WO2019013247A1 - SiC焼結体およびヒータならびにSiC焼結体の製造方法 - Google Patents
SiC焼結体およびヒータならびにSiC焼結体の製造方法 Download PDFInfo
- Publication number
- WO2019013247A1 WO2019013247A1 PCT/JP2018/026170 JP2018026170W WO2019013247A1 WO 2019013247 A1 WO2019013247 A1 WO 2019013247A1 JP 2018026170 W JP2018026170 W JP 2018026170W WO 2019013247 A1 WO2019013247 A1 WO 2019013247A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sic
- sintered body
- less
- powder
- mass
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 47
- 125000004433 nitrogen atom Chemical group N* 0.000 claims abstract description 12
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 267
- 239000000843 powder Substances 0.000 claims description 116
- 239000002245 particle Substances 0.000 claims description 97
- 238000005245 sintering Methods 0.000 claims description 43
- 238000002156 mixing Methods 0.000 claims description 38
- 239000000203 mixture Substances 0.000 claims description 22
- 229910052757 nitrogen Inorganic materials 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 17
- 229910021431 alpha silicon carbide Inorganic materials 0.000 claims description 14
- 239000012808 vapor phase Substances 0.000 claims description 7
- 238000005268 plasma chemical vapour deposition Methods 0.000 claims description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 239
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 35
- 230000000052 comparative effect Effects 0.000 description 25
- 238000005259 measurement Methods 0.000 description 17
- 239000013078 crystal Substances 0.000 description 11
- 238000010438 heat treatment Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000012071 phase Substances 0.000 description 7
- 230000008859 change Effects 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 238000007088 Archimedes method Methods 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000012300 argon atmosphere Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003574 free electron Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- -1 silane compound Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
- C04B35/575—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B3/00—Ohmic-resistance heating
- H05B3/10—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
- H05B3/12—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
- H05B3/14—Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
Definitions
- the present invention relates to a SiC sintered body, a heater, and a method of manufacturing the SiC sintered body.
- the present application claims priority based on Japanese Patent Application No. 2017-136186 filed in Japan on July 12, 2017, and Japanese Patent Application No. 2018-23595 filed in Japan on June 28, 2018. , The contents of which are incorporated herein.
- SiC sintered body obtained by sintering a silicon carbide (SiC) powder and then sintering it.
- SiC sintered bodies are used in many fields because they are excellent in heat resistance, thermal shock resistance, corrosion resistance, and high temperature strength characteristics.
- thermal shock resistance means the property which is hard to be damaged by rapid temperature change (thermal shock).
- the high temperature strength property means the strength in the high temperature region.
- Patent Document 1 describes a method of controlling the specific resistance value of a silicon carbide sintered body.
- an ⁇ -SiC powder having an average particle diameter of 0.1 ⁇ m to 10 ⁇ m and a silicon carbide sintered body having an average particle diameter of 0.1 ⁇ m to 10 ⁇ m The powder and the ultra-fine powder of SiC having an average particle size of less than 0.1 ⁇ m vapor-phase synthesized by plasma CVD are mixed in a desired ratio to obtain a SiC mixed powder.
- the specific resistance value of the silicon carbide sintered body is controlled over a wide range of about 1.0 ⁇ 10 ⁇ 3 to 1.0 ⁇ 10 2 ⁇ ⁇ cm by heating and sintering the obtained SiC mixed powder. be able to.
- Patent Document 2 describes a method for producing a conductive SiC sintered body in which the resistance control at the time of production is easy and the relative density is 90% or more.
- a mixture of SiC powder having an average particle diameter of 2 ⁇ m or less and a sintering aid is formed into a molded body, and the molded body is a non-porous material containing 30 to 90% by volume of nitrogen gas. Heat and sinter to a temperature of 2100 to 2300 ° C. in an active atmosphere.
- this sintering aid B compounds such as B, B 4 C, and BN, and carbon sources such as carbon black and phenol resin are used.
- a conductive SiC sintered body having characteristics of a specific resistance value of 10 ⁇ cm or less and a relative density of 90% or more can be obtained.
- the volume resistivity may be largely changed depending on the measurement position.
- the current value flowing through the heat generating body becomes uneven in a high temperature region, and the in-plane temperature becomes uneven. was there.
- the present invention has been made in view of the above circumstances, and has a high density and a sintered body whose volume resistivity hardly changes depending on a measurement position, a heater composed of the SiC sintered body, and the SiC thereof.
- a method of manufacturing a SiC sintered body capable of manufacturing a sintered body is provided. "Density" here represents "relative density”.
- One aspect of the present invention is a SiC sintered body, the sintered body contains nitrogen atoms, and the ratio of the maximum volume resistivity R max of the sintered body to the average volume resistivity R ave of the sintered body R max / R ave is 1.5 or less, and R min / R ave is the ratio between the minimum volume resistivity R min of the sintered body and the average volume resistivity R ave is not less than 0.7, the sintered body
- the SiC sintered body having a relative density of 98% or more is provided.
- the content of nitrogen atoms in the SiC sintered body may be 5000 ppm or less.
- One aspect of the present invention provides a heater comprising the above-described SiC sintered body.
- One aspect of the present invention is that at least one SiC powder having an average particle diameter of 0.1 ⁇ m to 1.0 ⁇ m and selected from the group consisting of ⁇ -SiC powder and ⁇ -SiC powder, and an average particle diameter of 0.
- the step of mixing the particles in an amount of 0.05 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the SiC powder, and sintering the mixture provides a method for producing a SiC sintered body in which the mixture is sintered at less than 2400 ° C.
- a SiC sintered body having high density and whose volume resistivity does not easily change depending on the measurement position, a heater composed of the SiC sintered body, and the SiC sintered body A method of manufacturing a SiC sintered body is provided.
- the method for producing an SiC sintered body according to the present embodiment includes the steps of mixing SiC powder, SiC ultrafine powder, and Si 3 N 4 particles, and a formed body obtained by molding the mixture obtained in the step of mixing And sintering.
- SiC powder having an average particle diameter of 0.1 ⁇ m to 1.0 ⁇ m is used.
- the average particle size of the SiC powder is 0.1 ⁇ m or more and 1.0 ⁇ m or less, the mixture before sintering is easy to sinter and handling is easy.
- the average particle diameter of the SiC powder is obtained by measuring the diameters of 500 SiC powders randomly selected using a scanning electron microscope (SEM), and adopting the average value of the obtained measurement values. did.
- the SiC powder used in the manufacturing method of the present embodiment has a large number of crystal structures.
- the crystal structure of the SiC powder is a cubic system having a 3C-type (zinc blende-type) crystal structure, a 4H-type or 6H-type hexagonal system having a wurtzite-type crystal structure, a rhombohedron What has a crystal structure of 15R type by crystal system is mentioned.
- SiC powder having a 3C type crystal structure is referred to as “ ⁇ -SiC powder”. Further, all SiC powders having a crystal structure other than that are referred to as “ ⁇ -SiC powder”.
- At least one SiC powder selected from the group consisting of ⁇ -SiC powder and ⁇ -SiC powder is used.
- the mixing ratio of ⁇ -SiC powder and ⁇ -SiC powder is not particularly limited.
- a SiC powder manufactured by a silica reduction method, an Atison method or the like can be used.
- a high purity SiC sintered body to which an acid treatment or the like has been applied in addition to these production methods is used.
- SiC ultrafine powder having an average particle size of less than 0.1 ⁇ m is used. If the average particle size of the SiC ultrafine powder is less than 0.1 ⁇ m, a large amount of the SiC ultrafine powder is likely to be present at the grain boundaries in the SiC sintered body, and the mixture before sintering is likely to be sintered. As a result, a SiC sintered body having a high relative density can be obtained.
- the relative density of the SiC sintered body is determined by measuring the apparent density using the Archimedes method and determining the ratio to the theoretical density of SiC.
- 0.08 micrometer or less is preferable, as for the average particle diameter of a SiC ultrafine powder, 0.07 micrometer or less is more preferable, and 0.06 micrometer is more preferable.
- the average particle diameter of the SiC ultrafine powder is preferably 0.01 ⁇ m to 0.08 ⁇ m, more preferably 0.02 ⁇ m to 0.07 ⁇ m, and still more preferably 0.03 ⁇ m to 0.06 ⁇ m.
- the upper limit value and the lower limit value of the average particle size of the SiC ultrafine powder can be arbitrarily combined.
- the average particle size of the SiC ultrafine powder is measured by the same method as the average particle size of the SiC powder.
- the SiC ultrafine powder used in the manufacturing method of the present embodiment is different from the above-described SiC powder in the range of the average particle diameter, and the other points are the same as the SiC powder.
- the mixing amount of the SiC ultrafine powder in the manufacturing method of the present embodiment is preferably more than 2 parts by mass with respect to 100 parts by mass of the SiC powder. If the mixing amount of the SiC ultrafine powder is more than 2 parts by mass, the relative density of the SiC sintered body becomes sufficiently high.
- the mixing amount of the SiC ultrafine powder is less than 20 parts by mass with respect to 100 parts by mass of the SiC powder.
- the SiC ultrafine powder is easily aggregated. This makes it difficult for the SiC ultrafine powder to enter the gaps between the particles of the SiC powder and the Si 3 N 4 particles.
- the filling rate of the SiC ultrafine powder in the mixture before sintering was reduced. Therefore, the relative density of the sintered SiC body is reduced.
- the mixing amount of the SiC ultrafine powder is more preferably 15 parts by mass or less, and further preferably 10 parts by mass or less.
- the mixing amount of the SiC ultrafine powder is more than 2 parts by mass, preferably 3 parts by mass or more.
- the mixing amount of the SiC ultrafine powder is preferably 2 parts by mass to less than 20 parts by mass, more preferably 3 parts by mass to 15 parts by mass, and 3 parts by mass to 10 parts by mass with respect to 100 parts by mass of the SiC powder. More preferable.
- the upper limit value and the lower limit value of the mixing amount of the SiC ultrafine powder can be arbitrarily combined.
- the SiC ultrafine powder synthesized in the vapor phase by the plasma CVD method is used.
- the synthesis conditions of the SiC ultrafine powder are not particularly limited, but the pressure of the reaction system is less than 1 atm to 13.3 Pa by introducing a silane compound or a halogenated silicon and a hydrocarbon source gas into plasma of a non-oxidizing atmosphere. It is preferable to carry out the gas phase reaction while controlling in the range of
- the crystal phase of the SiC ultrafine powder used in the manufacturing method of the present embodiment is not particularly limited, but SiC ultrafine powder ( ⁇ -SiC ultrafine powder) having a 3C type crystal structure, amorphous, or a mixture thereof It is preferable that it is a phase. This improves the sinterability of the mixture before sintering, and also improves the electrical and mechanical properties.
- the ⁇ -SiC ultrafine powder among the crystal phases of the SiC ultrafine powder.
- the ⁇ -SiC ultrafine powder has a small aspect ratio and is excellent in dispersibility.
- the ⁇ -SiC ultrafine powder is excellent in electrical conductivity. Therefore, the average volume resistivity of the SiC sintered body can be reduced only by mixing a small amount of the ⁇ -SiC ultrafine powder.
- volume resistivity of the SiC sintered body a value obtained by measuring the SiC sintered body by the four-probe measurement method was adopted.
- average volume resistivity of the SiC sintered body an average value of five measurement values obtained for any five places in the plane of the SiC sintered body was adopted.
- Si 3 N 4 particles In the manufacturing method of the present embodiment, a SiC sintered body in which nitrogen is solid-solved is obtained by mixing Si 3 N 4 particles with SiC powder and SiC ultrafine powder. In a SiC sintered body in which nitrogen is solid-solved, free electrons are increased, and therefore, the average volume resistivity of the SiC sintered body is reduced as compared with a SiC sintered body in which nitrogen is not dissolved.
- nitrogen can be uniformly distributed in the SiC sintered body by adjusting the average particle diameter of the mixed Si 3 N 4 particles.
- the volume resistivity of the SiC sinter hardly changes depending on the measurement position.
- a heating element using a SiC sintered body as a forming material it is easy to control the in-plane temperature uniformly.
- Si 3 N 4 particles having an average particle diameter of 0.1 ⁇ m to 2.0 ⁇ m are used.
- the average particle size of the Si 3 N 4 particles is 0.1 ⁇ m or more, the Si 3 N 4 particles can be easily obtained and handled.
- the average particle diameter of the Si 3 N 4 particles is 2.0 ⁇ m or less, nitrogen can be uniformly distributed in the SiC sintered body.
- the average particle size the Si 3 N 4 particles is preferably at least 0.15 [mu] m, more preferably not less than 0.2 [mu] m.
- the average particle size the Si 3 N 4 particles is preferably 0.15 ⁇ m or 2.0 ⁇ m or less, more preferably 0.2 ⁇ m or 2.0 ⁇ m below.
- the upper limit value and the lower limit value of the average particle size of the Si 3 N 4 particles can be arbitrarily combined.
- the average particle size of the Si 3 N 4 particles is measured by the same method as the average particle size of the SiC powder.
- the mixing amount of the Si 3 N 4 particles is 0.05 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the SiC powder.
- the average volume resistivity of the SiC sintered body can be sufficiently lowered when the mixing amount of the Si 3 N 4 particles is 0.05 parts by mass or more.
- Si 3 N 4 particles can be sufficiently dissolved in the SiC sintered body.
- relative density of the SiC sintered body is sufficiently high. If it exceeds 3 parts by mass, voids formed by sublimation can not solute Si 3 N 4 particles is increased, the relative density decreases.
- Si 3 N 4 particles more preferably at least 0.1 parts by mass, more preferably not less than 0.5 part by weight.
- the mixing amount of the Si 3 N 4 particles is more preferably 2 parts by mass or less, further preferably 1.5 parts by mass or less.
- the mixing amount of the Si 3 N 4 particles is more preferably 0.1 parts by mass or more and 2 parts by mass or less and still more preferably 0.5 parts by mass or more and 1.5 parts by mass or less with respect to 100 parts by mass of the SiC powder.
- the upper limit value and the lower limit value of the mixing amount of Si 3 N 4 particles can be arbitrarily combined.
- materials other than the above-described SiC powder, SiC ultrafine powder, and Si 3 N 4 particles may be mixed, as needed, as long as the effects of the present invention are not impaired.
- Such materials include polyvinyl alcohol, polyvinyl pyrrolidone and the like as a molding binder, and dispersants such as stearate and the like.
- the above-described SiC powder, SiC ultrafine powder, and Si 3 N 4 particles are mixed.
- the mixing method in particular is not limited, it is preferred that it is grinding mixing by a two-stream particle collision type grinding mixer.
- the above-mentioned SiC powder, SiC ultrafine powder, and Si 3 N 4 particles can be uniformly dispersed, and the particle size distribution of the obtained mixture can be narrowed.
- the narrowing of the particle size distribution of the mixture coarsening of the sintered particles can be suppressed in the subsequent firing step.
- the mixture obtained in the mixing step is formed.
- molding method of a mixture is not specifically limited, The shaping
- the mixture is formed into a disc by a uniaxial press.
- the sintering method of the molded body is not particularly limited.
- a method for sintering a formed body pressure sintering (hot press sintering) using a hot press container, pressure sintering, sintering using HIP (hot isostatic pressing method), etc.
- the conventional method is mentioned.
- hot press sintering is preferable. In hot press sintering of a formed body, a SiC sintered body having a high relative density is obtained.
- the compact In hot press sintering, specifically, the compact is packed in a hot press container and sintered under pressure in a non-oxidative atmosphere.
- the sintering temperature is less than 2400 ° C., and preferably 2200 ° C. or more and 2300 ° C. or less.
- the sintering temperature is 2200 ° C. or higher, a SiC sintered body having a sufficiently high relative density can be obtained.
- the sintering temperature is less than 2400 ° C., particularly 2300 ° C. or less, coarsening of sintered particles is suppressed, and ⁇ -SiC does not undergo phase transition to ⁇ -SiC. Therefore, the volume resistivity of the obtained SiC sintered body hardly changes depending on the measurement position.
- the above-described hot press sintering is performed under pressure of a sintering temperature of 2200 ° C. or more and 2300 ° C. or less, and 20 Mpa or more.
- the temperature rising rate in the above-described hot press sintering may be determined.
- the pressure is preferably 20 MPa or more. Thereby, a SiC sintered body having a high relative density can be obtained.
- the pressure is more preferably 20 MPa or more and 45 MPa or less.
- the non-oxidizing atmosphere is preferably an argon atmosphere.
- a method for producing a SiC sintered body capable of producing a SiC sintered body having high density and in which the volume resistivity does not easily change depending on the measurement position.
- SiC sintered body The SiC sintered body of the present embodiment can be obtained by using the above-described manufacturing method.
- nitrogen is solid-solved by mixing Si 3 N 4 particles with SiC powder and SiC ultrafine powder at the time of production.
- the content of nitrogen atoms in the SiC sintered body of the present embodiment is preferably 40 ppm or more. Moreover, 5000 ppm or less is preferable, as for content of the nitrogen atom in a SiC sintered compact, 1000 ppm or less is more preferable, and less than 150 ppm is more preferable. 40 ppm or more and 5000 ppm or less are preferable, as for content of the nitrogen atom in a SiC sintered compact, 40 ppm or more and 1000 ppm or less are more preferable, and 40 ppm or more and less than 150 ppm are more preferable.
- the upper limit value and the lower limit value of the nitrogen atom content can be arbitrarily combined.
- the content of nitrogen atoms in the SiC sintered body of the present embodiment can be controlled within the range described above by adjusting the mixing amount of the Si 3 N 4 particles to be mixed.
- the SiC sintered body of the present embodiment Since the SiC sintered body in which nitrogen is solid-solved becomes an n-type semiconductor, the SiC sintered body of the present embodiment has a small average volume resistivity.
- the average volume resistivity of the SiC sintered body of the present embodiment is preferably 0.001 ⁇ ⁇ cm or more and 100 ⁇ ⁇ cm or less.
- the average volume resistivity of the SiC sintered body is preferably 10 ⁇ ⁇ cm or less, and 0.001 ⁇ ⁇ cm or more and 10 ⁇ ⁇ cm. It is more preferable that
- the SiC sintered body of the present embodiment nitrogen is uniformly distributed by adjusting the average particle diameter of Si 3 N 4 particles mixed at the time of production.
- the volume resistivity of the SiC sinter hardly changes depending on the measurement position.
- the average volume resistivity of the SiC sintered body is R ave .
- the maximum volume resistivity of the SiC sintered body is R max .
- the minimum volume resistivity of the SiC sintered body is Rmin .
- R max / R ave is 1.5 or less, preferably 1.3 or less, and more preferably 1.1 or less.
- R min / R ave is 0.7 or more, preferably 0.8 or more, and more preferably 0.9 or more.
- R max / R ave is 1.5 or less and R min / R ave satisfies both of 0.7 or more, it can be said that the volume resistivity of the SiC sintered body hardly changes depending on the measurement position.
- R max / R ave is preferably 0.7 or more and 1.5 or less, more preferably 0.8 to 1.3, more preferably 0.9 to 1.1.
- Relative density of the SiC sintered body obtained by mixing the SiC ultrafine powder having an average particle diameter of less than 0.1 ⁇ m and being vapor-phase synthesized by the plasma CVD method at the time of production of the SiC sintered body of the present embodiment Becomes higher.
- the relative density of the SiC sintered body of the present embodiment is preferably 98% or more.
- the mechanical strength of the heat generating body which used the SiC sintered compact as a forming material as the relative density in the SiC sintered compact of this embodiment is 98% or more becomes enough.
- the relative density is preferably 98% to 100%.
- a SiC sintered body having high density and in which the volume resistivity does not easily change depending on the measurement position is provided.
- the SiC sintered body of the present embodiment can be used as a forming material of a conventionally known heating element.
- the SiC sintered body of the present embodiment can be suitably used, for example, as a heating element of a heater used in a semiconductor manufacturing process, since the volume resistivity hardly changes depending on the measurement position.
- the heat generating body which uses the SiC sintered body of the present embodiment as a forming material has high mechanical strength and can easily control the in-plane temperature uniformly.
- the average particle size of the SiC ultrafine powder was measured by measuring the diameters of 500 randomly selected SiC ultrafine powders using a scanning electron microscope (SEM), and the average value of the obtained measurement values was adopted. .
- the volume resistivity of the SiC sintered body was a value obtained by measuring the SiC sintered body by a four-point probe measurement method (Loresta-GX MCP-T700 manufactured by Mitsubishi Chemical Analytech Co., Ltd.). Further, the average volume resistivity (R ave ) of the SiC sintered body was taken as an average value of five measurement values obtained for any five places in the plane of the SiC sintered body.
- the relative density of the SiC sintered body was determined by measuring the apparent density using the Archimedes method and determining the ratio to the theoretical density of SiC.
- the nitrogen content of the SiC sintered body was measured by an inert gas melting / infrared absorption method using an oxygen and nitrogen analyzer TC-436 (manufactured by LECO).
- SiC ultrafine powder was synthesized in the vapor phase by plasma CVD. Specifically, silicon hydride (SiH 4 ) and ethylene (C 2 H 4 ) are used as source gases, and the pressure of the reaction system is 10.665 Pa in argon thermal plasma excited by a high frequency. An ultrafine powder of SiC having an average particle size of 0.01 ⁇ m was synthesized.
- Vapor phase synthesized SiC ultrafine powder commercially available ⁇ -SiC powder ( ⁇ -SiC 2500 manufactured by Superior Graphite Co., Ltd.) (average particle size 0.63 ⁇ m), commercially available ⁇ -SiC powder (manufactured by Superior Graphite Co., Ltd. ⁇ -SiC Commercially available Si 3 N 4 particles were pulverized and mixed by a two-stream particle collision type pulverizing and mixing apparatus at a ratio shown in Table 1 (average particle size: 0.63 ⁇ m) 2500). The addition amount of each component shown in Table 1 is a value when the total amount of ⁇ -SiC and ⁇ -SiC is 100 parts by mass.
- the obtained mixture was formed by a uniaxial press at a forming pressure of 20 MPa to obtain a disc-shaped formed body having a diameter of 400 mm and a thickness of 12 mm.
- This molded body was packed in a hot press container made of graphite and sintered under the conditions of uniaxial pressure 40 MPa and argon atmosphere at 2300 ° C.
- a disc-shaped SiC sintered body was obtained.
- Table 2 shows R ave , R max / R ave , R min / R ave , relative density, and nitrogen content of the SiC sintered bodies of Examples 1 to 10 and Comparative Examples 1 to 7.
- the relative density was 98% or more. From this, it can be said that the SiC sintered bodies of Examples 1 to 10 have high density.
- the amount of the SiC ultrafine powder mixed with the SiC sintered body of Example 1 was larger than that of the SiC sintered bodies of Comparative Example 1 and Comparative Example 2. As a result, the mixture before sintering in Example 1 is likely to be sintered, and the relative density is considered to be higher than that of the SiC sintered bodies of Comparative Example 1 and Comparative Example 2.
- the amount of the SiC ultrafine powder mixed with the SiC sintered body of Example 1 was larger than that of the SiC sintered body of Comparative Example 5, and the amount of Si 3 N 4 particles was smaller. As a result, the mixture before sintering in Example 1 is likely to be sintered, and the relative density is considered to be higher than that of the SiC sintered body of Comparative Example 5.
- the amount of the SiC ultrafine powder mixed with the SiC sintered body of Example 3 was larger than that of the SiC sintered body of Comparative Example 3, and the average particle diameter of the Si 3 N 4 particles was smaller.
- the mixture before sintering in Example 3 is likely to be sintered, and the relative density is considered to be higher than that of the SiC sintered body in Comparative Example 3. Therefore, the SiC sintered body of Example 3 is considered to be a sintered body which is dense and has few voids.
- the nitrogen content of the SiC sintered body of Example 3 is equivalent to that of the SiC sintered body of Comparative example 3
- the R ave of the SiC sintered body of Example 3 is the same as that of Comparative example 3 It was smaller than the R ave of the SiC sintered body. This is considered to be due to the fact that there are few voids in the SiC sintered body of Example 3 and free electrons in the SiC sintered body become easy to move.
- Example 6, Example 8 and Example 9 are compared with Comparative Example 3.
- the addition amount of the SiC ultrafine powder is more than 2 parts by mass and less than 20 parts by mass, and the average particle diameter of the Si 3 N 4 particles is 0.1 ⁇ m or more. It was in the range of 0 ⁇ m or less. It was found that if such a SiC sintered body is used, the relative density of the SiC sintered body is also high, and the variation in volume resistivity is small.
- Comparative Example 3 the addition amount of the SiC ultrafine powder was 2 parts by mass or less, and the average particle diameter of the Si 3 N 4 particles exceeded 2.0 ⁇ m.
- the SiC sintered body of Example 2 contained the same amount of Si 3 N 4 particles as the SiC sintered body of Example 1, the nitrogen content in the SiC sintered body was high. . This is considered to be because nitrogen is easily dissolved in the SiC sintered body as the ratio of the ⁇ -SiC powder to the total amount of the SiC powder to be mixed is large.
- Example 7 and Example 8 are the examples which changed the addition amount of a SiC ultrafine powder with respect to the comparative example 6.
- Example 7 and Example 8 when the addition amount of the SiC ultrafine powder is less than 20 parts by mass, it is found that the relative density is also high and the variation in volume resistivity is small.
- the additive amount of the SiC ultrafine powder was 20 parts by mass or more as in Comparative Example 6, R max / R ave exceeded 5 and further a decrease in relative density was observed.
- Comparative Example 6 it is considered that the packing ratio of particles decreased because the addition amount of the SiC ultrafine powder was too large.
- Comparative Example 6 it is considered that the variation of the volume resistivity was increased and the relative density was reduced.
- Example 1 to Example 10 When Example 1 to Example 10 is compared, the average volume resistivity of the SiC sintered body is high in the example having a large amount of ⁇ -SiC. Therefore, it has been found that the average volume resistivity of the SiC sintered body can be adjusted to a desired value by arbitrarily changing the mixing amount of ⁇ -SiC and ⁇ -SiC.
- the comparative example 7 is an example which raised the sintering temperature of Example 2 to 2400 degreeC or more.
- Example 2 variation in volume resistivity of the SiC sintered body is small.
- Comparative Example 7 the variation in volume resistivity of the SiC sintered body is large. It is considered that this is because SiC in which phase transition from ⁇ phase to ⁇ phase exists non-uniformly in the SiC sintered body.
- Example 5 is an example in which the addition amount of the SiC ultrafine powder and the addition amount of the Si 3 N 4 particles are changed with respect to Comparative Example 5.
- the addition amount of the SiC ultrafine powder was more than 2 parts by mass and less than 20 parts by mass, and the addition amount of the Si 3 N 4 particles was 3 parts by mass or less. In such Example 5, it turned out that the relative density of a SiC sinter is high.
- Comparative Example 5 although the addition amount of the SiC ultrafine powder is more than 2 parts by mass and less than 20 parts by mass, the addition amount of the Si 3 N 4 particles exceeds 3 parts by mass.
- Comparative Example 5 was found to have a lower relative density than Example 5.
- the Si 3 N 4 particles exceeds 3 parts by mass of the total amount of 100 parts by mass of the alpha-SiC and beta-SiC raw material powder, the Si 3 N 4 particles It is believed that this is because the solid solution can not be sufficiently achieved. Such non-solid-solvable Si 3 N 4 particles sublime during sintering to form voids. Therefore, such a sintered body is considered to have a reduced relative density.
- Example 5 in which the content of nitrogen atoms in the sintered body is 5000 ppm or less is to obtain a sintered body having a high density as compared with Comparative Example 5 in which the content of nitrogen atoms in the sintered body exceeds 5000 ppm. It was possible.
- a SiC sintered body having high density and whose volume resistivity does not easily change depending on the measurement position, a heater composed of the SiC sintered body, and the SiC sintered body A method of manufacturing a SiC sintered body is provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
SiC焼結体であって、前記焼結体は窒素原子を含み、前記焼結体の最大体積抵抗率Rmaxと前記焼結体の平均体積抵抗率Raveとの比であるRmax/Raveが1.5以下、かつ前記焼結体の最小体積抵抗率Rminと前記平均体積抵抗率Raveとの比であるRmin/Raveが0.7以上であり、前記焼結体の相対密度が98%以上であるSiC焼結体。
Description
本発明は、SiC焼結体およびヒータならびにSiC焼結体の製造方法に関するものである。
本願は、2017年7月12日に、日本に出願された特願2017-136186号、及び2018年6月28日に、日本に出願された特願2018-123595号に基づき優先権を主張し、その内容をここに援用する。
本願は、2017年7月12日に、日本に出願された特願2017-136186号、及び2018年6月28日に、日本に出願された特願2018-123595号に基づき優先権を主張し、その内容をここに援用する。
従来、炭化珪素(SiC)粉末を成形後、焼結したSiC焼結体が知られている。SiC焼結体は、耐熱性、耐熱衝撃性、耐食性、高温強度特性に優れているため、多くの分野で使用されている。なお、耐熱衝撃性とは、急激な温度変化(熱衝撃)で破損しにくい性質を意味する。また、高温強度特性とは、高温領域での強度を意味する。
また、SiC焼結体は導電性を示すため、抵抗発熱体としても広く用いられている。抵抗発熱体の発熱特性を向上させるため、SiC焼結体の比抵抗値に着目した開発が行われている(例えば、特許文献1および特許文献2)。
特許文献1には、炭化珪素焼結体の比抵抗値を制御する方法が記載されている。特許文献1に記載の方法では、まず、炭化珪素焼結体の平均粒子径が0.1μm以上、10μm以下のα-SiC粉末と、平均粒子径が0.1μm以上、10μm以下のβ-SiC粉末と、プラズマCVD法により気相合成された平均粒子径が0.1μm未満のSiC超微粉末とを所望の比率で混合してSiC混合粉末を得る。次に、得られたSiC混合粉末を加熱焼結することにより、炭化珪素焼結体の比抵抗値を約1.0×10-3~1.0×102Ω・cmの広範囲で制御することができる。
特許文献2には、製造時における抵抗制御が容易であり、相対密度が90%以上である導電性SiC焼結体の製造方法が記載されている。
特許文献2に記載の製造方法では、平均粒径2μm以下のSiC粉末と焼結助剤との混合物を成形して成形体とし、前記成形体を、30~90体積%の窒素ガスを含む不活性雰囲気中で2100~2300℃の温度に加熱、焼結する。この焼結助剤として、B、B4C、BNなどのB化合物、およびカーボンブラックやフェノール樹脂などの炭素源を使用する。これにより、特許文献2に記載の製造方法では、比抵抗値が10Ωcm以下、相対密度が90%以上の特性を有する導電性SiC焼結体が得られる。
しかしながら、特許文献1および特許文献2に記載の方法で得られるSiC焼結体は、測定位置によって体積抵抗率が大きく変わることがあった。例えば、測定位置によって体積抵抗率が大きく変わるSiC焼結体を用いて発熱体を作製した場合、高温領域において、発熱体に流れる電流値が不均一となり、面内の温度が不均一になることがあった。
また、特許文献2に記載の方法で得られるSiC焼結体は、密度のさらなる向上が求められていた。
本発明は、上記事情に鑑みてなされたものであって、高密度、かつ測定位置によって体積抵抗率が変化しにくいSiC焼結体、およびそのSiC焼結体から構成されるヒータ、ならびにそのSiC焼結体を製造し得るSiC焼結体の製造方法を提供する。ここでの「密度」は、「相対密度」を表す。
本発明の一態様は、SiC焼結体であって、焼結体は窒素原子を含み、焼結体の最大体積抵抗率Rmaxと焼結体の平均体積抵抗率Raveとの比であるRmax/Raveが1.5以下、かつ焼結体の最小体積抵抗率Rminと平均体積抵抗率Raveとの比であるRmin/Raveが0.7以上であり、焼結体の相対密度が98%以上であるSiC焼結体を提供する。
本発明の一態様においては、SiC焼結体における窒素原子の含有量が5000ppm以下である構成としてもよい。
本発明の一態様は、上記のSiC焼結体から構成されるヒータを提供する。
本発明の一態様は、平均粒子径が0.1μm以上1.0μm以下であり、α-SiC粉末およびβ-SiC粉末からなる群から選ばれる少なくとも一種のSiC粉末と、平均粒子径が0.1μm未満であり、プラズマCVD法により気相合成されたSiC超微粉末と、平均粒子径が0.1μm以上2.0μm以下であるSi3N4粒子と、を混合する工程と、混合する工程で得られた混合物を焼結する工程と、を有し、混合する工程では、SiC超微粉末を、SiC粉末100質量部に対して2質量部超20質量部未満混合し、Si3N4粒子を、SiC粉末100質量部に対して0.05質量部以上3質量部以下混合し、焼結する工程では、混合物を2400℃未満で焼結するSiC焼結体の製造方法を提供する。
本発明の一態様によれば、高密度、かつ測定位置によって体積抵抗率が変化しにくいSiC焼結体、およびそのSiC焼結体から構成されるヒータ、ならびにそのSiC焼結体を製造し得るSiC焼結体の製造方法が提供される。
<SiC焼結体の製造方法>
本実施形態のSiC焼結体の製造方法は、SiC粉末、SiC超微粉末、およびSi3N4粒子を混合する工程と、混合する工程で得られた混合物を成形し、得られた成形体を焼結する工程と、を有する。
本実施形態のSiC焼結体の製造方法は、SiC粉末、SiC超微粉末、およびSi3N4粒子を混合する工程と、混合する工程で得られた混合物を成形し、得られた成形体を焼結する工程と、を有する。
[SiC粉末]
本実施形態の製造方法では、平均粒子径が0.1μm以上1.0μm以下のSiC粉末を用いる。SiC粉末の平均粒子径が0.1μm以上1.0μm以下であると、焼結前の混合物を焼結させやすく、また、取り扱いが容易である。
本実施形態の製造方法では、平均粒子径が0.1μm以上1.0μm以下のSiC粉末を用いる。SiC粉末の平均粒子径が0.1μm以上1.0μm以下であると、焼結前の混合物を焼結させやすく、また、取り扱いが容易である。
本実施形態において、SiC粉末の平均粒子径は、走査型電子顕微鏡(SEM)を用いて無作為に選んだ500個のSiC粉末の直径をそれぞれ測定し、得られた測定値の平均値を採用した。
本実施形態の製造方法に用いるSiC粉末は、多数の結晶構造があることが知られている。SiC粉末の結晶構造としては、立方晶系で3C型(閃亜鉛鉱型)の結晶構造を有するもの、4H型、6H型等の六方晶系でウルツ鉱型の結晶構造を有するもの、菱面体晶系で15R型の結晶構造を有するもの、が挙げられる。
このうち、3C型の結晶構造を有するSiC粉末を「β-SiC粉末」と称する。また、それ以外の結晶構造を有するSiC粉末全てを「α-SiC粉末」と称する。
本実施形態の製造方法では、α-SiC粉末およびβ-SiC粉末からなる群から選ばれる少なくとも一種のSiC粉末を用いる。α-SiC粉末とβ-SiC粉末との両方を用いる場合、α-SiC粉末とβ-SiC粉末との混合比率は、特に制限されない。
本実施形態の製造方法では、一般にシリカ還元法、アチソン法などによって製造されたSiC粉末を用いることができる。ただし、高純度が要求される用途(例えば、半導体製造プロセスで用いられる発熱体)に向けては、これらの製造方法に加えて酸処理などを施した高純度のSiC焼結体を使用する。
[SiC超微粉末]
本実施形態の製造方法では、平均粒子径が0.1μm未満であるSiC超微粉末を用いる。SiC超微粉末の平均粒子径が0.1μm未満であると、SiC焼結体中の結晶粒界にSiC超微粉末が多く存在しやすく、焼結前の混合物を焼結させやすい。その結果、相対密度が高いSiC焼結体を得ることができる。
本実施形態の製造方法では、平均粒子径が0.1μm未満であるSiC超微粉末を用いる。SiC超微粉末の平均粒子径が0.1μm未満であると、SiC焼結体中の結晶粒界にSiC超微粉末が多く存在しやすく、焼結前の混合物を焼結させやすい。その結果、相対密度が高いSiC焼結体を得ることができる。
本実施形態において、SiC焼結体の相対密度は、アルキメデス法を用いてみかけ密度を測定し、SiCの理論密度との比により求められる。
SiC超微粉末の平均粒子径は、0.08μm以下が好ましく、0.07μm以下がより好ましく、0.06μmがさらに好ましい。
SiC超微粉末の平均粒子径は、0.01μm以上が好ましく、0.02μm以上がより好ましく、0.03μm以上がさらに好ましい。
SiC超微粉末の平均粒子径は、0.01μm以上0.08μm以下が好ましく、0.02μm以上0.07μm以下がより好ましく、0.03μm以上0.06μmがさらに好ましい。
SiC超微粉末の平均粒子径は、0.01μm以上0.08μm以下が好ましく、0.02μm以上0.07μm以下がより好ましく、0.03μm以上0.06μmがさらに好ましい。
本実施形態の製造方法において、SiC超微粉末の平均粒子径の上限値および下限値は任意に組み合わせることができる。
本実施形態において、SiC超微粉末の平均粒子径は、SiC粉末の平均粒子径と同様の方法で測定される。
本実施形態の製造方法に用いるSiC超微粉末は、上述のSiC粉末と平均粒子径の範囲が異なり、それ以外の点はSiC粉末と同様である。
本実施形態の製造方法におけるSiC超微粉末の混合量は、SiC粉末100質量部に対して2質量部超であることが好ましい。SiC超微粉末の混合量が2質量部超であると、SiC焼結体の相対密度が十分高くなる。
SiC超微粉末の混合量は、SiC粉末100質量部に対して20質量部未満である。
SiC超微粉末の混合量が20質量部以上であると、SiC超微粉末が凝集しやすい。これにより、SiC粉末やSi3N4粒子の粒子同士の間の空隙にSiC超微粉末が入りにくくなる。発明者らが検討した結果、焼結前の混合物におけるSiC超微粉末の充填率が低下することがわかった。したがって、焼結後のSiC焼結体の相対密度が低下してしまう。
SiC超微粉末の混合量が20質量部以上であると、SiC超微粉末が凝集しやすい。これにより、SiC粉末やSi3N4粒子の粒子同士の間の空隙にSiC超微粉末が入りにくくなる。発明者らが検討した結果、焼結前の混合物におけるSiC超微粉末の充填率が低下することがわかった。したがって、焼結後のSiC焼結体の相対密度が低下してしまう。
SiC超微粉末の混合量は、15質量部以下がより好ましく、10質量部以下がさらに好ましい。
SiC超微粉末の混合量は、2質量部超であり、3質量部以上がより好ましい。
SiC超微粉末の混合量は、SiC粉末100質量部に対して、2質量部超20質量部未満が好ましく、3質量部以上15質量部以下がより好ましく、3質量部以上10質量部以下がさらに好ましい。
SiC超微粉末の混合量は、SiC粉末100質量部に対して、2質量部超20質量部未満が好ましく、3質量部以上15質量部以下がより好ましく、3質量部以上10質量部以下がさらに好ましい。
本実施形態の製造方法において、SiC超微粉末の混合量の上限値および下限値は任意に組み合わせることができる。
本実施形態の製造方法では、プラズマCVD法により気相合成されたSiC超微粉末を用いる。
SiC超微粉末の合成条件は特に限定されないが、非酸化性雰囲気のプラズマ中にシラン化合物またはハロゲン化ケイ素と炭化水素の原料ガスとを導入し、反応系の圧力を1気圧未満から13.3Paの範囲で制御しつつ気相反応させることが好ましい。
本実施形態の製造方法に用いるSiC超微粉末の結晶相は、特に制限されないが、3C型の結晶構造を有するSiC超微粉末(β-SiC超微粉末)、非晶質、またはこれらの混合相であることが好ましい。これにより、焼結前の混合物の焼結性が向上し、電気的な特性および機械的な特性も向上する。
本実施形態の製造方法においては、SiC超微粉末の結晶相の中でもβ-SiC超微粉末を用いることがより好ましい。β-SiC超微粉末は、アスペクト比が小さく分散性に優れている。また、β-SiC超微粉末は、電気伝導性に優れている。そのため、β-SiC超微粉末を少量混合するだけで、SiC焼結体の平均体積抵抗率を小さくすることができる。
本実施形態において、SiC焼結体の体積抵抗率は、SiC焼結体を四探針測定法により測定した値を採用した。また、SiC焼結体の平均体積抵抗率は、SiC焼結体の面内における任意の5箇所について得られた5つの測定値の平均値を採用した。
[Si3N4粒子]
本実施形態の製造方法では、SiC粉末およびSiC超微粉末と共にSi3N4粒子を混合することにより、窒素が固溶したSiC焼結体を得る。窒素が固溶したSiC焼結体中では、自由電子が増加するため、窒素が固溶していないSiC焼結体と比べてSiC焼結体の平均体積抵抗率が小さくなる。
本実施形態の製造方法では、SiC粉末およびSiC超微粉末と共にSi3N4粒子を混合することにより、窒素が固溶したSiC焼結体を得る。窒素が固溶したSiC焼結体中では、自由電子が増加するため、窒素が固溶していないSiC焼結体と比べてSiC焼結体の平均体積抵抗率が小さくなる。
本実施形態の製造方法では、混合するSi3N4粒子の平均粒子径を調整することにより、SiC焼結体中に窒素を均一に分布させることができる。これにより、SiC焼結体の体積抵抗率は、測定位置によって変化しにくい。その結果、SiC焼結体を形成材料として用いた発熱体では、面内の温度を均一に制御しやすい。
本実施形態の製造方法では、平均粒子径が0.1μm以上2.0μm以下のSi3N4粒子を用いる。Si3N4粒子の平均粒子径が0.1μm以上であると、Si3N4粒子を入手しやすく、また取り扱いやすい。また、Si3N4粒子の平均粒子径が2.0μm以下であると、SiC焼結体中に窒素を均一に分布させることができる。
Si3N4粒子の平均粒子径は、0.15μm以上が好ましく、0.2μm以上がより好ましい。
Si3N4粒子の平均粒子径は、0.15μm以上2.0μm以下が好ましく、0.2μm以上2.0μm以下がより好ましい。
Si3N4粒子の平均粒子径は、0.15μm以上2.0μm以下が好ましく、0.2μm以上2.0μm以下がより好ましい。
本実施形態の製造方法において、Si3N4粒子の平均粒子径の上限値および下限値は任意に組み合わせることができる。
本実施形態において、Si3N4粒子の平均粒子径は、SiC粉末の平均粒子径と同様の方法で測定される。
本実施形態の製造方法において、Si3N4粒子の混合量は、SiC粉末100質量部に対して0.05質量部以上3質量部以下である。Si3N4粒子の混合量が0.05質量部以上であると、SiC焼結体の平均体積抵抗率を十分低下させることができる。また、Si3N4粒子の混合量が3質量部以下であると、SiC焼結体中にSi3N4粒子を十分固溶させることができる。また、Si3N4粒子の混合量が3質量部以下であると、SiC焼結体の相対密度が十分高くなる。また、3質量部を超えると、固溶できないSi3N4粒子の昇華により形成される空隙が大きくなり、相対密度が低下する。
Si3N4粒子の混合量は、0.1質量部以上がより好ましく、0.5質量部以上がさらに好ましい。
Si3N4粒子の混合量は、2質量部以下がより好ましく、1.5質量部以下がさらに好ましい。
Si3N4粒子の混合量は、SiC粉末100質量部に対して、0.1質量部以上2質量部以下がより好ましく、0.5質量部以上1.5質量部以下がさらに好ましい。
Si3N4粒子の混合量は、SiC粉末100質量部に対して、0.1質量部以上2質量部以下がより好ましく、0.5質量部以上1.5質量部以下がさらに好ましい。
本実施形態の製造方法において、Si3N4粒子の混合量の上限値および下限値は任意に組み合わせることができる。
[その他の材料]
本実施形態の製造方法では、本発明の効果を損なわない範囲において、必要に応じて上述のSiC粉末、SiC超微粉末およびSi3N4粒子以外の材料を混合してもよい。このような材料としては、ポリビニルアルコール、ポリビニルピロリドンなどを成形バインダー、ステアリン酸塩などの分散剤などが挙げられる。
本実施形態の製造方法では、本発明の効果を損なわない範囲において、必要に応じて上述のSiC粉末、SiC超微粉末およびSi3N4粒子以外の材料を混合してもよい。このような材料としては、ポリビニルアルコール、ポリビニルピロリドンなどを成形バインダー、ステアリン酸塩などの分散剤などが挙げられる。
[混合する工程]
本実施形態の混合する工程では、上述のSiC粉末、SiC超微粉末、およびSi3N4粒子を混合する。これらの混合方法は特に限定されないが、2流粒子衝突型の粉砕混合装置による粉砕混合であることが好ましい。これにより、上述のSiC粉末、SiC超微粉末、およびSi3N4粒子が均一に分散されるとともに、得られた混合物の粒度分布を狭くすることができる。混合物の粒度分布が狭くなった結果、次の焼成する工程において、焼結体粒子の粗大化を抑制することができる。
本実施形態の混合する工程では、上述のSiC粉末、SiC超微粉末、およびSi3N4粒子を混合する。これらの混合方法は特に限定されないが、2流粒子衝突型の粉砕混合装置による粉砕混合であることが好ましい。これにより、上述のSiC粉末、SiC超微粉末、およびSi3N4粒子が均一に分散されるとともに、得られた混合物の粒度分布を狭くすることができる。混合物の粒度分布が狭くなった結果、次の焼成する工程において、焼結体粒子の粗大化を抑制することができる。
[焼結する工程]
本実施形態の焼結する工程では、まず、混合する工程で得られた混合物を成形する。混合物の成形方法は特に限定されないが、一軸プレス機を用いた成形方法が好ましい。例えば、混合物は一軸プレス機により円盤状に成形される。
本実施形態の焼結する工程では、まず、混合する工程で得られた混合物を成形する。混合物の成形方法は特に限定されないが、一軸プレス機を用いた成形方法が好ましい。例えば、混合物は一軸プレス機により円盤状に成形される。
次に、混合物を成形した成形体を焼結する。成形体の焼結方法は特に限定されない。例えば、成形体の焼結方法としては、ホットプレス容器を用いた加圧焼結(ホットプレス焼結)、常圧焼結、HIP(熱間等方圧加圧法)を用いた焼結などの従来の方法が挙げられる。成形体の焼結方法の中でも、ホットプレス焼結が好ましい。成形体のホットプレス焼結では、相対密度の高いSiC焼結体が得られる。
ホットプレス焼結では、具体的に、成形体をホットプレス容器に詰め、加圧しながら非酸化性雰囲気下で焼結する。
上述のホットプレス焼結において、焼結温度は2400℃未満であり、2200℃以上2300℃以下が好ましい。焼結温度が2200℃以上であると、相対密度が十分高いSiC焼結体が得られる。また、焼結温度が2400℃未満、特に2300℃以下であると、焼結体粒子の粗大化が抑制され、β-SiCがα-SiCに相転移しない。そのため、得られるSiC焼結体の体積抵抗率は、測定位置によって変化しにくい。
上述のホットプレス焼結は、焼結温度が2200℃以上2300℃以下、20Mpa以上の加圧下で行われる。
上述のホットプレス焼結において、昇温速度が速いと、成形体の焼結時間が十分短く、SiC焼結体の製造コストが低く抑えられる傾向がある。また、上述の昇温速度が遅いと、成形体の焼結時におけるクラックの発生を抑制し、良質なSiC焼結体が得られる傾向がある。このような傾向に基づいて、上述のホットプレス焼結における昇温速度を決定するとよい。
上述のホットプレス焼結において、圧力は20MPa以上であることが好ましい。これにより、相対密度の高いSiC焼結体が得られる。
ホットプレス焼結において、圧力は20MPa以上45MPa以下であることがより好ましい。
ホットプレス焼結において、圧力は20MPa以上45MPa以下であることがより好ましい。
上述のホットプレス焼結において、非酸化性雰囲気はアルゴン雰囲気であることが好ましい。
本実施形態によれば、高密度、かつ測定位置によって体積抵抗率が変化しにくいSiC焼結体を製造し得るSiC焼結体の製造方法が提供される。
[SiC焼結体]
上述の製造方法を用いることにより、本実施形態のSiC焼結体を得ることができる。
上述の製造方法を用いることにより、本実施形態のSiC焼結体を得ることができる。
本実施形態のSiC焼結体には、製造時にSiC粉末およびSiC超微粉末と共にSi3N4粒子を混合することにより、窒素が固溶している。
本実施形態のSiC焼結体における窒素原子の含有量は、40ppm以上が好ましい。
また、SiC焼結体における窒素原子の含有量は、5000ppm以下が好ましく、1000ppm以下がより好ましく、150ppm未満がさらに好ましい。
SiC焼結体における窒素原子の含有量は、40ppm以上5000ppm以下が好ましく、40ppm以上1000ppm以下がより好ましく、40ppm以上150ppm未満がさらに好ましい。
また、SiC焼結体における窒素原子の含有量は、5000ppm以下が好ましく、1000ppm以下がより好ましく、150ppm未満がさらに好ましい。
SiC焼結体における窒素原子の含有量は、40ppm以上5000ppm以下が好ましく、40ppm以上1000ppm以下がより好ましく、40ppm以上150ppm未満がさらに好ましい。
本実施形態のSiC焼結体において、窒素原子の含有量の上限値および下限値は任意に組み合わせることができる。
本実施形態のSiC焼結体における窒素原子の含有量は、混合するSi3N4粒子の混合量を調整することにより上述の範囲内に制御することができる。
窒素が固溶したSiC焼結体はn型半導体となるため、本実施形態のSiC焼結体は、平均体積抵抗率が小さい。本実施形態のSiC焼結体の平均体積抵抗率は、0.001Ω・cm以上100Ω・cm以下であることが好ましい。本実施形態のSiC焼結体を発熱体の形成材料として用いる場合には、SiC焼結体の平均体積抵抗率は、10Ω・cm以下であることが好ましく、0.001Ω・cm以上10Ω・cm以下であることがより好ましい。
本実施形態のSiC焼結体には、製造時に混合するSi3N4粒子の平均粒子径を調整することにより、窒素が均一に分布している。これにより、SiC焼結体の体積抵抗率は、測定位置によって変化しにくい。
ここで、本実施形態のSiC焼結体において、SiC焼結体の平均体積抵抗率をRaveとする。また、SiC焼結体の最大体積抵抗率をRmaxとする。また、SiC焼結体の最小体積抵抗率をRminとする。
本実施形態のSiC焼結体において、Rmax/Raveは、1.5以下であり、1.3以下が好ましく、1.1以下がより好ましい。Rmin/Raveは0.7以上であり、0.8以上が好ましく、0.9以上がより好ましい。Rmax/Raveが1.5以下で、Rmin/Raveが0.7以上の両方を満たすと、SiC焼結体の体積抵抗率は、測定位置によって変化しにくいと言える。その結果、SiC焼結体を形成材料として用いた発熱体では、面内の温度を均一に制御しやすい。
Rmax/Raveは、0.7以上1.5以下が好ましく、0.8以上1.3以下がより好ましく、0.9以上1.1以下がさらに好ましい。
Rmax/Raveは、0.7以上1.5以下が好ましく、0.8以上1.3以下がより好ましく、0.9以上1.1以下がさらに好ましい。
本実施形態のSiC焼結体の製造時に平均粒子径が0.1μm未満であり、プラズマCVD法により気相合成されたSiC超微粉末を混合することにより、得られるSiC焼結体の相対密度が高くなる。本実施形態のSiC焼結体における相対密度は98%以上であることが好ましい。本実施形態のSiC焼結体における相対密度が98%以上であると、SiC焼結体を形成材料として用いた発熱体の機械的強度が十分となる。
相対密度は98%以上100%以下が好ましい。
相対密度は98%以上100%以下が好ましい。
本実施形態によれば、高密度、かつ測定位置によって体積抵抗率が変化しにくいSiC焼結体が提供される。
[発熱体]
本実施形態のSiC焼結体は、従来公知の発熱体の形成材料として用いることができる。本実施形態のSiC焼結体は、測定位置によって体積抵抗率が変化しにくいので、例えば半導体製造プロセスで用いるヒータの発熱体として好適に用いることができる。
本実施形態のSiC焼結体は、従来公知の発熱体の形成材料として用いることができる。本実施形態のSiC焼結体は、測定位置によって体積抵抗率が変化しにくいので、例えば半導体製造プロセスで用いるヒータの発熱体として好適に用いることができる。
本実施形態のSiC焼結体を形成材料とする発熱体は、機械的強度が高く、かつ面内の温度を均一に制御しやすい。
以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
(SiC超微粉末の平均粒子径)
SiC超微粉末の平均粒子径は、走査型電子顕微鏡(SEM)を用いて無作為に選んだ500個のSiC超微粉末の直径をそれぞれ測定し、得られた測定値の平均値を採用した。
SiC超微粉末の平均粒子径は、走査型電子顕微鏡(SEM)を用いて無作為に選んだ500個のSiC超微粉末の直径をそれぞれ測定し、得られた測定値の平均値を採用した。
(SiC焼結体の平均体積抵抗率)
SiC焼結体の体積抵抗率は、SiC焼結体を四探針測定法(株式会社三菱ケミカルアナリテック製 ロレスタ-GX MCP-T700)により測定した値とした。また、SiC焼結体の平均体積抵抗率(Rave)は、SiC焼結体の面内における任意の5箇所について得られた5つの測定値の平均値とした。
SiC焼結体の体積抵抗率は、SiC焼結体を四探針測定法(株式会社三菱ケミカルアナリテック製 ロレスタ-GX MCP-T700)により測定した値とした。また、SiC焼結体の平均体積抵抗率(Rave)は、SiC焼結体の面内における任意の5箇所について得られた5つの測定値の平均値とした。
さらに、得られた測定値のうち、SiC焼結体の最大体積抵抗率Rmaxと、SiC焼結体の最小体積抵抗率Rminとを用い、Rmax/RaveおよびRmin/Raveを算出した。
(SiC焼結体の相対密度)
SiC焼結体の相対密度は、アルキメデス法を用いてみかけ密度を測定し、SiC理論密度との比により求めた値とした。
SiC焼結体の相対密度は、アルキメデス法を用いてみかけ密度を測定し、SiC理論密度との比により求めた値とした。
(SiC焼結体の窒素含有量)
SiC焼結体の窒素含有量は、酸素窒素分析装置 TC-436(LECO社製)を使用して、不活性ガス溶融・赤外線吸収法にて測定した。
SiC焼結体の窒素含有量は、酸素窒素分析装置 TC-436(LECO社製)を使用して、不活性ガス溶融・赤外線吸収法にて測定した。
<SiC焼結体の製造>
[実施例1~10、比較例1~7]
まず、SiC超微粉末をプラズマCVD法により気相合成した。具体的には、原料ガスとして水素化ケイ素(SiH4)とエチレン(C2H4)とを用い、高周波により励起されたアルゴン熱プラズマ中、反応系の圧力が10.665Paの条件下で、平均粒子径が0.01μmであるSiC超微粉末を合成した。
[実施例1~10、比較例1~7]
まず、SiC超微粉末をプラズマCVD法により気相合成した。具体的には、原料ガスとして水素化ケイ素(SiH4)とエチレン(C2H4)とを用い、高周波により励起されたアルゴン熱プラズマ中、反応系の圧力が10.665Paの条件下で、平均粒子径が0.01μmであるSiC超微粉末を合成した。
気相合成したSiC超微粉末、市販のα-SiC粉末(スーペリア・グラファイト社製
α-SiC 2500)(平均粒子径0.63μm)、市販のβ-SiC粉末(スーペリア・グラファイト社製 β-SiC 2500)(平均粒子径0.63μm)、および市販のSi3N4粒子を表1に示した割合で、2流粒子衝突型の粉砕混合装置により粉砕混合した。なお、表1に示す各成分の添加量は、α-SiCとβ-SiCとの合計量を100質量部としたときの値である。
α-SiC 2500)(平均粒子径0.63μm)、市販のβ-SiC粉末(スーペリア・グラファイト社製 β-SiC 2500)(平均粒子径0.63μm)、および市販のSi3N4粒子を表1に示した割合で、2流粒子衝突型の粉砕混合装置により粉砕混合した。なお、表1に示す各成分の添加量は、α-SiCとβ-SiCとの合計量を100質量部としたときの値である。
得られた混合物を一軸プレス機にて、成形圧力20MPaで成形し、直径400mm、厚み12mmの円盤状の成形体を得た。この成形体を黒鉛製のホットプレス容器に詰め、一軸加圧40MPa、アルゴン雰囲気中、2300℃の条件下で焼結した。このようにして、円盤状のSiC焼結体を得た。
表2に、実施例1~10、比較例1~7のSiC焼結体のRave、Rmax/Rave、Rmin/Rave、相対密度、窒素含有量を示した。
表2に示す評価は、以下の基準で行った。
○…Rmax/Raveが1.5以下、かつRmin/Raveが0.7以上かつ、相対密度が98%以上
×…上記以外
○…Rmax/Raveが1.5以下、かつRmin/Raveが0.7以上かつ、相対密度が98%以上
×…上記以外
表2に示すように、本発明の製造方法を適用した実施例1~10のSiC焼結体においては、Rmax/RaveとRmin/Raveとの両方が1.5以下であった。このことから、実施例1~10のSiC焼結体においては、測定位置によって体積抵抗率が変化しにくいと言える。
また、実施例1~10のSiC焼結体においては、相対密度が98%以上であった。このことから、実施例1~10のSiC焼結体は、高密度であると言える。
実施例1~10のSiC焼結体は、Si3N4粒子を含むことにより、窒素が固溶している。これにより、実施例1~10のSiC焼結体中では自由電子が増加し、窒素が固溶していない比較例4のSiC焼結体と比べて、Raveが小さくなったと考えられる。
実施例1のSiC焼結体は、比較例1および比較例2のSiC焼結体よりも混合されるSiC超微粉末の量が多かった。これにより、実施例1における焼結前の混合物が焼結しやすくなり、比較例1および比較例2のSiC焼結体と比べて、相対密度が高くなったと考えられる。
実施例1のSiC焼結体は、比較例5のSiC焼結体よりも混合されるSiC超微粉末の量が多く、かつ、Si3N4粒子の量が少なかった。これにより、実施例1における焼結前の混合物が焼結しやすくなり、比較例5のSiC焼結体と比べて、相対密度が高くなったと考えられる。
実施例3のSiC焼結体は、比較例3のSiC焼結体よりも混合されるSiC超微粉末の量が多く、かつ、Si3N4粒子の平均粒子径が小さかった。これにより、実施例3における焼結前の混合物が焼結しやすくなり、比較例3のSiC焼結体と比べて、相対密度が高くなったと考えられる。したがって、実施例3のSiC焼結体は、緻密で空隙が少ない焼結体であると考えられる。
また、実施例3のSiC焼結体の窒素含有量は、比較例3のSiC焼結体と同等であるにもかかわらず、実施例3のSiC焼結体のRaveは、比較例3のSiC焼結体のRaveと比べて小さかった。これは、実施例3のSiC焼結体中に空隙が少なく、SiC焼結体中の自由電子が動きやすくなったためであると考えられる。
実施例6、実施例8および実施例9と、比較例3とを比較する。実施例6、実施例8および実施例9では、SiC超微粉末の添加量が2質量部超20質量部未満であり、かつ、Si3N4粒子の平均粒子径が0.1μm以上2.0μm以下の範囲であった。このようなSiC焼結体あれば、SiC焼結体の相対密度も高く、体積抵抗率のばらつきが小さいことが分かった。一方、比較例3では、SiC超微粉末の添加量が2質量部以下であり、かつ、Si3N4粒子の平均粒子径が2.0μmを超えていた。このようなSiC焼結体では、SiC焼結体の相対密度の低下が認められた。この理由の一つとしては、SiC超微粉末の添加量が少なすぎるために、SiC焼結体を緻密化できないためであると考えられる。別の理由としては、用いたSi3N4粒子の平均粒子径が大きすぎるために、SiC焼結体を緻密化できないためであると考えられる。
また、実施例2のSiC焼結体は、実施例1のSiC焼結体と同量のSi3N4粒子を含んでいるにもかかわらず、SiC焼結体中の窒素含有量が多かった。これは、混合されるSiC粉末全量に対するβ-SiC粉末の割合が多いほど、SiC焼結体中に窒素が固溶しやすいためであると考えられる。
実施例7および実施例8は、比較例6に対し、SiC超微粉末の添加量を変更した例である。実施例7および実施例8のようにSiC超微粉末の添加量が20質量部未満であると、相対密度も高く、体積抵抗率のばらつきが小さいことが分かった。一方、比較例6のようにSiC超微粉末の添加量が20質量部以上であるとRmax/Raveが5を超え、さらに相対密度の低下が認められた。比較例6では、SiC超微粉末の添加量が多くなりすぎたために、粒子の充填率が低下したと考えられる。その結果、比較例6では、体積抵抗率のばらつきの拡大と、相対密度の低下をもたらしたと考えられる。
実施例1から実施例10を比較すると、α-SiCが多い実施例では、SiC焼結体の平均体積抵抗率が高い。したがって、α-SiCとβ-SiCの混合量を任意に変更することにより、SiC焼結体の平均体積抵抗率を所望の値に調整できることが分かった。
比較例7は実施例2の焼結温度を2400℃以上に上昇させた例である。実施例2では、SiC焼結体の体積抵抗率のばらつきが小さい。一方、実施例2と比較し、比較例7では、SiC焼結体の体積抵抗率のばらつきが大きい。これはβ相からα相に相転移したSiCがSiC焼結体中に不均一に存在するためであると考えられる。
実施例5は、比較例5に対し、SiC超微粉末の添加量およびSi3N4粒子の添加量を変えた例である。実施例5では、SiC超微粉末の添加量が2質量部超20質量部未満であり、かつ、Si3N4粒子の添加量が3質量部以下であった。このような実施例5では、SiC焼結体の相対密度が高いことが分かった。一方、比較例5では、SiC超微粉末の添加量が2質量部超20質量部未満であるものの、Si3N4粒子の添加量が3質量部を超えていた。このような比較例5は実施例5よりも相対密度が低いことが分かった。
この理由の一つとしては、Si3N4粒子の添加量が原料粉のα-SiCとβ-SiCとの合計量100質量部に対して3質量部を超えると、Si3N4粒子が十分に固溶できないためであると考えられる。このような固溶できないSi3N4粒子は、焼結時に昇華し、空隙が形成されてしまう。したがって、このような焼結体は、相対密度が低下すると考えられる。また、焼結体における窒素原子の含有量が5000ppm以下である実施例5は、焼結体における窒素原子の含有量が5000ppmを超える比較例5と比べて、高密度の焼結体を得ることができた。
この理由の一つとしては、Si3N4粒子の添加量が原料粉のα-SiCとβ-SiCとの合計量100質量部に対して3質量部を超えると、Si3N4粒子が十分に固溶できないためであると考えられる。このような固溶できないSi3N4粒子は、焼結時に昇華し、空隙が形成されてしまう。したがって、このような焼結体は、相対密度が低下すると考えられる。また、焼結体における窒素原子の含有量が5000ppm以下である実施例5は、焼結体における窒素原子の含有量が5000ppmを超える比較例5と比べて、高密度の焼結体を得ることができた。
以上の結果から、本発明が有用であることが確かめられた。
本発明の一態様によれば、高密度、かつ測定位置によって体積抵抗率が変化しにくいSiC焼結体、およびそのSiC焼結体から構成されるヒータ、ならびにそのSiC焼結体を製造し得るSiC焼結体の製造方法が提供される。
Claims (4)
- SiC焼結体であって、前記焼結体は窒素原子を含み、
前記焼結体の最大体積抵抗率Rmaxと前記焼結体の平均体積抵抗率Raveとの比であるRmax/Raveが1.5以下、かつ前記焼結体の最小体積抵抗率Rminと前記平均体積抵抗率Raveとの比であるRmin/Raveが0.7以上であり、
前記焼結体の相対密度が98%以上であるSiC焼結体。 - 前記SiC焼結体における前記窒素原子の含有量が5000ppm以下である請求項1に記載のSiC焼結体。
- 請求項1または2に記載のSiC焼結体から構成されるヒータ。
- 平均粒子径が0.1μm以上1.0μm以下であり、α-SiC粉末およびβ-SiC粉末からなる群から選ばれる少なくとも一種のSiC粉末と、
平均粒子径が0.1μm未満であり、プラズマCVD法により気相合成されたSiC超微粉末と、
平均粒子径が0.1μm以上2.0μm以下であるSi3N4粒子と、を混合する工程と、
前記混合する工程で得られた混合物を焼結する工程と、を有し、
前記混合する工程では、前記SiC超微粉末を、前記SiC粉末100質量部に対して2質量部超20質量部未満混合し、
前記Si3N4粒子を、前記SiC粉末100質量部に対して0.05質量部以上3質量部以下混合し、
前記焼結する工程では、前記混合物を2400℃未満で焼結するSiC焼結体の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880019061.9A CN110446693B (zh) | 2017-07-12 | 2018-07-11 | SiC烧结体、加热器以及SiC烧结体的制造方法 |
KR1020197026356A KR102042668B1 (ko) | 2017-07-12 | 2018-07-11 | SiC 소결체 및 히터와 SiC 소결체의 제조 방법 |
US16/494,852 US10703677B2 (en) | 2017-07-12 | 2018-07-11 | SiC sintered body, heater and method for producing SiC sintered body |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017136186 | 2017-07-12 | ||
JP2017-136186 | 2017-07-12 | ||
JP2018123595A JP6536722B2 (ja) | 2017-07-12 | 2018-06-28 | SiC焼結体およびヒータならびにSiC焼結体の製造方法 |
JP2018-123595 | 2018-06-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019013247A1 true WO2019013247A1 (ja) | 2019-01-17 |
Family
ID=65001266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/026170 WO2019013247A1 (ja) | 2017-07-12 | 2018-07-11 | SiC焼結体およびヒータならびにSiC焼結体の製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2019013247A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115126576A (zh) * | 2021-03-24 | 2022-09-30 | 日本碍子株式会社 | 蜂窝结构体、以及采用了该蜂窝结构体的电加热式载体及尾气处理装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09255428A (ja) * | 1996-03-19 | 1997-09-30 | Sumitomo Osaka Cement Co Ltd | 炭化珪素焼結体の比抵抗制御方法 |
JP2007320787A (ja) * | 2006-05-30 | 2007-12-13 | Bridgestone Corp | 炭化ケイ素焼結体及びその製造方法 |
WO2017038555A1 (ja) * | 2015-09-03 | 2017-03-09 | 住友大阪セメント株式会社 | フォーカスリング、フォーカスリングの製造方法 |
-
2018
- 2018-07-11 WO PCT/JP2018/026170 patent/WO2019013247A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09255428A (ja) * | 1996-03-19 | 1997-09-30 | Sumitomo Osaka Cement Co Ltd | 炭化珪素焼結体の比抵抗制御方法 |
JP2007320787A (ja) * | 2006-05-30 | 2007-12-13 | Bridgestone Corp | 炭化ケイ素焼結体及びその製造方法 |
WO2017038555A1 (ja) * | 2015-09-03 | 2017-03-09 | 住友大阪セメント株式会社 | フォーカスリング、フォーカスリングの製造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115126576A (zh) * | 2021-03-24 | 2022-09-30 | 日本碍子株式会社 | 蜂窝结构体、以及采用了该蜂窝结构体的电加热式载体及尾气处理装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6536722B2 (ja) | SiC焼結体およびヒータならびにSiC焼結体の製造方法 | |
Lanfant et al. | Effects of carbon and oxygen on the spark plasma sintering additive-free densification and on the mechanical properties of nanostructured SiC ceramics | |
JPS6228109B2 (ja) | ||
JP5528749B2 (ja) | 炭化ホウ素−炭化ケイ素複合セラミックス及び該セラミックスの製造方法 | |
KR101413250B1 (ko) | 질화알루미늄 소결체, 그 제법 및 그것을 이용한 정전 척 | |
US20170076835A1 (en) | SiC POWDER, SiC SINTERED BODY, SiC SLURRY AND MANUFACTURING METHOD OF THE SAME | |
JP3150606B2 (ja) | 炭化珪素焼結体の比抵抗制御方法 | |
WO2019013247A1 (ja) | SiC焼結体およびヒータならびにSiC焼結体の製造方法 | |
KR101859818B1 (ko) | 플라즈마 처리된 Si-SiC 나노복합분말을 이용한 SiC 소결체 제조방법 | |
JP2005075720A (ja) | SiC被覆カーボンナノチューブ、その製造方法とその複合材料 | |
KR101659823B1 (ko) | HfC 복합체 및 이의 제조방법 | |
JP4860335B2 (ja) | 導電性耐食部材及びその製造方法 | |
Shinoda et al. | Effect of Amount of Boron Doping on Compression Deformation of Fine‐Grained Silicon Carbide at Elevated Temperature | |
JP2006240909A (ja) | 炭化ケイ素粉末組成物及びそれを用いた炭化ケイ素焼結体の製造方法並びに炭化ケイ素焼結体 | |
JPH04128369A (ja) | 炭化珪素スパッタリング用ターゲット及びその製造方法 | |
JP6787207B2 (ja) | SiC焼結体 | |
JP4542747B2 (ja) | 高強度六方晶窒化硼素焼結体の製法 | |
TW201838954A (zh) | 膏狀組成物、碳化物燒結體及其製造方法、及耐火構件 | |
WO1989008086A1 (en) | HIGH-STRENGTH, beta-TYPE SILICON CARBIDE SINTER AND PROCESS FOR ITS PRODUCTION | |
JPH02199065A (ja) | 高熱伝導性炭化珪素焼結体及びその製造方法 | |
Yoon et al. | Effect of the Si-C powder prepared by mechanical alloying on the densification of silicon carbide powder | |
JP2007217240A (ja) | SiC焼結体、SiC粒子及びSiC焼結体の製造方法 | |
JP2009126768A (ja) | 炭化ケイ素焼結体の製造方法 | |
Datta et al. | Sintering of nano crystalline α silicon carbide doping with aluminium nitride | |
WO2019159851A1 (ja) | 金属炭化物焼結体およびそれを備えた炭化珪素半導体製造装置用耐熱部材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18831791 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20197026356 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18831791 Country of ref document: EP Kind code of ref document: A1 |