WO2019015564A1 - 太阳能发电组件 - Google Patents

太阳能发电组件 Download PDF

Info

Publication number
WO2019015564A1
WO2019015564A1 PCT/CN2018/095914 CN2018095914W WO2019015564A1 WO 2019015564 A1 WO2019015564 A1 WO 2019015564A1 CN 2018095914 W CN2018095914 W CN 2018095914W WO 2019015564 A1 WO2019015564 A1 WO 2019015564A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
mesh
power generation
layer
solar cell
Prior art date
Application number
PCT/CN2018/095914
Other languages
English (en)
French (fr)
Inventor
段军
洪承健
胡德政
李沅民
徐希翔
Original Assignee
君泰创新(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/089,915 priority Critical patent/US20200303578A1/en
Application filed by 君泰创新(北京)科技有限公司 filed Critical 君泰创新(北京)科技有限公司
Priority to EP18769943.4A priority patent/EP3460857A4/en
Priority to CN201890000141.5U priority patent/CN209981251U/zh
Priority to CA3020826A priority patent/CA3020826A1/en
Priority to AU2018236885A priority patent/AU2018236885A1/en
Publication of WO2019015564A1 publication Critical patent/WO2019015564A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0475PV cell arrays made by cells in a planar, e.g. repetitive, configuration on a single semiconductor substrate; PV cell microarrays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S90/00Solar heat systems not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present disclosure relates to the field of photovoltaic power generation technologies, and in particular, to a power generation assembly, and more particularly to a solar power generation assembly.
  • Photovoltaic power generation is a recognized clean energy source.
  • each PV manufacturer concentrates its resources on the development of double-sided power generation technology for high-efficiency batteries and photovoltaic modules. Therefore, double-sided power generation technology has made great progress.
  • the solar power generation assembly includes a first substrate sequentially stacked, a photoelectric conversion layer including a plurality of solar battery chips, a mesh reflective layer, and a second substrate, wherein a gap is provided between the plurality of solar battery chips The mesh frame of the mesh reflective layer is located below the gap.
  • the solar power generation assembly may further include: a first bonding layer and a second bonding layer; the first substrate and the photoelectric conversion element are bonded by the first bonding layer Together, the mesh-shaped light reflecting layer and the photoelectric conversion element are bonded together by the second adhesive layer.
  • the mesh-shaped light reflecting layer may further include a plurality of through holes arranged in a mesh shape, and one of the plurality of through holes has a cross-sectional area greater than or equal to a corresponding one of the photoelectric conversion elements.
  • An area of the solar cell chip, an orthographic projection of the corresponding one of the solar cell chips on the second substrate is located in an orthographic projection of the one via hole on the second substrate to cause the mesh reflective
  • the mesh frame of the layer is located directly below the gap provided by the plurality of solar cell chips.
  • the mesh reflective layer may further include a plurality of grids, each of the plurality of grids including one of the plurality of through holes and surrounding the one of the plurality of through holes A corresponding edge of the mesh frame, one of the photoelectric conversion elements is disposed directly above a corresponding one of the plurality of grids.
  • the width of one of the ribs in the mesh frame may be less than or equal to the width of the corresponding gap provided between the plurality of solar cell chips.
  • the solar power generation assembly can further include a third bonding layer bonded to the second substrate by the third bonding layer.
  • the first bonding layer, the second bonding layer or the third bonding layer may be selected from any one of the following: an ethylene-vinyl acetate copolymer bonding layer, ethylene-ethyl acrylate adhesive a tie layer and a polyamide tie layer.
  • the first substrate or the second substrate may be selected from any one of the following: ultra-white tempered glass, anti-reflective film-coated glass, anti-embossed glass, and light-transmitting polymerization. Back panel.
  • the plurality of solar cell chips can be a double-sided solar cell chip.
  • the material of the mesh reflective layer can be a double-sided reflective material.
  • the mesh reflective layer may have a thickness of 0.1 mm to 1 mm.
  • the orthographic projection of the mesh border on the second substrate can be within an orthographic projection of the gap on the second substrate.
  • each of the plurality of through holes may include a first opening and a second opening disposed opposite to each other; the first opening is adjacent to the gap, and the second opening is adjacent to the a second substrate, an orthographic projection of the first opening in the second substrate is greater than an orthographic projection of the second opening in the second substrate; the corresponding one of the solar cell chips is positive in the second substrate Projecting a second opening in the one via is within an orthographic projection of the second substrate.
  • At least one of the plurality of vias may have a trapezoidal shape in a cross-sectional shape in a plane perpendicular to the first substrate.
  • an inner wall of each of the plurality of through holes may be provided with a directional reflective structure configured to adjust a reflection angle of light rays directed toward the inner wall.
  • the solar power generation assembly may further include: a first bonding layer and a third bonding layer; wherein the first substrate and the photoelectric conversion element are bonded by a first bonding layer Together, the mesh reflective layer and the second substrate are bonded together by the third adhesive layer, the mesh reflective layer is a double-sided reflective layer, and the plurality of solar cell chips are double-sided a solar cell chip; a refractive index of the first bonding layer is greater than a refractive index of the first substrate; a refractive index of the first substrate is greater than a refractive index of air; a refractive index of the third bonding layer Greater than the refractive index of the second substrate; the refractive index of the second substrate is greater than the refractive index of the air.
  • the reticulated light-reflecting layer has a reflectance of >80% adjacent to a surface of the first substrate, and a reflectivity of the mesh-shaped light-reflecting layer adjacent to a surface of the second substrate is >60%.
  • FIG. 1 is a schematic structural view of a solar power generation assembly according to some embodiments of the present disclosure
  • FIG. 2 is a schematic structural view 1 of a mesh reflective layer in some embodiments of the present disclosure
  • FIG. 3 is a schematic structural view 2 of a mesh reflective layer in some embodiments of the present disclosure.
  • FIG. 4 is a schematic structural view 3 of a mesh reflective layer in some embodiments of the present disclosure.
  • Fig. 5 is a cross-sectional view showing a-a' in Fig. 4.
  • the back surface of the solar photovoltaic module is packaged with transparent glass or a transparent polymer material, so that the solar photovoltaic module has a large transmitted light loss.
  • the solar photovoltaic module includes a battery chip, and a transparent glass or transparent polymer material encapsulating the solar photovoltaic module is located on the back side of the battery chip. When a portion of the light that is directed toward the battery chip reaches the back side of the battery chip through the gap of the battery chip, the transparent glass or transparent polymer material encapsulating the solar photovoltaic module will cause such portion of the light to be not effectively utilized.
  • a solar power generation assembly provided by some embodiments of the present disclosure includes a first substrate 101, a second substrate 102, a photoelectric conversion element 2 including a plurality of solar cell chips, and a mesh reflective layer 4.
  • the first substrate 101, the photoelectric conversion element 2, the mesh-shaped light reflecting layer 4, and the second substrate 102 are laminated in this order.
  • a gap 3 is provided between the plurality of solar cell chips in the photoelectric conversion element 2, and the mesh frame 400 of the mesh reflective layer 4 is disposed below the gap 3 between the plurality of solar cell chips.
  • the plurality of solar cell chips are single-sided solar cells or double-sided solar cells.
  • a plurality of solar cell chips are arranged in various ways. For example, a plurality of solar cell chips are arranged side by side so that a gap 3 is provided between the plurality of solar cell chips.
  • a plurality of solar cell chips are combined to form a regular shape.
  • a plurality of solar cell chips are combined to form a rectangle.
  • the plurality of solar cell chips are connected in series to form a plurality of battery arrays by a conductive material, and the conductive material may be a solder ribbon, a conductive tape or a copper tape, but is not limited thereto.
  • the solar power generation module When the solar power generation module provided by the embodiment of the present disclosure performs power generation, a part of the light that passes through the first substrate 101 from the outside is irradiated to the surface of the photoelectric conversion element adjacent to the first substrate 101, so that the photoelectric conversion element outputs electric energy. Another portion of the light passing through the first substrate 101 from the outside passes through the gap 3 provided between the plurality of solar cell chips such that the portion of the light illuminates the mesh frame 400 of the mesh reflective layer adjacent to the first substrate The surface of 101.
  • the mesh frame 400 of the mesh reflective layer reflects the portion of the light adjacent to the surface of the first substrate 101 such that the portion of the light passes through the gap 3 toward the first substrate 101.
  • the first substrate 101 reflects all or part of the light in such a manner that the light reflected by the first substrate 101 is directed toward the plurality of solar cell chips. This increases light utilization.
  • the plurality of solar cell chips included in the solar cell module are double-sided solar cell chips
  • the material of the mesh reflective layer 4 is a double-sided reflective material, that is, a mesh reflective layer. 4 is the double-sided reflective layer. Since the mesh frame 400 of the mesh reflective layer 4 is located below the gap 3 provided between the plurality of solar cell chips, the mesh frame 400 included in the mesh reflective layer 4 does not block the solar cell chip. The light passing through the second substrate 102 is substantially blocked from the mesh frame 400 when it is incident on the plurality of solar cell chips in the photoelectric conversion element 2. Based on this, the mesh frame 400 is mainly distributed under the gap 3 of the solar cell chip and other regions without the solar cell chip.
  • the first substrate 101 is on the light receiving side.
  • the solar cell module performs power generation, in addition to power generation by light from the outside through the first substrate 101 toward the surface of the photoelectric conversion element adjacent to the first substrate 101, it is also possible to use the second substrate 102 to be irradiated from the outside. Light is generated to the light of the photoelectric conversion element adjacent to the surface of the second substrate 102.
  • the mesh-shaped light reflecting layer 4 is a double-sided light reflecting layer, so that a part of the light which is externally passed through the second substrate 102 is incident on the surface of the plurality of solar cell chips in the photoelectric conversion element adjacent to the surface of the second substrate 102, and is externally worn.
  • Another portion of the light passing through the second substrate 102 is directed toward the surface of the mesh frame 400 adjacent to the second substrate 102, and the mesh frame 400 reflects the portion of the light to the second substrate 102 adjacent the surface of the second substrate 102.
  • the second substrate 102 totally or partially reflects the portion of the light to the plurality of solar cell chips in the photoelectric conversion element, thereby improving the reflection efficiency of the transmitted light on the front and back sides of the plurality of solar cell chips.
  • the mesh frame 400 of the mesh reflective layer 4 is located below the gap 3 provided between the plurality of solar cell chips, the mesh reflective layer 4 is adjacent to the plurality of solar cell chips in the photoelectric conversion element.
  • the light absorption of the surface of the second substrate 102 can effectively increase the reflection efficiency of external light from the light transmitted through the gap 3 provided between the plurality of battery chips, thereby reducing the loss of transmitted light.
  • the solar power generation module can fully utilize the light reflected by the mesh-shaped light-reflecting layer 4 to generate electricity, so that the power generation efficiency of the solar power generation module is significantly improved as compared with the power generation efficiency of the conventional double-sided power generation module.
  • the mesh reflective layer 4 has a thickness of 0.1 mm to 1 mm.
  • the thickness of the mesh reflective layer 4 is 0.1 mm, 0.6 mm or 1 mm.
  • the mesh-shaped light-reflecting layer 4 is relatively thick, which is disadvantageous for the thinning of the solar power generation module.
  • the thickness of the mesh-shaped light-reflecting layer 4 is less than 0.1 mm, the reflection effect of the mesh frame 400 included in the mesh-shaped light-reflecting layer 4 on light is affected.
  • the thickness of the mesh-shaped light-reflecting layer 4 is 0.1 mm to 1 mm, it is possible to ensure that the mesh-shaped light-reflecting layer 4 has a good light-reflecting effect without excessively increasing the thickness of the solar power generating module.
  • the plurality of solar cell chips included in the solar cell module are double-sided solar cell chips
  • the photoelectric conversion element is adjacent to the surface of the first substrate 101 as the sunlight of the plurality of solar cell chips
  • the absorption surface, the surface of the photoelectric conversion element adjacent to the second substrate 102 serves as a solar-assisted absorption surface of the solar cell chip
  • the mesh-shaped reflective layer 4 is a double-sided mesh reflective layer
  • the mesh-shaped reflective layer is adjacent to the first substrate 101.
  • the reflectivity of the surface is >80%, and the reflectivity of the surface of the second substrate 102 adjacent to the mesh reflective layer is >60%.
  • the mesh reflective layer 4 may be TPT (Tedlar/PET/Tedlar, polyvinyl fluoride composite film), PET (Polyethylene terephthalate, polyethylene terephthalate) or aluminum foil. For reflectance, it is defined as the percentage of the radiant energy reflected by the object as a percentage of the total radiant energy.
  • the mesh reflective layer 4 further includes a plurality of through holes 402 arranged in a mesh shape.
  • a cross-sectional area of one of the plurality of through holes 402 is greater than or equal to an area of a corresponding one of the photoelectric conversion elements 2.
  • An orthographic projection of one solar cell chip in the photoelectric conversion element 2 on the second substrate 102 is located in an orthographic projection of a corresponding one of the plurality of via holes 402 on the second substrate 102 to cause mesh reflection
  • the mesh frame 400 included in the layer 4 is located below the gap provided between the plurality of solar cell chips.
  • the absorption rate (or utilization ratio) of the photoelectric conversion element adjacent to the surface of the first substrate 101 and the surface adjacent to the second substrate 102 to the sunlight can be increased while ensuring the characteristics of the power generation component, thereby improving the power generation component. Power generation.
  • the mesh reflective layer 4 has a plurality of grids 401.
  • Each of the plurality of grids 401 includes one of the plurality of through holes 402 and a corresponding rib of the mesh frame 400 surrounding the one of the through holes.
  • One solar cell chip of the photoelectric conversion element is disposed directly above a corresponding one of the plurality of grids 401, such that the mesh frame 400 of the mesh reflective layer 4 is disposed between the plurality of solar cell chips.
  • Directly below the gap 3 it is possible to reduce or even prevent the effect of the mesh-shaped light-reflecting layer 4 on absorbing sunlight from the surface of the photoelectric conversion element adjacent to the second substrate 102, thereby causing the photoelectric conversion element to be adjacent to the surface of the second substrate 102.
  • the mesh-shaped light-reflecting layer 4 is a double-sided mesh-shaped light-reflecting layer
  • the double-sided reflective property of the mesh frame 400 of the mesh-shaped light-reflecting layer 4 is utilized to effectively improve the surface of the photoelectric conversion element adjacent to the first substrate 101 and
  • the reflection efficiency of the transmitted light of the photoelectric conversion element 2 adjacent to the surface of the second substrate 102 to reduce the loss of transmitted light makes the power generation efficiency of the above-described solar power generation assembly significantly higher than that of the conventional double-sided power generation assembly.
  • the width of one edge of the mesh frame 400 is less than or equal to the width of the corresponding gap 3 provided between the plurality of solar cell chips to avoid excessive width of each of the edges of the mesh frame 400. If the width of one edge of the mesh frame 400 is too large, the orthographic projection of the mesh frame 400 on the second substrate 102 more or less corresponds to one of the solar cell chips in the photoelectric conversion element 2 on the second substrate 102. The overlapping of the orthographic projections will cause the mesh frame 400 to affect the ability of the solar cell chip to absorb sunlight adjacent to the surface of the second substrate 102, thereby reducing the power generation efficiency of the plurality of solar cell chips.
  • the solar power generation assembly includes a first substrate 101, a first bonding layer 501, a photoelectric conversion element 2 including a plurality of solar cell chips, a second bonding layer 502, a reflective layer 4, and a plurality of solar cell chips. And a second substrate 102.
  • the first substrate 101 and the plurality of solar cell chips are bonded together by the first bonding layer 501
  • the mesh reflective layer 4 and the plurality of solar cell chips are bonded by the second bonding layer 502. together.
  • the solar power generation assembly includes a first substrate 101, a first bonding layer 501, a photoelectric conversion element 2 including a plurality of solar cell chips, and a second bonding layer. 502, the light reflecting layer 4, the third bonding layer 503, and the second substrate 102.
  • the first substrate 101 and the second substrate 102 are selected from any one of the following: ultra-white tempered glass, ultra-white tempered glass containing embossed glass, glass coated with anti-reflection film, anti-embossed glass or light-transmissive Polymer backsheet (eg transparent polymer backsheet).
  • the first substrate 101 and the second substrate 102 are configured to fix and protect a plurality of solar cell chips in the photoelectric conversion element 2.
  • the first substrate 101 and the photoelectric conversion element 2 are bonded together by the first adhesive layer 501.
  • the mesh-shaped light reflecting layer 4 and the photoelectric conversion element 2 are bonded together by the second adhesive layer 502.
  • the mesh-shaped light reflecting layer 4 is bonded to the second substrate 102 through the third bonding layer 503.
  • the mesh reflective layer 4 has no compatibility with the first adhesive layer 501, the second adhesive layer 502, and the third adhesive layer 503 in the solar power generation assembly.
  • the first bonding layer 501, the second bonding layer 502, and the third bonding layer 503 are selected from any one of the following: an ethylene-vinyl acetate copolymer (abbreviated as eva) bonding layer, and ethylene.
  • the first bonding layer 501, the second bonding layer 502, and the third bonding layer 503 are configured to bond and fix the respective layered structures of the solar power generation assembly.
  • the first bonding layer 501, the second bonding layer 502, and the third bonding layer 503 are configured to include the first substrate 101 included in the solar power generation component, including The photoelectric conversion elements 2 of the solar cell chips 2, the mesh reflective layer 4 and the second substrate 102 are bonded together.
  • the plurality of solar cell chips included in the solar power generation assembly are double-sided solar cell chips.
  • the orthographic projection of the mesh frame 400 on the second substrate 102 is located in the orthographic projection of the gap 3 in the second substrate 102, which can substantially prevent the mesh frame 400 from blocking through the second substrate 102 and emitting more
  • the solar cell chips are adjacent to the light of the surface of the second substrate 102, thereby increasing the absorption rate of light by the surface of the photoelectric conversion element adjacent to the second substrate 102.
  • each of the plurality of through holes 402 includes a first opening 402a and a second opening 402b disposed opposite to each other.
  • the first opening 402a is adjacent to the gap 3.
  • the second opening 402b is adjacent to the second substrate 102.
  • the orthographic projection of the first opening 402a at the second substrate 102 is greater than the orthographic projection of the second opening 402b at the second substrate 102 such that the hollowed portion 402 assumes a flared configuration.
  • one solar cell chip of the above-mentioned photoelectric conversion element 2 is disposed in the orthographic projection of the second substrate 402 in the corresponding one of the through holes of the second substrate 102 in the orthographic projection of the second substrate 102 to make the photoelectric
  • the sunlight passing through the first substrate 101 from the outside can be received by the conversion element 2 at various positions on the surface of the first substrate 101.
  • each of the through holes 402 is the side of the mesh frame 400.
  • the side of the mesh frame 400 has an approximately bevel shape. Therefore, the side surface of the mesh frame 400 can reflect not only the light passing through the first substrate 101 from the outside but also the reflected light to be incident on the surface of the photoelectric conversion element adjacent to the first substrate 101.
  • the degree of inclination of the side of the mesh frame 400 determines the exit angle of the light reflected by the side. The greater the degree of inclination of the side of the mesh frame 400, the light reflected from the side is more likely to be incident on the surface of the photoelectric conversion element adjacent to the first substrate 101.
  • the one through hole 402 when one of the plurality of through holes 402 has a horn-like structure, the one through hole 402 may be a prismatic structure or a truncated cone structure, and the one through hole 402 is perpendicular to the first
  • the cross-sectional shape in the plane of the substrate 101 is trapezoidal.
  • the inner wall of each of the plurality of through holes 402 is provided with a directional reflection structure 403 configured to adjust a reflection angle of light incident on the inner wall. So that the light directed toward the inner wall is better utilized by at least one solar cell chip.
  • the above-mentioned directional reflective structure 403 is a rounded reflective structure, a chamfered reflective structure or a shaped reflective structure, but is not limited thereto.
  • the mesh reflective layer 4 is a double-sided mesh reflective layer.
  • the plurality of solar cell chips are double-sided solar cell chips.
  • the refractive index of the first bonding layer 501 is greater than the refractive index of the first substrate 101.
  • the refractive index of the first substrate 101 is greater than the refractive index of air.
  • the light reflected by the mesh frame 400 can be mostly or even completely reflected by the first substrate 101.
  • the photoelectric conversion element is adjacent to the surface of the first substrate 101.
  • the refractive index of the third bonding layer 503 is greater than the refractive index of the second substrate 102; the refractive index of the second substrate 102 is greater than the refractive index of the air.
  • the refractive index of the third bonding layer 503 and the refractive index of the second substrate 102 and the refractive index of the air are matched to each other, so that the light reflected by the mesh frame 400 can be mostly or completely completely covered by the second substrate 102. Reflected to the surface of the second substrate 102 adjacent to the photoelectric conversion element.
  • the plurality of solar cell chips included in the solar power generation component are double-sided solar cell chips.
  • the surface of the photoelectric conversion element adjacent to the first substrate 101 is used as a surface mainly absorbing sunlight
  • the surface of the photoelectric conversion element adjacent to the second substrate 102 is used as a surface for assisting absorption of sunlight.
  • the reflectivity of the mesh-shaped light-reflecting layer adjacent to the surface of the first substrate is >80%
  • the reflectivity of the mesh-shaped light-reflecting layer adjacent to the second substrate is >60%.
  • the surface of the mesh reflective layer adjacent to the first substrate can reflect light more to the first substrate 101, so that the first substrate 101 reflects the portion of the light to the photoelectric conversion element adjacent to the first substrate 101.
  • the surface thereby increasing the power generation efficiency of the solar power generation component.

Abstract

本公开提供的一种太阳能发电组件包括依次层叠设置的第一衬底、含多个太阳能电池芯片的光电转换元件、网状反光层和第二衬底,所述太阳能电池芯片为多个,多个太阳能电池芯片之间设有间隙,所述网状反光层的网状边框位于所述间隙的下方。

Description

太阳能发电组件
本申请要求于2017年7月17日提交中国专利局、申请号为201720867630.8、发明名称为“一种太阳能发电组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及光伏发电技术领域,具体涉及一种发电组件,更具体的涉及一种太阳能发电组件。
背景技术
光伏发电是一种公认的清洁能源。目前,各个光伏制造商都集中优势资源发展双面发电技术,以应用于高效电池及光伏组件中。因此,双面发电技术取得了长足的进步。
发明内容
本公开一些实施例提供一种太阳能发电组件。所述太阳能发电组件包括依次层叠设置的第一衬底、含多个太阳能电池芯片的光电转换层、网状反光层和第二衬底,其中,所述多个太阳能电池芯片之间设有间隙,所述网状反光层的网状边框位于所述间隙的下方。
在一些实施例中,所述太阳能发电组件还可包括:第一粘结层和第二粘结层;所述第一衬底和所述光电转换元件通过所述第一粘结层粘结在一起,所述网状反光层与光电转换元件通过所述第二粘结层粘结在一起。
在一些实施例中,所述网状反光层还可包括呈网状排列的多个通孔,所述多个通孔中一个通孔的横截面积大于等于所述光电转换元件中对应的一个太阳能电池芯片的面积,所述对应的一个太阳能电池芯片在所述第二衬底上的正投影位于所述一个通孔在所述第二衬底上的正投影内,使所述网状反光层的网状边框位于所述多个太阳能电池芯片所设有的间隙的正下方。
在一些实施例中,所述网状反光层还可包括多个栅格,所述多个栅格中的每个包括所述多个通孔中的一个通孔和围绕所述一个通孔的所述网状边框的相应棱,所述光电转换元件中的一个太阳能电池芯片设置在所述多个栅格中对应的一个栅格的正上方。
在一些实施例中,所述网状边框中一条棱的宽度可小于等于所述多个太阳能电池芯片之间所设有的对应的间隙的宽度。
在一些实施例中,所述太阳能发电组件还可包括第三粘结层,所述网状反光层通过所述第三粘结层与所述第二衬底粘结在一起。
在一些实施例中,所述第一粘结层、第二粘结层或第三粘结层可以从以下的任意一个中选择:乙烯-醋酸乙烯共聚物粘结层、乙烯-丙烯酸乙酯粘结层和聚酰胺粘结层。
在一些实施例中,所述第一衬底或所述第二衬底可以从以下的任意一个中选择:超白钢化玻璃、镀有减反膜的玻璃、减反压花玻璃和透光聚合物背板。
在一些实施例中,所述多个太阳能电池芯片可为双面太阳能电池芯片。
在一些实施例中,所述网状反光层的材料可为双面反光材料。
在一些实施例中,所述网状反光层的厚度可为0.1mm~1mm。
在一些实施例中,所述网状边框在所述第二衬底上的正投影可位于所述间隙在所述第二衬底上的正投影内。
在一些实施例中,所述多个通孔中的每个通孔均可包括相对设置的第一开口和第二开口;所述第一开口邻近所述间隙,所述第二开口邻近所述第二衬底,所述第一开口在第二衬底的正投影大于所述第二开口在第二衬底的正投影;所述对应的一个太阳能电池芯片在所述第二衬底的正投影位于所述一个通孔的第二开口在所述第二衬底的正投影内。
在一些实施例中,所述多个通孔中的至少一个通孔在垂直于所述第一衬底的平面内的截面形状可为梯形。
在一些实施例中,所述多个通孔中每个通孔的内壁可设有定向反射结构,所述定向反射结构被配置为调节射向所述内壁的光线的反射角度。
在一些实施例中,所述太阳能发电组件还可包括:第一粘结层和第三粘结层;其中,所述第一衬底和所述光电转换元件通过第一粘结层粘结在一起,所述网状反光层和所述第二衬底通过所述第三粘结层粘结在一起,所述网状反光层为双面反光层,所述多个太阳能电池芯片为双面太阳能电池芯片;所述第一粘结层的折射率大于所述第一衬底的折射率;所述第一衬底的折射率大于空气的折射率;所述第三粘结层的折射率大于所述第二衬底的折射率; 所述第二衬底的折射率大于所述空气的折射率。
在一些实施例中,所述网状反光层邻近第一衬底的表面的反射率>80%,所述网状反光层邻近所述第二衬底的表面的反射率>60%。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1示出了本公开一些实施例太阳能发电组件的结构示意图;
图2示出了本公开一些实施例中网状反光层的结构示意图一;
图3示出了本公开一些实施例中网状反光层的结构示意图二;
图4示出了本公开一些实施例中网状反光层的结构示意图三;
图5示出了图4中a-a’的剖视图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
相关技术中,太阳能光伏组件的背面采用透明玻璃或者透明聚合物材料封装,使得太阳能光伏组件存在较大的透射光损失。太阳能光伏组件包括电池芯片,封装太阳能光伏组件的透明玻璃或者透明聚合物材料位于电池芯片的背面。当射向电池芯片的部分光线通过电池芯片所具有的间隙到达电池芯片的背面时,封装太阳能光伏组件的透明玻璃或者透明聚合物材料将导致这部分光线没有有效利用。
如图1和图3所示,本公开一些实施例提供的太阳能发电组件包括第一衬底101、第二衬底102、含多个太阳能电池芯片的光电转换元件2和网状反光层4。第一衬底101、光电转换元件2、网状反光层4和第二衬底102依次层叠设置。光电转换元件2中的多个太阳能电池芯片之间设有间隙3,网状反光层4的网状边框400设在多个太阳能电池芯片之间的间隙3的下方。
可以理解的是,上述多个太阳能电池芯片为单面太阳能电池或双面太阳能电池。多个太阳能电池芯片的排布方式多种多样。例如:多个太阳能电池 芯片间隔并排排列,以使得多个太阳能电池芯片之间设有间隙3。多个太阳能电池芯片进行组合形成规则的形状。
在一些具体实施例中,多个太阳能电池芯片进行组合形成矩形。多个太阳能电池芯片通过导电材料串联成多个电池阵列,导电材料可以是焊带、导电胶带或铜带,但不仅限于此。
在本公开实施例提供的太阳能发电组件进行发电时,从外部穿过第一衬底101的光线中的一部分照射在光电转换元件邻近第一衬底101的表面,使得该光电转换元件输出电能。从外部穿过第一衬底101的光线中的另一部分穿过多个太阳能电池芯片之间设有的间隙3,使得这部分光线照射到网状反射层的网状边框400邻近第一衬底101的表面。网状反射层的网状边框400邻近第一衬底101的表面将这部分光线反射,使得这部分光线穿过间隙3射向第一衬底101。第一衬底101将这部分光线全部或部分被反射,使得被第一衬底101所反射的光线射向该多个太阳能电池芯片。由此增加光线利用率。
在一些实施例中,如图2所示,上述太阳能电池组件所包括的多个太阳能电池芯片为双面太阳能电池芯片,网状反光层4的材料为双面反光材料,也即网状反光层4为双面反光层时。由于网状反光层4的网状边框400位于多个太阳能电池芯片之间所设有的间隙3的下方,使得网状反光层4所包括的网状边框400不遮挡太阳能电池芯片,此时外部穿过第二衬底102的光线射向光电转换元件2中的多个太阳能电池芯片时基本不受网状边框400的遮挡。基于此,网状边框400主要分布在太阳能电池芯片的间隙3的下方和其他无太阳能电池芯片的区域。在一些实施例中,第一衬底101位于受光一侧。
当太阳能电池组件进行发电时,除了利用从外部穿过第一衬底101射向光电转换元件邻近第一衬底101的表面的光线发电外,还可以利用从外部穿过第二衬底102射向光电转换元件邻近第二衬底102的表面的光线发电。而且,网状反光层4为双面反光层,因此外部穿过第二衬底102的光线中的一部分射向光电转换元件中的多个太阳能电池芯片邻近第二衬底102的表面,外部穿过第二衬底102的光线中的另一部分射向网状边框400邻近第二衬底102的表面,网状边框400邻近第二衬底102的表面将这部分光线反射至第二衬底102,第二衬底102完全或部分将这部分光线反射至光电转换元件中的多 个太阳能电池芯片,从而提高了该多个太阳能电池芯片的正反两面透射光线的反射效率。
另外,在网状反光层4的网状边框400位于多个太阳能电池芯片之间所设有的间隙3的下方时,网状反光层4在不影响光电转换元件中的多个太阳能电池芯片邻近第二衬底102的表面的光吸收的同时,可以有效提高外部光线从多个电池芯片之间所设有的间隙3透射的光线的反射效率,从而减少透射光线的损失。这样,上述太阳能发电组件能够充分利用网状反光层4所反射的光线进行发电,从而上述太阳能发电组件的发电效率与传统双面发电组件的发电效率相比有显著提高。
在一些实施例中,如图2所示,上述网状反光层4的厚度为0.1mm~1mm。例如:网状反光层4的厚度为0.1mm、0.6mm或1mm。在网状反光层4的厚度大于1mm的情况下,网状反光层4比较厚,这不利于太阳能发电组件的轻薄化。在网状反光层4的厚度小于0.1mm的情况下,网状反光层4所包括的网状边框400对于光线的反射效果会受到影响。在网状反光层4的厚度为0.1mm~1mm的情况下,既能够保证网状反光层4具有良好的反光效果,又不会过多的增大太阳能发电组件的厚度。
在一些实施例中,在上述太阳能电池组件所包括的多个太阳能电池芯片为双面太阳能电池芯片时,如果光电转换元件邻近第一衬底101的表面作为该多个太阳能电池芯片的太阳光主要吸收面,光电转换元件邻近第二衬底102的表面作为太阳能电池芯片的太阳光辅助吸收面,那么网状反光层4为双面网状反光层时,网状反光层邻近第一衬底101的表面的反射率>80%,网状反光层邻近的第二衬底102的表面的反射率>60%。网状反光层4可以是TPT(Tedlar/PET/Tedlar,聚氟乙烯复合膜)、PET(Polyethylene terephthalate,聚对苯二甲酸乙二酯)或铝箔等。对于反射率来说,其定义为物体的反射的辐射能量占总辐射能量的百分比。
如图3所示,上述网状反光层4还包括呈网状排列的多个通孔402。该多个通孔402中一个通孔的横截面积大于等于光电转换元件2中对应的一个太阳能电池芯片的面积。光电转换元件2中的一个太阳能电池芯片在第二衬底102上的正投影位于所述多个通孔402中对应的一个通孔在第二衬底102上的 正投影内,使网状反光层4所包括的网状边框400位于多个太阳能电池芯片之间设有的间隙内的下方。这样,可以在保证发电组件特性的情况下,增加光电转换元件邻近第一衬底101的表面和邻近第二衬底102的表面对于太阳光的吸收率(或利用率),从而提高发电组件的发电量。
如图2所示,上述网状反光层4具有多个栅格401。该多个栅格401中的每个包括多个通孔402中的一个通孔和围绕该一个通孔的网状边框400的相应棱。所述光电转换元件中的一个太阳能电池芯片设置在多个栅格401中对应的一个栅格的正上方,使得网状反光层4的网状边框400位于多个太阳能电池芯片之间所设有的间隙3的正下方,这样就能够减小甚至避免网状反光层4对光电转换元件邻近第二衬底102的表面吸收太阳光的影响,进而使得光电转换元件邻近第二衬底102的表面最大限度的吸收太阳光,将这些吸收的太阳光用于发电。同时,在网状反光层4为双面网状反光层的情况下,利用网状反光层4的网状边框400双面反光的特性,有效提高光电转换元件邻近第一衬底101的表面和光电转换元件2邻近第二衬底102的表面的透射光的反射效率,以减少透射光的损失,使上述太阳能发电组件的发电效率比传统双面发电组件有显著提高。
示例性的,网状边框400中一条棱的宽度小于等于多个太阳能电池芯片之间所设有的对应的间隙3的宽度,以避免网状边框400中每条棱的宽度过大。如果网状边框400中一条棱的宽度过大,使得该网状边框400在第二衬底102的正投影或多或少与光电转换元件2中对应的一个太阳能电池芯片在第二衬底102的正投影重叠,则将导致网状边框400影响太阳能电池芯片邻近第二衬底102的表面吸收太阳光的能力,进而使得多个太阳能电池芯片的发电效率降低。
在一些实施例中,太阳能发电组件包括依次层叠设置的第一衬底101、第一粘结层501、包含多个太阳能电池芯片的光电转换元件2、第二粘结层502、反光层4、以及第二衬底102。这里,第一衬底101和所述多个太阳能电池芯片通过第一粘结层501粘结在一起,网状反光层4与所述多个太阳能电池芯片通过第二粘结层502粘结在一起。
在一些实施例中,如图1所示,太阳能发电组件包括依次层叠设置的第 一衬底101、第一粘结层501、包含多个太阳能电池芯片的光电转换元件2、第二粘结层502、反光层4、第三粘结层503以及第二衬底102。第一衬底101和第二衬底102从以下的任意一个中选择:超白钢化玻璃,含压花玻璃的超白钢化玻璃、镀有减反膜的玻璃、减反压花玻璃或透光聚合物背板(如透明聚合物背板)。第一衬底101和第二衬底102被配置为固定和保护所述光电转换元件2中的多个太阳能电池芯片。第一衬底101和光电转换元件2通过第一粘结层501粘结在一起。网状反光层4与光电转换元件2通过第二粘结层502粘结在一起。网状反光层4通过第三粘结层503与第二衬底102粘结在一起。网状反光层4与太阳能发电组件中的第一粘结层501、第二粘结层502和第三粘结层503之间无相容性。第一粘结层501、第二粘结层502和第三粘结层503从以下的任意一个中选择:乙烯-醋酸乙烯共聚物(ethylene-vinyl acetate copolymer,缩写为eva)粘结层、乙烯-丙烯酸乙酯粘结层(Ethylene Ethyl Acrylate,缩写为EEA)或聚酰胺粘结层(Polyamide,缩写为PA)。第一粘结层501、第二粘结层502和第三粘结层503被配置为将太阳能发电组件各层状结构粘结固定。
在一些实施例中,如图1所示,第一粘结层501、第二粘结层502和第三粘结层503被配置为将太阳能发电组件所包括的第一衬底101、包含多个太阳能电池芯片的光电转换元件2、网状反光层4和第二衬底102粘结在一起。
在一些实施例中,上述太阳能发电组件所包括的多个太阳能电池芯片为双面太阳能电池芯片。此时上述网状边框400在第二衬底102的正投影位于间隙3在第二衬底102的正投影内,这可基本避免网状边框400遮挡穿过第二衬底102并射向多个太阳能电池芯片邻近第二衬底102的表面的光线,从而提高光电转换元件邻近第二衬底102的表面对光线的吸收率。
在一些实施例方式中,上述多个通孔402中的每个通孔均包括相对设置的第一开口402a和第二开口402b。第一开口402a邻近间隙3。第二开口402b邻近第二衬底102。第一开口402a在第二衬底102的正投影大于第二开口402b在第二衬底102的正投影,使得镂空部402呈现喇叭状结构。
示例性的,上述光电转换元件2中的一个太阳能电池芯片在第二衬底102的正投影位于相应的一个通孔中的第二开口402b在第二衬底102的正投影 内,以使得光电转换元件2邻近第一衬底101的表面上的各个位置都可以接收到从外部穿过第一衬底101的太阳光。
上述每个通孔402的内壁即为网状边框400的侧面。这样,从外部穿过第一衬底101的光线射向网状反光层4时,不仅可以射向网状边框400邻近第一衬底101的表面,还可以射向网状边框400的侧面。在每个通孔402呈现喇叭状结构的情况下,网状边框400的侧面为近似斜面形状。因此,网状边框400的侧面不仅可以反射从外部穿过第一衬底101的光线,还可以使所反射的这些光线更好的入射到光电转换元件邻近第一衬底101的表面。
示例性的,上述网状边框400的侧面倾斜程度决定了该侧面反射的光线的出射角度。网状边框400的侧面的倾斜程度越大,那么该侧面反射的光线更容易入射到光电转换元件邻近第一衬底101的表面。
在一些实施方式中,上述多个通孔402中的一个通孔呈现喇叭状结构时,该一个通孔402具体可以为棱台结构或圆台结构,此时该一个通孔402在垂直于第一衬底101的平面内的截面形状为梯形。
在一些实施方式中,如图5所示,上述多个通孔402中每个通孔的内壁设有定向反射结构403,该定向反射结构403被配置为调节射向该内壁的光线的反射角度,以使得射向该内壁的光线更好的被至少一个太阳能电池芯片利用。
示例性的,上述定向反射结构403为圆角状反射结构、倒角反射结构或异形反射结构,但不仅限于此。
在一些具体实施例中,如图1所示,上述网状反光层4为双面网状反光层。多个太阳能电池芯片为双面太阳能电池芯片。第一粘结层501的折射率大于第一衬底101的折射率。第一衬底101的折射率大于空气的折射率。在从外部穿过第一衬底101的光线射向网状反光层4所包括的网状边框400后,被网状边框400反射的光线穿过对应的间隙3射向第一粘结层501时,通过第一粘结层501的折射率和第一衬底101的折射率、空气的折射率相互配合,使得被网状边框400反射的光线可以大部分甚至完全被第一衬底101反射至光电转换元件邻近第一衬底101的表面。
同理,如图1所示,第三粘结层503的折射率大于第二衬底102的折射率;第二衬底102的折射率大于空气的折射率。当从外部穿过第二衬底102的光线 射向网状反光层4所包括的网状边框400后,被网状边框400反射的光线穿过对应的间隙3并射向第三粘结层503时,通过第三粘结层503的折射率和第二衬底102的折射率、空气的折射率相互配合,使得被网状边框400反射的光线能够大部分甚至完全被第二衬底102反射至光电转换元件邻近第二衬底102的表面。
在一些实施例中,太阳能发电组件所包括的多个太阳能电池芯片为双面太阳能电池芯片。将该光电转换元件邻近第一衬底101的表面作为主要吸收太阳光的表面,将该光电转换元件邻近第二衬底102的表面作为辅助吸收太阳光的表面。这种情况下,网状反光层邻近第一衬底的表面的反射率>80%,网状反光层邻近第二衬底的反射率>60%。这样,保证网状反光层邻近第一衬底的表面可以更多的将光线反射至第一衬底101,以使得第一衬底101反射这部分光线至光电转换元件邻近第一衬底101的表面,从而提高太阳能发电组件的发电效率。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (17)

  1. 一种太阳能发电组件,包括依次层叠设置的第一衬底、包含多个太阳能电池芯片的光电转换元件、网状反光层和第二衬底,其中,
    所述多个太阳能电池芯片之间设有间隙,所述网状反光层的网状边框位于所述间隙的下方。
  2. 根据权利要求1所述的太阳能发电组件,还包括:第一粘结层和第二粘结层;其中,
    所述第一衬底和所述光电转换元件通过所述第一粘结层粘结在一起,所述网状反光层与所述光电转换元件通过所述第二粘结层粘结在一起。
  3. 根据权利要求1所述的太阳能发电组件,其中,所述网状反光层还包括呈网状排列的多个通孔,所述多个通孔中一个通孔的横截面积大于等于所述光电转换元件中对应的一个太阳能电池芯片的面积,所述对应的一个太阳能电池芯片在所述第二衬底上的正投影位于所述一个通孔在所述第二衬底上的正投影内,使所述网状反光层的网状边框位于所述多个太阳能电池芯片之间所设有的间隙的正下方。
  4. 根据权利要求3所述的太阳能发电组件,其中,所述网状反光层还包括多个栅格,所述多个栅格中的每个包括所述多个通孔中的一个通孔和围绕所述一个通孔的所述网状边框的相应棱,所述光电转换元件中的一个太阳能电池芯片设置在所述多个栅格中对应的一个栅格的正上方。
  5. 根据权利要求4所述的太阳能发电组件,其中,所述网状边框中一条棱的宽度小于等于所述多个太阳能电池芯片之间所设有的对应的间隙的宽度。
  6. 根据权利要求2所述的太阳能发电组件,还包括第三粘结层,其中,所述网状反光层通过所述第三粘结层与所述第二衬底粘结在一起。
  7. 根据权利要求6所述的太阳能发电组件,其中,
    所述第一粘结层、第二粘结层或第三粘结层从以下的任意一个中选择:乙烯-醋酸乙烯共聚物粘结层、乙烯-丙烯酸乙酯粘结层和聚酰胺粘结层。
  8. 根据权利要求1-7任一所述的太阳能发电组件,其中,
    所述第一衬底或第二衬底从以下的任意一个中选择:超白钢化玻璃、镀有减反膜的玻璃、减反压花玻璃和透光聚合物背板。
  9. 根据权利要求1-7任一所述的太阳能发电组件,其中,所述多个太阳能电池芯片为双面太阳能电池芯片。
  10. 根据权利要求1-7任一所述的太阳能发电组件,其中,所述反光层的材料为双面反光材料。
  11. 根据权利要求1-7任一所述的太阳能发电组件,其中,所述反光层的厚度为0.1mm~1mm。
  12. 根据权利要求1所述的太阳能发电组件,其中,所述网状边框在所述第二衬底上的正投影位于所述间隙在所述第二衬底上的正投影内。
  13. 根据权利要求3所述的太阳能发电组件,其中,所述多个通孔中的每个通孔均包括相对设置的第一开口和第二开口;
    所述第一开口邻近所述间隙,所述第二开口邻近所述第二衬底,所述第一开口在第二衬底的正投影大于所述第二开口在第二衬底的正投影;
    所述对应的一个太阳能电池芯片在所述第二衬底上的正投影位于所述一个通孔的第二开口在所述第二衬底的正投影内。
  14. 根据权利要求13所述的太阳能发电组件,其中,所述多个通孔中的至少一个通孔在垂直于所述第二衬底的平面内的截面形状为梯形。
  15. 根据权利要求13所述的太阳能发电组件,其中,所述多个通孔中每个通孔的内壁设有定向反射结构,所述定向反射结构被配置为调节射向所述内壁的光线的反射角度。
  16. 根据权利要求12~13任一项所述的太阳能发电组件,还包括:第一粘结层和第三粘结层;其中,
    所述第一衬底和所述光电转换元件通过第一粘结层粘结在一起,所述网状反光层和所述第二衬底通过所述第三粘结层粘结在一起,所述网状反光层为双面反光层,所述多个太阳能电池芯片为双面太阳能电池芯片;
    所述第一粘结层的折射率大于所述第一衬底的折射率;所述第一衬底的折射率大于空气的折射率;所述第三粘结层的折射率大于所述第二衬底的折射率;所述第二衬底的折射率大于所述空气的折射率。
  17. 根据权利要求1所述的太阳能发电组件,其中,所述网状反光层邻近所述第一衬底的表面的反射率>80%,所述网状反光层邻近所述第二衬底的表 面的反射率>60%。
PCT/CN2018/095914 2017-07-17 2018-07-17 太阳能发电组件 WO2019015564A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/089,915 US20200303578A1 (en) 2017-07-17 2017-07-17 Solar power generation component
EP18769943.4A EP3460857A4 (en) 2017-07-17 2018-07-17 SOLAR ENERGY GENERATION ASSEMBLY
CN201890000141.5U CN209981251U (zh) 2017-07-17 2018-07-17 太阳能发电组件
CA3020826A CA3020826A1 (en) 2017-07-17 2018-07-17 Solar power generation component
AU2018236885A AU2018236885A1 (en) 2017-07-17 2018-07-17 Solar power generation component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720867630.8U CN207116454U (zh) 2017-07-17 2017-07-17 一种太阳能发电组件
CN201720867630.8 2017-07-17

Publications (1)

Publication Number Publication Date
WO2019015564A1 true WO2019015564A1 (zh) 2019-01-24

Family

ID=61584437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095914 WO2019015564A1 (zh) 2017-07-17 2018-07-17 太阳能发电组件

Country Status (8)

Country Link
US (1) US20200303578A1 (zh)
EP (1) EP3460857A4 (zh)
JP (1) JP3218202U (zh)
KR (1) KR20190000222U (zh)
CN (2) CN207116454U (zh)
AU (1) AU2018236885A1 (zh)
CA (1) CA3020826A1 (zh)
WO (1) WO2019015564A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200303578A1 (en) * 2017-07-17 2020-09-24 Beijing Juntai Innovation Technology Co., Ltd. Solar power generation component
CN111886705B (zh) * 2018-03-20 2024-01-02 株式会社钟化 太阳能电池模块、玻璃建材、以及太阳能电池模块的制造方法
WO2019214061A1 (zh) * 2018-05-08 2019-11-14 北京汉能光伏投资有限公司 太阳能电池组件、太阳能光电幕墙
TWI827509B (zh) * 2023-04-25 2023-12-21 龍佳欣實業股份有限公司 光電面板封裝結構及其方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298029A (ja) * 1998-04-14 1999-10-29 Sanyo Electric Co Ltd 太陽電池モジュール及び複層ガラスモジュール
JP2002043600A (ja) * 2000-07-21 2002-02-08 Tokyo Univ Of Agriculture & Technology 平板集光太陽電池モジュール
CN104332521A (zh) * 2014-11-28 2015-02-04 浙江晶科能源有限公司 一种光伏组件及其制作方法
CN204441298U (zh) * 2015-04-08 2015-07-01 晶科能源有限公司 一种光伏组件
CN105489683A (zh) * 2016-01-20 2016-04-13 常州亚玛顿股份有限公司 一种轻质双玻组件
CN205385030U (zh) * 2015-12-29 2016-07-13 乐叶光伏科技有限公司 一种高效光伏双玻组件
CN104409550B (zh) * 2014-11-19 2017-04-12 苏州尚善新材料科技有限公司 一种高反光率太阳能背板
CN207116454U (zh) * 2017-07-17 2018-03-16 君泰创新(北京)科技有限公司 一种太阳能发电组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073707A (ja) * 2004-09-01 2006-03-16 Kyocera Corp 太陽電池モジュール
JP2010287688A (ja) * 2009-06-10 2010-12-24 Mitsubishi Electric Corp 太陽電池モジュール
CN106024939A (zh) * 2016-05-31 2016-10-12 浙江京华激光科技股份有限公司 一种具有光转向膜的光伏组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11298029A (ja) * 1998-04-14 1999-10-29 Sanyo Electric Co Ltd 太陽電池モジュール及び複層ガラスモジュール
JP2002043600A (ja) * 2000-07-21 2002-02-08 Tokyo Univ Of Agriculture & Technology 平板集光太陽電池モジュール
CN104409550B (zh) * 2014-11-19 2017-04-12 苏州尚善新材料科技有限公司 一种高反光率太阳能背板
CN104332521A (zh) * 2014-11-28 2015-02-04 浙江晶科能源有限公司 一种光伏组件及其制作方法
CN204441298U (zh) * 2015-04-08 2015-07-01 晶科能源有限公司 一种光伏组件
CN205385030U (zh) * 2015-12-29 2016-07-13 乐叶光伏科技有限公司 一种高效光伏双玻组件
CN105489683A (zh) * 2016-01-20 2016-04-13 常州亚玛顿股份有限公司 一种轻质双玻组件
CN207116454U (zh) * 2017-07-17 2018-03-16 君泰创新(北京)科技有限公司 一种太阳能发电组件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3460857A4 *

Also Published As

Publication number Publication date
EP3460857A1 (en) 2019-03-27
KR20190000222U (ko) 2019-01-25
CN207116454U (zh) 2018-03-16
JP3218202U (ja) 2018-09-27
CA3020826A1 (en) 2019-01-17
US20200303578A1 (en) 2020-09-24
AU2018236885A1 (en) 2019-01-31
CN209981251U (zh) 2020-01-21
EP3460857A4 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
WO2019015564A1 (zh) 太阳能发电组件
JP6788657B2 (ja) 太陽電池モジュール
US10879410B2 (en) Solar cell module
EP3067937B1 (en) Solar cell module
WO2014008677A1 (zh) 光伏装置
CN102280512A (zh) 一种具有高转换效率的太阳能电池组件
CN108010981A (zh) 提高光伏转换效率的反光膜及其制备方法
JP5999571B2 (ja) 太陽電池モジュール
TW201705508A (zh) 高功率太陽能電池模組
TWI619262B (zh) 高功率太陽能電池模組
CN217881537U (zh) 一种光伏背板、光伏组件和光伏系统
CN107068792B (zh) 双面发电光伏结构及双面发电光伏组件
KR101616131B1 (ko) 태양전지 모듈
CN105680792B (zh) 反射器及应用反射器的光伏系统
JP2010056229A (ja) 太陽電池モジュール
CN211605167U (zh) 光伏背板及光伏组件
US20180294374A1 (en) Photovoltaic module
CN216528920U (zh) 一种光伏组件
JP2012038767A (ja) 太陽電池モジュール
CN218769573U (zh) 太阳能板结构
JP2012151240A (ja) 太陽電池モジュール
CN210489628U (zh) 一种三层高阻水高增益po复合光伏胶膜
WO2019223595A1 (zh) 发电光伏组件
TWM523192U (zh) 高功率太陽能電池模組
JP6653477B2 (ja) 太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018769943

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018769943

Country of ref document: EP

Effective date: 20181001

ENP Entry into the national phase

Ref document number: 2018236885

Country of ref document: AU

Date of ref document: 20180717

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE