WO2019017170A1 - 熱電材料、それを用いた熱電変換モジュール、その製造方法、およびペルチェ素子 - Google Patents

熱電材料、それを用いた熱電変換モジュール、その製造方法、およびペルチェ素子 Download PDF

Info

Publication number
WO2019017170A1
WO2019017170A1 PCT/JP2018/024272 JP2018024272W WO2019017170A1 WO 2019017170 A1 WO2019017170 A1 WO 2019017170A1 JP 2018024272 W JP2018024272 W JP 2018024272W WO 2019017170 A1 WO2019017170 A1 WO 2019017170A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
thermoelectric material
thermoelectric conversion
solvent
conversion elements
Prior art date
Application number
PCT/JP2018/024272
Other languages
English (en)
French (fr)
Inventor
宗英 佐藤
孝雄 森
雅二 大塚
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Priority to CN201880045090.2A priority Critical patent/CN110832651B/zh
Priority to US16/632,772 priority patent/US20200161525A1/en
Priority to JP2019530947A priority patent/JP6841533B2/ja
Publication of WO2019017170A1 publication Critical patent/WO2019017170A1/ja
Priority to US17/656,811 priority patent/US20220216389A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material

Definitions

  • the present invention relates to a thermoelectric material, a thermoelectric conversion module using the same, a method of manufacturing the same, and a Peltier device.
  • thermoelectric power generation devices are attracting attention as solid devices that can recover thermal energy and convert it directly into electrical energy.
  • thermoelectric generation element is a direct conversion element to electrical energy, there are merits such as ease of maintenance and scalability due to the absence of a movable part. For this reason, active material research has been conducted on thermoelectric semiconductors.
  • thermoelectric material Although heat of 200 ° C. or less forms the largest unused heat, a sheet-like thermoelectric material is suitable for recovering such so-called poor heat. In particular, wearable applications using body heat are mentioned as applications that can produce high added value. However, for practical use, it is required to be flexible as well as a sheet (see, for example, Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2).
  • thermoelectric material Although the method of using a thin film thermoelectric material is mentioned using a flexible sheet for a substrate like patent documents 1, as a fault, it is expected that thermoelectric material will exfoliate from a substrate easily, and durability is It is concerned that there is not so much. Moreover, although the method of applying a thermoelectric material to a flexible substrate by the inkjet method etc. is also reported as in Non-patent documents 1 and 2, although the resistance to peeling is somewhat improved, it completely solves is not. Furthermore, since the thermoelectric materials represented by Patent Document 1, Non-patent Document 1 and Non-patent Document 2 are solid thermoelectric materials, physical air such as sputtering is used to reduce contact resistance with the electrodes. A process is required such that an electrode material such as gold adheres atomically to the thermoelectric material by phase growth, or a conductive paste containing gold or silver is previously applied to the surface of the thermoelectric material.
  • Non-Patent Document 3 discloses a sheet-type thermoelectric conversion module using poly (4-styrenesulfonic acid) or tosylate-doped poly (3,4-ethylenedioxythiophene) (PEDOT: PSS or PEDOT: Tos) as a thermoelectric material Report Further, according to Non-Patent Document 4, it is reported that the thermoelectric performance is improved by removing PSS in PEDOT: PSS.
  • the sheet type thermoelectric conversion module of Non-Patent Document 3 has a thickness of 30 ⁇ m or more in order to maintain the temperature difference necessary for power generation, and is thicker than that of other organic flexible devices. For this reason, when the sheet type thermoelectric conversion module of Non-Patent Document 3 is bent, problems such as peeling of the electrode and disconnection of the electrode occur due to the difference in curvature due to the thick film. Also here, in the same manner as Patent Document 1, Non-patent Document 2 and Non-Patent Document 3, the above-mentioned process was essential in order to reduce the contact resistance between the thermoelectric material and the electrode.
  • thermoelectric material of Non-Patent Document 4 the problem of peeling and breaking of the electrode is not solved, and the process of removing PSS by washing is complicated to improve the thermoelectric performance, which is complicated.
  • Non-Patent Document 5 techniques for controlling the molecular arrangement of PEDOT: PSS are known (see, for example, Non-Patent Document 5).
  • PEDOT: PSS and EMIM as an ionic liquid: EMIM (EMIM: 1-ethyl-3-methylimidazolium, X chlorine, ethyl sulfate, tricyanomethane, tetraborate cyano anion)
  • EMIM 1-ethyl-3-methylimidazolium
  • X chlorine, ethyl sulfate, tricyanomethane, tetraborate cyano anion
  • An object of the present invention is to provide a thermoelectric material which reduces contact resistance with an electrode and does not peel when a thermoelectric conversion module is configured, a thermoelectric conversion module using the same, a method of manufacturing the same, and a Peltier element. is there.
  • the thermoelectric material of the present invention contains a thermoelectric material and a solvent, and the vapor pressure of the solvent at 25 ° C. is 0 Pa or more and 1.5 Pa or less, and is in the range of 1 ⁇ 10 1 Pa or more and 4 ⁇ 10 6 Pa or less It has a storage elastic modulus G ′ and a loss elastic modulus G ′ ′ in the range of 5 Pa or more and 4 ⁇ 10 6 Pa or less.
  • the thermoelectric material has a storage elastic modulus G 'in the range of 1 ⁇ 10 3 Pa to 3.6 ⁇ 10 6 Pa, and a loss elastic modulus in the range of 1 ⁇ 10 3 Pa to 3.5 ⁇ 10 6 Pa. It may have G ".
  • the volume ratio of the thermoelectric material to the thermoelectric material and the solvent may be in the range of 3% to 90%.
  • the volume ratio of the thermoelectric material to the thermoelectric material and the solvent may be in the range of 20% to 60%.
  • the thermoelectric material may be selected from the group consisting of organic materials, inorganic materials, metallic materials, composites thereof and mixtures thereof.
  • the organic material may be a doped or undoped conductive polymer.
  • the conductive polymer includes poly-3,4-ethylenedioxythiophene (PEDOT), polyaniline, polyacetylene, polyphenyrin, polyfuran, polyselenophene, polythiophene, polyacene, polyisothianaphthene, polyphenylene sulfide, polyphenylene vinylene, polythiophene vinylene , Polyperinaphthalene, polyanthracene, polynaphthalene, polypyrene, polyazulene, polypyrrole, polyparaphenylene, poly (benzobisimidazobenzophenanthroline), organic boron polymer, polytriazole, perylene, carbazole, triarylamine, tetrathiafulvalene, And derivatives thereof, and copolymers thereof.
  • PEDOT poly-3,4-ethylenedioxythiophene
  • PEDOT polyaniline
  • polyacetylene polyphenyrin
  • polyfuran polyselenophen
  • the solvent may further contain an ion adsorbent.
  • the organic material may be a low molecular weight semiconductor.
  • the low molecular weight semiconductor may be selected from the group consisting of bithiophene, tetrathiafulvalene, anthracene, pentacene, rubrene, coronene, phthalocyanine, porphyrin, perylene dicarboximide, derivatives thereof, and combinations of molecular skeletons thereof. .
  • the inorganic material is oxide ceramic, and the oxide ceramic is ZnO, SrTiO 3 , NaCo 2 O 4 , Ca 3 Co 4 O 9 , SnO 2 , Ga 2 O 3 , CdO, In 2 O 3 , NiO, CeO 2, MnO, MnO 2, TiO 2, and may be selected from the group consisting of composite oxides.
  • the inorganic material is a carbon-based material, and the carbon-based material may be selected from the group consisting of carbon nanotubes, carbon nanorods, carbon nanowires, graphene, fullerenes, and derivatives thereof.
  • the metal material may be selected from the group consisting of elemental metals, metalloids and intermetallic compounds.
  • the organic material is a charge transfer complex
  • the charge transfer complex is a donor substance which is tetrathiaflurane (TTF) or a derivative thereof, tetracyanoquinodimethane (TCNQ), dicyanoquinone diimine (DCNQI), tetrathia It may be a combination with cyanoethylene (TCNE), and an acceptor substance selected from the group consisting of derivatives thereof.
  • the mixture is an organic-inorganic hybrid material
  • the organic-inorganic hybrid material is Bi- (Te, Se), Si-Ge, Pb-Te, GeTe-AgSbTe, (Co, Ir, Ru) -Sb
  • inorganic materials selected from the group consisting of (Ca, Sr, Bi) Co 2 O 5 systems and doped or not doped poly-3,4-ethylenedioxythiophene (PEDOT), polyaniline , Polyacetylene, polyphenylin, polyfuran, polyselenophene, polythiophene, polyacene, polyisothianaphthene, polyphenylene sulfide, polyphenylene vinylene, polythiophene vinylene, polyperinaphthalene, polyanthracene, polynaphthaline, polypyrene, polyazulene, polypyrrole, polyparaphenylene From organic materials selected from the group consisting of poly (benzobisimidazobenzoph
  • the ionic liquid comprises a cation selected from the group consisting of imidazolium, pyridinium, pyrrolidinium, phosphonium, ammonium and sulfonium, and a halogen, a carboxylate, a sulfate, a sulfonate, a thiocyanate, an aluminate, a phosphate, a phosphinate, an amide, an antimo It may contain an anion selected from the group consisting of nitrates, imides, methanides and methides.
  • the solvent is an alkylamine (having 11 to 30 carbon atoms), a fatty acid (having 7 to 30 carbon atoms), a hydrocarbon (having 12 to 35 carbon atoms), an alcohol (having 7 to 30 carbon atoms), It may be an organic solvent selected from the group consisting of polyethers (molecular weight is 100 or more and 10000 or less), derivatives thereof, and silicone oil.
  • the solvent may be an alkylamine which is tri-n-octylamine or tris (2-ethylhexyl) amine or a fatty acid which is oleic acid.
  • thermoelectric conversion module comprising a plurality of p-type thermoelectric conversion elements according to the present invention and a plurality of n-type thermoelectric conversion elements comprises each of the plurality of p-type thermoelectric conversion elements and the plurality of n-type thermoelectric conversion elements described above Contains a thermoelectric material. This solves the above problem.
  • Each of the plurality of p-type thermoelectric conversion elements and the plurality of n-type thermoelectric conversion elements includes a plurality of partition walls and a plurality of lower electrodes, and on each of the lower electrodes in a mold having flexibility and insulation properties
  • the plurality of p-type thermoelectric conversion elements and the plurality of n-type thermoelectric conversion elements, which are alternately located via the plurality of partition walls, are disposed on the side facing the side in contact with the plurality of lower electrodes.
  • the plurality of upper electrodes may be provided such that the conversion element and the n-type thermoelectric conversion element form a pair, and the plurality of p-type thermoelectric conversion elements and the plurality of n-type thermoelectric conversion elements may be connected in series .
  • the mold is made of epoxy resin, fluoro resin, imide resin, amide resin, ester resin, nitrile resin, chloroprene resin, acrylonitrile butadiene resin, ethylene propylene diene resin, ethylene propylene rubber, butyl rubber, epichlorohydrin rubber, acrylic rubber, poly
  • the material may be made of a material selected from the group consisting of vinyl chloride, silicone rubber, derivatives thereof, copolymers thereof, and cross-linked products thereof.
  • the thicknesses of the plurality of p-type thermoelectric conversion elements and the plurality of n-type thermoelectric conversion elements may have a range of 10 ⁇ m to 5 mm.
  • the upper electrode may be a sealing sheet provided with a metal foil or a wire.
  • thermoelectric conversion module including a plurality of p-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements according to the present invention includes: the plurality of p-type thermoelectric conversion elements and the plurality of n-type thermoelectric conversion elements The above-mentioned thermoelectric material is used. This solves the above problem.
  • thermoelectric material is the above-mentioned thermoelectric material. This solves the above problem.
  • thermoelectric material of the present invention is characterized by containing a thermoelectric material and a solvent, and thereby having viscosity.
  • the inventor of the present invention has found that, by the inventive idea, the thermoelectric performance of the thermoelectric material can be maintained even in the viscous state in which the thermoelectric material and the solvent are mixed. Since the thermoelectric material of the present invention contains a solvent having a vapor pressure of 0 Pa or more and 1.5 Pa or less at 25 ° C. or a boiling point of 250 ° C. or more at atmospheric pressure, such a thermoelectric material can be used in a thermoelectric conversion module Thus, a long-term stable thermoelectric performance and thermoelectric conversion module can be provided substantially without volatilization of the solvent.
  • thermoelectric material of the present invention has a storage elastic modulus G ′ in the range of 1 ⁇ 10 1 Pa to 4 ⁇ 10 6 Pa, and a loss elastic modulus G ′ ′ in the range of 5 Pa to 4 ⁇ 10 6 Pa Therefore, the upper electrode of the thermoelectric conversion module can be configured simply by pressing the material of the thermoelectric material according to the present invention to the electrode, and the adhesion with the electrode is excellent due to viscosity.
  • additional processes and materials are required such as deposition of electrodes by physical vapor deposition such as sputtering, which was conventionally required to reduce contact resistance, and application of conductive paste containing gold and silver.
  • thermoelectric conversion module can be provided at a low cost. If such thermoelectric material is used for a sheet type flexible thermoelectric conversion module, the thermoelectric material deforms in accordance with the bending of the module, so peeling of the electrode or the electrode There is no disconnection.
  • thermoelectric conversion module of the present invention Schematic diagram showing the thermoelectric conversion module of the present invention Flow chart for manufacturing the thermoelectric conversion module of the present invention Another flowchart for manufacturing the thermoelectric conversion module of the present invention
  • Embodiment 1 In the first embodiment, a thermoelectric material of the present invention and a method of manufacturing the same will be described.
  • thermoelectric material of the present invention contains a thermoelectric material and a solvent, and has viscosity. Thereby, the above-mentioned effect is produced.
  • thermoelectric materials having solid materials with high density of thermoelectric materials are advantageous because of their conduction mechanism
  • the present inventors overthrow common technical knowledge and mix them with solvents in powder form. It has been found that the thermoelectric performance is maintained even in a liquid state, that is, in a viscous state.
  • Non-Patent Document 5 discloses a mixture of PEDOT: PSS and EMIM: X, but the thermoelectric performance is not disclosed at all, and the inventor of the present invention discovered the thermoelectric performance for the first time.
  • the inventors have found by using the inventive idea the use of a thermoelectric material, a viscosity (viscosity) preferable to function as a thermoelectric material, and a further preferable mixing ratio.
  • the solvent has a vapor pressure at 25 ° C. of 0 Pa or more and 1.5 Pa or less.
  • the solvent does not substantially evaporate, so long-term stable thermoelectric performance can be exhibited.
  • the solvent having a boiling point of 250 ° C. or more at atmospheric pressure may be simply determined as a solvent satisfying a vapor pressure of 25 Pa or more and 0 Pa or more and 1.5 Pa or less. As a result, it is possible to easily determine whether or not the solvent can be used in the present invention even for a solvent which does not have accurate vapor pressure information.
  • the thermoelectric material of the present invention has a storage elastic modulus G ′ in a viscosity range of 1 ⁇ 10 1 Pa to 4 ⁇ 10 6 Pa, and a loss elastic modulus G ′ ′ of a viscosity range of 5 Pa to 4 ⁇ 10 6 Pa.
  • storage elastic modulus G 'of less than 1 ⁇ 10 1 Pa and loss elastic modulus G ′ of less than 5 Pa it is adjusted to have adhesiveness to an electrode when used in a thermoelectric conversion module May not be enough.
  • thermoelectric material of the present invention more preferably has a storage elastic modulus G ′ in the range of 1 ⁇ 10 3 Pa or more and 3.6 ⁇ 10 6 Pa or less, and is 1 ⁇ 10 3 Pa or more and 3.5 ⁇ 10 6 Pa or more It has a loss elastic modulus G ′ ′ in the following range. In this range, it is possible to maintain excellent thermoelectric performance even at high temperatures, to be excellent in adhesion with the electrode, and to lower contact resistance with the electrode.
  • the volume ratio of the thermoelectric material to the thermoelectric material and the solvent satisfies the range of 3% to 90%. Within this range, low contact resistance and thermoelectric performance can be exhibited while maintaining the aforementioned viscosity. More preferably, the volume ratio of the thermoelectric material to the thermoelectric material and the solvent satisfies the range of 20% or more and 60% or less. Within this range, lower contact resistance and high thermoelectric performance can be exhibited while maintaining the aforementioned viscosity.
  • thermoelectric material can be employed, among which the thermoelectric material is preferably selected from the group consisting of organic materials, inorganic materials, metallic materials, composites thereof and mixtures thereof having thermoelectric performance. Be done. With these materials, thermoelectric performance is exhibited when the thermoelectric conversion module is configured.
  • the thermoelectric substance may be mixed with a solvent, and dissolution is not essential.
  • the thermoelectric material preferably has a particle size in the range of 10 nm to 100 ⁇ m. Within this range, the thermoelectric material and the solvent are mixed, and the thermoelectric performance is exhibited while maintaining the viscosity.
  • the thermoelectric material preferably has a particle size in the range of 0.1 ⁇ m to 20 ⁇ m. Within this range, the thermoelectric material and the solvent are uniformly mixed, so that high thermoelectric performance is exhibited.
  • the particle size is a volume-based median diameter (D50).
  • the organic material is preferably a doped or undoped conducting polymer.
  • the dopant is p-type or n-type, or any dopant appropriately selected to improve the thermoelectric performance. If a conductive polymer is employed, high thermoelectric performance is expected, and the mixability with various solvents is also excellent.
  • the conductive polymer is preferably poly-3,4-ethylenedioxythiophene (PEDOT), polyaniline, polyacetylene, polyphenyrin, polyfuran, polyselenophene, polythiophene, polyacene, polyisothianaphthene, polyphenylene sulfide, polyphenylene vinylene, Polythiophene vinylene, polyperinaphthalene, polyanthracene, polynaphthalene, polypyrene, polyazulene, polypyrrole, polyparaphenylene, poly (benzobisimidazobenzophenanthroline), organic boron polymer, polytriazole, perylene, carbazole, triarylamine, tetrathiafulvalene These derivatives are selected from the group consisting of these copolymers and copolymers thereof.
  • PEDOT poly-3,4-ethylenedioxythiophene
  • thermoelectric material All of these conductive polymers are known to have high thermoelectric performance.
  • thiophene-based conductive polymers are expected to have high thermoelectric performance, and more preferably, PEDOT is p-type and has high thermoelectric performance.
  • PEDOT may have polystyrene sulfonic acid (PSS), tosylate (Tos), etc. as a dopant.
  • PSS polystyrene sulfonic acid
  • Tos tosylate
  • the conductivity is improved and solubility in a solvent is imparted, thereby facilitating the production of the thermoelectric material.
  • the solvent may preferably further contain an ion adsorbent.
  • the ion adsorbent can remove the dopant from the conductive polymer to improve the thermoelectric performance.
  • ion adsorbents include aluminum hydroxide and hydrotalcite (eg, Mg 1 -xAl x (OH) 2 (CO 3 ) x / 2 ⁇ mH 2 O (0 ⁇ x ⁇ 1). ), Magnesium silicate, aluminum silicate, a solid solution of aluminum oxide and magnesium oxide, and the like.
  • the solvent further contains an ion adsorbent in PEDOT-PSS (PSS-doped PEDOT)
  • the conductive polymer is preferable because PSS is removed from PEDOT and the thermoelectric performance inherent to PEDOT can be exhibited.
  • PSS can be removed from PEDOT simply by adding the ion adsorbent, removal of PSS by conventional washing as represented by Non-Patent Document 4 is unnecessary, which is advantageous because the process is reduced.
  • the ion adsorbent is added such that the pH of the solution containing the conductive polymer is 1 or more and 8 or less. Thereby, the dopant can be removed and the thermoelectric performance can be improved. More preferably, the ion adsorbent is added such that the pH is 5 or more and 8 or less.
  • the ion adsorbent is preferably mixed well with the conductive polymer solution and has a small size having a large surface area for adsorbing the dopant from the viewpoint of removal of the dopant, but exemplarily, it is 1 ⁇ m to 100 ⁇ m. It is sufficient to have a particle size having a range of
  • the organic material may be a low molecular weight semiconductor lower than the molecular weight of the conductive polymer described above.
  • Low molecular weight semiconductors also exhibit thermoelectric performance.
  • the low molecular weight semiconductor is exemplarily selected from the group consisting of bithiophene, tetrathiafulvalene, anthracene, pentacene, rubrene, coronene, phthalocyanine, porphyrin, perylene dicarboximido, derivatives thereof, and combinations of their molecular skeletons Be done. These low molecular weight semiconductors have high thermoelectric performance and are excellent in the miscibility with various solvents.
  • the organic material may be a charge transfer complex having thermoelectric performance.
  • the charge transfer complex is composed of a combination of a donor substance and an acceptor substance, and exemplarily includes a donor substance which is tetrathiaflurane (TTF) or a derivative thereof, tetracyanoquinodimethane (TCNQ), dicyanoquinone dii. It consists of a combination with an acceptor substance selected from the group consisting of min (DCNQI), tetracyanoethylene (TCNE), and derivatives thereof. These charge transfer complexes have high thermoelectric performance.
  • the inorganic material is preferably any oxide ceramic having thermoelectric performance.
  • Oxide ceramics are illustratively ZnO, SrTiO 3 , NaCo 2 O 4 , Ca 3 Co 4 O 9 , SnO 2 , Ga 2 O 3 , CdO, In 2 O 3 , NiO, CeO 2 , MnO, MnO It is selected from the group consisting of 2 , TiO 2 and their complex oxides. These oxide ceramics are preferable because they have thermoelectric performance and are commercially available and available.
  • the inorganic material is preferably any carbon-containing carbon-based material having thermoelectric performance.
  • the carbon-based material is exemplarily selected from the group consisting of carbon nanotubes, carbon nanorods, carbon nanowires, graphene, fullerenes, and derivatives thereof. These carbon-based materials are known to have high thermoelectric performance and are preferred.
  • the carbon nanotubes may be single-walled or multi-walled. Derivatives are intended to modify the surface of functional groups and substituents. The functional groups and substituents are appropriately selected to impart desired functions such as dispersibility and solubility.
  • the metal material is a simple metal, an intermetallic compound or a semimetal having thermoelectric performance.
  • the simple metal include bismuth, antimony, lead, tellurium and the like.
  • the intermetallic compound or semimetal is preferably selected from the group consisting of tellurium compounds, silicide compounds, antimony compounds, gallium compounds, aluminum compounds, sulfides, and rare earth compounds. These metallic materials are known to have high thermoelectric performance and are preferred.
  • the tellurium compound is, for example, PbTe, Bi 2 Te 3 , AgSbTe 2 , GeTe, Sb 2 Te 3 or the like.
  • the silicide compounds are illustratively SiGe, ⁇ -FeSi 2 , Ba 8 Si 46 , Mg 2 Si, MnSi 1.73 , Ce-Al-Si, Ba-Ga-Al-Si based clathrate compounds, etc. .
  • the antimony compound is illustratively ZnSb, Zn 4 Sb 3 , CeFe 3 CoSb 12 , LaF 3 CoSb 12 or the like.
  • the gallium compound is, for example, Ba-Ga-Sn, Ga-In-Sb, or the like.
  • the aluminum compound is, for example, NiAl, Fe-V-Al based Heusler compound, or the like.
  • the sulfides are, for example, TiS 2 , TiS 3 and the like.
  • the rare earth compound is, for example, CeRhAs or the like.
  • the mixture may be a mixture of any of the aforementioned organic, inorganic or metallic materials, or a mixture of these with other materials.
  • An exemplary mixture is an organic-inorganic hybrid material consisting of the organic and inorganic materials described above.
  • organic-inorganic hybrid materials are Bi- (Te, Se), Si-Ge, Pb-Te, GeTe-AgSbTe, (Co, Ir, Ru) -Sb and (Ca, Sr).
  • Co 2 O 5 based inorganic materials selected from the group consisting of: doped and undoped, poly-3,4-ethylenedioxythiophene (PEDOT), polyaniline, polyacetylene, polyphenyrin, polyfuran , Polyselenophene, polythiophene, polyacene, polyisothianaphthene, polyphenylene sulfide, polyphenylene vinylene, polythiophene vinylene, polyperinaphthalene, polyanthracene, polynaphthaline, polypyrene, polyazulene, polypyrrole, polyparaphenylene, poly (benzobisimidazobenzophene) Ntororin), organoboron polymers, poly triazole, perylene, carbazole, triarylamine, tetrathiafulvalene, these derivatives, and consists of an organic material selected from the group consisting of copolymers.
  • These organic-inorganic hybrid materials have high thermoelectric
  • the composite may be a composite of any of the above-mentioned organic material, inorganic material or metal material, or a composite of these and other materials.
  • TiS 2 may be used as the metal material, and the organic material may be intercalated between the layers.
  • any of the above-mentioned organic materials, inorganic materials or metallic materials may be encapsulated with other materials to form one particle.
  • the solvent is preferably an ionic liquid.
  • the ionic liquid has a vapor pressure of substantially 0 Pa at 25 ° C. and does not volatilize.
  • the ionic liquid is not particularly limited, but exemplarily, a cation selected from the group consisting of imidazolium, pyridinium, pyrrolidinium, phosphonium, ammonium and sulfonium, and halogen, carboxylate, sulfate, sulfonate, thiocyanate, It may be an ionic liquid containing an aluminate, a phosphate, a phosphinate, an amide, an antimonate, an imide, a methanide and an anion selected from the group consisting of methide. If it is these ionic liquids, it will be mixed with the thermoelectric material mentioned above, and will become a thermoelectric material which has viscosity, maintaining thermoelectric performance.
  • the solvent is preferably an alkylamine (having 11 to 30 carbon atoms), a fatty acid (having 7 to 30 carbon atoms), a hydrocarbon (having 12 to 35 carbon atoms), an alcohol (having 7 to 30 carbon atoms) And polyethers (molecular weight is 100 or more and 10000 or less), derivatives thereof, and an organic solvent selected from the group consisting of silicone oils.
  • the alkylamine is illustratively tri-n-octylamine, tris (2-ethylhexyl) amine and the like.
  • the fatty acids are, for example, oleic acid and the like.
  • organic solvents have a vapor pressure of 0 Pa or more and 1.5 Pa or less at 25 ° C., or a boiling point of 250 ° C. or more at atmospheric pressure, and volatilize in a normal use environment (for example, 40 ° C. to 120 ° C.) There is nothing to do. Note that these two or more types of organic solvents may be combined, or an organic solvent and the above-described ionic liquid may be used in combination.
  • Embodiment 1 does not specify whether each thermoelectric substance is p-type or n-type, those skilled in the art can easily determine the conductivity type of the selected thermoelectric substance.
  • thermoelectric material of the present invention may contain other additives in addition to the thermoelectric material and the solvent.
  • other additives are surfactants, antioxidants, thickeners, heat stabilizers, dispersants and the like, but are not limited as long as they do not affect the thermoelectric performance.
  • the additive be non-volatile because the vapor pressure decreases. Further, even substances which are solid at room temperature and which melt to a solution when they are heated at the temperature at which they are thermoelectrically generated or attached to an electrode are preferable because the vapor pressure is further lowered. Conversely, the vapor pressure may be reduced by solidifying the solvent component in the viscous thermoelectric material after being bonded to the electrode within a range that does not impair the flexibility of the module.
  • any solvent having a vapor pressure at 25 ° C. of 0 Pa or more and 1.5 Pa or less can be used as the solvent, and among them, it has been described that the ionic liquid and the predetermined organic solvent are preferable.
  • a non-volatile solute may be added to the dispersion medium, and a solution adjusted so that the vapor pressure at 25 ° C. satisfies 0 Pa or more and 1.5 Pa or less may be used.
  • a solute may be added to the ionic liquid or a predetermined organic solvent to further reduce the vapor pressure.
  • the selection of the solute and the dispersion medium may be made according to Raoul's law, but exemplarily, there is a combination of tetradecane and cholesterol stearate.
  • thermoelectric material of the present invention Next, an exemplary method for producing the above-mentioned thermoelectric material of the present invention will be described.
  • thermoelectric material of the present invention may be prepared by mixing the above-mentioned thermoelectric material and the above-mentioned solvent. Since only mixing is required, special equipment and skilled technicians are unnecessary, which is advantageous for practical use. The mixing may be performed manually, or a machine such as a blender or a mixer may be used. In addition, simply, if it becomes uniform visually, it can be regarded as sufficient mixing, and when using a machine, if it mixes on normal stirring conditions, it can be considered as sufficient mixing.
  • thermoelectric material Before mixing the above-mentioned thermoelectric material and the above-mentioned solvent, the above-mentioned thermoelectric material may be pulverized in a wet or dry manner using a pulverizer such as a ball mill or a jet mill. As a result, a thermoelectric material having a uniform particle size (for example, having a particle size in the range of 10 nm to 100 ⁇ m) can be uniformly mixed with the solvent.
  • a pulverizer such as a ball mill or a jet mill.
  • thermoelectric material and the solvent are mixed such that the volume ratio of the thermoelectric material to the thermoelectric material and the solvent satisfies the range of 3% to 90%, preferably the range of 20% to 60%. Thereby, the thermoelectric material which has the effect mentioned above is manufactured.
  • a dispersing medium such as methanol, acetonitrile, dichloromethane, tetrahydrofuran (THF), ethylene carbonate, diethyl carbonate, ⁇ -butyrolactone, acetone or the like is added to the above-mentioned solvent and mixed,
  • the dispersion medium may be removed by heating / natural drying or the like.
  • the solvent is an ionic liquid
  • these dispersion media dissolve the ionic liquid, so that, for example, when the amount of the ionic liquid is small, mixing with the thermoelectric material can be promoted.
  • the solvent is the above-mentioned organic solvent, the compatibility between the organic solvent and the dispersion medium may be taken into consideration.
  • the above-described ion adsorbent may be further mixed.
  • the ion adsorbent is added such that the pH of the solution containing the conductive polymer is 1 or more and 8 or less (preferably 5 or more and 8 or less).
  • the dopant can be removed reliably and thermoelectric performance can be improved.
  • the dopant can be removed at the time of production of the thermoelectric material without separately performing washing for removing the dopant as in Non-Patent Document 4, the production is simple and advantageous for practical use.
  • thermoelectric conversion module using the thermoelectric material of the present invention described in the first embodiment and a method for manufacturing the same will be described.
  • FIG. 1 is a schematic view showing a thermoelectric conversion module of the present invention.
  • the thermoelectric conversion module 100 includes a plurality of p-type thermoelectric conversion elements 110 and a plurality of n-type thermoelectric conversion elements 120, and each of the p-type thermoelectric conversion elements 110 and the n-type thermoelectric conversion elements 120 is a viscous thermoelectric material Contains In this embodiment, the viscous thermoelectric material is described as containing the thermoelectric material described in Embodiment 1. However, for the first time, the inventor of the present invention has a so-called liquid thermoelectric material having viscosity in the thermoelectric conversion module. I found it applicable. Conventionally, the thermoelectric material used for the thermoelectric conversion module is a solid material, and there was no idea of using a thermoelectric material having viscosity.
  • thermoelectric material is advantageously of a solid with a higher material density of the thermoelectric material due to its conduction mechanism.
  • a metal solder may be used for the contact with the electrode, and the contact resistance has not become a problem.
  • a temperature of 450 ° C. or more is required to use a metal solder, and it has been difficult to adapt to a flexible thermoelectric conversion module.
  • thermoelectric conversion module can be closely adhered to the shape of the heat source by this, it is not necessary to individually manufacture according to the shape of the heat source like the conventional solid thermoelectric material, and mass production and cost reduction become possible. It is advantageous to
  • thermoelectric material having the viscosity described in the first embodiment since the thermoelectric material having the viscosity described in the first embodiment is used, the thermoelectric materials constituting the p-type thermoelectric conversion element 110 and the n-type thermoelectric conversion element 120 in the bending state of the thermoelectric conversion module 100 In order to follow and deform, there is no peeling of the electrode or disconnection of the electrode.
  • thermoelectric material contains a solvent having a vapor pressure in the range of 0 Pa to 1.5 Pa at 25 ° C., it does not substantially evaporate, and the thermoelectric performance is maintained semipermanently, so a stable thermoelectric A conversion module can be provided.
  • thermoelectric conversion element 110 The combination of the p-type and n-type thermoelectric materials applied to each of the p-type thermoelectric conversion element 110 and the n-type thermoelectric conversion element 120 is not particularly limited and can be appropriately selected by those skilled in the art.
  • PEDOT as a p-type thermoelectric material
  • TCNQ-TTF as an n-type thermoelectric material. It is to be understood that the combination is an example and that there are infinite combinations possible from the thermoelectric materials described above.
  • each of the plurality of p-type thermoelectric conversion elements 110 and the plurality of n-type thermoelectric conversion elements 120 is disposed in a mold 130 made of an insulating material.
  • the mold 130 includes a plurality of partition walls and a plurality of lower electrodes 140.
  • the plurality of p-type thermoelectric conversion elements 110 and the plurality of n-type thermoelectric conversion elements 120 are alternately positioned via each of the plurality of partition walls.
  • thermoelectric conversion module 100 the plurality of p-type thermoelectric conversion elements 110 and the plurality of n-type thermoelectric conversion elements 120 are opposed to the side in contact with the plurality of lower electrodes 140.
  • the thermoelectric conversion element 120 has a plurality of upper electrodes 150 formed to form a pair.
  • the plurality of p-type thermoelectric conversion elements 110 and the plurality of n-type thermoelectric conversion elements 120 are connected in series via the plurality of lower electrodes 140 and the plurality of upper electrodes 150.
  • the mold 130 is desirably a material further having flexibility and stretchability. Thereby, the thermoelectric conversion module 100 can have flexibility.
  • the material of the mold 130 is not particularly limited as long as the material has at least an insulating property, but it is preferable that the material has heat resistance, weather resistance, and low gas permeability depending on the use environment.
  • epoxy resin fluoro resin, imide resin, amide resin, ester resin, nitrile resin, chloroprene resin, acrylonitrile butadiene resin, ethylene propylene diene resin, ethylene propylene rubber, butyl rubber, epichlorohydrin rubber, acrylic rubber
  • It is a material selected from the group consisting of polyvinyl chloride, silicone rubber, derivatives thereof, copolymers thereof, and cross-linked products thereof.
  • a material composed of a thermosetting elastomer, non-diene rubber and fluorocarbon resin as it has flexibility, heat resistance and weather resistance in addition to insulation properties.
  • the plurality of p-type thermoelectric conversion elements 110 and the plurality of n-type thermoelectric conversion elements 120 have a thickness of 10 ⁇ m or more (corresponding to the length of D in FIG. 1). If D is 10 ⁇ m or more, the temperature difference necessary for power generation can be maintained.
  • the upper limit is not particularly limited, but may be 5 mm or less from the aspect of normal use. Since the thermoelectric material of the present invention is used for the p-type thermoelectric conversion element 110 and the n-type thermoelectric conversion element 120, the lower electrode 140 side and the upper electrode 150 have a thickness of 10 ⁇ m or more and cause bending. Even if the difference in curvature between the sides occurs, the upper electrode 150 does not peel off or peel off. More preferably, the thickness D has a thickness in the range of 20 ⁇ m to 1 mm. As a result, it is possible to provide the thermoelectric conversion module 100 having flexibility and maintaining high and stable thermoelectric performance.
  • the mold 130 is shown as a flat plate having a partition, but as described above, since the thermoelectric material is a viscous thermoelectric material, it has even a recess formed by the partition that can be filled with the thermoelectric material
  • the mold may be curved.
  • the lower electrode 140 and the upper electrode 150 are not particularly limited as long as they are materials having thermal conductivity and electrical conductivity, but exemplarily, Al, Cr, Fe, Co, Ni, Cu, Zn, Nb, Mo , In, Ta, W, Ir, Pt, Au, Pd and their alloys, tin-doped indium oxide (ITO), zinc oxide (ZnO), Ga-doped zinc oxide (GZO), Al-doped zinc oxide (AZO)
  • ITO tin-doped indium oxide
  • ZnO zinc oxide
  • GZO Ga-doped zinc oxide
  • AZO Al-doped zinc oxide
  • a transparent conductor comprising zinc-doped indium oxide (IZO), In-Ga-Zn-O (IGZO), antimony-doped tin oxide (ATO) and graphene, and polyacetylene, poly (p-phenylene vinylene), polypyrrole, Selected from the group consisting of conductive polymers consisting
  • the thickness of the lower electrode 140 and the upper electrode 150 is not limited, but is illustratively in the range of 100 nm to 50 ⁇ m. Within this range, even if the thermoelectric conversion module 100 is bent, the electrodes themselves are not damaged or disconnected.
  • the upper electrode 150 may be a sealing seal provided with a metal foil or a wire made of the above-described material having thermal conductivity and electrical conductivity.
  • the sealing seal may, for example, be made of the same material as the mold 130.
  • FIG. 2 is a flowchart of manufacturing the thermoelectric conversion module of the present invention.
  • Step S210 Prepare a material further having insulation, preferably flexibility and elasticity, to be a part of a mold, and form a plurality of lower electrodes 140 thereon.
  • the material further having the insulating property, preferably the flexibility and the stretchability is as described above, and thus the description is omitted.
  • the molding material of a flat plate is shown in FIG. 2, it may replace with a flat plate and may be a curved board
  • the plurality of lower electrodes 140 are, for example, a mask disposed on a flat plate, and a material having thermal conductivity and electrical conductivity is imparted by physical vapor deposition, chemical vapor deposition, dip coating, spin coating, etc. do it. If the material having thermal conductivity and electrical conductivity is a metal material or a transparent conductor, the existing semiconductor process technology can be adopted. If the material having thermal conductivity and electrical conductivity is a conductive polymer or graphene, dip coating or spin coating is preferred.
  • Step S220 After forming the plurality of lower electrodes 140, the plurality of lower electrodes 140 are further covered with a material having an insulating property, preferably flexibility and elasticity.
  • a material having an insulating property, preferably flexibility is a material used for a positive photoresist, and a case where a semiconductor process technology is applied will be described.
  • Step S230 After applying a positive photoresist, a mask pattern is transferred to the positive photoresist by an exposure apparatus equipped with a mask. Thereafter, when a developer is applied, only the exposed part is melted. Thus, the mold 130 having the partition wall is formed.
  • Step S240 The thermoelectric material of the present invention is filled into the holes of the mold 130 via the partition walls so that p-type and n-type are alternately arranged. Thus, a plurality of p-type thermoelectric conversion elements 110 and a plurality of n-type thermoelectric conversion elements 120 are formed.
  • Step S250 A plurality of upper electrodes 150 are formed.
  • a plurality of p-type thermoelectric conversion elements 110 and a plurality of p-type thermoelectric conversion elements 110 and a plurality of p-type thermoelectric conversion elements 110 are disposed on the side opposite to the side in contact with the plurality of p-type thermoelectric conversion elements 120.
  • the n-type thermoelectric conversion elements 120 are formed to be connected in series.
  • the plurality of upper electrodes 150 may be formed by physical vapor deposition and chemical vapor deposition as before, but in the present invention, since the viscous thermoelectric material is used, the metal foil is simply pressed. Alternatively, it is possible to form an electrode having high adhesion to the thermoelectric material and reduced contact resistance by simply pressing the sealing seal provided with the wiring. Thus, the thermoelectric conversion module 100 of the present invention is manufactured.
  • FIG. 3 is another flow chart of manufacturing the thermoelectric conversion module of the present invention.
  • Step S310 A metal foil such as a copper foil (a region shown in black in the figure) is provided on an insulating substrate (a region shown in white in the figure) that is a part of a mold such as glass epoxy resin or Bakelite Prepare a raw substrate. Etching is performed so as to leave a predetermined area of the metal foil of the green substrate to form a plurality of lower electrodes 140. The etching masks the area to be the lower electrode (or the upper electrode) and removes the area not masked by the etchant.
  • an etchant is suitably selected by the kind of metal foil, when metal foil is copper, iron chloride aqueous solution can be used illustratively.
  • Step S320 Prepare an insulating, preferably flexible and stretchable material to be a partition of the mold, and punch a hole or the like.
  • the part left unremoved by punching becomes a partition wall, and the part removed by punching becomes a hole to be filled with the thermoelectric material.
  • the mold 130 having the holes is adhered to the substrate obtained in step S310. Thus, the mold 130 having the partition wall is formed.
  • Step S330 The thermoelectric material of the present invention is filled into the holes of the mold 130 via the partition walls so that the p-type and n-type are alternated. This step is the same as step S240 in FIG.
  • Step S340 A plurality of upper electrodes 150 are formed. Specifically, a thermoelectric material is used such that a plurality of p-type thermoelectric conversion elements 110 and a plurality of n-type thermoelectric conversion elements 120 are connected in series to a substrate having a plurality of upper electrodes obtained by the same procedure as step S310. Paste on top.
  • thermoelectric material of the present invention eliminates the need for expensive dedicated equipment for performing physical vapor deposition or chemical vapor deposition for vapor deposition of the upper electrode, thereby reducing the manufacturing cost of the thermoelectric conversion module. it can. Further, since a conductive paste or the like for reducing the contact resistance between the upper electrode and the thermoelectric material can be eliminated, the components of the thermoelectric conversion module can be simplified.
  • FIGS. 2 and 3 although the manufacturing process of the mold 130 has also been described with reference to steps S210 to S230 and steps S310 to S320, respectively, a commercially available mold may be adopted, and the process may start from steps S240 and S330.
  • thermoelectric conversion module using the thermoelectric material of the present invention has been described with reference to FIGS. 1 to 3, the thermoelectric material of the present invention is used opposite to the thermoelectric conversion module, utilizing the potential difference given to the thermoelectric material Those skilled in the art will understand that it may be used for Peltier elements that generate temperature differences. Such a Peltier device can also adopt a known structure.
  • Isopropyl alcohol (IPA) and triethylamine were purchased from Kanto Chemical Co., Ltd., tri-n-octylamine, tris (2-ethylhexyl) amine, oleic acid and dimethyl sulfoxide (DMSO) were purchased from Sigma-Aldrich Co. LLC. Then, hexylamine was purchased from Tokyo Chemical Industry Co., Ltd.
  • the vapor pressures at 25 ° C. of tri-n-octylamine and tris (2-ethylhexyl) amine are each less than 1.5 Pa. However, the vapor pressure of DMSO at 25 ° C. is 84 Pa.
  • TCNQ-TTF Tetracyanoquinodimethane-tetrathiaflurane
  • thermoelectric material is manufactured by mixing TCNQ-TTF (density: 1.6 g / cm 3 ) which is an organic material as a thermoelectric material and EMIM Otf which is an ionic liquid as a solvent in various volume ratios. The visco-elastic properties and the thermoelectric properties were evaluated.
  • TCNQ-TTF was dispersed in IPA and ground by a ball mill.
  • the particle size of TCNQ-TTF after grinding was in the range of 0.5 ⁇ m to 2 ⁇ m.
  • TCNQ-TTF and EMIM Otf were mixed under the conditions shown in Table 1 to prepare samples 1-1 to 1-7.
  • thermoelectric characteristics of samples 1-1 to 1-7 were evaluated.
  • a 2 mm square frame of 70 to 80 ⁇ m in height is fabricated with photoresist (SU-8) on a gold (electrode) -deposited silicon substrate, and samples 1-1 to 1-7 are filled in the frame. did.
  • the silicon substrate was heated at 40 ° C. to remove IPA, and then a copper electrode (metal foil) was attached to the upper portion and sealed.
  • the resistance values of the samples 1-1 to 1-7 and the temperature dependency of the thermoelectromotive force were measured using a digital multimeter (manufactured by CUSTOM, model number CDM-2000D). The resistance value was measured at room temperature, and the thermoelectromotive force was measured in 10 ° C. steps from 40 ° C. to 130 ° C. The results are shown in Table 3.
  • Samples 1-1 to 1-7 all have a low resistance value of 30 ⁇ or less, and the absolute value of the thermoelectromotive voltage tends to increase as the temperature rises. Indicated, power generation was confirmed. From this, Samples 1-1 to 1-7 have a storage elastic modulus G ′ in the range of 1 ⁇ 10 1 Pa to 4 ⁇ 10 6 Pa, and a loss in the range of 5 Pa to 4 ⁇ 10 6 Pa It has a visco-elasticity with an elastic modulus G ′ ′ and was confirmed to be a thermoelectric material.
  • thermoelectric material In consideration of applying the thermoelectric material to the thermoelectric conversion module, it is desirable that the resistance value is low and the absolute value of the thermoelectromotive force does not decrease even at high temperatures. From this, the range of 1 ⁇ 10 3 Pa or more and 3.6 ⁇ 10 6 Pa or less excluding Samples 1-1, 1-2, 1-6 , and 1-7 from the samples listed in Table 2 and Table 3 It has been shown that it is particularly desirable to have a storage modulus G 'of and a loss modulus G "in the range of 1 x 10 3 Pa to 3.5 x 10 6 Pa.
  • thermoelectric material in the thermoelectric material is at least 20%. It was shown that the range below% was satisfied.
  • Example 2 PEDOT: PSS which is an organic material as a thermoelectric material, various ionic liquids as a solvent, and as necessary, Mg 4.5 Al 2 (OH) 13 CO 3 .3.5H 2 O as an ion adsorbent.
  • the thermoelectric material which mixed and manufactured was manufactured, and the thermoelectric characteristic was evaluated.
  • thermoelectric characteristics of samples 2-1 to 2-4 were evaluated in the same manner as in Example 1.
  • the thermoelectromotive force was measured in 10 ° C. increments from 40 ° C. to 100 ° C. The results are shown in Table 5.
  • samples 2-1 to 2-4 showed a tendency that the absolute value of the thermoelectromotive voltage increased as the temperature rose, and power generation was confirmed. From this, samples 2-1 to 2-4 have a storage elastic modulus G 'in the range of 1 ⁇ 10 1 Pa to 4 ⁇ 10 6 Pa, and a loss in the range of 5 Pa to 4 ⁇ 10 6 Pa It has a visco-elasticity with an elastic modulus G ′ ′ and was confirmed to be a thermoelectric material.
  • thermoelectric material 2-1 and the sample 2-2 shows that the use of the ion adsorbent increases the absolute value of the thermoelectromotive force and improves the thermoelectric characteristics. From this, it was confirmed that the addition of the ion adsorbent can remove the dopant (here, PSS) and can exhibit the inherent thermoelectric characteristics of the thermoelectric material.
  • the samples 2-2 and 2-3 with the sample 2-4 suggests that the imidazolium-based ionic liquid is preferable as a solvent of the thermoelectric material of the present invention because the resistance value is reduced.
  • thermoelectric material is manufactured by mixing an inorganic material, a metal material or a composite as a thermoelectric material, an ionic liquid (EMIM TCM) as a solvent, and, if necessary, an antioxidant (oleic acid), The thermoelectric properties were evaluated.
  • EMIM TCM ionic liquid
  • antioxidant oleic acid
  • thermoelectric materials were dispersed in IPA and milled by a ball mill.
  • the particle sizes of the pulverized thermoelectric materials were all in the range of 0.5 ⁇ m to 10 ⁇ m.
  • ionic liquids were added to various thermoelectric materials.
  • the antioxidant was added at the time of a ball mill, and it was wash
  • TiS 2 was mixed with triethylamine (201 ⁇ L) and hexylamine (201 ⁇ L) to intercalate them between the TiS 2 layers. Note that excess triethylamine and hexylamine which were not intercalated are not taken into account in the volume ratio because they volatilize.
  • Each of the obtained samples 3-1 to 3-5 has a storage elastic modulus G ′ in the range of 1 ⁇ 10 1 Pa to 4 ⁇ 10 6 Pa, and is in the range of 5 Pa to 4 ⁇ 10 6 Pa It had a viscoelasticity with a loss modulus G "of
  • thermoelectric characteristics were evaluated in the same manner as in Example 1 with respect to Samples 3-1 to 3-5.
  • the thermoelectromotive force was measured in 10 ° C. increments from 40 ° C. to 130 ° C. The results are shown in Table 7.
  • samples 3-1 to 3-5 showed a tendency that the absolute value of the thermoelectromotive voltage increased as the temperature rose, and power generation was confirmed. Therefore, samples 3-1 to 3-5 have a 1 ⁇ 10 1 Pa or more 4 ⁇ 10 6 Pa storage elastic modulus G of the following range ', the loss of 4 ⁇ 10 6 Pa or less in the range of 5Pa It has a visco-elasticity with an elastic modulus G ′ ′ and was confirmed to be a thermoelectric material.
  • thermoelectric material that can be used for the thermoelectric material of the present invention is an organic material, an inorganic material, a metal material, a composite thereof, etc. exhibiting thermoelectric characteristics. .
  • Example 4 a thermoelectric material was manufactured by mixing a composite (TiS 2 intercalated with an organic compound) or a metal material (bismuth) as a thermoelectric material and an organic solvent as a solvent, and the thermoelectric characteristics were evaluated.
  • thermoelectric material was dispersed in IPA and ground by a ball mill.
  • the particle size of the thermoelectric material after grinding was in the range of 0.5 ⁇ m to 2 ⁇ m for TiS 2 and 5 ⁇ m to 20 ⁇ m for bismuth.
  • 703 ⁇ L of an organic solvent was added to TiS 2 (1200 mg), and 50 ⁇ L of oleic acid was added to bismuth (60 mg).
  • Each of the obtained samples 4-1 to 4-3 has a storage elastic modulus G ′ in the range of 1 ⁇ 10 1 Pa to 4 ⁇ 10 6 Pa, and is in the range of 5 Pa to 4 ⁇ 10 6 Pa It had a viscoelasticity with a loss modulus G "of
  • thermoelectric characteristics of samples 4-1 to 4-3 were evaluated in the same manner as in Example 1.
  • the sample 4-1 and the sample 4-2 each measured a thermoelectromotive voltage from 40 ° C. to 130 ° C. by 10 ° C.
  • the sample 4-3 measured 40 ° C. to 110 ° C. by 10 ° C.
  • Table 9 The results are shown in Table 9.
  • thermoelectric material has viscoelasticity with an elastic modulus G ′ ′ and is a thermoelectric material.
  • solvent that can be used for the thermoelectric material of the present invention has a vapor pressure of 0 Pa to 1.5 Pa at 25 ° C. If satisfied, it was shown that there is no restriction of ionic liquid, organic solvent, etc.
  • Comparative Example 5 In Comparative Example 5, a thermoelectric element was manufactured in the same manner as Sample 1-5 of Example 1 except that the ionic liquid was not used, and the thermoelectric characteristics were evaluated.
  • thermoelectric characteristics of such a thermoelectric element TCNQ-TTF is a powder alone and has no viscosity at all. Therefore, the upper copper electrode (metal foil) is stuck as in Example 1. Did not work well and could not be measured. Therefore, the metal foil and TCNQ-TTF were brought into contact using silver paste. As a result, the contact resistance was on the order of M ⁇ , and it was necessary to further reduce the contact resistance.
  • Comparative Example 6 is the same as Sample 2 of Example 2 except that dityl sulfoxide (DMSO) (vapor pressure: 84 Pa, temperature 25 ° C., boiling point: 189 ° C., atmospheric pressure) is used instead of the ionic liquid.
  • DMSO dityl sulfoxide
  • the thermoelectric element was manufactured and the thermoelectric characteristics were evaluated.
  • thermoelectric element When such a thermoelectric element is heated, it loses its tackiness and the metal foil peels off, and power generation could not be confirmed.
  • thermoelectric material of the present invention contains a thermoelectric material and a solvent, and has a storage elastic modulus in the range of 1 ⁇ 10 1 Pa to 4 ⁇ 10 6 Pa.
  • a viscoelasticity having G ′ and having a loss elastic modulus G ′ ′ in the range of 5 Pa to 4 ⁇ 10 6 Pa the contact resistance can be reduced without requiring a conductive paste such as silver paste, and the electrode It has been shown to suppress the exfoliation and to enable excellent power generation.
  • Example 7 the thermoelectric conversion module shown in FIG. 1 was manufactured using the thermoelectric material of the present invention.
  • the sample 1-4 of Example 1 was used as the n-type thermoelectric material, and the sample 2-3 of Example 2 was used as the p-type thermoelectric material.
  • n-type thermoelectric material and a p-type thermoelectric material are obtained in the hole portion formed by the partition using a mold provided with a gold electrode and a partition as a lower electrode obtained through S210 to S230 of FIG. 2 or steps S310 to S320 of FIG. And so as to alternate.
  • a copper electrode metal foil was attached to form an upper electrode.
  • the number of cells was four, the mold was chloroprene rubber, and the thickness of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element (D in FIG. 1) was 75 ⁇ m.
  • thermoelectric characteristics of the entire four cells were evaluated using the same apparatus as in Example 1. As a result, power generation of 12.2 mV at 40 ° C. was confirmed. From this, it was shown that a thermoelectric conversion module can be realized using the thermoelectric material of the present invention.
  • thermoelectric conversion module was bent at a curvature of 4.6 cm, 2.4 cm and 1.1 cm in diameter, the situation at that time was observed, and the change in resistance was examined.
  • the thermoelectric conversion module was bent at any curvature, the copper electrode did not peel off. Also, the resistivity did not change.
  • thermoelectric material of the present invention when adopted for a thermoelectric conversion module, peeling or disconnection of the electrode does not occur even when the module is bent, so high flexibility can be achieved. Moreover, when the thermoelectric material of the present invention is adopted for a thermoelectric conversion module, the contact resistance with the electrode is reduced, so it is shown that a high power factor can be achieved and a thermoelectric conversion module with an increased amount of power generation can be provided.
  • thermoelectric material according to the present invention has viscosity, it is possible to reduce the contact resistance with the upper electrode, especially when constructing the thermoelectric conversion module, and to use different pipings in different factories where a large amount of exhaust heat is exhausted.
  • the heat can be efficiently taken in by closely fitting the shape to a reactor having a different size.
  • thermoelectric conversion module can be mass-produced since it is not necessary to individually produce it according to the shape of the heating element.
  • the property of maintaining the performance even with such bending is said to be suitable for Roll-to-Roll which can be mass-produced continuously.
  • thermoelectric conversion module 110 p-type thermoelectric conversion element 120 n-type thermoelectric conversion element 130 mold 140 lower electrode 150 upper electrode

Abstract

【課題】 熱電変換モジュールを構成した際に、電極との接触抵抗を低減し、剥離しない熱電材料、それを用いた熱電変換モジュールおよびその製造方法、ならびに、ペルチェ素子を提供すること。 【解決手段】 本発明による熱電材料は、熱電物質と溶媒とを含有し、溶媒の25℃における蒸気圧は、0Pa以上1.5Pa以下であり、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する。

Description

熱電材料、それを用いた熱電変換モジュール、その製造方法、およびペルチェ素子
 本発明は、熱電材料、それを用いた熱電変換モジュール、その製造方法、およびペルチェ素子に関する。
 世界の中で特に省エネルギーが進んだ我が国においてでも、廃熱回収においては、一次供給エネルギーの約3/4が熱エネルギーとして廃棄されているのが現状である。そのような状況の下、熱電発電素子は、熱エネルギーを回収して電気エネルギーに直接変換できる固体素子として注目されている。
 熱電発電素子は、電気エネルギーへの直接変換素子であるため、可動部分がないことによるメンテナンスの容易さ、スケーラビリティ等のメリットがある。このため、熱電半導体について、盛んな材料研究が行われている。
 200℃以下の熱が最大の未利用熱を形成するが、こうしたいわゆる貧熱を回収するにはシート状の熱電材料が適している。特に、高い付加価値を生み出し得る用途として、体熱を利用したウェラブルな応用が挙げられる。しかし、実用化には、シート状だけではなく、フレキシブルであることが要求される(例えば、特許文献1、非特許文献1および非特許文献2を参照)。
 特許文献1のように、フレキシブルなシートを基板に用いて、薄膜熱電材料を利用する方法が挙げられるが、欠点として、熱電材料が基板から容易に剥離してしまうことが予想され、耐久性がそれほどないことが懸念される。また、熱電材料をインクジェット法などでフレキシブルな基板に塗布する方法も非特許文献1、2のように報告されているが、剥離に対する耐性が幾分か改善されたとはいえ、完全に解決するものではない。さらに、これらの特許文献1、非特許文献1および非特許文献2に代表される熱電材料は、固体の熱電材料であるため、電極との接触抵抗を低減するために、スパッタ等の物理的気相成長法によって金等の電極材料が熱電材料と原子状に密着させるか、あるいは、金や銀を含む導電性ペーストをあらかじめ熱電材料の表面に塗布するなどのプロセスが必要であった。
 また、有機材料を用いたシート型熱電変換モジュールが開発されている(例えば、非特許文献3および非特許文献4を参照)。非特許文献3は、ポリ(4-スチレンスルホン酸)またはトシラートをドープしたポリ(3,4-エチレンジオキシチオフェン)(PEDOT:PSSまたはPEDOT:Tos)を熱電材料に用いたシート型熱電変換モジュールを報告する。また、非特許文献4によれば、PEDOT:PSSにおいて、PSSを除去することによって熱電性能が向上することが報告されている。
 しかしながら、非特許文献3のシート型熱電変換モジュールは、発電に必要な温度差を維持するために30μm以上の厚さを有しており、他の有機フレキシブルデバイスのそれに比べると厚い。このため、非特許文献3のシート型熱電変換モジュールを曲げると、厚膜による曲率の違いから電極が剥離したり、電極が断線したりといった問題が生じる。また、ここでも、特許文献1、非特許文献2および非特許文献3と同様に、熱電材料と電極との接触抵抗を低減するために、上述のプロセスが必須であった。
 さらに、非特許文献4の熱電材料を用いたとしても、電極の剥離や断線に対する問題は解決されないばかりか、熱電性能の向上のために、洗浄によりPSSを除去するプロセスが増えるため、煩雑であった。
 一方、PEDOT:PSSの分子配列を制御する技術が知られている(例えば、非特許文献5を参照)。非特許文献5によれば、PEDOT:PSSとイオン液体としてEMIM:X(EMIM:1-エチル-3-メチルイミダゾリウム、X=塩素、硫酸エチル、トリシアノメタン、テトラボラートシアノのアニオン)とを混合し、PEDOT:PSSの配向制御に成功し、導電率が5000倍向上することを報告している。しかしながら、非特許文献5は、このような混合物を有機薄膜太陽電池のアノード電極に用いることを示すが、さらなる用途が開発されれば望ましい。
特許第3981738号公報
Z.Luら,Small 10,17,3551-3554,2014 S.J.Kimら,Energy Environ.Sci.,7,1959-1965,2014 O.Bubnovaら,Nature Materials,10,429-433,2011 G-H.Kimら,Nature Materials,12,719-723,2013 S.Keeら,Adv.Mater.,28,8625-8631,2016
 本発明の課題は、熱電変換モジュールを構成した際に、電極との接触抵抗を低減し、剥離しない熱電材料、それを用いた熱電変換モジュールおよびその製造方法、ならびに、ペルチェ素子を提供することである。
 本発明の熱電材料は、熱電物質と溶媒とを含有し、前記溶媒の25℃における蒸気圧は、0Pa以上1.5Pa以下であり、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する。これにより上記課題を達成する。
 熱電材料は、1×10Pa以上3.6×10Pa以下の範囲の貯蔵弾性率G'を有し、1×10Pa以上3.5×10Pa以下の範囲の損失弾性率G"を有してもよい。
 前記熱電物質および前記溶媒に対する前記熱電物質の体積比は、3%以上90%以下の範囲であってもよい。
 前記熱電物質および前記溶媒に対する前記熱電物質の体積比は、20%以上60%以下の範囲であってもよい。
 前記熱電物質は、有機材料、無機材料、金属材料、それらの複合体およびそれらの混合物からなる群から選択されてもよい。
 前記有機材料は、ドープされているまたはドープされていない導電性高分子であってもよい。
 前記導電性高分子は、ポリ-3,4-エチレンジオキシチオフェン(PEDOT)、ポリアニリン、ポリアセチレン、ポリフェニリン、ポリフラン、ポリセレノフェン、ポリチオフェン、ポリアセン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンビニレン、ポリチオフェンビニレン、ポリペリナフタレン、ポリアントラセン、ポリナフタリン、ポリピレン、ポリアズレン、ポリピロール、ポリパラフェニレン、ポリ(ベンゾビスイミダゾベンゾフェナントロリン)、有機ホウ素ポリマー、ポリトリアゾール、ペリレン、カルバゾール、トリアリールアミン、テトラチアフルバレン、これらの誘導体、および、これらの共重合体からなる群から選択されてもよい。
 前記溶媒は、イオン吸着剤をさらに含有してもよい。
 前記有機材料は、低分子半導体であってもよい。
 前記低分子半導体は、ビチオフェン、テトラチアフルバレン、アントラセン、ペンタセン、ルブレン、コロネン、フタロシアニン、ポルフィリン、ペリレンジカルボキシミド、これらの誘導体、および、これらの分子骨格の組み合わせからなる群から選択されてもよい。
 前記無機材料は酸化物セラミクスであり、前記酸化物セラミクスは、ZnO、SrTiO、NaCo、CaCo、SnO、Ga、CdO、In、NiO、CeO、MnO、MnO、TiO、および、これらの複合酸化物からなる群から選択されてもよい。
 前記無機材料は炭素系材料であり、前記炭素系材料は、カーボンナノチューブ、カーボンナノロッド、カーボンナノワイヤ、グラフェン、フラーレン、および、これらの誘導体からなる群から選択されてもよい。
 前記金属材料は、金属単体、半金属および金属間化合物からなる群から選択されてもよい。
 前記有機材料は電荷移動錯体であり、前記電荷移動錯体は、テトラチアフルアレン(TTF)またはその誘導体であるドナー性物質と、テトラシアノキノジメタン(TCNQ)、ジシアノキノンジイミン(DCNQI)、テトラシアノエチレン(TCNE)、および、これらの誘導体からなる群から選択されるアクセプタ物質との組み合わせであってもよい。
 前記混合物は有機無機ハイブリッド材料であり、前記有機無機ハイブリッド材料は、Bi-(Te、Se)系、Si-Ge系、Pb-Te系、GeTe-AgSbTe系、(Co、Ir、Ru)-Sb系及び(Ca、Sr、Bi)Co系からなる群から選択される無機材料と、ドープされているまたはドープされていない、ポリ-3,4-エチレンジオキシチオフェン(PEDOT)、ポリアニリン、ポリアセチレン、ポリフェニリン、ポリフラン、ポリセレノフェン、ポリチオフェン、ポリアセン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンビニレン、ポリチオフェンビニレン、ポリペリナフタレン、ポリアントラセン、ポリナフタリン、ポリピレン、ポリアズレン、ポリピロール、ポリパラフェニレン、ポリ(ベンゾビスイミダゾベンゾフェナントロリン)、有機ホウ素ポリマー、ポリトリアゾール、ペリレン、カルバゾール、トリアリールアミン、テトラチアフルバレン、これらの誘導体、および、これらの共重合体からなる群から選択される有機材料とからなってもよい。
 前記溶媒は、イオン液体であってもよい。
 前記イオン液体は、イミダゾリウム、ピリジニウム、ピロリジニウム、フォスフォニウム、アンモニウムおよびスルホニウムからなる群から選択されるカチオンと、ハロゲン、カルボキシレート、サルフェート、スルホネート、チオシアネート、アルミネート、ホスフェート、ホスフィネート、アミド、アンチモネート、イミド、メタニドおよびメチドからなる群から選択されるアニオンとを含有してもよい。
 前記溶媒は、アルキルアミン(炭素数が11以上30以下)、脂肪酸(炭素数が7以上30以下)、炭化水素(炭素数が12以上35以下)、アルコール(炭素数が7以上30以下)、ポリエーテル(分子量が100以上10000以下)、これらの誘導体、および、シリコーンオイルからなる群から選択される有機溶媒であってもよい。
 前記溶媒は、トリ-n-オクチルアミンまたはトリス(2-エチルヘキシル)アミンであるアルキルアミン、または、オレイン酸である脂肪酸であってもよい。
 また、不揮発性の溶質を添加して蒸気圧を降下させた溶液を用いてもよいし、室温で固体であっても熱電発電する温度や電極と貼り付ける際に熱を加えた時に溶液へと融解する物質でもよい。逆に、十分に低い蒸気圧を達成するために電極と貼り合わせた後に粘性熱電材料中の溶媒成分が固化してもよい。
 本発明による複数のp型熱電変換素子と、複数のn型熱電変換素子とを備える熱電変換モジュールは、前記複数のp型熱電変換素子および前記複数のn型熱電変換素子のそれぞれは、上述の熱電材料を含有する。これにより上記課題を解決する。
 前記複数のp型熱電変換素子および前記複数のn型熱電変換素子のそれぞれは、複数の隔壁および複数の下部電極を備え、可撓性および絶縁性を有するモールドにおける前記下部電極のそれぞれの上に前記複数の隔壁を介して交互に位置しており、前記複数のp型熱電変換素子および前記複数のn型熱電変換素子は、前記複数の下部電極と接する側に対向する側に、p型熱電変換素子とn型熱電変換素子とが対をなすように複数の上部電極を有し、前記複数のp型熱電変換素子および前記複数のn型熱電変換素子は、直列に接続していてもよい。
 前記モールドは、エポキシ樹脂、フッ素樹脂、イミド樹脂、アミド樹脂、エステル樹脂、ニトリル樹脂、クロロプレン樹脂、アクリロニトリル・ブタジエン樹脂、エチレン・プロピレン・ジエン樹脂、エチレンプロピレンゴム、ブチルゴム、エピクロルヒドリンゴム、アクリルゴム、ポリ塩化ビニル、シリコーンゴム、これらの誘導体、これらの共重合体、および、これらの架橋体からなる群から選択される材料からなってもよい。
 前記複数のp型熱電変換素子および前記複数のn型熱電変換素子の厚さは、10μm以上5mm以下の範囲を有してもよい。
 前記上部電極は、金属箔または配線を備えた封止シートであってもよい。
 本発明による複数のp型熱電変換素子と、複数のn型熱電変換素子とを備える熱電変換モジュールの製造方法は、前記複数のp型熱電変換素子および前記複数のn型熱電変換素子のそれぞれに上述の熱電材料を用いる。これにより上記課題を解決する。
 複数の隔壁および前記複数の隔壁の間に下部電極を備えたモールドの前記下部電極に前記熱電材料を、p型およびn型が交互になるように充填するステップと、前記充填された熱電材料上に上部電極を形成するステップとを包含し、前記上部電極を形成するステップは、前記上部電極が金属箔または配線を備えた封止シールであり、前記金属箔または配線を備えた封止シールを押し当ててもよい。
 本発明の熱電材料を用いたペルチェ素子は、前記熱電材料が上述の熱電材料である。これにより上記課題を解決する。
 本発明の熱電材料は、熱電物質と溶媒とを含有し、これにより粘性を有することを特徴とする。本願発明者は、創意工夫により、熱電物質と溶媒とが混合した粘性状態でも、熱電物質の熱電性能を維持できることを見い出した。本発明の熱電材料は、25℃における蒸気圧が0Pa以上1.5Pa以下、もしくは大気圧下における沸点が250℃以上である溶媒を含有するため、このような熱電材料を熱電変換モジュールに用いれば、実質的に溶媒が揮発することなく、長期的に安定な熱電性能および熱電変換モジュールを提供できる。
 さらに、本発明の熱電材料は、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有するため、粘着性に優れる。したがって、本発明の熱電材料を電極となる材料を単に押し付けるだけで、熱電変換モジュールの上部電極を構成でき、さらに、粘性によって電極との密着性に優れるので、上述したように、従来、接触抵抗を低減させるために必要であったスパッタなどの物理的気相成長法による電極の蒸着や、金や銀を含む導電性ペーストの塗布といった追加のプロセスや材料が必要ない。この結果、熱電変換モジュールの製造プロセスおよび構成要素を簡略化できるので、熱電変換モジュールを安価に提供できる。接触抵抗が低減しているので、高いパワーファクタを達成し、発電量を増大できる。また、このような熱電材料をシート型フレキシブル熱電変換モジュールに用いれば、熱電材料がモジュールの曲げにも追随して変形するため、電極の剥離や電極の断線を生じない。
本発明の熱電変換モジュールを示す模式図 本発明の熱電変換モジュールを製造するフローチャート 本発明の熱電変換モジュールを製造する別のフローチャート
 以下、図面を参照しながら本発明の実施の形態を説明する。なお、同様の要素には同様の番号を付し、その説明を省略する。
 (実施の形態1)
 実施の形態1では、本発明の熱電材料およびその製造方法について説明する。
 本発明の熱電材料は、熱電物質と溶媒とを含有し、粘性を有する。これにより、上述した効果を奏する。熱電物質はその伝導機構により従来より熱電物質の物質密度の高い固体であるものが有利であるとして知られていたが、本願発明者は、その技術常識を覆し、粉末状態で溶媒と混合することにより、液状、すなわち粘性を有する状態であっても熱電性能を維持することを見出した。
 なお、上述したように、非特許文献5は、PEDOT:PSSとEMIM:Xとの混合物を開示するが、その熱電性能については一切開示されておらず、本願発明者が初めて熱電性能を発見し、熱電材料に使用すること、熱電材料として機能するに好ましい粘度(粘性)、さらに好ましい混合比を創意工夫によって見出したものである。
 本発明においては、溶媒は、25℃における蒸気圧が0Pa以上1.5Pa以下を満たす。これにより、熱電材料が通常使用される環境下にさらされても、溶媒が実質的に揮発することはないので、長期的に安定な熱電性能を発揮できる。本願明細書において、簡易的に、大気圧下における沸点が250℃以上を有する溶媒を、25℃における蒸気圧が0Pa以上1.5Pa以下を満たす溶媒と判定してもよい。これにより、正確な蒸気圧の情報を有しない溶媒に対しても、本発明において使用できる溶媒か否かを簡便に判断できる。
 本発明の熱電材料は、粘性が1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有するように調整されており、粘着性に優れる。1×10Pa未満の貯蔵弾性率G'ならびに5Pa未満の損失弾性率G"の場合、熱電変換モジュールに使用した際に電極との接着性が十分でない場合がある。4×10Paを超える貯蔵弾性率G'ならびに4×10Paを超える損失弾性率G"の場合、粘度が高すぎるため、取り扱いが困難となり得る。
 本発明の熱電材料は、より好ましくは、1×10Pa以上3.6×10Pa以下の範囲の貯蔵弾性率G'を有し、1×10Pa以上3.5×10Pa以下の範囲の損失弾性率G"を有する。この範囲であれば、高温においても高い熱電性能を維持しつつ、電極との粘着性に優れ、電極との接触抵抗を下げることができる。
 本発明の熱電材料は、好ましくは、熱電物質および溶媒に対する熱電物質の体積比が、3%以上90%以下の範囲を満たす。この範囲であれば、上述の粘性を維持しつつ、低い接触抵抗および熱電性能を発揮できる。より好ましくは、熱電物質および溶媒に対する熱電物質の体積比が、20%以上60%以下の範囲を満たす。この範囲であれば、上述の粘性を維持しつつ、さらに低い接触抵抗および高い熱電性能を発揮できる。
 本発明においては、任意の熱電物質を採用できるが、中でも、熱電物質は、好ましくは、熱電性能を有する、有機材料、無機材料、金属材料、それらの複合体およびそれらの混合物からなる群から選択される。これらの材料であれば、熱電変換モジュールを構成した際に熱電性能が発揮される。
 本発明においては、熱電物質は、溶媒と混合していればよく、溶解を必須としない。この観点から、熱電物質は、好ましくは、10nm以上100μm以下の範囲の粒径を有する。この範囲であれば、熱電物質と溶媒とが混合し、粘性を維持しつつ、熱電性能が発揮される。熱電物質は、好ましくは、0.1μm以上20μm以下の範囲の粒径を有する。この範囲であれば、熱電物質と溶媒とが均一に混合するため、高い熱電性能が発揮される。なお、粒径は、体積基準のメディアン径(D50)とする。
 有機材料は、好ましくは、ドープされているまたはドープされていない導電性高分子である。ドーパントは、p型またはn型、あるいは、熱電性能の向上のために適宜選択される任意のドーパントである。導電性高分子を採用すれば、高い熱電性能が期待され、各種溶媒との混合性にも優れる。
 導電性高分子は、好ましくは、ポリ-3,4-エチレンジオキシチオフェン(PEDOT)、ポリアニリン、ポリアセチレン、ポリフェニリン、ポリフラン、ポリセレノフェン、ポリチオフェン、ポリアセン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンビニレン、ポリチオフェンビニレン、ポリペリナフタレン、ポリアントラセン、ポリナフタリン、ポリピレン、ポリアズレン、ポリピロール、ポリパラフェニレン、ポリ(ベンゾビスイミダゾベンゾフェナントロリン)、有機ホウ素ポリマー、ポリトリアゾール、ペリレン、カルバゾール、トリアリールアミン、テトラチアフルバレン、これらの誘導体、および、これらの共重合体からなる群から選択される。これらの導電性高分子は、いずれも、高い熱電性能が知られている。中でも、チオフェン系の導電性高分子は高い熱電性能が期待され、さらに好ましくは、PEDOTがp型であり、高い熱電性能を有する。PEDOTは、ドーパントとしてポリスチレンスルホン酸(PSS)、トシラート(Tos)等を有してもよい。これにより、導電率が向上するとともに、溶媒への可溶性が付与されるため、熱電材料の製造が容易となる。
 溶媒は、好ましくは、イオン吸着剤をさらに含有してもよい。イオン吸着剤は、ドープされた導電性高分子の場合に、ドーパントを導電性高分子から除去し、熱電性能を向上させることができる。このようなイオン吸着剤は、例示的には、水酸化アルミニウム、ハイドロタルサイト(例えば、Mg1-xAl(OH)(COx/2・mHO(0<x<1))、ケイ酸マグネシウム、ケイ酸アルミニウム、酸化アルミニウムと酸化マグネシウムとの固溶体等がある。特に、導電性高分子が、PEDOT-PSS(PSSドープPEDOT)において、溶媒がイオン吸着剤をさらに含有すれば、PSSがPEDOTから除去され、PEDOT本来の熱電性能を発揮できるため好ましい。なお、イオン吸着剤を単に添加するだけで、PSSをPEDOTから除去できるので、非特許文献4に代表される従来の洗浄によるPSSの除去を不要とするため、プロセスが削減され、有利である。
 イオン吸着剤は、導電性高分子を含有する溶液のpHが1以上8以下となるように添加される。これにより、ドーパントを除去し、熱電性能を向上させることができる。より好ましくは、pHが5以上8以下となるようにイオン吸着剤は添加される。イオン吸着剤は、ドーパントの除去という観点から、導電性高分子溶液とよく混合し、かつドーパントを吸着するため大きな表面積を有する小さいサイズを有することが好ましいが、例示的には、1μm以上100μm以下の範囲を有する粒径を有すればよい。
 有機材料は、上述の導電性高分子の分子量よりも低い、低分子半導体であってもよい。低分子半導体も熱電性能を発揮する。低分子半導体は、例示的には、ビチオフェン、テトラチアフルバレン、アントラセン、ペンタセン、ルブレン、コロネン、フタロシアニン、ポルフィリン、ペリレンジカルボキシミド、これらの誘導体、および、これらの分子骨格の組み合わせからなる群から選択される。これらの低分子半導体は、熱電性能が高く、各種溶媒との混合性に優れる。
 有機材料は熱電性能を有する電荷移動錯体であってもよい。電荷移動錯体は、ドナー性物質とアクセプタ物質との組み合わせからなり、例示的には、テトラチアフルアレン(TTF)またはその誘導体であるドナー性物質と、テトラシアノキノジメタン(TCNQ)、ジシアノキノンジイミン(DCNQI)、テトラシアノエチレン(TCNE)、および、これらの誘導体からなる群から選択されるアクセプタ物質との組み合わせからなる。これらの電荷移動錯体は、高い熱電性能を有する。
 無機材料は、好ましくは、熱電性能を有する、任意の酸化物セラミクスである。酸化物セラミクスは、例示的には、ZnO、SrTiO、NaCo、CaCo、SnO、Ga、CdO、In、NiO、CeO、MnO、MnO、TiO、および、これらの複合酸化物からなる群から選択される。これらの酸化物セラミクスは、熱電性能を有し、市販されており、入手可能であるため、好ましい。
 無機材料は、好ましくは、熱電性能を有する、炭素を含有する任意の炭素系材料である。炭素系材料は、例示的には、カーボンナノチューブ、カーボンナノロッド、カーボンナノワイヤ、グラフェン、フラーレン、および、その誘導体からなる群から選択される。これらの炭素系材料は、高い熱電性能を有することが知られており、好ましい。カーボンナノチューブは、単層であってもよいし、多層であってもよい。誘導体は、官能基や置換基の表面への修飾を意図している。官能基や置換基は、分散性、可溶性等の所望の機能を付与するために適宜選択される。
 金属材料は、熱電性能を有する、金属単体、金属間化合物、あるいは、半金属がある。金属単体には、例示的には、ビスマス、アンチモン、鉛、テルル等が挙げられる。金属間化合物あるいは半金属としては、好ましくは、テルル化合物、シリサイド化合物、アンチモン化合物、ガリウム化合物、アルミニウム化合物、硫化物、および、希土類化合物からなる群から選択される。これらの金属材料は、高い熱電性能を有することが知られており、好ましい。
 テルル化合物は、例示的には、PbTe、BiTe、AgSbTe、GeTe、SbTeなどである。シリサイド化合物は、例示的には、SiGe、β-FeSi、BaSi46、MgSi、MnSi1.73、Ce-Al-Si、Ba-Ga-Al-Si系クラストレート化合物などである。アンチモン化合物は、例示的には、ZnSb、ZnSb、CeFeCoSb12、LaFCoSb12などである。ガリウム化合物は、例示的には、Ba-Ga-Sn、Ga-In-Sbなどである。アルミニウム化合物は、例示的には、NiAl、Fe-V-Al系ホイスラー化合物などである。硫化物は、例示的には、TiS、TiSなどである。希土類化合物は、例示的には、CeRhAsなどである。
 混合物は、上述の有機材料、無機材料または金属材料の任意の材料の混合物、あるいは、これらと他の材料との混合物であってもよい。例示的な混合物には、上述した有機材料と無機材料とからなる有機無機ハイブリッド材料がある。有機無機ハイブリッド材料は、例示的には、Bi-(Te、Se)系、Si-Ge系、Pb-Te系、GeTe-AgSbTe系、(Co、Ir、Ru)-Sb系及び(Ca、Sr、Bi)Co系からなる群から選択される無機材料と、ドープされているまたはドープされていない、ポリ-3,4-エチレンジオキシチオフェン(PEDOT)、ポリアニリン、ポリアセチレン、ポリフェニリン、ポリフラン、ポリセレノフェン、ポリチオフェン、ポリアセン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンビニレン、ポリチオフェンビニレン、ポリペリナフタレン、ポリアントラセン、ポリナフタリン、ポリピレン、ポリアズレン、ポリピロール、ポリパラフェニレン、ポリ(ベンゾビスイミダゾベンゾフェナントロリン)、有機ホウ素ポリマー、ポリトリアゾール、ペリレン、カルバゾール、トリアリールアミン、テトラチアフルバレン、これらの誘導体、および、これらの共重合体からなる群から選択される有機材料とからなる。これらの有機無機ハイブリッド材料であれば、熱電性能が高く、各種溶媒との混合性に優れる。
 複合体は、上述の有機材料、無機材料または金属材料の任意の材料の複合体、あるいは、これらと他の材料との複合体であってもよい。例えば、金属材料としてTiSを用い、その層間に有機材料をインターカレートさせてもよい。例えば、上述の有機材料、無機材料または金属材料の任意の材料を他の材料でカプセル化して、1つの粒子としてもよい。
 溶媒は好ましくはイオン液体である。イオン液体は、25℃における蒸気圧が実質0Paであり、揮発することはない。イオン液体は、特に制限はないが、例示的には、イミダゾリウム、ピリジニウム、ピロリジニウム、フォスフォニウム、アンモニウムおよびスルホニウムからなる群から選択されるカチオンと、ハロゲン、カルボキシレート、サルフェート、スルホネート、チオシアネート、アルミネート、ホスフェート、ホスフィネート、アミド、アンチモネート、イミド、メタニドおよびメチドからなる群から選択されるアニオンとを含有するイオン液体であればよい。これらのイオン液体であれば、上述した熱電物質と混合し、熱電性能を維持しつつ、粘性を有する熱電材料となる。
 溶媒は、好ましくは、アルキルアミン(炭素数が11以上30以下)、脂肪酸(炭素数が7以上30以下)、炭化水素(炭素数が12以上35以下)、アルコール(炭素数が7以上30以下)、ポリエーテル(分子量が100以上10000以下)、これらの誘導体、および、シリコーンオイルからなる群から選択される有機溶媒であってもよい。アルキルアミンは、例示的には、トリ-n-オクチルアミンやトリス(2-エチルヘキシル)アミン等である。脂肪酸は、例示的には、オレイン酸等である。これらの有機溶媒は、25℃における蒸気圧が0Pa以上1.5Pa以下、もしくは大気圧下における沸点が250℃以上の範囲であり、通常の使用環境下(例えば、40℃~120℃)において揮発することはない。なお、これらの2種類以上の有機溶媒を組み合わせたり、有機溶媒と上述のイオン液体とを組み合わせて用いてもよい。
 実施の形態1では、各熱電物質がp型であるかn型であるかを明記していないが、当業者であれば、選択した熱電物質の導電型を容易に判別できる。
 本発明の熱電材料は、熱電物質および溶媒に加えて、他の添加剤を含有してもよい。例示的には、他の添加剤は、界面活性剤、酸化防止剤、増粘剤、耐熱安定剤、分散剤等であるが、熱電性能に影響を及ぼさない限り制限されない。添加物が不揮発性である方が蒸気圧が降下するため好ましい。また、室温で固体であっても熱電発電する温度や電極と貼り付ける際に熱を加えた時に溶液へと融解する物質でも、蒸気圧が更に降下するため好ましい。逆に、モジュールのフレキシビリティーを阻害しない範囲で、電極と貼り合わせた後で粘性熱電材料中の溶媒成分が固化することで蒸気圧を低下させてもよい。
 上述したように溶媒として、25℃における蒸気圧が0Pa以上1.5Pa以下を満たす任意の溶媒を使用でき、中でも、イオン液体や所定の有機溶媒が好ましいことを述べてきた。しかし、本発明の溶媒として、不揮発性の溶質を分散媒に添加し、25℃における蒸気圧が0Pa以上1.5Pa以下を満たすように調整した溶液を用いてもよいし、あるいは、不揮発性の溶質をイオン液体や所定の有機溶媒に添加し、さらに蒸気圧を低下させてもよい。溶質と分散媒との選択は、ラウールの法則にのっとって行えばよいが、例示的に、テトラデカンとステアリン酸コレステロールとの組み合わせがある。
 次に、上述した本発明の熱電材料の例示的な製造方法について説明する。
 本発明の熱電材料は、上述した熱電物質と、上述した溶媒とを混合すればよい。単に混合するだけでよいので、特別な装置や熟練した技術者を不要とするため、実用化に有利である。混合は、手動にて行ってもよいし、ブレンダー、ミキサーなどの機械を用いてもよい。なお、簡易的には、目視にて均一となれば十分混合したとみなせ、機械を用いた場合には、通常の攪拌条件で混合すれば十分混合したとみなせる。
 上述の熱電物質と上述の溶媒とを混合する前に、上述の熱電物質をボールミルやジェットミル等の粉砕機を用いて、湿式あるいは乾式にて粉砕してもよい。これにより、粒径が均一な(例えば、10nm以上100μm以下の範囲の粒径を有する)熱電物質となるので、溶媒と均一に混合することができる。
 熱電物質と溶媒とは、熱電物質および溶媒に対する熱電物質の体積比が、3%以上90%以下の範囲、好ましくは、20%以上60%以下の範囲を満たすように混合される。これにより、上述した効果を有する熱電材料が製造される。
 均一な混合を促進するために、上述の溶媒に加えて、メタノール、アセトニトリル、ジクロロメタン、テトラヒドロフラン(THF)、エチレンカーボネート、ジエチルカーボネート、γ-ブチロラクトン、アセトン等の分散媒を添加し、混合した後、分散媒を加熱/自然乾燥等によって除去してもよい。溶媒がイオン液体である場合、これらの分散媒はイオン液体を溶解するので、例えば、イオン液体が少ない場合に熱電物質との混合を促進できる。溶媒が上述の有機溶媒である場合にも、有機溶媒と分散媒との相溶性を考慮すれば良い。
 好ましくは、熱電物質がドープされた導電性高分子である場合には、上述したイオン吸着剤をさらに混合してもよい。この場合、イオン吸着剤は、導電性高分子を含有する溶液のpHが1以上8以下(好ましくは、5以上8以下)となるように添加される。これにより、ドーパントを確実に除去し、熱電性能を向上させることができる。特に、非特許文献4のように、ドーパントを除去する洗浄を別途行うことなく、熱電材料の製造時にドーパントを除去できるため、製造が簡便であり、実用化に有利である。
 (実施の形態2)
 実施の形態2では、実施の形態1で説明した本発明の熱電材料を用いた熱電変換モジュールおよびその製造方法を説明する。
 図1は、本発明の熱電変換モジュールを示す模式図である。
 熱電変換モジュール100は、複数のp型熱電変換素子110と、複数のn型熱電変換素子120とを備え、これらp型熱電変換素子110およびn型熱電変換素子120のそれぞれは、粘性の熱電材料を含有する。本実施の形態では、粘性の熱電材料は、実施の形態1で説明した熱電材料を含有するものとして説明するが、本願発明者が、初めて、熱電変換モジュールに粘性を有するいわゆる液状の熱電材料を適用できることを見出した。従来より熱電変換モジュールに使用される熱電材料は固体材料であり、粘性を有する熱電材料を使用するという発想はなかった。これは、粘性を有する熱電材料が存在しなかったことに加えて、熱電物質はその伝導機構により従来より熱電物質の物質密度の高い固体であるものが有利であると信じられていたためである。加えて、固体無機材料を用いた場合には、電極との接触に金属ロウを用いればよく、接触抵抗が問題になることはなかった。しかし、金属ロウを用いるには450℃以上の温度が必要でフレキシブルな熱電変換モジュールに適応することは難しかった。
 本願発明者は、従来の常識を覆し、新規モジュールの構成に挑戦し、高価な銀ペーストや金属ロウを用いることなく接触抵抗を劇的に低下させるとともに熱電変換モジュールのフレキシビリティを劇的に向上させることに成功した。これによって熱電変換モジュールが熱源の形状に合わせて密着できるため、従来の固体熱電材料のように熱源の形状に合わせて個別生産する必要がなくなり、大量生産・低コスト化が可能になるため実用化に有利となる。
 上述したように、実施の形態1で説明した粘性を備えた熱電材料を用いるので、熱電変換モジュール100の曲げ状態にもp型熱電変換素子110およびn型熱電変換素子120を構成する熱電材料が追随して変形するため、電極が剥離したり、電極が断線することはない。また、熱電材料は25℃における蒸気圧が0Pa以上1.5Pa以下の範囲である溶媒を含有するため、実質的に蒸発することはなく、半永久的に熱電性能が維持されるので、安定した熱電変換モジュールを提供できる。
 なお、p型熱電変換素子110およびn型熱電変換素子120それぞれに適用するp型およびn型の熱電材料の組み合わせは特に制限はなく、当業者であれば、適宜選択し得る。例示的には、p型熱電材料としてPEDOT、n型熱電材料としてTCNQ-TTFがある。組み合わせは一例であって、上述した熱電材料から無限の組み合わせの可能性があることを理解されたい。
 熱電変換モジュール100において、好ましくは、複数のp型熱電変換素子110および複数のn型熱電変換素子120のそれぞれは、絶縁性を有する材料からなるモールド130に配置される。p型熱電変換素子110とn型熱電変換素子120との間のモールド130の部分を隔壁とした場合、モールド130は、複数の隔壁および複数の下部電極140を備え、複数の下部電極140上に複数の隔壁のそれぞれを介して、複数のp型熱電変換素子110および複数のn型熱電変換素子120が交互に位置する。
 さらに、熱電変換モジュール100において、複数のp型熱電変換素子110および複数のn型熱電変換素子120は、複数の下部電極140と接する側に対向する側に、p型熱電変換素子110とn型熱電変換素子120とが対をなすように形成された複数の上部電極150を有する。ここで、複数のp型熱電変換素子110および複数のn型熱電変換素子120は、複数の下部電極140および複数の上部電極150を介して、直列に接続している。
 モールド130は、さらに可撓性および伸縮性を有する材料であることが望ましい。これにより、熱電変換モジュール100はフレキシビリティを有することができる。なお、モールド130の材料は、少なくとも絶縁性を有する材料であれば特に制限はないが、使用環境によっては耐熱性、耐候性がありガス透過性が低いことが好ましい。例示的には、エポキシ樹脂、フッ素樹脂、イミド樹脂、アミド樹脂、エステル樹脂、ニトリル樹脂、クロロプレン樹脂、アクリロニトリル・ブタジエン樹脂、エチレン・プロピレン・ジエン樹脂、エチレンプロピレンゴム、ブチルゴム、エピクロルヒドリンゴム、アクリルゴム、ポリ塩化ビニル、シリコーンゴム、これらの誘導体、これらの共重合体、および、これらの架橋体からなる群から選択される材料である。中でも、熱硬化性エラストマー、非ジエン系ゴムおよびフッ素樹脂からなる材料を選択すれば、絶縁性に加えて可撓性、耐熱性、耐候性を有するので好ましい。
 複数のp型熱電変換素子110および複数のn型熱電変換素子120は、10μm以上の厚さ(図1においてDの長さに相当)を有する。Dが10μm以上であれば、発電に必要な温度差を維持できる。上限は特に制限はないが、通常使用時の態様から5mm以下とすることがよい。p型熱電変換素子110およびn型熱電変換素子120に本発明の熱電材料を用いるので、Dが10μm以上の厚さを有し、曲げを生じさせた際に、下部電極140側と上部電極150側との間の曲率の違いが生じても、上部電極150が剥離したり、剥離したりすることはない。より好ましくは、厚さDは、20μm以上1mm以下の範囲の厚さを有する。これにより、高く安定した熱電性能を維持しつつ、フレキシビリディを有する熱電変換モジュール100を提供できる。
 図1では、モールド130は、隔壁を備えた平板で示されるが、上述したように、熱電材料は粘性を有する熱電物質であるため、熱電材料を充填可能な隔壁で形成される凹部さえ有すれば、モールドは、湾曲していてもよい。
 下部電極140および上部電極150は、熱伝導性および電気伝導性を有する材料であれば特に制限はないが、例示的には、Al、Cr、Fe、Co、Ni、Cu、Zn、Nb、Mo、In、Ta、W、Ir、Pt、Au、Pdおよびこれらの合金からなる金属材料、スズドープ酸化インジウム(ITO)、酸化亜鉛(ZnO)、Gaドープ酸化亜鉛(GZO)、Alドープ酸化亜鉛(AZO)、亜鉛ドープ酸化インジウム(IZO)、In-Ga-Zn-O(IGZO)、アンチモンドープ酸化スズ(ATO)およびグラフェンからなる透明導電体、および、ポリアセチレン、ポリ(p-フェニレンビニレン)、ポリピロール、ポリチオフェン、ポリアニリン、ポリ(p-フェニレンスルフィド)からなる導電性高分子からなる群から選択される。
 下部電極140および上部電極150の厚さに制限はないが、例示的には、100nm以上50μm以下の範囲である。この範囲であれば、熱電変換モジュール100に曲げを生じさせても、電極そのものが破損したり、断線したりすることはない。
 特に、上部電極150は、上述した熱伝導性および電気伝導性を有する材料からなる金属箔または配線を備えた封止シールであってもよい。封止シールは、例えば、モールド130と同じ材料からなってもよい。
 次に図2を参照して、本発明の熱電変換モジュール100の例示的な製造プロセスを示す。
 図2は、本発明の熱電変換モジュールを製造するフローチャートである。
 ステップS210:モールドの一部となる絶縁性、好ましくは可撓性および伸縮性をさらに有する材料を準備し、その上に複数の下部電極140を形成する。絶縁性、好ましくは可撓性および伸縮性をさらに有する材料は、上述したとおりであるため、説明を省略する。また、図2では平板のモールド材料を示すが、本発明では、平板に代えて湾曲した板材であってもよい。ここでは簡単のため平板として説明する。
 複数の下部電極140は、例えば、平板上にマスクを配置し、物理的気相成長法、化学的気相成長法、ディップコーティング、スピンコーティング等により熱伝導性および電気伝導性を有する材料を付与すればよい。熱伝導性および電気伝導性を有する材料が金属材料あるいは透明導電体であれば、既存の半導体プロセス技術を採用できる。熱伝導性および電気伝導性を有する材料が導電性高分子あるいはグラフェンであれば、ディップコーティングやスピンコーティング等が好ましい。
 ステップS220:複数の下部電極140を形成後、さらに絶縁性、好ましくは可撓性および伸縮性を有する材料で複数の下部電極140を覆う。ここでは、絶縁性、好ましくは可撓性を有する材料がポジ型フォトレジストに使用される材料であり、半導体プロセス技術を適用した場合を説明する。
 ステップS230:ポジ型フォトレジストを塗布した後、マスクを装着した露光装置によってポジ型フォトレジストにマスクパターンを転写する。その後、現像液を塗布すると、露光された部分のみが溶ける。このようにして、隔壁を備えたモールド130が形成される。
 ステップS240:モールド130の穴部に隔壁を介して、本発明の熱電材料を、p型およびn型が交互になるように充填する。このようにして、複数のp型熱電変換素子110および複数のn型熱電変換素子120が形成される。
 ステップS250:複数の上部電極150を形成する。複数の上部電極150は、複数のp型熱電変換素子110および複数のn型熱電変換素子120が複数の下部電極140と接する側と対向する側に、複数のp型熱電変換素子110および複数のn型熱電変換素子120が直列に接続するよう形成される。
 複数の上部電極150は、従来と同様に、物理的気相成長法および化学的気相成長法によって形成されてもよいが、本発明では、粘性の熱電材料を用いるため、単に金属箔を押し付ける、あるいは、配線を備えた封止シールを押し付けるだけでも、熱電材料との高い密着性を有し、接触抵抗を低減した電極を形成することができる。このようにして、本発明の熱電変換モジュール100が製造される。
 図3は、本発明の熱電変換モジュールを製造する別のフローチャートである。
 ステップS310:ガラスエポキシ樹脂やベークライト等のモールドの一部となる絶縁性の基板(図中、白色で示す領域)上に銅箔等の金属箔(図中、黒色で示す領域)が付与された生基板を用意する。生基板の金属箔の所定の領域を残すようにエッチングし、複数の下部電極140を形成する。エッチングは、下部電極(または上部電極)となる領域をマスキングし、エッチャントでマスキングしていない領域を除去する。なお、エッチャントは、金属箔の種類によって適宜選択されるが、金属箔が銅である場合には例示的には塩化鉄水溶液を使用することができる。
 ステップS320:モールドの隔壁となる絶縁性、好ましくは、さらに可撓性および伸縮性を有する材料を準備し、ポンチ等で穴をあける。ポンチで除去されず残った部分が隔壁となり、ポンチ除去された部分が、熱電材料を充填すべき穴部となる。穴を有するモールド130を、ステップS310で得られた基板と接着させる。このようにして、隔壁を備えたモールド130が形成される。
 ステップS330:モールド130の穴部に隔壁を介して、本発明の熱電材料を、p型およびn型が交互になるように充填する。このステップは、図2のステップS240と同様であるため、省略する。
 ステップS340:複数の上部電極150を形成する。具体的には、ステップS310と同様の手順で得た複数の上部電極を有する基板を、複数のp型熱電変換素子110および複数のn型熱電変換素子120が直列に接続するように、熱電材料上に貼り付ける。
 本発明の熱電材料を用いれば、上部電極の蒸着のための物理的気相成長法や化学的気相成長法を実施する高価な専用装置を不要とするので、熱電変換モジュールの製造コストを低減できる。また、上部電極と熱電材料との間の接触抵抗を低減するための導電性ペーストなども不要とできるので、熱電変換モジュールの構成要素も簡略化できる。
 図2および図3では、それぞれ、ステップS210~S230およびステップS310~S320を参照して、モールド130の製造プロセスも説明したが、市販のモールドを採用し、ステップS240およびステップS330から始めてもよい。
 図1~図3を参照して、本発明の熱電材料を用いた熱電変換モジュールを説明してきたが、本発明の熱電材料を、熱電変換モジュールとは逆の、熱電材料に与えられる電位差を利用して温度差を発生させるペルチェ素子に用いてもよいことは当業者であれば理解する。なお、このようなペルチェ素子もまた、周知の構造を採用できる。
 次に具体的な実施例を用いて本発明を詳述するが、本発明が実施例に限定されないことに留意されたい。
[材料]
 以降の実施例および比較例で用いた材料について説明する。なお、すべての材料は特級試薬であり、精製することなく用いた。1-エチル-3-メチルイミダゾリウムトリフルオロメタンスルホネート(EMIM Otf)と、1-エチル-3-メチルイミダゾリウムトリシアノメタニド(EMIM TCM)とを東京化成工業株式会社から、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMIM TFB)と、1-メチル-1-プロピルピロリジニウムビス(トリフルオロメタンスルフォニル)イミド(MPP FSI)とを和光純薬工業株式会社から購入した。これらはいずれも25℃における蒸気圧が実質的に0(<1.5Pa以下)であるイオン液体である。
 イソプロピルアルコール(IPA)とトリエチルアミンとを関東化学株式会社から、トリ-n-オクチルアミンとトリス(2-エチルヘキシル)アミンとオレイン酸とジメチルスルホキシド(DMSO)とをSigma-Aldrich Co.LLC.から、ヘキシルアミンを東京化成工業株式会社から購入した。トリ-n-オクチルアミンおよびトリス(2-エチルヘキシル)アミンの25℃における蒸気圧は、それぞれ、1.5Pa未満である。しかし、DMSOの25℃における蒸気圧は84Paである。
 テトラシアノキノジメタン-テトラチアフルアレン(TCNQ-TTF)を東京化成工業株式会社から、ポリ(スチレンスルホナート)がドープされたポリ(3,4-エチレンジオキシチオフェン)(PEDOT:PSS)をSigma-Aldrich Co.LLC.から購入した。
 Mg4.5Al(OH)13CO・3.5HOを協和化学工業株式会社から、フラーレン(C60)とカーボンナノチューブ(CNT)とを東京化成工業株式会社から、ビスマスをSigma-Aldrich Co.LLC.から購入した。硫化チタン(TiS)は化学蒸気輸送法により合成した。
[実施例1]
 実施例1では、熱電物質として有機材料であるTCNQ-TTF(密度:1.6g/cm)と、溶媒としてイオン液体であるEMIM Otfとを、種々の体積比で混合した熱電材料を製造し、粘弾性特性および熱電特性を評価した。
 TCNQ-TTFをIPAに分散させ、ボールミルにより粉砕した。粉砕後のTCNQ-TTFの粒径は、0.5μm~2μmの範囲であった。TCNQ-TTFおよびEMIM Otfは、表1に示す条件で混合され、試料1-1~1-7を調製した。
Figure JPOXMLDOC01-appb-T000001
 次に、IPAを除去した試料1-1~1-7について粘弾性評価を行った。評価には、粘弾性測定装置(アントンパール製、型番MCR301)を使用した。結果を表2に示す。
 次に、試料1-1~1-7について熱電特性評価を行った。評価は、金(電極)を蒸着したシリコン基板上にフォトレジスト(SU-8)で2mm角の高さ70~80μmの枠を作製し、枠内に試料1-1~1-7をそれぞれ充填した。充填後、40℃でシリコン基板を加熱し、IPAを除去した後、上部に銅電極(金属箔)を貼り付け、封止した。試料1-1~1-7の抵抗値、ならびに、熱起電圧の温度依存性を、デジタルマルチメータ(CUSTOM製、型番CDM-2000D)を用いて測定した。抵抗値は室温において測定し、熱起電圧は、40℃から130℃まで10℃刻みで測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2および表3によれば、試料1-1~1-7は、いずれも、30Ω以下の低い抵抗値を有しており、温度の上昇に伴い熱起電圧の絶対値が増大する傾向を示し、発電が確認された。このことから、試料1-1~1-7は、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する粘弾性を有しており、熱電材料であることが確認された。
 熱電材料を熱電変換モジュールに適用することを考慮すれば、抵抗値が低く、高温においても熱起電圧の絶対値が低下しないことが望ましい。このことから、表2、表3に掲げられた試料から試料1-1、1-2、1-6、1-7を除く、1×10Pa以上3.6×10Pa以下の範囲の貯蔵弾性率G'を有し、1×10Pa以上3.5×10Pa以下の範囲の損失弾性率G"を有することが特に望ましいことが示された。この範囲であれば、20Ω未満の抵抗値を有し、熱起電圧の絶対値の低下も見られない。さらに好ましくは、試料1-3~1-5によれば、熱電材料中の熱電物質は、20%以上60%以下の範囲を満たすことが示された。
[実施例2]
 実施例2では、熱電物質として有機材料であるPEDOT:PSSと、溶媒として各種イオン液体と、必要に応じてイオン吸着剤としてMg4.5Al(OH)13CO・3.5HOとを混合した熱電材料を製造し、熱電特性を評価した。
 表4に示すように、PEDOT:PSS(1%水溶液)100μLに各種イオン液体を20μL添加した。なお、イオン吸着剤を添加する際には、PEDOT:PSS(1%水溶液)1000μLに、pH8となるようにイオン吸着剤2.7mgを添加し、24時間攪拌した後にイオン液体を添加した。得られた試料2-1~2-4は、いずれも、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する粘弾性を有した。
Figure JPOXMLDOC01-appb-T000004
 試料2-1~2-4について実施例1と同様に熱電特性評価を行った。熱起電圧は40℃から100℃まで10℃刻みで 測定した。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5によれば、試料2-1~2-4は、いずれも、温度の上昇に伴い熱起電圧の絶対値が増大する傾向を示し、発電が確認された。このことから、試料2-1~2-4は、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する粘弾性を有しており、熱電材料であることが確認された。
 試料2-1と試料2-2とを比較すると、イオン吸着剤を用いることにより、熱起電圧の絶対値が増大しており、熱電特性が向上することが示された。このことから、イオン吸着材を添加することにより、ドーパント(ここでは、PSS)を除去し、熱電物質本来の熱電特性を発揮することができることが確認された。試料2-2および2-3と、試料2-4とを比較すると、抵抗値が低減することから、本発明の熱電材料の溶媒としてイミダゾリウム系のイオン液体が好ましいことが示唆される。
[実施例3]
 実施例3では、熱電物質として無機材料、金属材料または複合体と、溶媒としてイオン液体(EMIM TCM)と、必要に応じて、酸化防止剤(オレイン酸)とを混合した熱電材料を製造し、熱電特性を評価した。
 実施例1と同様に、種々の熱電物質をIPAに分散させ、ボールミルにより粉砕した。粉砕後の熱電材料の粒径は、いずれも、0.5μm~10μmの範囲であった。表6に示すように、種々の熱電物質にイオン液体を添加した。なお、酸化防止剤を添加する際には、ボールミル時に酸化防止剤を添加し、イオン液体を添加する前にIPAで洗浄し、除去した。
 また、TiSは、トリエチルアミン(201μL)およびヘキシルアミン(201μL)と混合され、TiSの層間にこれらをインターカレートさせた。インターカレートされなかった余剰のトリエチルアミンおよびヘキシルアミンは、揮発するため、体積比には考慮していないことに留意されたい。
 得られた試料3-1~3-5は、いずれも、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する粘弾性を有した。
Figure JPOXMLDOC01-appb-T000006
 試料3-1~3-5について実施例1と同様に熱電特性評価を行った。熱起電圧は40℃から130℃まで10℃刻みで測定した。結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7によれば、試料3-1~3-5は、いずれも、温度の上昇に伴い熱起電圧の絶対値が増大する傾向を示し、発電が確認された。このことから、試料3-1~3-5は、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する粘弾性を有しており、熱電材料であることが確認された。
 実施例1~実施例3の結果によれば、本発明の熱電材料に使用できる熱電物質は、熱電特性を示す有機材料、無機材料、金属材料、これらの複合体等であることが示された。
[実施例4]
 実施例4では、熱電物質として複合体(有機化合物をインターカレートしたTiS)または金属材料(ビスマス)と、溶媒として有機溶媒とを混合した熱電材料を製造し、熱電特性を評価した。
 実施例1と同様に、熱電物質をIPAに分散させ、ボールミルにより粉砕した。粉砕後の熱電材料の粒径は、TiSでは0.5μm~2μm、ビスマスでは5μm~20μmの範囲であった。表8に示すように、TiS(1200mg)に有機溶媒を703μL添加し、ビスマス(60mg)にオレイン酸を50μL添加した。得られた試料4-1~4-3は、いずれも、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する粘弾性を有した。
Figure JPOXMLDOC01-appb-T000008
 試料4-1~4-3について実施例1と同様に熱電特性評価を行った。試料4-1と試料4-2は40℃から130℃まで10℃刻みで、試料4-3は40℃から110℃まで10℃刻みで熱起電圧を測定した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9によれば、試料4-1~4-3は、いずれも、温度の上昇に伴い熱起電圧の絶対値が増大する傾向を示し、発電が確認された。このことから、試料4-1~4-3は、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する粘弾性を有しており、熱電材料であることが確認された。さらに、本発明の熱電材料に使用できる溶媒は、25℃における蒸気圧が0Pa以上1.5Pa以下を満たせば、イオン液体、有機溶媒等制限がないことが示された。
[比較例5]
 比較例5では、実施例1の試料1-5においてイオン液体を用いない以外は同様にして熱電素子を製造し、熱電特性を評価した。
 このような熱電素子の熱電特性を評価を試みたところ、TCNQ-TTFは、単独では粉体であり、粘性はまったくないため、実施例1と同様の上部の銅電極(金属箔)の貼り付けがうまくいかず、測定ができなかった。そこで、金属箔とTCNQ-TTFとの間を銀ペーストを用いて、接触させた。その結果、接触抵抗はMΩオーダであり、接触抵抗のさらなる低減が必要であった。
[比較例6]
 比較例6では、実施例2の試料2-2において、イオン液体の代わりにジチルスルホキシド(DMSO)(蒸気圧:84Pa、温度25℃、沸点:189℃、大気圧)を用いた以外は同様にして熱電素子を製造し、熱電特性を評価した。
 このような熱電素子を加熱すると、粘着性を失い金属箔が剥離し、発電を確認することはできなかった。
 実施例1~4と比較例5~6との比較から、本発明の熱電材料は、熱電物質と溶媒とを含有し、1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する粘弾性を有することにより、銀ペーストなどの導電性ペーストを要することなく、接触抵抗を低減でき、電極の剥離を抑制し、優れた発電を可能にすることが示された。
[実施例7]
 実施例7では、本発明の熱電材料を用いて図1に示す熱電変換モジュールを製造した。n型熱電材料として実施例1の試料1-4を、p型熱電材料として実施例2の試料2-3を用いた。
 図2のS210~S230または図3のステップS310~S320を経て得られる、下部電極として金電極および隔壁を備えたモールドを用い、隔壁によって形成される穴部にn型熱電材料とp型熱電材料とを交互になるように充填した。次いで、銅電極(金属箔)を貼り付け、上部電極を形成した。なお、セル数は4セルであり、モールドは、クロロプレンゴムからなり、p型熱電変換素子およびn型熱電変換素子の厚さ(図1のD)は、75μmであった。
 実施例1と同様の装置を用い、4セル全体の熱電特性を評価したところ、40℃で12.2mVの発電を確認できた。このことから、本発明の熱電材料を用いて、熱電変換モジュールを実現できることが示された。
 次に、この熱電変換モジュールを直径4.6cm、2.4cmおよび1.1cmの曲率で曲げ、その際の様子を観察し、抵抗の変化を調べた。いずれの曲率で熱電変換モジュールを曲げても、銅電極が剥離することはなかった。また、抵抗率も変化しなかった。
 このことから、本発明の熱電材料を熱電変換モジュールに採用すれば、モジュールを曲げても、電極の剥離や断線は生じないので、高いフレキシビリティを達成できる。また、本発明の熱電材料を熱電変換モジュールに採用すれば、電極との接触抵抗が低減するので、高いパワーファクタを達成し、発電量が増大した熱電変換モジュールを提供できることが示された。
 本発明による熱電材料は、粘性を有するため、とりわけ、熱電変換モジュールを構築した際に、上部電極との接触抵抗が低減され、かつ、大量に排熱を排出しているような工場の異なる配管やサイズの異なる反応炉に形状を合わせて密着して熱を効率よく取り込むことができる。このような熱電変換モジュールは、発熱体の形状に合わせて個別生産する必要がないので大量生産が可能となる。加えて、このような曲げても性能を維持できる特性は、連続的に大量生産ができるRoll-to-Rollに適していると言える。これまでにもRoll-to-Rollで有機薄膜太陽電池を製造するためのプロセス開発が行われてきたが、実用化には至っていない。有機薄膜太陽電池の耐久性に問題があったことも一因であるが、Roll-to-Rollでは最終製品をRollで巻き取る必要があることにも起因する。というのも、最初に巻き取られた製品と最後に巻き取られた製品では、曲率に大きな差が生じるため、一般に品質を保証するのが難しかった。曲げに強く性能に影響を与えないことは、用途の拡大のみならずRoll-to-Rollによる高速な大量生産・低コスト化も可能となる。
 100 熱電変換モジュール
 110 p型熱電変換素子
 120 n型熱電変換素子
 130 モールド
 140 下部電極
 150 上部電極

Claims (21)

  1.  熱電物質と溶媒とを含有し、
     前記溶媒の25℃における蒸気圧は、0Pa以上1.5Pa以下であり、
     1×10Pa以上4×10Pa以下の範囲の貯蔵弾性率G'を有し、
     5Pa以上4×10Pa以下の範囲の損失弾性率G"を有する、熱電材料。
  2.  1×10Pa以上3.6×10Pa以下の範囲の貯蔵弾性率G'を有し、
     1×10Pa以上3.5×10Pa以下の範囲の損失弾性率G"を有する、請求項1に記載の熱電材料。
  3.  前記熱電物質および前記溶媒に対する前記熱電物質の体積比は、3%以上90%以下の範囲である、請求項1または2のいずれかに記載の熱電材料。
  4.  前記熱電物質および前記溶媒に対する前記熱電物質の体積比は、20%以上60%以下の範囲である、請求項3に記載の熱電材料。
  5.  前記熱電物質は、有機材料、無機材料、金属材料、それらの複合体およびそれらの混合物からなる群から選択される、請求項1~4のいずれかに熱電材料。
  6.  前記有機材料は、ドープされているまたはドープされていない導電性高分子である、請求項5に記載の熱電材料。
  7.  前記導電性高分子は、ポリ-3,4-エチレンジオキシチオフェン(PEDOT)、ポリアニリン、ポリアセチレン、ポリフェニリン、ポリフラン、ポリセレノフェン、ポリチオフェン、ポリアセン、ポリイソチアナフテン、ポリフェニレンスルフィド、ポリフェニレンビニレン、ポリチオフェンビニレン、ポリペリナフタレン、ポリアントラセン、ポリナフタリン、ポリピレン、ポリアズレン、ポリピロール、ポリパラフェニレン、ポリ(ベンゾビスイミダゾベンゾフェナントロリン)、有機ホウ素ポリマー、ポリトリアゾール、ペリレン、カルバゾール、トリアリールアミン、テトラチアフルバレン、これらの誘導体、および、これらの共重合体からなる群から選択される、請求項6に記載の熱電材料。
  8.  前記溶媒は、イオン吸着剤をさらに含有する、請求項6または7に記載の熱電材料。
  9.  前記無機材料は炭素系材料であり、
     前記炭素系材料は、カーボンナノチューブ、カーボンナノロッド、カーボンナノワイヤ、グラフェン、フラーレン、および、これらの誘導体からなる群から選択される、請求項5に記載の熱電材料。
  10.  前記金属材料は、金属単体、半金属および金属間化合物からなる群から選択される、請求項5に記載の熱電材料。
  11.  前記有機材料は電荷移動錯体であり、
     前記電荷移動錯体は、テトラチアフルアレン(TTF)またはその誘導体であるドナー性物質と、テトラシアノキノジメタン(TCNQ)、ジシアノキノンジイミン(DCNQI)、テトラシアノエチレン(TCNE)、および、これらの誘導体からなる群から選択されるアクセプタ物質との組み合わせである、請求項5に記載の熱電材料。
  12.  前記溶媒は、イオン液体である、請求項1~11のいずれかに記載の熱電材料。
  13.  前記イオン液体は、イミダゾリウム、ピリジニウム、ピロリジニウム、フォスフォニウム、アンモニウムおよびスルホニウムからなる群から選択されるカチオンと、ハロゲン、カルボキシレート、サルフェート、スルホネート、チオシアネート、アルミネート、ホスフェート、ホスフィネート、アミド、アンチモネート、イミド、メタニドおよびメチドからなる群から選択されるアニオンとを含有する、請求項12に記載の熱電材料。
  14.  前記溶媒は、アルキルアミン(炭素数が11以上30以下)、脂肪酸(炭素数が7以上30以下)、炭化水素(炭素数が12以上35以下)、アルコール(炭素数が7以上30以下)、ポリエーテル(分子量が100以上10000以下)、これらの誘導体、および、シリコーンオイルからなる群から選択される有機溶媒である、請求項1~13のいずれかに記載の熱電材料。
  15.  前記溶媒は、トリ-n-オクチルアミンまたはトリス(2-エチルヘキシル)アミンであるアルキルアミン、または、オレイン酸である脂肪酸である、請求項14に記載の熱電材料。
  16.  複数のp型熱電変換素子と、複数のn型熱電変換素子とを備える熱電変換モジュールであって、
     前記複数のp型熱電変換素子および前記複数のn型熱電変換素子のそれぞれは、請求項1~15のいずれかに記載の熱電材料を含有する、熱電変換モジュール。
  17.  前記複数のp型熱電変換素子および前記複数のn型熱電変換素子のそれぞれは、複数の隔壁および複数の下部電極を備え、可撓性および絶縁性を有するモールドにおける前記下部電極のそれぞれの上に前記複数の隔壁を介して交互に位置しており、
     前記複数のp型熱電変換素子および前記複数のn型熱電変換素子は、前記複数の下部電極と接する側に対向する側に、p型熱電変換素子とn型熱電変換素子とが対をなすように複数の上部電極を有し、
     前記複数のp型熱電変換素子および前記複数のn型熱電変換素子は、直列に接続している、請求項16に記載の熱電変換モジュール。
  18.  前記上部電極は、金属箔または配線を備えた封止シートである、請求項17に記載の熱電変換モジュール。
  19.  複数のp型熱電変換素子と、複数のn型熱電変換素子とを備える熱電変換モジュールの製造方法であって、
     前記複数のp型熱電変換素子および前記複数のn型熱電変換素子のそれぞれに、請求項1~15のいずれかに記載の熱電材料を用いる、製造方法。
  20.  複数の隔壁および前記複数の隔壁の間に下部電極を備えたモールドの前記下部電極に前記熱電材料を、p型およびn型が交互になるように充填するステップと、
     前記充填された熱電材料上に上部電極を形成するステップと
     を包含し、
     前記上部電極を形成するステップは、前記上部電極が金属箔または配線を備えた封止シールであり、前記金属箔または配線を備えた封止シールを押し当てる、請求項19に記載の製造方法。
  21.  熱電材料を用いたペルチェ素子であって、
     前記熱電材料は、請求項1~15のいずれかに記載の熱電材料である、ペルチェ素子。
PCT/JP2018/024272 2017-07-18 2018-06-27 熱電材料、それを用いた熱電変換モジュール、その製造方法、およびペルチェ素子 WO2019017170A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880045090.2A CN110832651B (zh) 2017-07-18 2018-06-27 热电材料、使用其的热电转换模块、其制造方法及帕尔帖元件
US16/632,772 US20200161525A1 (en) 2017-07-18 2018-06-27 Thermoelectric material, thermoelectric conversion module using a thermoelectric material, method of producing the same, and peltier element
JP2019530947A JP6841533B2 (ja) 2017-07-18 2018-06-27 粘性熱電材料、それを用いた熱電変換モジュール、その製造方法、およびペルチェ素子
US17/656,811 US20220216389A1 (en) 2017-07-18 2022-03-28 Thermoelectric material, thermoelectric conversion module using a thermoelectric material, method of producing the same, and peltier element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138701 2017-07-18
JP2017-138701 2017-07-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/632,772 A-371-Of-International US20200161525A1 (en) 2017-07-18 2018-06-27 Thermoelectric material, thermoelectric conversion module using a thermoelectric material, method of producing the same, and peltier element
US17/656,811 Division US20220216389A1 (en) 2017-07-18 2022-03-28 Thermoelectric material, thermoelectric conversion module using a thermoelectric material, method of producing the same, and peltier element

Publications (1)

Publication Number Publication Date
WO2019017170A1 true WO2019017170A1 (ja) 2019-01-24

Family

ID=65016418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024272 WO2019017170A1 (ja) 2017-07-18 2018-06-27 熱電材料、それを用いた熱電変換モジュール、その製造方法、およびペルチェ素子

Country Status (4)

Country Link
US (2) US20200161525A1 (ja)
JP (1) JP6841533B2 (ja)
CN (1) CN110832651B (ja)
WO (1) WO2019017170A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068297A (ja) * 2018-10-24 2020-04-30 東洋インキScホールディングス株式会社 熱電変換材料及びそれを用いた熱電変換素子
WO2022176921A1 (ja) * 2021-02-19 2022-08-25 デンカ株式会社 分散液及びその製造方法、熱電変換膜及びその製造方法、並びに熱電変換モジュール

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112358772B (zh) * 2020-11-12 2022-05-24 华南理工大学 具有灵敏温度感知及火灾预警功能柔性阻燃涂层及其制备方法与应用
CN112751507B (zh) * 2020-12-10 2022-11-25 重庆大学 基于电偶骨架及有机浇筑固化的可穿戴人体温差发电器
CN113140666B (zh) * 2021-03-30 2023-09-26 武汉工程大学 一种复合热电材料及其制备方法
CN113140665A (zh) * 2021-04-20 2021-07-20 哈尔滨工业大学(深圳) Fe或Fe基合金用于Zintl相热电器件接头的应用
CN113280838B (zh) * 2021-05-17 2022-10-11 武汉纺织大学 全纤维基自供电传感器
CN113380941B (zh) * 2021-06-07 2022-07-26 北京航空航天大学 一种可拉伸多孔结构的面外型热电器件
CN116707587A (zh) * 2023-06-08 2023-09-05 北京化工大学 一种非接触式信息传输装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084821A (ja) * 2010-10-13 2012-04-26 Nihon Sentan Kagaku Kk 熱電変換材料ならびに熱電変化素子
JP2014007376A (ja) * 2012-05-30 2014-01-16 Denso Corp 熱電変換装置
JP2015012236A (ja) * 2013-07-01 2015-01-19 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
JP2016009851A (ja) * 2014-06-26 2016-01-18 国立大学法人 奈良先端科学技術大学院大学 ナノ材料−ドーパント組成物複合体の製造方法、ナノ材料−ドーパント組成物複合体およびドーパント組成物
WO2016147809A1 (ja) * 2015-03-18 2016-09-22 リンテック株式会社 排熱回収シート

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005294478A (ja) * 2004-03-31 2005-10-20 Dainippon Printing Co Ltd 熱電変換材料
JP5848284B2 (ja) * 2012-07-11 2016-01-27 富士フイルム株式会社 熱電変換素子及びこれを用いた熱電変換材料
KR102140146B1 (ko) * 2013-02-19 2020-08-11 삼성전자주식회사 그래핀 함유 복합 적층체, 그 제조방법, 이를 포함하는 열전재료 및 열전모듈과 열전 장치
JP2014199836A (ja) * 2013-03-29 2014-10-23 東洋インキScホールディングス株式会社 熱電変換材料、熱電変換素子用組成物、熱電変換膜およびそれらを用いた熱電変換素子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084821A (ja) * 2010-10-13 2012-04-26 Nihon Sentan Kagaku Kk 熱電変換材料ならびに熱電変化素子
JP2014007376A (ja) * 2012-05-30 2014-01-16 Denso Corp 熱電変換装置
JP2015012236A (ja) * 2013-07-01 2015-01-19 富士フイルム株式会社 熱電変換素子および熱電変換モジュール
JP2016009851A (ja) * 2014-06-26 2016-01-18 国立大学法人 奈良先端科学技術大学院大学 ナノ材料−ドーパント組成物複合体の製造方法、ナノ材料−ドーパント組成物複合体およびドーパント組成物
WO2016147809A1 (ja) * 2015-03-18 2016-09-22 リンテック株式会社 排熱回収シート

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020068297A (ja) * 2018-10-24 2020-04-30 東洋インキScホールディングス株式会社 熱電変換材料及びそれを用いた熱電変換素子
WO2022176921A1 (ja) * 2021-02-19 2022-08-25 デンカ株式会社 分散液及びその製造方法、熱電変換膜及びその製造方法、並びに熱電変換モジュール

Also Published As

Publication number Publication date
JPWO2019017170A1 (ja) 2020-05-28
CN110832651A (zh) 2020-02-21
CN110832651B (zh) 2023-12-15
US20220216389A1 (en) 2022-07-07
JP6841533B2 (ja) 2021-03-10
US20200161525A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP6841533B2 (ja) 粘性熱電材料、それを用いた熱電変換モジュール、その製造方法、およびペルチェ素子
Panigrahy et al. Polymeric thermoelectric PEDOT: PSS & composites: Synthesis, progress, and applications
CN102456753B (zh) 光电转换元件及其制造方法
Guan et al. Enhancement of the Seebeck coefficient of organic thermoelectric materials via energy filtering of charge carriers
Burton et al. Printed thermoelectrics
TW201607092A (zh) 有機-無機串疊型太陽能電池
US20190181323A1 (en) Flexible thermoelectric module
US20190181321A1 (en) Flexible thermoelectric module
JPWO2017038773A1 (ja) 熱電変換モジュール、熱電変換モジュールの製造方法および熱伝導性基板
US20190181322A1 (en) Thermoelectric tape
WO2016147809A1 (ja) 排熱回収シート
TW201840464A (zh) n型導電材料及該製造方法
US20180183360A1 (en) Thermoelectric conversion module
Khanna Flexible Electronics, Volume 3: Energy devices and applications
Lim et al. Solution-dispersed copper iodide anode buffer layer gives P3HT: PCBM-based organic solar cells an efficiency boost
Jing et al. Review of inorganic hole transport materials for Perovskite solar cells
WO2017208929A1 (ja) 熱電変換モジュール
KR101537974B1 (ko) 다공성 유기 열전소자
JP6463510B2 (ja) 熱電変換モジュール
JP6562403B2 (ja) ナノ材料複合体およびその製造方法
JP2016004988A (ja) 熱電変換材料の製造方法、その製造方法のために使用する原料、その製造方法により得られうる熱電変換材料及びそれを有する熱電変換モジュール、並びにそれらの用途
CN108475729A (zh) 固体接合型光电转换元件及其制造方法
Hu et al. Realizing High Electrical Conductivity in Chlorine-Doped Bi2S3 Thermoelectric Thin Films via Air Plasma Treatment
CN107611247A (zh) 成长碲及碲化物纳米线阵列于导电基材上的方法和碲及碲化物纳米线热电装置
Chun et al. Enhancement of organic light-emitting diodes efficiency using carbon nanotube doped hole-injection layer on the Al-doped ZnO anode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18835381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530947

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18835381

Country of ref document: EP

Kind code of ref document: A1