WO2019017015A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2019017015A1
WO2019017015A1 PCT/JP2018/013833 JP2018013833W WO2019017015A1 WO 2019017015 A1 WO2019017015 A1 WO 2019017015A1 JP 2018013833 W JP2018013833 W JP 2018013833W WO 2019017015 A1 WO2019017015 A1 WO 2019017015A1
Authority
WO
WIPO (PCT)
Prior art keywords
automatic analyzer
common
consumables
transport mechanism
consumable
Prior art date
Application number
PCT/JP2018/013833
Other languages
English (en)
French (fr)
Inventor
孝宏 熊谷
大草 武徳
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to EP18834440.2A priority Critical patent/EP3657177A4/en
Priority to CN201880042375.0A priority patent/CN110799844B/zh
Priority to US16/624,376 priority patent/US11474119B2/en
Priority to JP2019530872A priority patent/JP6857733B2/ja
Publication of WO2019017015A1 publication Critical patent/WO2019017015A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers
    • G01N2035/00792Type of components bearing the codes, other than sample carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0401Sample carriers, cuvettes or reaction vessels
    • G01N2035/0429Sample carriers adapted for special purposes
    • G01N2035/0434Sample carriers adapted for special purposes in the form of a syringe or pipette tip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0443Rotary sample carriers, i.e. carousels for reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/103General features of the devices using disposable tips

Definitions

  • the present invention relates to an automatic analyzer, for example, an automatic analyzer equipped with a mechanism for transporting a plurality of consumables.
  • the automatic analysis apparatus is provided with various transport mechanisms for appropriately transporting such a plurality of types of consumables and discarding the consumables after use.
  • the various transport mechanisms may include a mechanism for transporting a plurality of consumables in common.
  • the plurality of types of consumables are different in shape, material, application, and the like. For this reason, when disposing of a plurality of types of consumables, it is desirable to separately dispose of each type. In particular, when discarding consumables that handle biological samples and the like, additional processing may be required from the viewpoint of safety, and the importance of separate disposal increases. Under such circumstances, Patent Document 1 does not have a viewpoint regarding such separate disposal of consumables, and for example, a plurality of types of consumables may be collected at one place.
  • the present invention has been made in view of the foregoing, and one of the objects thereof is to provide an automatic analyzer capable of appropriately separating and discarding consumables.
  • the automatic analyzer includes a common transport mechanism for transporting a plurality of types of consumables by a common mechanism, a plurality of transport paths provided separately therefrom, and types of consumables being transported by the common transport mechanism. And a determination unit.
  • the automatic analyzer selects one of the plurality of transport paths according to the determination result of the determination unit, and controls the consumables from the common transport mechanism to be transported along the selected transport path.
  • FIG. 16 is a schematic view showing a configuration example of a type determination unit in the automatic analyzer according to the third embodiment of the present invention.
  • FIG. 16 is a schematic view showing a configuration example of a type determination unit in the automatic analyzer according to the third embodiment of the present invention.
  • the automatic analyzer by Embodiment 4 of this invention WHEREIN: It is a flowchart which shows an example of the processing content of a part of apparatus control part.
  • FIG. 21 is a schematic view showing a configuration example of a type determination unit in an automatic analyzer according to a fifth embodiment of the present invention. It is the schematic which shows the structural example of the principal part of the automatic analyzer by Embodiment 6 of this invention.
  • the constituent elements are not necessarily essential unless explicitly stated or considered to be obviously essential in principle. Needless to say.
  • the shapes, positional relationships and the like of components etc. when referring to the shapes, positional relationships and the like of components etc., the shapes thereof are substantially the same unless particularly clearly stated and where it is apparently clearly not so in principle. It is assumed that it includes things that are similar or similar to etc. The same applies to the above numerical values and ranges.
  • FIG. 1 is a schematic view showing a configuration example of a main part of an automatic analyzer according to a first embodiment of the present invention.
  • the automatic analyzer shown in FIG. 1 is, for example, a biochemical analyzer or an immunoanalyzer for analyzing a specific component contained in a sample (sample) such as serum or urine.
  • the automatic analyzer is not particularly limited thereto, and may be, for example, a mass spectrometer used for clinical examination, or a coagulation analyzer that measures the coagulation time of blood.
  • the automatic analyzer may be in the form of a complex system in which a mass spectrometer, a coagulation analyzer, a biochemical analyzer, an immunoanalyzer, etc. are appropriately combined, or an automatic analysis system to which these are applied.
  • the automatic analyzer (for example, an immunoanalyzer) shown in FIG. 1 includes a transfer device for transferring a sample rack 101 on which a sample is loaded, a reagent disk 103, a storage box 110, a reaction unit 111, and a magnetic separator 116.
  • a separation mechanism, a detection unit 120, and various transport mechanisms for transporting a reagent container and a reaction container to each part of the apparatus are provided.
  • the automatic analysis device includes a device control unit 10 that controls the operation of the entire device, and a device operation unit 11 that takes on an interface between the device control unit 10 and an operator.
  • the device control unit 10 includes, for example, a processor 12 and a memory 13 such as a random access memory (RAM), a read only memory (ROM), a hard disk drive (HDD) or the like. Control the sequence.
  • the device control unit 10 is not limited to the configuration using such program processing, but may be a configuration using dedicated hardware processing or a configuration using program processing and hardware processing in combination as appropriate.
  • the apparatus operation unit 11 includes, for example, a display unit such as a display, and an input device such as a mouse and a keyboard.
  • the transport apparatus places the sample rack 101 on a belt and transports it by the belt.
  • the transport apparatus may be a disk on which the sample is placed and transported by rotation, or may transport the sample rack 101 by a gripping operation or a lifting operation.
  • the reagent disc 103 accommodates a reagent container 102 containing reagents and magnetic particles necessary for the immune reaction.
  • the reagent container 102 has a lid.
  • a reaction container 108 used for the reaction and a sample dispensing tip 109 (hereinafter referred to as a tip) used for fractionating and dispensing the sample are stored.
  • the reaction container 108 and the tip 109 become consumables used in analysis.
  • the reaction unit 111 is provided with a reaction container 108, and causes a reaction between a sample and a reagent in the reaction container 108.
  • the reaction unit 111 has a temperature control mechanism necessary for the reaction of the sample and the reagent.
  • the various transport mechanisms include a common transport mechanism 114 and a transport mechanism 117.
  • the common transport mechanism 114 transports a plurality of types of consumables by a common mechanism.
  • the common transport mechanism 114 transports the reaction container 108 to the reaction unit 111 and transports the chip 109 to the buffer 113.
  • the buffer 113 is a temporary storage place of the chip 109 before being used for dispensing.
  • the common transport mechanism 114 specifically, for example, a gripping mechanism that grips the chip 109 and the reaction container 108, and a rail that moves the gripping mechanism via a rail provided in the X-axis, Y-axis, and Z-axis directions. And a mechanism.
  • the transport mechanism 117 transports the reaction container 108 appropriately between the reaction unit 111, the magnetic separator 116, the detection unit 120, and the reaction container disposal port 112.
  • the automatic analyzer also includes a container lid opening / closing mechanism 104, a sample dispensing probe 105, a reagent dispensing probe 106, and a magnetic particle stirring mechanism 107.
  • the sample dispensing probe 105 dispenses and dispenses a sample from the sample rack 101 in a state where the chip 109 stored in the buffer 113 is attached.
  • the container lid opening and closing mechanism 104 opens and closes the lid of the reagent container 102.
  • the reagent dispensing probe 106 separates and dispenses the reagent and the magnetic particles from the reagent container 102.
  • the magnetic separation mechanism includes a magnetic separator 116, an impurity suction mechanism 118, and a cleaning solution discharge mechanism 119.
  • the impurity suction mechanism 118 suctions the liquid containing impurities in the reaction vessel 108 transported to the magnetic separator 116.
  • the cleaning solution discharge mechanism 119 discharges the cleaning solution into the reaction container 108 transported to the magnetic separator 116.
  • a reagent discharge mechanism 121 is provided near the detection unit 120. The reagent discharge mechanism 121 discharges a detection reagent to the reaction container 108 transported to the detection unit 120.
  • each unit is performed in response to an instruction from the device control unit 10.
  • the common transfer mechanism 114 transfers the reaction container 108 from the storage box 110 to the reaction unit 111. Further, the common transport mechanism 114 transports the chip 109 to the buffer 113.
  • the reaction unit 111 rotates and moves the transported reaction container 108 to the reagent dispensing position.
  • the reagent dispensing probe 106 dispenses a reagent from the reagent disc 103 to the reaction container 108 on the reaction unit 111.
  • the sample dispensing probe 105 includes a chip holding unit, and mounts the chip 109 transferred to the buffer 113 on the chip holding unit by rotational movement and vertical movement.
  • the sample dispensing probe 105 mounted with the tip 109 dispenses the sample from the sample container 124 installed on the sample rack 101, and dispenses the sample to the reaction container 108 moved to the sample dispensing position.
  • the sample container 124 is held by the container holding device 123.
  • the sample dispensing probe 105 moves the used tip 109 to the tip disposal port 115 by rotational movement and up and down movement, removes the tip 109 and discards it to the tip disposal port 115.
  • the reaction unit 111 moves the reaction container 108 to the reagent dispensing position by rotation.
  • the predetermined time is the time required for the reaction of the sample and the reagent.
  • the reagent dispensing probe 106 dispenses magnetic particles from the reagent disc 103 and dispenses the magnetic particles into the reaction container 108 that should be at the reagent dispensing position.
  • the reaction unit 111 rotates to a predetermined position, and the transport mechanism 117 transports the reaction container 108 on the reaction unit 111 to the magnetic separator 116.
  • the magnetic separator 116 separates the magnetic component including the reaction product in the reaction vessel 108 and the nonmagnetic component including the impurity. More specifically, the suction by the impurity suction mechanism 118 and the discharge of the washing liquid by the washing liquid discharge mechanism 119 are repeated several times, and finally, only the magnetic component including the reaction product remains in the reaction container 108.
  • the transport mechanism 117 transports the reaction container 108 in which the magnetic component remains to the detection unit 120. Thereafter, a reagent for detection is discharged to the reaction container 108 by the reagent discharge mechanism 121, and detection is performed. The transport mechanism 117 transports the reaction container 108 for which detection has been completed to the reaction container disposal port 112 and discards it. Thereafter, the automatic analyzer repeats the above-described operation on subsequent samples.
  • the automatic analyzer of FIG. 1 further includes a type determination unit 122.
  • the type determination unit 122 determines the type of the consumable item being transported by the common transport mechanism 114 (in this example, whether it is the reaction container 108 or the tip 109).
  • the automatic analyzer in FIG. 1 selects one of a plurality of transport paths provided separately from the common transport mechanism 114 according to the determination result of the type determination unit 122, and the consumable item from the common transport mechanism 114 is selected. It controls to be transported by the transport route.
  • a plurality of waste ports (in this example, the reaction container waste port 112 and the tip waste port 115) are provided at the end of the plurality of transport paths, and the automatic analysis device is connected via the plurality of transport paths.
  • the reaction container 108 is stored in the storage box 110 and transported while being held by the common transport mechanism 114, and the type determination unit 122 determines the type.
  • the automatic analyzer selects a first transport route which is a route from the position at which the type determination has been performed to the reaction container disposal port 112 according to the determination result.
  • the reaction container 108 is first installed in the reaction unit 111 by the common transport mechanism 114. Subsequently, the reaction container 108 is moved to the reagent dispensing position and the sample dispensing position by the rotation of the reaction unit 111, and after the reagent, sample and magnetic particles are dispensed, the reagent 108 is gripped by the transport mechanism 117.
  • the reaction vessel 108 in which the magnetic components are separated by the magnetic separator 116 is transported by the transport mechanism 117 to the detection unit 120. Thereafter, the reaction container 108 whose detection has been completed is discarded by the transport mechanism 117 to the reaction container disposal port 112.
  • the chips 109 are stored in the storage box 110 and transported while being held by the common transportation mechanism 114, and the type determination unit 122 determines the type.
  • the automatic analyzer selects a second transport route which is a route from the position at which the type determination has been performed to the tip disposal port 115 according to the determination result.
  • the chips 109 are first installed to the buffer 113 by the common transport mechanism 114. Subsequently, the chip 109 is attached to the sample dispensing probe 105 by the operation of the sample dispensing probe 105. Thereafter, the chip 109 is separated and discharged from the sample, and is removed from the sample dispensing probe 105 by the operation of the sample dispensing probe 105 and discarded to the tip waste port 115.
  • the reaction container disposal port 112 and the chip disposal port 115 are not connected at a point not shown, and the consumables discarded to the reaction container disposal port 112 and the consumables discarded to the chip disposal port 115 are individually separate. Will be collected. As a result, consumables can be properly separated and disposed.
  • the operation range of the common transfer mechanism 114 includes the area of the reaction container 108 and the storage box 110 in which the chip 109 is installed.
  • the operation range may not include the storage box 110.
  • the regular case is a case where consumables are discarded after being used in various processes necessary for analysis, as in the above-described first transport path and second transport path.
  • the apparatus control unit 10 normally manages the transport path of the consumables sequentially based on a predetermined time sequence, and the type of consumables being transported by the common transport mechanism 114 is also time sequenced. It recognizes beforehand based on. Therefore, in such a case, the type determination unit 122 does not necessarily have to perform the type determination.
  • the type of consumable item being transported may be unknown.
  • a predetermined device error in other words, an abnormal stop
  • the type of consumable item being transported is unknown, it becomes difficult to properly separate and dispose the consumable item. Therefore, it is useful to use the type determination unit 122.
  • FIG. 2A is a flow chart showing an example of processing content of a part of the device control unit in FIG.
  • the device control unit 10 determines whether it is necessary to dispose of the transported object (step S201). Specifically, the device control unit 10 determines whether or not an irregular case such as occurrence of a device error has occurred.
  • the apparatus control unit 10 determines whether the common transport mechanism 114 is transporting the transported product (step S202). Specifically, for example, when the common transport mechanism 114 grips and transports the transported object by the gripper, the apparatus control unit 10 determines the presence or absence of the transported object by detecting the opening and closing of the gripper. The apparatus control unit 10 ends the process when it is not necessary to dispose of the transported object at step S201 or when there is no transported object at step S202.
  • the apparatus control unit 10 causes the type determination unit 122 to determine the type of the transported object (step S203).
  • the device control unit 10 performs discarding processing for each type (steps S204 and S205).
  • the device control unit 10 stops the operation of the device and notifies the device operation unit 11 to that effect (steps S204 and S206).
  • the device control unit 10 stops the device operation at step S206, but in some cases, the process may be ended without stopping the device operation.
  • the apparatus control unit 10 may perform the type determination of the transported object in step S203 regardless of the presence or absence of the transported object without performing the process of step S202.
  • the conveyed product is usually a consumable (in this example, the reaction vessel 108 or the tip 109), but may be a special part for device debugging.
  • a special part for example, a worker used for position adjustment of the device can be mentioned. If the transported object is a special part and the type determination unit 122 can not specify the special part, the process of step S206 is performed. As a result, it is possible to prevent the special parts from being discarded.
  • FIG. 2B is a flowchart showing an example of detailed processing contents of the discarding process (step S205) for each type in FIG. 2A.
  • the apparatus control unit 10 instructs the common conveyance mechanism 114 to convey the chip 109 to the buffer 113 when the conveyed product (that is, the consumable item) is the chip 109 based on the determination result of the type determination unit 122 Steps S211 and S212). Subsequently, the apparatus control unit 10 instructs the sample dispensing probe 105 to discard the tip 109 on the buffer 113 to the tip disposal port 115 (step S213).
  • the device control unit 10 instructs the common transfer mechanism 114 to transfer the reaction container 108 to the reaction unit 111. (Steps S211 and S214). Subsequently, the device control unit 10 instructs the reaction unit 111 to perform a rotation operation (step S215). Thereafter, the apparatus control unit 10 instructs the transport mechanism 117 to discard the reaction container 108 on the reaction unit 111 to the reaction container disposal port 112 (step S216).
  • the apparatus control unit 10 causes the common conveyance mechanism 114 to deliver to the processing mechanism according to the type of the consumable item, and the processing mechanism To perform the disposal process to the disposal port without performing the original process that is a part of the analysis process.
  • the apparatus control unit 10 causes the common transport mechanism 114 to transfer the sample dispensing probe 105 to the sample dispensing probe 105 using the target processing mechanism as the sample dispensing probe 105. To the tip disposal port 115 without performing the original dispensing process.
  • the apparatus control unit 10 causes the common transfer mechanism 114 to deliver to the reaction unit 111 with the processing mechanism of interest as the reaction unit 111 and the transfer mechanism 117.
  • the transport mechanism 117 is made to discard to the reaction container disposal port 112 without performing the original processing such as sample dispensing, magnetic separation, and detection.
  • FIG. 3 is a schematic view showing a configuration example of the type determination unit in FIG.
  • the type determination unit 122 of FIG. 3 includes a plurality of sensors 302 a and 302 b that detect the presence or absence of a substance at different coordinates on a predetermined detection line 300 in one axial direction.
  • the plurality of sensors 302a and 302b for example, a reflection type or transmission type photoelectric sensor, a sensor using reflection of an ultrasonic wave, a sensor that performs detection by the presence or absence of contact, and the like are known.
  • the common transport mechanism 114 in FIG. 1 is movable in the X-axis, Y-axis, and Z-axis directions in a state in which the gripper 301 grips a transported object.
  • the common transport mechanism 114 transports the transported object to the area of the type determination unit 122 on the XY plane, arranges the transported object on the detection line 300 (here, on the Z axis), and then only the specified amount 305 in the Z axis direction. move.
  • the type determination unit 122 determines the type of the conveyed object based on the detection results of each of the plurality of sensors 302a and 302b.
  • the detection results of the two sensors 302a and 302b differ depending on the shape of the conveyed product (here, the length in the longitudinal direction).
  • the two sensors 302a and 302b both detect the presence of the substance as shown in case A, and when the conveyed product is the reaction container 108, the two sensors as shown in case B. Only one of 302a and 302b detects the presence of a substance. It becomes possible to determine the type of the transported object based on the difference between the detection results.
  • the type judging unit 122 performs the judgment including the presence or absence of the conveyed object by installing a sensor at a position where the shortest conveyed object which can be conveyed can be detected. Is also possible. ⁇ Main effects of Embodiment 1 >>
  • FIG. 4 is a schematic view showing a configuration example of the type determination unit of FIG. 1 in the automatic analyzer according to the second embodiment of the present invention.
  • the type determination unit 122 in FIG. 4 includes a sensor 402 that detects the presence or absence of a substance at a predetermined coordinate on the detection line 300 in a predetermined uniaxial direction. That is, although the type determination unit 122 includes a plurality of sensors in FIG. 3, the type determination unit 122 includes one sensor 402 in FIG. 4.
  • the common transport mechanism 114 arranges the transported object on the detection line 300 and moves it on the detection line 300 as in the case of FIG. 3. In this state, unlike the case of FIG. 3, the type determination unit 122 in FIG. 4 determines the type of the conveyed object based on the movement amount of the common conveyance mechanism 114 required for the sensor 402 to detect the presence of the substance.
  • the shape of the conveyed product causes a difference in the amount of movement of the common conveyance mechanism 114 until the sensor 402 detects the presence of a substance.
  • the conveyed product is the chip 109, as shown in case A, a predetermined amount of movement 405 is required until the sensor 402 detects the presence of a substance.
  • the conveyed product is the reaction container 108 shorter than the chip 109, the movement amount 407 larger than the movement amount 405 is required until the sensor 402 detects the presence of the substance.
  • the type of the transported object can be determined based on the difference in the movement amount.
  • the same effect as that of the first embodiment can be obtained. Furthermore, as compared with the method of FIG. 3, since only one sensor is sufficient, the cost can be reduced, and the degree of freedom in installing the sensor 402 can be improved.
  • a range is defined as the movement amount in consideration of the dimensional difference due to the individual difference of the conveyance objects and the movement amount error of the common conveyance mechanism 114, and the conveyance object is associated with the range. Good.
  • the type of the conveyed product is determined based on the difference in the amount of movement until the sensor detects the presence of the substance, but conversely, based on the difference in the amount of movement until the sensor detects the absence of the substance
  • the type of the conveyed product may be determined. That is, the common transport mechanism 114 may move until the absence of the substance is detected, with the state in which the presence of the substance is detected as an initial state. Furthermore, although the common conveyance mechanism 114 is moved with the sensor fixed here, the sensor may be moved with the common conveyance mechanism 114 fixed. However, in this case, it is preferable to move the common transport mechanism 114 from this point of view, because cost increase and the like may occur due to the movement mechanism of the sensor.
  • FIGS. 5A and 5B are schematic diagrams showing an example of the configuration of the type determination unit in the automatic analyzer according to the third embodiment of the present invention.
  • a common installation unit 501 on which a plurality of types of articles are commonly installed, on the transport paths of the plurality of types of articles.
  • the type determination of the transported object can be performed.
  • the common placement unit 501 is provided with at least one sensor 502 as shown in FIG. 5A.
  • the sensor 502 is attached such that the detection result is different according to the length of the transported object installed in the common installation unit 501.
  • the type of the conveyed product can be determined based on the detection result.
  • a common transport mechanism 506 is provided for transporting the transported object by rotational movement on the XY plane in a state where the transported object is mounted so as to extend in the Z-axis direction.
  • the sensors 505a and 505b are attached so as to detect the presence or absence of an object at different coordinates on the Z axis at certain XY coordinates.
  • type determination is performed using a sensor.
  • the automatic analyzer of FIG. 1 sequentially records the operation history in the memory 13 in the process of operation, the type determination may be performed without using a sensor.
  • the operation history mainly includes, for example, time sequence information, a drive pulse result of a motor, a sensor status, etc., but is not limited to them as long as the type determination of the transported object can be made.
  • FIG. 6 is a flow chart showing an example of process contents of a part of the device control unit in the automatic analyzer according to the fourth embodiment of the present invention.
  • the process shown in FIG. 6 replaces the process of step S203 with the process of step S603.
  • the apparatus control unit 10 operates as a type determination unit, and when the disposal process of the transported object being transported by the common transport mechanism 114 becomes necessary (step S201), the latest stored in the memory 13 The type of the conveyed product is determined by referring to the operation history.
  • ⁇ Main effects of Embodiment 4 >>
  • the type determination can be performed including not only the shape of the conveyed product but also the material, the state, the application, and the like. For example, it may also be possible to determine if the shipment has already been used for analysis. Thereby, based on the determination result, it is also possible to change the transport path (discarding path) depending on whether or not the consumable item is used as a container for a biological sample.
  • Fifth Embodiment Details of Type Determination Unit (Modified Example) >>
  • FIG. 7 is a schematic view showing a configuration example of a type determination unit in the automatic analyzer according to the fifth embodiment of the present invention.
  • the type determination unit illustrated in FIG. 7 includes an imaging unit 702, an image analysis unit 703, and an operation control unit 704.
  • the imaging unit 702 captures an object being conveyed by the common conveyance mechanism 114.
  • the imaging of the conveyed product may be performed during the movement of the conveyed product, or may be performed with the conveyed product stationary.
  • the imaging unit 702 can be installed at any position on the normal transport route by the common transport mechanism 114, and as shown in the type determination unit 122 of FIG. May be
  • the image analysis unit 703 analyzes the image captured by the imaging unit 702 to determine the type of the conveyed product.
  • the type of the transported object may be determined from the shape of the transported object, or the type may be determined from the color of the transported object.
  • the operation control unit 704 controls, for example, the imaging timing and the like by the imaging unit 702 based on an instruction from the device control unit 10.
  • the imaging unit 702 captures an image of the chip 109 in a state in which the chip 109 is gripped by the grippers 301 of the common transport mechanism 114.
  • the common transport mechanism 114 may appropriately intervene when transporting between the processing mechanisms.
  • the chip 109 gripped by the common transport mechanism 114 may have an unused state, an in-use state, and a used state.
  • a biological sample (specimen) 701 is dispensed and is in use. By using the method as shown in FIG. 7, the type determination of the transported object can be performed including the state etc.
  • FIG. 8 is a schematic diagram showing an example of a configuration of a main part of an automatic analyzer according to a sixth embodiment of the present invention.
  • the chip waste port 115 and the reaction container waste port 112 are not within the movement range of the sample dispensing probe 105 and the transport mechanism 117 as compared with the configuration example of FIG. It differs in being provided within the movement range of 114.
  • the common transport mechanism 114 can separate and discard the consumables being transported directly to the disposal port.
  • the apparatus control unit 10 selects one of the plurality of disposal ports according to the determination result of the type determination unit 122, and the consumable item being transported by the common transport mechanism 114 is to the selected disposal port.
  • the common transport mechanism 114 may be controlled to be discarded. Main effects of the sixth embodiment
  • the sample dispensing probe 105 and the transport mechanism 117 can not directly discard consumables, and it is always necessary to discard via the common transport mechanism 114. Will occur.
  • the throughput of the device may be reduced.
  • the space efficiency of the device may be reduced.
  • the present invention is not limited to the above-mentioned embodiment, and can be variously changed in the range which does not deviate from the gist.
  • the above-described embodiments are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. .

Abstract

消耗品を適切に分別廃棄することが可能な自動分析装置を提供する。そこで、自動分析装置は、複数種類の消耗品を共通の機構で搬送する共通搬送機構114と、それとは別に設けられる複数の搬送経路と、共通搬送機構114で搬送中の消耗品の種別を判定する種別判定部122とを有する。当該自動分析装置は、種別判定部122の判定結果に応じて複数の搬送経路のいずれかを選択し、共通搬送機構114からの消耗品が当該選択した搬送経路で搬送されるように制御する。

Description

自動分析装置
 本発明は、自動分析装置に関し、例えば、複数種類の消耗品を搬送する機構を備えた自動分析装置に関する。
 特許文献1には、移送部による分注機構部の移送期間で、分注チップが分注機構部に適切に装着されているか否かを監視することで、分注チップの装着後の外れに起因する不正確な分注を防止する技術が示される。
特開2005-201769号公報
 例えば、血清や尿などの検体中に含まれる特定成分の分析を行うため、生化学分析装置や免疫分析装置といった各種自動分析装置が用いられる。このような自動分析装置では、キャリーオーバを防止し、分析性能を確保するために使い捨て容器となる複数種類の消耗品が使用される。このため、自動分析装置は、このような複数種類の消耗品を適切に搬送し、使用後の消耗品を廃棄するための各種搬送機構を備える。各種搬送機構の中には、複数種類の消耗品を共通で搬送する機構が含まれる場合がある。
 一方、複数種類の消耗品は、それぞれ、形状、材質、用途等が異なっている。このため、複数種類の消耗品を廃棄する際には、種類毎に分別廃棄を行うことが望ましい。特に、生体試料等を取り扱った消耗品を廃棄する際には、安全性の観点から追加処理等が必要となる場合があり、分別廃棄の重要性が高まる。こうした中、特許文献1では、このような消耗品の分別廃棄に関する観点はなく、例えば、複数種類の消耗品が、一箇所に収集される場合がある。
 本発明は、このようなことに鑑みてなされたものであり、その目的の一つは、消耗品を適切に分別廃棄することが可能な自動分析装置を提供することである。
 本発明の前記並びにその他の目的と新規な特徴は、本明細書の記述及び添付図面から明らかになるであろう。
 本願において開示される実施の形態のうち代表的なものの概要を簡単に説明すれば下記の通りである。
 一実施の形態の自動分析装置は、複数種類の消耗品を共通の機構で搬送する共通搬送機構と、それとは別に設けられる複数の搬送経路と、共通搬送機構で搬送中の消耗品の種別を判定する判定部とを有する。当該自動分析装置は、判定部の判定結果に応じて複数の搬送経路のいずれかを選択し、共通搬送機構からの消耗品が当該選択した搬送経路で搬送されるように制御する。
 本願において開示される発明のうち、代表的な実施の形態によって得られる効果を簡単に説明すると、複数種類の消耗品を使用する自動分析装置において、消耗品を適切に分別廃棄することが可能になる。
本発明の実施の形態1による自動分析装置の主要部の構成例を示す概略図である。 図1における装置制御部の一部の処理内容の一例を示すフロー図である。 図2Aにおける種別毎の廃棄処理の詳細な処理内容の一例を示すフロー図である。 図1における種別判定部の構成例を示す概略図である。 本発明の実施の形態2による自動分析装置において、図1の種別判定部の構成例を示す概略図である。 本発明の実施の形態3による自動分析装置において、種別判定部の構成例を示す概略図である。 本発明の実施の形態3による自動分析装置において、種別判定部の構成例を示す概略図である。 本発明の実施の形態4による自動分析装置において、装置制御部の一部の処理内容の一例を示すフロー図である。 本発明の実施の形態5による自動分析装置において、種別判定部の構成例を示す概略図である。 本発明の実施の形態6による自動分析装置の主要部の構成例を示す概略図である。
 以下の実施の形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらは互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。また、以下の実施の形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でも良い。
 さらに、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。なお、実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。
 (実施の形態1)
 《自動分析装置の概略構成および概略動作》
 図1は、本発明の実施の形態1による自動分析装置の主要部の構成例を示す概略図である。図1に示す自動分析装置は、例えば、血清や尿などの検体(試料)中に含まれる特定成分の分析を行うための生化学分析装置や免疫分析装置などである。ただし、自動分析装置は、特に、これらに限定されるものではなく、例えば、臨床検査に用いる質量分析装置や、血液の凝固時間を測定する凝固分析装置などであってもよい。また、自動分析装置は、質量分析装置、凝固分析装置、生化学分析装置、免疫分析装置などを適宜組み合わせた複合システム、あるいは、これらを応用した自動分析システムの形態であってもよい。
 図1の自動分析装置(例えば、免疫分析装置)は、試料を乗せるサンプルラック101を搬送する搬送装置と、試薬ディスク103と、格納箱110と、反応部111と、磁気分離器116を含む磁気分離機構と、検出部120と、試薬容器や反応容器を装置の各部に搬送する各種搬送機構とを備える。また、当該自動分析装置は、装置全体の動作を制御する装置制御部10と、装置制御部10とオペレータとの間のインタフェースを担う装置操作部11とを備える。
 装置制御部10は、例えば、プロセッサ12と、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)等のメモリ13とを含み、プロセッサ12によるプログラム処理によって装置全体の動作シークエンスを制御する。装置制御部10は、このようなプログラム処理を用いる構成に限らず、専用のハードウェア処理を用いる構成や、プログラム処理とハードウェア処理とを適宜組み合わせて用いる構成であってもよい。装置操作部11は、例えばディスプレイ等の表示部や、マウス、キーボードなどの入力装置等で構成される。
 搬送装置は、例えば、サンプルラック101をベルト上に設置して、ベルトにより搬送する。搬送装置は、試料を設置して、回転により搬送するディスクであってもよいし、サンプルラック101を掴み動作や持ち上げ動作により搬送するものであってもよい。試薬ディスク103には、免疫反応に必要な試薬及び磁性粒子の入った試薬容器102が収納される。この試薬容器102には蓋が付いている。格納箱110には、反応に用いる反応容器108および試料の分取・分注に用いる試料分注チップ109(以下チップと呼ぶ)が収納される。反応容器108やチップ109は、分析で使用される消耗品となる。反応部111は、反応容器108が設置され、当該設置された反応容器108内で試料と試薬の反応を行う。反応部111は、試料と試薬の反応に必要な温度制御機構を有している。
 各種搬送機構には、共通搬送機構114と、搬送機構117とが含まれる。共通搬送機構114は、複数種類の消耗品を共通の機構で搬送する。この例では、共通搬送機構114は、反応容器108を反応部111へ搬送し、チップ109をバッファ113へ搬送する。バッファ113は、分注に使用する前のチップ109の一時保管場所となる。共通搬送機構114は、具体的には、例えば、チップ109や反応容器108を把持する把持機構と、当該把持機構をX軸、Y軸、Z軸方向に設けられたレールを介して移動させるレール機構とを備える。搬送機構117は、反応容器108を、反応部111、磁気分離器116、検出部120および反応容器廃棄口112との間で適宜搬送する。
 また、当該自動分析装置は、容器蓋開閉機構104、試料分注プローブ105、試薬分注プローブ106、および磁性粒子攪拌機構107を備える。試料分注プローブ105は、バッファ113に保管されたチップ109を装着した状態で、サンプルラック101から試料の分取・分注を行う。容器蓋開閉機構104は、試薬容器102の蓋の開閉を行う。試薬分注プローブ106は、試薬容器102から試薬及び磁性粒子の分取・分注を行う。
 磁気分離機構には、磁気分離器116、不純物吸引機構118、および洗浄液吐出機構119が含まれる。不純物吸引機構118は、磁気分離器116に搬送された反応容器108内の不純物を含む液体を吸引する。洗浄液吐出機構119は、磁気分離器116に搬送された反応容器108内へ洗浄液を吐出する。また、検出部120付近には、試薬吐出機構121が設けられる。試薬吐出機構121は、検出部120に搬送された反応容器108に対し検出用の試薬を吐出する。
 次に、図1の自動分析装置の動作を説明する。各部の動作は、装置制御部10からの指示を受けて行われる。まず、共通搬送機構114は、反応容器108を格納箱110から反応部111へ搬送する。また、共通搬送機構114は、チップ109をバッファ113へ搬送する。反応部111は、回転し、搬送された反応容器108を試薬分注位置まで移動させる。試薬分注プローブ106は、試薬ディスク103から反応部111上の反応容器108へ試薬を分注する。
 その後、反応部111は、再び回転し、反応容器108を試料分注位置まで移動させる。試料分注プローブ105は、チップ保持部を備え、バッファ113へ搬送されたチップ109を回転運動および上下動作によってチップ保持部に装着する。チップ109が装着された試料分注プローブ105は、サンプルラック101上に設置された試料容器124から試料を分取し、試料分注位置まで移動した反応容器108へ分注する。分取の際、試料容器124は、容器挟持装置123によって挟持される。試料分注プローブ105は、使用されたチップ109を回転運動および上下動作によってチップ廃棄口115へ移動させ、当該チップ109を取り外してチップ廃棄口115へ廃棄する。
 一方、反応部111は、試料と試薬の分注が終了した反応容器108を載せた状態で一定時間待ったのち、反応容器108を回転により試薬分注位置まで移動させる。当該一定時間は、試料と試薬の反応に必要とされる時間である。試薬分注プローブ106は、試薬ディスク103から磁性粒子を分取し、試薬分注位置にあるべき反応容器108に分注する。さらに、反応部111で一定時間反応を待った後、反応部111は所定の位置まで回転し、搬送機構117は、反応部111上の反応容器108を磁気分離器116へ搬送する。
 磁気分離器116は、反応容器108内の反応生成物を含んだ磁性成分と不純物を含む非磁性成分とを分離する。より具体的には、不純物吸引機構118による吸引と洗浄液吐出機構119による洗浄液の吐出とが数回繰り返され、最終的に、反応容器108内には反応生成物を含んだ磁性成分のみが残る。搬送機構117は、磁性成分が残った反応容器108を検出部120へ搬送する。その後、試薬吐出機構121により検出のための試薬が反応容器108に対して吐出され、検出が行われる。搬送機構117は、検出が終了した反応容器108を反応容器廃棄口112へ搬送し、廃棄する。以降、自動分析装置は、その後の試料に対しても前述した動作を繰り返す。
 以上のような構成および動作において、図1の自動分析装置は、さらに、種別判別部122を備える。種別判別部122は、共通搬送機構114で搬送中の消耗品の種別(この例では、反応容器108かチップ109か)を判別する。図1の自動分析装置は、種別判別部122の判別結果に応じて共通搬送機構114とは別に設けられる複数の搬送経路のいずれかを選択し、共通搬送機構114からの消耗品が当該選択した搬送経路で搬送されるように制御する。また、複数の搬送経路の先には、それぞれ複数の廃棄口(この例では、反応容器廃棄口112とチップ廃棄口115)が設けられ、自動分析装置は、当該複数の搬送経路を介して、最終的に、消耗品の廃棄を実施する。これに関して、以下、具体的に説明する。
 まず、反応容器108は、格納箱110に格納され、共通搬送機構114によって把持された状態で搬送され、種別判定部122で種別判定される。自動分析装置は、当該判定結果に応じて、種別判定が行われた位置から反応容器廃棄口112までの経路となる第1の搬送経路を選択する。第1の搬送経路おいて、反応容器108は、まず、共通搬送機構114によって反応部111に設置される。続いて、反応容器108は、反応部111の回転により試薬分注位置や試料分注位置に移動し、試薬・試料・磁性粒子が分注された後に搬送機構117によって把持され、磁気分離器116に設置される。磁気分離器116によって磁性成分の分離が実施された反応容器108は、搬送機構117によって検出部120に搬送される。その後、検出が終了した反応容器108は、搬送機構117によって反応容器廃棄口112へ廃棄される。
 一方、チップ109は、格納箱110に格納され、共通搬送機構114によって把持された状態で搬送され、種別判定部122で種別判定される。自動分析装置は、当該判定結果に応じて、種別判定が行われた位置からチップ廃棄口115までの経路となる第2の搬送経路を選択する。第2の搬送経路おいて、チップ109は、まず、共通搬送機構114によってバッファ113へ設置される。続いて、チップ109は、試料分注プローブ105の動作により試料分注プローブ105に装着される。その後、チップ109は、検体の分取・吐出を行った後に、試料分注プローブ105の動作によって試料分注プローブ105から外され、チップ廃棄口115へ廃棄される。
 反応容器廃棄口112とチップ廃棄口115は、図示しない箇所で繋がっておらず、反応容器廃棄口112へ廃棄された消耗品と、チップ廃棄口115へ廃棄された消耗品は、それぞれ、個別に収集される。その結果、消耗品を適切に分別廃棄することが可能になる。
 なお、この例では、共通搬送機構114の動作範囲は、反応容器108およびチップ109が設置された格納箱110の領域を含んでいる。ただし、例えば、反応容器108およびチップ109が複数の機構を組み合わせて搬送される場合、動作範囲は、格納箱110を含まなくてもよい。
 《装置制御部の詳細》
 ここで、実際の運用上、消耗品を廃棄するケースとして、レギュラーなケースと、イレギュラーなケースとがある。レギュラーなケースとは、前述した第1の搬送経路や第2の搬送経路のように、消耗品が、分析に必要な各種処理で用いられたのちに廃棄されるケースである。このようなレギュラーなケースでは、通常、装置制御部10は、消耗品の搬送経路を所定のタイムシークエンスに基づき逐次管理しており、共通搬送機構114で搬送中の消耗品の種別もタイムシークエンスに基づき予め認識している。したがって、このような場合、種別判定部122は、必ずしも種別判定を行う必要はない。
 一方、例えば、イレギュラーなケースでは、搬送中の消耗品の種別が不明となる場合がある。イレギュラーなケースとは、例えば、共通搬送機構114で消耗品を搬送中に所定の装置エラー(言い換えれば異常停止)が生じたような場合や、様々な事情により分析を緊急で中断する必要性が生じた場合等が挙げられる。このようなイレギュラーなケースでは、安全性の観点から、搬送中の消耗品を、一旦、廃棄することが望まれる。しかし、搬送中の消耗品の種別が不明な場合、消耗品を適切に分別廃棄することが困難となる。そこで、種別判定部122を用いることが有益となる。
 図2Aは、図1における装置制御部の一部の処理内容の一例を示すフロー図である。図2Aにおいて、装置制御部10は、搬送物の廃棄処理が必要か否かを判定する(ステップS201)。具体的には、装置制御部10は、装置エラーの発生等のイレギュラーなケースが生じたか否かを判定する。搬送物の廃棄処理が必要な場合、装置制御部10は、共通搬送機構114が搬送物を搬送中か否かを判定する(ステップS202)。具体的には、例えば、共通搬送機構114がグリッパにより搬送物を把持して搬送するような場合、装置制御部10は、グリッパの開閉検知により搬送物の有無を判定する。なお、装置制御部10は、ステップS201で搬送物の廃棄処理が不要な場合、または、ステップS202で搬送物が無い場合には、処理を終了する。
 ステップS202で搬送物が有る場合、装置制御部10は、種別判定部122に搬送物の種別を判定させる(ステップS203)。装置制御部10は、種別判定部122によって種別が特定された場合、種別毎の廃棄処理を行う(ステップS204,S205)。一方、装置制御部10は、種別判定部122によって種別が特定されない場合、装置動作を停止し、装置操作部11へその旨の通知を行う(ステップS204,S206)。なお、ここでは、装置制御部10は、ステップS206で装置動作を停止したが、場合によっては、装置動作を停止せずに処理を終了してもよい。また、装置制御部10は、ステップS202の処理を行わずに、搬送物の有無に関わらずステップS203で搬送物の種別判定を行ってもよい。
 ここで、搬送物は、通常、消耗品(この例では、反応容器108またはチップ109)であるが、装置デバックのための特殊部品となる場合がある。特殊部品として、例えば、装置の位置調整に用いられる雇が挙げられる。搬送物が特殊部品であり、種別判定部122が当該特殊部品を特定できない場合には、ステップS206の処理が行われる。その結果、当該特殊部品が廃棄されるような事態を防止することができる。
 図2Bは、図2Aにおける種別毎の廃棄処理(ステップS205)の詳細な処理内容の一例を示すフロー図である。図2Bにおいて、装置制御部10は、種別判定部122の判定結果に基づき搬送物(すなわち消耗品)がチップ109の場合、共通搬送機構114に当該チップ109のバッファ113への搬送を指示する(ステップS211,S212)。続いて、装置制御部10は、試料分注プローブ105に、バッファ113上のチップ109のチップ廃棄口115への廃棄を指示する(ステップS213)。
 一方、装置制御部10は、種別判定部122の判定結果に基づき搬送物(すなわち消耗品)が反応容器108の場合、共通搬送機構114に当該反応容器108の反応部111への搬送を指示する(ステップS211,S214)。続いて、装置制御部10は、反応部111に回転動作を指示する(ステップS215)。その後、装置制御部10は、搬送機構117に、反応部111上の反応容器108の反応容器廃棄口112への廃棄を指示する(ステップS216)。
 このように、装置制御部10は、共通搬送機構114で搬送中の消耗品を廃棄する際、共通搬送機構114に、消耗品の種別に応じた処理機構への受け渡しを行わせ、当該処理機構に、分析処理の一部となる本来の処理を行わせずに廃棄口への廃棄処理を行わせる。例えば、消耗品がチップ109の場合、対象の処理機構を試料分注プローブ105として、装置制御部10は、共通搬送機構114に試料分注プローブ105への受け渡しを行わせ、試料分注プローブ105に本来の分注処理を行わせることなくチップ廃棄口115への廃棄を行わせる。また、消耗品が反応容器108の場合、対象の処理機構を反応部111および搬送機構117として、装置制御部10は、共通搬送機構114に反応部111への受け渡しを行わせ、反応部111および搬送機構117に、試料分注、磁気分離、検出といった本来の処理を行わせることなく反応容器廃棄口112への廃棄を行わせる。
 《種別判定部の詳細》
 図3は、図1における種別判定部の構成例を示す概略図である。図3の種別判定部122は、予め定めた一軸方向の検出ライン300上のそれぞれ異なる座標における物質の有無を検出する複数のセンサ302a,302bを有する。複数のセンサ302a,302bとしては、例えば、反射型や透過型の光電センサや、超音波の反射を利用したセンサや、接触の有無により検知を行うセンサ等が知られている。
 図1の共通搬送機構114は、図3に示されるように、グリッパ301で搬送物を把持した状態でX軸、Y軸、Z軸方向に移動可能となっている。共通搬送機構114は、XY平面上で搬送物を種別判定部122の領域へ搬送し、搬送物を検出ライン300上(ここではZ軸上)に配置したのち、Z軸方向に規定量305だけ動かす。この状態で、種別判定部122は、複数のセンサ302a,302bのそれぞれの検出結果に基づいて搬送物の種別を判定する。
 図3の例では、搬送物(消耗品)となるチップ109が反応容器108よりも長い場合で、2個のセンサ302a,302bを用いる場合を想定する。この場合、搬送物の形状(ここでは長手方向の長さ)によって2個のセンサ302a,302bの検出結果に違いが生じる。搬送物がチップ109の場合、ケースAに示されるように2個のセンサ302a,302bが共に物質有りを検出し、搬送物が反応容器108の場合、ケースBに示されるように2個のセンサ302a,302bの一方のみが物質有りを検出する。この検出結果の違いに基づいて搬送物の種別を判定することが可能となる。
 このような種別判定方式を用いると、センサの個数、または、センサの個数+1種類の種別判定を行うことが可能になる。すなわち、搬送物が有ることを前提とすると、前述した2種類に加えて、センサ302a,302bが共に物質無しを検出することで、より短い搬送物(例えば、雇)を区別することができる。また、搬送物が有ることを前提としない場合、例えば、搬送され得る最短の搬送物を検出できる位置にセンサを設置することで、種別判定部122によって搬送物の有無を含めて判定を行うことも可能である。
 《実施の形態1の主要な効果》
 以上、実施の形態1の自動分析装置を用いることで、消耗品を適切に分別廃棄することが可能になる。この際には、共通搬送機構114のように、共通の機構で複数種類の消耗品を搬送する場合であっても、搬送する消耗品の種別に応じて適切に分別廃棄を行うことができる。また、図2Aに示したように、種別判定部122を必要な時のみ動作させた場合、装置のスループットを維持することが可能になる。
 (実施の形態2)
 《種別判定部の詳細(変形例)》
 図4は、本発明の実施の形態2による自動分析装置において、図1の種別判定部の構成例を示す概略図である。図4の種別判定部122は、予め定めた一軸方向の検出ライン300上の所定の座標における物質の有無を検出するセンサ402を有する。すなわち、種別判定部122は、図3では複数のセンサを備えたが、図4では1個のセンサ402を備える。共通搬送機構114は、図3の場合と同様に、搬送物を検出ライン300上に配置し、かつ検出ライン300上で移動させる。この状態で、図4の種別判定部122は、図3の場合と異なり、センサ402が物質の有りを検出するのに要する共通搬送機構114の移動量に基づいて搬送物の種別を判定する。
 具体的には、図4に示されるように、搬送物の形状(ここでは長手方向の長さ)によって、センサ402が物質の有りを検出するまでの共通搬送機構114の移動量に違いが生じる。搬送物がチップ109の場合、ケースAに示されるように、センサ402が物質の有りを検出するまで所定の移動量405が必要とされる。一方、搬送物がチップ109よりも短い反応容器108の場合、センサ402が物質の有りを検出するまで移動量405よりも大きい移動量407が必要とされる。この移動量の違いに基づいて、搬送物の種別を判定することができる。
 《実施の形態2の主要な効果》
 以上、実施の形態2の自動分析装置を用いることで、実施の形態1の場合と同様の効果が得られる。さらに、図3の方式と比較して、1個のセンサで足りるため、コストの低減や、センサ402を設置するにあたっての自由度の向上等が図れる。なお、移動量の違いを区別する際には、搬送物の個体差による寸法差や、共通搬送機構114の移動量誤差を加味して移動量に範囲を定め、当該範囲に搬送物を対応付けるとよい。
 なお、ここでは、センサが物質の有りを検出するまで移動量の違いに基づいて、搬送物の種別を判定したが、逆に、センサが物質の無しを検出するまでの移動量の違いに基づいて、搬送物の種別を判定してもよい。すなわち、共通搬送機構114は、物質の有りが検出されている状態を初期状態として、物質の無しが検出されるまで移動してもよい。また、ここでは、センサを固定した状態で共通搬送機構114を移動させたが、共通搬送機構114を固定した状態でセンサを移動させてもよい。ただし、この場合、センサの移動機構に伴うコスト増等が生じ得るため、この観点では、共通搬送機構114を移動させる方が望ましい。
 (実施の形態3)
 《種別判定部の詳細(変形例)》
 図5Aおよび図5Bは、本発明の実施の形態3による自動分析装置において、種別判定部の構成例を示す概略図である。自動分析装置によっては、複数種類の搬送物の搬送経路上に、図5Aに示されるように、複数種類の搬送物が共通に設置される共通設置部501が設けられる場合がある。この場合、例えば、共通搬送機構114等が搬送物を共通設置部501に設置した状態で、搬送物の種別判定を行うことができる。
 共通設置部501には、図5Aに示されるように、少なくとも一つのセンサ502が設けられる。この例では、センサ502は、共通設置部501に設置された搬送物の長さに応じて検出結果が異なるように取り付けられている。その結果、当該検出結果に基づいて、搬送物の種別を判定することができる。当該方式では、図3の場合と同様に、センサの個数+1種類の種別判定を行うことが可能である。
 また、自動分析装置によっては、図5Bに示されるように、複数種類の搬送物の共通の搬送経路上にセンサ505a,505bを設けることも可能である。図5Bの例では、搬送物を、Z軸方向に延伸するように装着した状態で、XY平面上での回転運動によって搬送物を搬送する共通搬送機構506が設けられる。センサ505a,505bは、あるXY座標において、Z軸上のそれぞれ異なる座標における物体の有無を検出するように取り付けられる。搬送物の種別判定は、共通搬送機構506の回転運動によって搬送物が当該XY座標を通過した際のセンサ505a,505bの検出結果に基づき行われる。
 《実施の形態3の主要な効果》
 以上、実施の形態3の自動分析装置を用いることで、実施の形態1の場合と同様の効果が得られる。また、図3や図4の方式では、種別判定部122の領域を別途設け、当該領域に搬送物を搬送させるように共通搬送機構114を別途制御する必要があった。一方、図5Aおよび図5Bの方式では、搬送物を通常通りに搬送する過程で、種別判定を行うことが可能になるため、スペース効率や制御効率の点で有益となる場合がある。なお、ここでは、回転運動を行う共通搬送機構506を例としたが、図1に示したような共通搬送機構114を用いる場合であっても、図5Bと同様な方式を用いて、Z軸方向への移動を伴わずに種別判定を行える場合がある。
 (実施の形態4)
 《装置制御部の詳細(変形例)》
 実施の形態1~3では、センサを用いて種別判定を行った。一方、図1の自動分析装置が、動作の過程で、逐次、メモリ13に動作履歴を記録するような場合、センサを用いずとも種別判定を行える場合がある。動作履歴は、例えば、タイムシークエンス情報やモータの駆動パルス結果、センサステータスなどが主であるが、搬送物の種別判定が可能であれば、それらに限定されない。
 図6は、本発明の実施の形態4による自動分析装置において、装置制御部の一部の処理内容の一例を示すフロー図である。図6に示すフローは、図2Aに示したフローと比較して、ステップS203の処理がステップS603の処理に置き換わっている。ステップS603において、装置制御部10は、種別判定部として動作し、共通搬送機構114で搬送中の搬送物の廃棄処理が必要となった際(ステップS201)に、メモリ13に記録された最新の動作履歴を参照することで搬送物の種別を判定する。
 《実施の形態4の主要な効果》
 以上、実施の形態4の自動分析装置を用いることで、実施の形態1の場合と同様の効果が得られる。さらに、動作履歴を用いることで、搬送物の形状に限らず、材質、状態、用途等を含めて種別判定を行うことができる。例えば、搬送物が既に分析に使用されたか否かについての判定も可能である。これにより、判定結果に基づき、消耗品が生体試料の容器として使用されたか否かに応じて、搬送経路(廃棄経路)を変更することも可能となる。
 (実施の形態5)
 《種別判定部の詳細(変形例)》
 図7は、本発明の実施の形態5による自動分析装置において、種別判定部の構成例を示す概略図である。図7に示す種別判定部は、撮影部702と、画像解析部703と、動作制御部704とを備える。撮影部702は、共通搬送機構114で搬送中の搬送物を撮影する。搬送物の撮影は、搬送物の移動中に実施してもよいし、搬送物が静止している状態で実施してもよい。撮影部702は、共通搬送機構114による通常の搬送経路上のいずれかの位置に設置することができ、また、図1の種別判定部122に示したように、別途、専用の領域を設置してもよい。
 画像解析部703は、撮影部702によって撮影された画像を解析することで搬送物の種別を判定する。当該解析処理は、例えば、搬送物の形状から搬送物の種別を判定してもよいし、搬送物の色から種別を判定してもよい。動作制御部704は、例えば、装置制御部10からの指示に基づき、撮影部702による撮影タイミング等を制御する。
 図7の例では、チップ109が共通搬送機構114のグリッパ301によって把持された状態で、撮影部702が当該チップ109を撮影している。ここで、自動分析装置によっては、各処理機構の間で搬送を行う際に共通搬送機構114が適宜介在する場合がある。このような場合、例えば、共通搬送機構114によって把持されるチップ109には、未使用な状態、使用中の状態、使用済みの状態が生じ得る。図7のチップ109は、生体試料(検体)701が分注されており、使用中の状態となっている。図7のような方式を用いると、搬送物の形状に限らず、状態等を含めて搬送物の種別判定を行うことができ、例えば、チップ109が使用中であるか否かの判定を行える。これにより、当該判定結果に基づき、搬送経路(廃棄経路)を変更することも可能となる。
 《実施の形態5の主要な効果》
 以上、実施の形態5の自動分析装置を用いることで、実施の形態1の場合と同様の効果が得られる。さらに、搬送物の形状に限らず、状態等を含めて種別判定を行うことができる。
 (実施の形態6)
 《自動分析装置の概略構成および概略動作(変形例)》
 図8は、本発明の実施の形態6による自動分析装置の主要部の構成例を示す概略図である。図8に示す自動分析装置は、図1の構成例と比較して、チップ廃棄口115や反応容器廃棄口112が、試料分注プローブ105や搬送機構117の移動範囲内ではなく、共通搬送機構114の移動範囲内に設けられる点が異なっている。この場合、共通搬送機構114は、搬送中の消耗品を、直接、廃棄口へ分別廃棄することができる。具体的には、装置制御部10は、種別判定部122の判定結果に応じて、複数の廃棄口のいずれかを選択し、共通搬送機構114で搬送中の消耗品が当該選択した廃棄口へ廃棄されるように共通搬送機構114を制御すればよい。
 《実施の形態6の主要な効果》
 以上、実施の形態6の自動分析装置を用いることで、実施の形態1の場合と同様の効果が得られる。ただし、この場合、図1の構成例と異なり、試料分注プローブ105や搬送機構117が、直接、消耗品を廃棄することができなくなり、常に、共通搬送機構114を介して廃棄を行う必要性が生じる。この場合、装置のスループットが低下する恐れがある。また、チップ廃棄口115や反応容器廃棄口112を、試料分注プローブ105や搬送機構117の移動範囲内と、共通搬送機構114の移動範囲内の両方に設けることも考えられる。しかし、この場合、装置のスペース効率が低下する恐れがある。さらに、図1の構成例において、共通搬送機構114の移動範囲をチップ廃棄口115や反応容器廃棄口112へ拡張することも考えられる。しかし、この場合、装置のコスト増や、装置のスペース効率の低下を招く恐れがある。したがって、このような観点からは、図1の構成例が有益となる。
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、前述した実施の形態は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施の形態の構成の一部を他の実施の形態の構成に置き換えることが可能であり、また、ある実施の形態の構成に他の実施の形態の構成を加えることも可能である。また、各実施の形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 10:装置制御部、11:装置操作部、12:プロセッサ、13:メモリ、101:サンプルラック、102:試薬容器、103:試薬ディスク、104:容器蓋開閉機構、105:試料分注プローブ、106:試薬分注プローブ、107:磁性粒子攪拌機構、108:反応容器、109:試料分注チップ、110:格納箱、111:反応部、112:反応容器廃棄口、113:バッファ、114:共通搬送機構、115:チップ廃棄口、116:磁気分離器、117:搬送機構、118:不純物吸引機構、119:洗浄液吐出機構、120:検出部、121:試薬吐出機構、122:種別判定部、123:容器挟持装置、124:試料容器、300:検出ライン、301:グリッパ、302a,302b:センサ、402:センサ、501:共通設置部、502:センサ、505a,505b:センサ、506:共通搬送機構、701:生体試料、702:撮影部、703:画像解析部、704:動作制御部

Claims (15)

  1.  複数種類の消耗品を使用する自動分析装置であって、
     前記複数種類の前記消耗品を共通の機構で搬送する共通搬送機構と、
     前記共通搬送機構とは別に設けられる複数の搬送経路と、
     前記共通搬送機構で搬送中の前記消耗品の種別を判定する判定部と、
    を有し、
     前記自動分析装置は、前記判定部の判定結果に応じて前記複数の搬送経路のいずれかを選択し、前記共通搬送機構からの前記消耗品が当該選択した搬送経路で搬送されるように制御する、
    自動分析装置。
  2.  請求項1記載の自動分析装置において、
     前記自動分析装置は、前記複数の搬送経路を介して前記消耗品の廃棄を実施する、
    自動分析装置。
  3.  請求項1または2記載の自動分析装置において
     前記複数の搬送経路の先にそれぞれ配置される複数の廃棄口を備える、
    自動分析装置。
  4.  請求項1記載の自動分析装置において、
     前記判定部は、予め定めた一軸方向の検出ライン上のそれぞれ異なる座標における物質の有無を検出する複数のセンサを有し、前記共通搬送機構が前記消耗品を前記検出ライン上に配置した状態で、前記複数のセンサのそれぞれの検出結果に基づいて前記消耗品の種別を判定する、
    自動分析装置。
  5.  請求項1記載の自動分析装置において、
     前記判定部は、予め定めた一軸方向の検出ライン上の所定の座標における物質の有無を検出するセンサを有し、前記共通搬送機構が前記消耗品を前記検出ライン上に配置し、かつ前記検出ライン上を移動させた状態で、前記センサによる前記物質の有無の検出結果が一方から他方に変化するのに要する前記共通搬送機構の移動量に基づいて前記消耗品の種別を判定する、
    自動分析装置。
  6.  請求項1記載の自動分析装置において、
     前記自動分析装置の動作履歴が記録されるメモリを有し、
     前記判定部は、前記動作履歴を参照することで前記消耗品の種別を判定する、
    自動分析装置。
  7.  請求項1記載の自動分析装置において、
     前記判定部は、
     前記共通搬送機構で搬送中の前記消耗品を撮影する撮影部と、
     前記撮影部で撮影された画像を解析することで前記消耗品の種別を判定する画像解析部と、
    を有する自動分析装置。
  8.  請求項2記載の自動分析装置において、
     前記自動分析装置は、前記複数種類の前記消耗品を使用しながら検体の成分分析を行う、
    自動分析装置。
  9.  請求項2記載の自動分析装置において、
     前記判定部は、前記共通搬送機構で前記消耗品を搬送中に前記消耗品の廃棄が必要となった場合に前記消耗品の種別を判定する、
    自動分析装置。
  10.  複数種類の消耗品を使用する自動分析装置であって、
     前記複数種類の前記消耗品を共通の機構で搬送する共通搬送機構と、
     複数の廃棄口と、
     前記共通搬送機構で搬送中の前記消耗品の種別を判定する判定部と、
    を有し、
     前記自動分析装置は、前記判定部の判定結果に応じて前記複数の廃棄口のいずれかを選択し、前記共通搬送機構で搬送中の前記消耗品が当該選択した廃棄口へ廃棄されるように前記共通搬送機構を制御する、
    自動分析装置。
  11.  請求項10記載の自動分析装置において、
     前記自動分析装置は、前記複数種類の前記消耗品を使用しながら検体の成分分析を行う、
    自動分析装置。
  12.  複数種類の消耗品を使用しながら所定の分析処理を行う自動分析装置であって、
     前記複数種類の前記消耗品の一つである第1の消耗品の廃棄先となる第1の廃棄口と、
     前記複数種類の前記消耗品の他の一つである第2の消耗品の廃棄先となる第2の廃棄口と、
     前記第1の消耗品を使用する処理であり前記分析処理の一部の処理である第1の処理と、前記第1の消耗品の前記第1の廃棄口への廃棄処理とを行う第1の処理機構と、
     前記第2の消耗品を使用する処理であり前記分析処理の他の一部の処理である第2の処理を行う第2の処理機構と、
     前記複数種類の前記消耗品を共通の機構で搬送し、前記第1の処理機構または前記第2の処理機構へ受け渡す共通搬送機構と、
     前記共通搬送機構で搬送中の前記消耗品の種別を判定する判定部と、
     前記共通搬送機構で搬送中の前記消耗品を廃棄する際に、前記判定部に前記消耗品の種別を判定させ、当該判定結果に基づき前記消耗品が前記第1の消耗品の場合、前記共通搬送機構に前記第1の処理機構への受け渡しを行わせ、前記第1の処理機構に前記第1の処理を行わせずに前記第1の廃棄口への前記廃棄処理を行わせる装置制御部と、
    を有する、
    自動分析装置。
  13.  請求項12記載の自動分析装置において、
     前記第2の処理機構は、さらに、前記第2の消耗品の前記第2の廃棄口への廃棄処理を行い、
     前記装置制御部は、前記判定部の判定結果に基づき前記消耗品が前記第2の消耗品の場合、前記共通搬送機構に前記第2の処理機構への受け渡しを行わせ、前記第2の処理機構に前記第2の処理を行わせずに前記第2の消耗品の前記第2の廃棄口への廃棄処理を行わせる、
    自動分析装置。
  14.  請求項12記載の自動分析装置において、
     前記装置制御部は、前記共通搬送機構で前記消耗品を搬送中に前記自動分析装置に対する所定のエラーが生じた場合に、前記共通搬送機構で搬送中の前記消耗品を廃棄する、
    自動分析装置。
  15.  請求項12記載の自動分析装置において、
     前記所定の分析処理は、検体の成分分析である、
    自動分析装置。
PCT/JP2018/013833 2017-07-21 2018-03-30 自動分析装置 WO2019017015A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18834440.2A EP3657177A4 (en) 2017-07-21 2018-03-30 AUTOMATIC ANALYSIS DEVICE
CN201880042375.0A CN110799844B (zh) 2017-07-21 2018-03-30 自动分析装置
US16/624,376 US11474119B2 (en) 2017-07-21 2018-03-30 Automatic analysis device
JP2019530872A JP6857733B2 (ja) 2017-07-21 2018-03-30 自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017141446 2017-07-21
JP2017-141446 2017-07-21

Publications (1)

Publication Number Publication Date
WO2019017015A1 true WO2019017015A1 (ja) 2019-01-24

Family

ID=65015631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/013833 WO2019017015A1 (ja) 2017-07-21 2018-03-30 自動分析装置

Country Status (5)

Country Link
US (1) US11474119B2 (ja)
EP (1) EP3657177A4 (ja)
JP (1) JP6857733B2 (ja)
CN (1) CN110799844B (ja)
WO (1) WO2019017015A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044688A1 (ja) * 2018-08-28 2020-03-05 株式会社日立ハイテクノロジーズ 自動分析装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234228A (ja) * 1994-02-25 1995-09-05 Hitachi Ltd 検体搬送システム
JP3506000B2 (ja) * 1998-04-13 2004-03-15 松下電器産業株式会社 自動分注装置
JP2005201769A (ja) 2004-01-15 2005-07-28 Sysmex Corp 分析装置
WO2015019880A1 (ja) * 2013-08-09 2015-02-12 株式会社日立ハイテクノロジーズ 自動分析装置
JP5993679B2 (ja) * 2012-09-20 2016-09-14 シスメックス株式会社 試料分析装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5772962A (en) * 1995-05-29 1998-06-30 Hitachi, Ltd. Analyzing apparatus using disposable reaction vessels
JP4254994B2 (ja) * 1995-05-29 2009-04-15 株式会社日立製作所 デイスポーザブルな反応容器を用いる分析装置
JPH1094762A (ja) 1996-09-20 1998-04-14 Nkk Corp 廃棄容器分別装置
JP4726450B2 (ja) 2004-08-25 2011-07-20 大和製衡株式会社 振り分け装置
JP4500749B2 (ja) * 2005-09-05 2010-07-14 株式会社日立ハイテクノロジーズ 自動分析装置
EP1882948A2 (de) * 2006-07-28 2008-01-30 Qiagen GmbH Vorrichtung zur Probenverarbeitung
CN102822679B (zh) * 2010-03-30 2014-09-17 爱科来株式会社 搬送装置、搬送方法、搬送程序和搬送系统
US20130044207A1 (en) * 2011-08-16 2013-02-21 Key Technology, Inc. Imaging apparatus
AU2012305682B2 (en) * 2011-09-09 2015-08-13 Gen-Probe Incorporated Automated sample handling instrumentation, systems, processes, and methods
EP2884285A1 (en) * 2013-12-13 2015-06-17 F. Hoffmann-La Roche AG Supply module for an automated analyzer
JP6042860B2 (ja) * 2014-12-02 2016-12-14 ファナック株式会社 ロボットを用いて物品を移送する物品移送装置及び物品移送方法
JP5984986B1 (ja) * 2015-03-12 2016-09-06 株式会社シンテックホズミ 搬送車システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07234228A (ja) * 1994-02-25 1995-09-05 Hitachi Ltd 検体搬送システム
JP3506000B2 (ja) * 1998-04-13 2004-03-15 松下電器産業株式会社 自動分注装置
JP2005201769A (ja) 2004-01-15 2005-07-28 Sysmex Corp 分析装置
JP5993679B2 (ja) * 2012-09-20 2016-09-14 シスメックス株式会社 試料分析装置
WO2015019880A1 (ja) * 2013-08-09 2015-02-12 株式会社日立ハイテクノロジーズ 自動分析装置

Also Published As

Publication number Publication date
EP3657177A4 (en) 2021-09-01
JPWO2019017015A1 (ja) 2020-04-09
US20200217863A1 (en) 2020-07-09
EP3657177A1 (en) 2020-05-27
CN110799844B (zh) 2023-09-12
JP6857733B2 (ja) 2021-04-14
US11474119B2 (en) 2022-10-18
CN110799844A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
US9594089B2 (en) Analyzing apparatus, solid-liquid separation device and solid-liquid separation method
JP6132884B2 (ja) 自動分析装置
EP3101428B1 (en) Automatic analytical apparatus
JP5192263B2 (ja) 分析装置および検体の搬送方法
JP5872816B2 (ja) 検体分析装置
JP5787574B2 (ja) 検体分析システム
JP4243722B2 (ja) 多段アナライザ・システムで検定処理を行う方法
JP2002090374A (ja) 検体前処理装置および検体搬送方法
US9316658B2 (en) Sample processing apparatus that responds to trouble in a transport unit
US20110065193A1 (en) Sample processing apparatus and sample processing method
CN107884589B (zh) 血液样本检查装置和血液样本检查方法
JP6698665B2 (ja) 自動分析装置
CN109782004B (zh) 自动分析装置以及自动分析方法
US9329193B2 (en) Sample processing apparatus and sample processing method
JP2010175420A (ja) 試料分析装置
JP3140422B2 (ja) 自動分析装置
JP6857733B2 (ja) 自動分析装置
JP5000945B2 (ja) 検体搬送システム
JP6210891B2 (ja) 自動分析装置
WO2020044688A1 (ja) 自動分析装置
JP2010107400A (ja) 検体処理システム及び検体容器仕分け装置
JP2000055926A (ja) 自動分析装置
JP2013156105A (ja) 自動分析装置
JP5638024B2 (ja) 検体搬送システム
WO2023127182A1 (ja) 自動分析装置及び自動分析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834440

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019530872

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018834440

Country of ref document: EP

Effective date: 20200221