态控制方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
JP6866985B2 (ja) | 2021-04-28 |
CN107546998B (zh) | 2019-12-10 |
CN107546998A (zh) | 2018-01-05 |
US20200304040A1 (en) | 2020-09-24 |
US11012000B2 (en) | 2021-05-18 |
JP2020512627A (ja) | 2020-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102655327B (zh) | 一种含参数摄动有源电力滤波器的滑模变结构控制方法 | |
CN103856062B (zh) | 移相全桥同步整流电路的双环控制电路 | |
CN109995231A (zh) | Boost AC-DC恒压电源的数字控制方法 | |
WO2019019555A1 (zh) | 一种基于双环预测控制的切换型控制方法 | |
CN106786647B (zh) | 一种三相四线制并联apf双闭环非线性复合控制方法 | |
CN107834815B (zh) | 一种基于双矢量作用的有限控制集模型预测控制方法 | |
CN103825480A (zh) | 一种多路输出的磁轴承开关功放数字单周期控制方法 | |
CN110112913A (zh) | 一种基于Fal函数滤波器的直流变换器模型预测控制算法 | |
CN105006967A (zh) | Dc/dc变换器的双积分间接滑模控制器及控制方法 | |
CN103595239B (zh) | 功率因数校正电路及其控制方法 | |
CN107591991B (zh) | 一种带控制误差补偿的双环预测控制方法 | |
CN108322049B (zh) | 用于双向直流变换器的虚拟电容控制方法 | |
CN102522912B (zh) | 双极性spwm调制方式的自适应死区补偿方法 | |
CN105977979B (zh) | 单相并联型有源电力滤波器的单环控制算法 | |
CN102709938A (zh) | Lcl滤波并网逆变器单进网电流采样的电流控制方法 | |
CN107689724B (zh) | 一种基于无差拍控制的双环预测控制方法 | |
CN111130334A (zh) | 一种能有效提升pfc动态响应的控制算法 | |
CN107370402B (zh) | 一种基于离散Lyapunov函数的切换控制方法 | |
CN110995032B (zh) | 加入死区补偿的pwm整流器无差拍控制方法 | |
CN105024541A (zh) | 低谐波高功率因素的单相整流电路的预测电流控制方法 | |
CN205787749U (zh) | 一种基于fpga的控制电路 | |
CN110855166A (zh) | Pwm整流器无差拍电流预测控制方法 | |
CN205811550U (zh) | 一种基于小电容的单相静止无功发生器电路拓扑 | |
Cui et al. | Optimization of current stress for Dual Active Bridge converter based on power compensation control | |
CN204441892U (zh) | 新型有源电力滤波器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17918842 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019548986 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/04/2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17918842 Country of ref document: EP Kind code of ref document: A1 |