WO2019012988A1 - 地形情報送信装置、施工管理システム及び地形情報送信方法 - Google Patents
地形情報送信装置、施工管理システム及び地形情報送信方法 Download PDFInfo
- Publication number
- WO2019012988A1 WO2019012988A1 PCT/JP2018/024338 JP2018024338W WO2019012988A1 WO 2019012988 A1 WO2019012988 A1 WO 2019012988A1 JP 2018024338 W JP2018024338 W JP 2018024338W WO 2019012988 A1 WO2019012988 A1 WO 2019012988A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- dimensional data
- terrain
- construction site
- image data
- information
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 23
- 238000000034 method Methods 0.000 title claims description 19
- 238000009430 construction management Methods 0.000 title claims description 18
- 238000010276 construction Methods 0.000 claims abstract description 102
- 238000012545 processing Methods 0.000 claims abstract description 38
- 238000012876 topography Methods 0.000 claims abstract description 35
- 238000004891 communication Methods 0.000 claims description 46
- 239000013585 weight reducing agent Substances 0.000 claims description 23
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 abstract 3
- 230000006870 function Effects 0.000 description 10
- 230000008569 process Effects 0.000 description 10
- 238000003384 imaging method Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000002354 daily effect Effects 0.000 description 3
- 230000003203 everyday effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000011946 reduction process Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
- E02F9/2054—Fleet management
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/26—Indicating devices
- E02F9/261—Surveying the work-site to be treated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
- B64U2101/32—UAVs specially adapted for particular uses or applications for imaging, photography or videography for cartography or topography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2200/00—Indexing scheme for image data processing or generation, in general
- G06T2200/04—Indexing scheme for image data processing or generation, in general involving 3D image data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/20—Image signal generators
- H04N13/204—Image signal generators using stereoscopic image cameras
Definitions
- the present invention relates to a terrain information transmission apparatus, a construction management system, and a terrain information transmission method.
- Priority is claimed on Japanese Patent Application No. 2017-138417, filed July 14, 2017, the content of which is incorporated herein by reference.
- Patent Document 1 there is known a technique for acquiring image data of a construction site using a stereo camera provided in a construction machine, and creating three-dimensional data using the image data. By creating three-dimensional data of the topography of the construction site, it becomes possible to manage the progress of the construction site.
- the small aircraft shoots the entire terrain while traveling above the construction site, and transmits a plurality of image data acquired by the shooting to the server device (information providing device) via the wide area communication network.
- the server device creates three-dimensional data (partial terrain three-dimensional data) of the terrain included in each of the plurality of received image data, integrates these, and indicates three-dimensional data indicating the topography of the entire construction site (overall terrain third order Create original data).
- the server device processes the entire topographic three-dimensional data into a viewable state via, for example, a wide area communication network (Internet). Thereby, the worker and manager concerning construction can confirm the three-dimensional shape of the whole construction site via the wide area communication network using the output device.
- Internet wide area communication network
- the image data obtained by photographing has a large amount of individual data, and the total number of image data required per construction site is enormous. Therefore, it takes a lot of time to transmit all of the huge number of image data transmitted by the small aircraft via the wide area communication network.
- the server device since the server device receives image data for each of a plurality of construction sites and performs processing for creating three-dimensional data in parallel for each of them, the processing of the server device itself also has a high load.
- the present invention has been made to solve the above problems, and provides a terrain information transmitting apparatus, a construction management system, and a terrain information transmitting method capable of improving the update frequency of three-dimensional data of the entire construction site.
- the purpose is
- the terrain information transmitting apparatus is a terrain information transmitting apparatus installed at a construction site and transmitting three-dimensional data indicating the topography of the construction site to the server apparatus, the construction site
- An image data receiving unit for receiving a plurality of image data for copying the topography of the land
- a three-dimensional data creation unit for creating three-dimensional data of the construction site based on a plurality of the image data
- a weight reduction processing unit performing weight reduction processing for reducing a total data amount, and a terrain information transmission unit transmitting weight reduction three-dimensional data, which are three-dimensional data subjected to the weight reduction processing, to the server device .
- the frequency of updating three-dimensional data of the entire construction site can be improved.
- FIG. 1 is schematic which shows the whole structure of the construction management system which concerns on 1st Embodiment.
- the construction management system 1 includes a terrain information transmitting device 10, a small aircraft 11 (drone), a construction machine 12, an information providing device 2, and an output device 3.
- the terrain information transmitting apparatus 10 is a computer installed in a site office installed at each construction site F.
- the terrain information transmitting apparatus 10 is installed in each of the plurality of construction sites F, and transmits three-dimensional data indicating the topography of the construction site F to the information providing apparatus 2 which is a server apparatus through the wide area communication network G.
- the wide area communication network G is a so-called Internet communication network, a mobile communication network such as LTE / 3G, or the like.
- the terrain information transmitting apparatus 10 is communicably connected to a small aircraft 11 and a construction machine 12 described later through the on-site communication network L.
- the on-site communication network L is a wireless communication network capable of exchanging information among devices (the terrain information transmitting apparatus 10, the small aircraft 11, and the construction machine 12) existing in one construction site F. .
- the terrain information transmitting apparatus 10 installed at the construction site F and the mobile units (small aircraft 11 and construction machines 12) in the construction site F communicate with each other via P2P (peer-to-peer) communication by "wireless LAN". It is described as performing.
- the small-sized aircraft 11 travels above a single construction site F along a predefined route while mounting an imaging device, for example, a stereo camera (not shown in FIG. 1). Then, the small aircraft 11 shoots the entire topography of the construction site F through the stereo camera, and generates a plurality of image data. The terrain of the construction site F is partially captured in each image data. The small aircraft 11 transmits the plurality of acquired image data to the terrain information transmitting apparatus 10 via the wireless LAN.
- an imaging device for example, a stereo camera (not shown in FIG. 1). Then, the small aircraft 11 shoots the entire topography of the construction site F through the stereo camera, and generates a plurality of image data. The terrain of the construction site F is partially captured in each image data. The small aircraft 11 transmits the plurality of acquired image data to the terrain information transmitting apparatus 10 via the wireless LAN.
- the construction machine 12 is, for example, a hydraulic shovel, a bulldozer, etc., and is a plurality of construction machines that perform construction work in the construction site F.
- the construction machine 12 is also equipped with an imaging device (not shown in FIG. 1), and for example, photographs the topography according to the operation of the driver.
- the construction machine 12 transmits the image data acquired by photographing to the terrain information transmitting apparatus 10 via the wireless LAN.
- the information providing device 2 is a server device that collects three-dimensional data from each terrain information transmitting device 10 through the wide area communication network G, processes each three-dimensional data so as to be viewable, and allows the user It is an apparatus to provide.
- the information providing device 2 according to the present embodiment creates, based on the three-dimensional data received from the terrain information transmitting device 10, progress information that enables grasping of the progress of the construction work for each construction site F.
- the output device 3 receives information (progress information to be described later) provided from the information providing device 2 through the wide area communication network G, and notifies the user of the information.
- the worker M1 who performs the construction work at the construction site F can obtain the progress information on the spot through the output device 3 possessed by him / her, for example, a tablet terminal.
- a manager M2 (entire manager or the like) located at a remote place D away from the construction site F can also acquire progress information through the output device 3 owned by him / her. Also, progress information can be acquired and output by a printer or the like.
- FIG. 2 is a diagram showing a functional configuration of the terrain information transmitting apparatus and the like according to the first embodiment.
- the terrain information transmitting apparatus 10 includes a CPU 100, a memory 101, a wide area communication interface 102, a wireless LAN interface 103, and a recording medium 104.
- the CPU 100 is a processor that manages the entire operation of the terrain information transmitting apparatus 10.
- the CPU 100 reads a program or data stored in the recording medium 104 or the like onto the memory 101, and executes a process defined by the program to realize each function described later.
- the memory 101 is a volatile memory (RAM) used as a work area or the like of the CPU 100.
- the wide area communication interface 102 is a connection interface for the terrain information transmitting apparatus 10 to exchange information with the information providing apparatus 2 through the wide area communication network G.
- the wide area communication interface 102 may be connected by wire between the terrain information transmitting apparatus 10 and the wide area communication network G, or may be connected by wireless.
- the wireless LAN interface 103 is communicably connected to other various devices (small aircraft 11 and construction machines 12) present in the construction site F by wireless LAN.
- the recording medium 104 is realized by, for example, a large-capacity recording device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive), and stores an OS (Operation System), an application program, various data, and the like.
- the recording medium 104 records and stores a plurality of image data acquired by the small aircraft 11 or the like.
- the CPU 100 operates based on the above-described program to exhibit the functions as the image data reception unit 1001, the three-dimensional data generation unit 1002, the weight reduction processing unit 1003, and the terrain information transmission unit 1004 shown in FIG.
- the image data receiving unit 1001 receives a plurality of image data for copying the topography of the construction site F from the mobile unit (small aircraft 11, construction machine 12) on which the stereo camera is mounted through the on-site communication network. Further, the image data receiving unit 1001 receives, from a moving object which has been photographed by a stereo camera, position / orientation information when the photographing is performed.
- the three-dimensional data creation unit 1002 creates three-dimensional data of the topography of the construction site F based on the plurality of image data acquired by the image data reception unit 1001. Specifically, the three-dimensional data creation unit 1002 performs stereo matching processing on the image data (stereo image) acquired by the stereo camera 110 of the small aircraft 11, and is included in the image data in the entire construction site F Create 3D data of partial terrain (partial terrain 3D data). Then, the three-dimensional data generation unit 1002 joins and integrates a plurality of partial terrain three-dimensional data generated for each image data based on the position / orientation information, and the terrain wider than the partial terrain three-dimensional data area, For example, “overall topography three-dimensional data” representing the topography of the entire construction site F is created. Examples of three-dimensional data include point cloud data plotted on three-dimensional coordinates, polygon data, and voxel data.
- the weight reduction processing unit 1003 performs a weight reduction process for reducing the total data amount of the whole topography three-dimensional data generated by the three-dimensional data generation unit 1002.
- a weight reduction process for reducing the total data amount of the whole topography three-dimensional data generated by the three-dimensional data generation unit 1002.
- representative values (average value, mode value, median value) of a point cloud are calculated for each small area (mesh) partitioned at a specific interval, and the point cloud is thinned out.
- an example of the "weight reduction process” is an unnecessary substance removing process of removing a singular point (one showing a significantly different coordinate as compared to the coordinates of an adjacent point group) generated due to the influence of noise or the like of image data. Good.
- the terrain information transmission unit 1004 transmits “lightweight three-dimensional data” which is three-dimensional data subjected to weight reduction processing by the weight reduction processing unit 1003 to the information providing device 2 through the wide area communication network G.
- the small aircraft 11 includes a stereo camera 110 and a wireless LAN interface 111.
- the small aircraft 11 automatically shoots the terrain using the stereo camera 110 while traveling above the construction site F according to a pre-installed program.
- the small aircraft 11 transmits the image data acquired by photographing to the terrain information transmitting apparatus 10 through the wireless LAN interface 111.
- the construction machine 12 also includes a stereo camera 120 and a wireless LAN interface 121.
- the construction machine 12 shoots the terrain with the stereo camera 120 in response to the driver's operation (depression of a dedicated button, etc.).
- the construction machine 12 transmits the image data acquired by photographing to the terrain information transmitting apparatus 10 through the wireless LAN interface 121.
- FIG. 3 is a diagram showing a functional configuration of the information providing device according to the first embodiment.
- the information providing device 2 includes a CPU 200, a memory 201, a wide area communication interface 202, and a recording medium 203.
- the CPU 200 is a processor that manages the entire operation of the information providing device 2.
- the CPU 200 reads a program or data stored in the recording medium 203 or the like onto the memory 201, and executes a process defined by the program to realize each function described later.
- the memory 201 is a volatile memory (RAM) used as a work area or the like of the CPU 200.
- the wide area communication interface 202 is a connection interface for the information providing apparatus 2 to receive lightweight three-dimensional data from the plurality of terrain information transmitting apparatuses 10 through the wide area communication network G.
- the wide area communication interface 202 may be connected by wire between the information providing device 2 and the wide area communication network G, or may be connected by wireless.
- the recording medium 203 is realized by, for example, a large-capacity recording device such as an HDD or an SSD, and stores an OS, an application program, various data, and the like.
- the lightweight three-dimensional data and the like received from the terrain information transmitting device 10 are recorded and stored in the recording medium 203.
- the CPU 200 exerts the functions as the terrain information receiving unit 2001, the progress information creating unit 2002, and the progress information transmitting unit 2003 shown in FIG.
- the terrain information receiving unit 2001 receives, through the wide area communication network G, from each of the plurality of terrain information transmitting devices 10, lightened three-dimensional data indicating the entire topography of the construction site F where the terrain information transmitting device 10 is installed. .
- the progress information creation unit 2002 creates progress information indicating the progress of the construction at the construction site F based on the plurality of lightweight three-dimensional data received from the terrain information transmission device 10.
- the progress information transmission unit 2003 transmits the progress information created by the progress information creation unit 2002 to the output device 3 of the user through the wide area communication network G.
- FIG. 4 is a diagram showing a processing flow of the terrain information transmitting apparatus according to the first embodiment.
- the processing flow shown in FIG. 4 is performed periodically (for example, every day) and starts after the imaging processing of the topography of the entire construction site F by the small aircraft 11 is completed.
- the image data receiving unit 1001 (CPU 100) of the terrain information transmitting device 10 receives a plurality of image data (and position / orientation information) from the small aircraft 11 via the on-site communication network L (wireless LAN) (step S00) ).
- the image data receiving unit 1001 performs imaging with the construction machine 12, the image data (and position and orientation information acquired by the imaging from the construction machine 12 via the on-site communication network L) To receive).
- the three-dimensional data creation unit 1002 (CPU 100) determines the three-dimensional topography of the construction site F based on the plurality of image data acquired in step S00 and the position / orientation information associated with each image data. Data (whole terrain three-dimensional data) is created (step S01).
- the weight reduction processing unit 1003 (CPU 100) performs reduction processing to reduce the amount of data of the entire topography three-dimensional data created in step S01 (step S02). Specifically, as described above, the weight reduction processing unit 1003 performs point cloud thinning processing and unnecessary object removal processing on the entire topography three-dimensional data.
- the terrain information transmission unit 1004 (CPU 100) transmits the lightweight three-dimensional data created in step S02 to the information providing device 2 via the wide area communication network G (step S03). At this time, the terrain information transmission unit 1004 indicates identification information for identifying the construction site F, and acquisition date (shooting date) of the image data that is the basis of the three-dimensional data, for the lightening three-dimensional data. Date information (time stamp) is attached and transmitted to the information providing device 2.
- FIG. 5 is a diagram showing a processing flow of the information providing apparatus according to the first embodiment.
- FIG. 6 is a diagram for explaining the function of the information providing device according to the first embodiment.
- the processing flow shown in FIG. 5 is periodically and repeatedly executed by the CPU 200 of the information providing device 2.
- the terrain information receiving unit 2001 (CPU 200) of the information providing device 2 receives the lightening three-dimensional data and the like from each of the plurality of terrain information transmitting devices 10 through the wide area communication network G (step S10).
- This lightweight three-dimensional data is three-dimensional data (whole terrain three-dimensional data) indicating the entire terrain of the construction site F where the terrain information transmitting apparatus 10 is installed, and the terrain information transmitting apparatus 10 reduces the weight It has been processed.
- the progress information creation unit 2002 (CPU 200) creates progress information based on the weight reduction three-dimensional data received in step S10 (step S11).
- the progress information will be described with reference to FIG.
- the progress information creation unit 2002 displays a list of lightweight three-dimensional data acquired for each construction site F (F-1, F-2,%) In chronological order based on date and time information Do. Lightening three-dimensional data of a plurality of construction sites F may be displayed on the same screen. By doing this, the user can carefully grasp the change of the topography of the construction site F which is the object of management (for example, in a cycle of one day). Further, the progress information creation unit 2002 creates the progress information so that comparison can be made in the same time series for each of a plurality of construction sites F (F-1, F-2, so thereby, the user can also grasp whether or not the progress of a certain construction site F is advanced in cooperation with another construction site F.
- the progress information creation unit 2002 creates the progress information as shown in FIG. 6 in a format (such as HTML format) that can be viewed on a web page or the like.
- the progress information creation unit 2002 creates the progress information as shown in FIG. 6 in a format that can be output as a printed matter.
- the progress information transmission unit 2003 (CPU 200) sends the progress information created in step S11 to each output device 3 in response to the browse request from the output device 3 held by the user (worker M1, manager M2). It transmits (step S12). Thereby, the user can check the progress information at any time through the display panel of each output device 3.
- the terrain information transmitting apparatus 10 transmits the on-site communication network L (from the small-sized aircraft 11 and the construction machine 12) on which the stereo camera is mounted. A plurality of image data for copying the topography of the construction site F is received through the wireless LAN). In addition, the terrain information transmitting apparatus 10 creates three-dimensional data (whole terrain three-dimensional data) of the construction site F based on a plurality of image data, and further reduces the total data amount of the created three-dimensional data. Process. Then, the terrain information transmitting apparatus 10 transmits the lightweight three-dimensional data, which is the whole terrain three-dimensional data subjected to the weight reduction processing, to the server apparatus (the information providing apparatus 2) through the wide area communication network G.
- the server apparatus the information providing apparatus 2
- the information transmitted through the wide area communication network G is three-dimensional data in which the total data amount (information amount) is smaller than that of the image data.
- the total data volume of this three-dimensional data is further reduced through the weight reduction processing. Therefore, the communication load required for data transmission of topographical information through the wide area communication network G can be reduced.
- the server apparatus since the server apparatus (the information providing apparatus 2) does not need to create three-dimensional data, it is possible to reduce the load on the server apparatus itself. As a result, the entire topography three-dimensional data of the construction site F can be updated at relatively short time intervals (for example, on a daily basis), so that the work progress can be grasped in detail become.
- the terrain information transmitting apparatus 10 transmits, to the server apparatus (the information providing apparatus 2), date and time information indicating an acquisition date and time of the image data which is the basis of the lightweight three-dimensional data, in addition to the lightweight three-dimensional data.
- the server device can create progress information in which three-dimensional data created at predetermined time intervals are arranged in time series.
- the information providing apparatus 2 has been described as creating progress information in which weight reduction three-dimensional data for each construction site F are arranged in time series as shown in FIG.
- the form is not limited to this aspect.
- the information providing device 2 according to the other embodiment further specifies the difference between the lightening three-dimensional data acquired at a certain point and the lightening three-dimensional data acquired at another point, and visualizes the difference. You may create "difference three-dimensional data" to be By doing this, for example, it is possible to intuitively understand how the topography of the construction site F has changed on a daily basis.
- the image data may be acquired exclusively by the small aircraft 11 only or the construction machine 12 only.
- the image data may be taken by a stereo camera provided by a movable body (a general vehicle, a pedestrian, etc.) different from the small aircraft 11 and the construction machine 12 It may be taken by a stereo camera fixedly installed. That is, the image data may be photographed in any manner as long as it is photographed by an imaging device capable of photographing the topography of the construction site F.
- the construction management system 1 which concerns on 1st Embodiment image
- the information may be transmitted to the information providing device 2.
- the wide area communication network G is the Internet communication line
- the on-site communication network L is the wireless LAN.
- the wide area communication network G may be, for example, a dedicated communication line established across a plurality of construction sites F.
- the on-site communication network L may be in any form as long as it can communicate with devices and apparatuses existing in the construction site F.
- the processes of various processes of the terrain information transmitting apparatus 10 and the information providing apparatus 2 described above are stored in a computer readable recording medium in the form of a program, and the computer The above various processes are performed by reading and executing.
- the computer readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory and the like.
- the computer program may be distributed to a computer through a communication line, and the computer that has received the distribution may execute the program.
- the program may be for realizing a part of the functions described above. Furthermore, it may be a so-called difference file (difference program) that can realize the above-described functions in combination with a program already recorded in the computer system.
- difference file difference program
- the frequency of updating three-dimensional data of the entire construction site can be improved.
- terrain information transmitter 100
- image data reception unit 1002
- three-dimensional data generation unit 1003
- lightening processing unit 1004
- terrain information transmission unit 101 memory 102 wide area communication interface 103 wireless LAN interface 104 recording medium 11 small aircraft 110 stereo camera 111 wireless LAN interface 12 construction machine 120 stereo camera 121 Wireless LAN Interface 2
- Information Providing Device 200
- terrain information receiving unit 2002
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Remote Sensing (AREA)
- Computer Graphics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Aviation & Aerospace Engineering (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
本願は、2017年7月14日に日本に出願された特願2017-138417号について優先権を主張し、その内容をここに援用する。
また、ステレオカメラを搭載した小型航空機(ドローン)を航行させて、施工現場全体の地形を撮影し、当該施工現場全体の地形を示す三次元データを作成する手法が知られている。
以上のような事情により、一つの施工現場において、小型航空機による撮影を開始してから当該施工現場全体の三次元データ(全体地形三次元データ)を完成させるまでには、多大な時間を要していた。そのため、全体地形三次元データは、比較的短い時間間隔(例えば、1日単位)で更新することができず、それ故、施工進捗を詳細に把握することが困難であった。
(施工管理システムの全体構成)
図1は、第1の実施形態に係る施工管理システムの全体構成を示す概略図である。
また、地形情報送信装置10は、現場内通信網Lを通じて、後述する小型航空機11、建設機械12と通信可能に接続されている。なお、現場内通信網Lとは、一つの施工現場F内に存在する装置(地形情報送信装置10、小型航空機11及び建設機械12)どうしで互いに情報をやり取りすることができる無線通信網である。本実施形態においては、施工現場Fに設置された地形情報送信装置10と、当該施工現場F内の移動体(小型航空機11、建設機械12)とは、「無線LAN」によるP2P(ピアツーピア)通信を行うものとして説明する。
小型航空機11は、取得した複数の画像データを、無線LAN経由で地形情報送信装置10に送信する。
建設機械12は、撮影によって取得した画像データを、無線LAN経由で地形情報送信装置10に送信する。
図2は、第1の実施形態に係る地形情報送信装置等の機能構成を示す図である。
図2に示すように、地形情報送信装置10は、CPU100と、メモリ101と、広域通信インタフェース102と、無線LANインタフェース103と、記録媒体104と、を備えている。
なお、三次元データの例としては、三次元座標上にプロットされる点群データ、ポリゴンデータ、およびボクセルデータなどが挙げられる。
図3は、第1の実施形態に係る情報提供装置の機能構成を示す図である。
図3に示すように、情報提供装置2は、CPU200と、メモリ201と、広域通信インタフェース202と、記録媒体203とを備えている。
進捗情報作成部2002は、地形情報送信装置10から受信した複数の軽量化三次元データに基づいて施工現場Fにおける施工の進捗を示す進捗情報を作成する。
進捗情報送信部2003は、進捗情報作成部2002が作成した進捗情報を、広域通信網Gを通じて利用者の出力装置3に送信する。
図4は、第1の実施形態に係る地形情報送信装置の処理フローを示す図である。
図4に示す処理フローは、定期的(例えば、1日毎)に実施され、小型航空機11による施工現場F全体の地形の撮影処理が完了した後に開始される。
次に、三次元データ作成部1002(CPU100)は、ステップS00で取得された複数の画像データと、各画像データに関連付けられた位置・方位情報とに基づいて、施工現場Fの地形の三次元データ(全体地形三次元データ)を作成する(ステップS01)。
次に、軽量化処理部1003(CPU100)は、ステップS01で作成された全体地形三次元データに対し、そのデータ量を軽減する軽減処理を施す(ステップS02)。具体的には、上述したように、軽量化処理部1003は、全体地形三次元データに対し、点群の間引き処理、及び、不要物除去処理を行う。
次に、地形情報送信部1004(CPU100)は、広域通信網Gを介して、ステップS02で作成された軽量化三次元データを情報提供装置2に送信する(ステップS03)。この際、地形情報送信部1004は、軽量化三次元データに対し、施工現場Fを識別するための識別情報、及び、三次元データの基となった画像データの取得日時(撮影日時)を示す日時情報(タイムスタンプ)を付して情報提供装置2に送信する。
図5は、第1の実施形態に係る情報提供装置の処理フローを示す図である。
また、図6は、第1の実施形態に係る情報提供装置の機能を説明するための図である。
図5に示す処理フローは、情報提供装置2のCPU200によって定期的に繰り返し実行される。
進捗情報作成部2002は、図6に示すような進捗情報をwebページ等で閲覧可能な形式(HTML形式等)で作成する。進捗情報作成部2002は、図6に示すような進捗情報を印刷物として出力可能な形式で作成する。
以上の通り、第1の実施形態に係る施工管理システム1によれば、地形情報送信装置10は、ステレオカメラを搭載する移動体(小型航空機11、建設機械12)から、現場内通信網L(無線LAN)を通じて、施工現場Fの地形を写す複数の画像データを受信する。
また、地形情報送信装置10は、複数の画像データに基づいて施工現場Fの三次元データ(全体地形三次元データ)を作成し、更に、作成された三次元データの総データ量を軽減する軽量化処理を行う。
そして、地形情報送信装置10は、上記軽量化処理が施された全体地形三次元データである軽量化三次元データを、広域通信網Gを通じてサーバ装置(情報提供装置2)に送信する。
このようにすることで、サーバ装置は、所定の時間間隔で作成した三次元データを時系列で並べてなる進捗情報を作成することができる。
以上、第1の実施形態に係る施工管理システム1について詳細に説明したが、施工管理システム1の具体的な態様は、上述のものに限定されることはなく、要旨を逸脱しない範囲内において種々の設計変更等を加えることは可能である。
他の実施形態に係る情報提供装置2は、更に、ある時点で取得された軽量化三次元データと、別の時点で取得された軽量化三次元データとの差分を特定し、その差分を可視化してなる「差分三次元データ」を作成してもよい。このようにすることで、例えば、日ごとに、施工現場Fの地形がどのように変化したかを、直感的に把握することができる。
例えば、他の実施形態に係る施工管理システム1では、画像データは、専ら、小型航空機11のみ、又は、建設機械12のみによって取得される態様であってもよい。また、他の実施形態に係る施工管理システム1では、画像データは、小型航空機11、建設機械12とは別の移動体(一般車両、歩行者等)が具備するステレオカメラで撮影されたものでもよいし、固定設置されたステレオカメラで撮影されたものでもよい。即ち、画像データは、施工現場Fの地形を撮影可能な撮像装置によって撮影されたものであれば、如何なる態様で撮影されたものであってもよい。
他の実施形態に係る施工管理システム1は、1日よりも短い単位(例えば、午前及び午後1回ずつ)とか、1時間毎に、施工現場F全体の地形を撮影し、その三次元データを情報提供装置2に送信する態様としてもよい。
10 地形情報送信装置
100 CPU
1001 画像データ受信部
1002 三次元データ作成部
1003 軽量化処理部
1004 地形情報送信部
101 メモリ
102 広域通信インタフェース
103 無線LANインタフェース
104 記録媒体
11 小型航空機
110 ステレオカメラ
111 無線LANインタフェース
12 建設機械
120 ステレオカメラ
121 無線LANインタフェース
2 情報提供装置
200 CPU
2001 地形情報受信部
2002 進捗情報作成部
2003 進捗情報送信部
201 メモリ
202 広域通信インタフェース
203 記録媒体
3 出力装置
Claims (7)
- 施工現場に設置され、当該施工現場の地形を示す三次元データをサーバ装置に送信する地形情報送信装置であって、
前記施工現場の地形を写す複数の画像データを受信する画像データ受信部と、
複数の前記画像データに基づいて前記施工現場の三次元データを作成する三次元データ作成部と、
作成された前記三次元データの総データ量を軽減する軽量化処理を行う軽量化処理部と、
前記軽量化処理が施された三次元データである軽量化三次元データを前記サーバ装置に送信する地形情報送信部と、
を備える地形情報送信装置。 - 前記軽量化処理は、三次元データに含まれる点群の間引き処理である
請求項1に記載の地形情報送信装置。 - 前記地形情報送信部は、
前記軽量化三次元データに加え、当該軽量化三次元データの基となった前記画像データの取得日時を示す日時情報を送信する
請求項1又は請求項2に記載の地形情報送信装置。 - 前記画像データ受信部は、前記複数の画像データを、各画像データを取得した際の位置・方位情報とともに受信し、
前記三次元データ作成部は、前記施工現場全体のうち各画像データに含まれる部分の地形の三次元データである複数の部分地形三次元データを作成した上で、作成された前記複数の部分地形三次元データを前記位置・方位情報に基づいて繋ぎ合わせて統合することにより全体地形三次元データを作成する
請求項1から請求項3の何れか一項に記載の地形情報送信装置。 - 請求項1から請求項4の何れか一項に記載の地形情報送信装置と、
前記サーバ装置と、
を備え、
前記サーバ装置は、
前記地形情報送信装置から受信した前記軽量化三次元データに基づいて前記施工現場における施工の進捗を示す進捗情報を作成する進捗情報作成部と、
前記進捗情報を、広域通信網を通じて利用者の出力装置に送信する進捗情報送信部と、
を備える施工管理システム。 - 施工現場に設置された地形情報送信装置を用いて、当該施工現場の地形を示す三次元データをサーバ装置に送信する地形情報送信方法であって、
前記施工現場の地形を写す複数の画像データを受信する情報受信ステップと、
複数の前記画像データに基づいて前記施工現場の三次元データを作成する三次元データ作成ステップと、
作成された前記三次元データの総データ量を軽減する軽量化処理を行う軽量化処理ステップと、
前記軽量化処理が施された三次元データである軽量化三次元データを前記サーバ装置に送信する地形情報送信ステップと、
を有する地形情報送信方法。 - 前記情報受信ステップにおいて、前記複数の画像データを、各画像データを取得した際の位置・方位情報とともに受信し、
前記三次元データ作成ステップにおいて、前記施工現場全体のうち各画像データに含まれる部分の地形の三次元データである複数の部分地形三次元データを作成した上で、作成された前記複数の部分地形三次元データを前記位置・方位情報に基づいて繋ぎ合わせて統合することにより全体地形三次元データを作成する
請求項6に記載の地形情報送信方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018001447.9T DE112018001447T5 (de) | 2017-07-14 | 2018-06-27 | Topographische informationsübertragungsvorrichtung, bauverwaltungssystem und topographisches informationsübertragungsverfahren |
US16/605,256 US11250623B2 (en) | 2017-07-14 | 2018-06-27 | Topographic information transmission device, construction management system, and topographic information transmission method |
AU2018299284A AU2018299284A1 (en) | 2017-07-14 | 2018-06-27 | Topographic information transmission device, construction management system, and topographic information transmission method |
CN201880025473.3A CN110546674A (zh) | 2017-07-14 | 2018-06-27 | 地形信息发送装置、施工管理系统及地形信息发送方法 |
JP2019529042A JPWO2019012988A1 (ja) | 2017-07-14 | 2018-06-27 | 地形情報送信装置、施工管理システム及び地形情報送信方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-138417 | 2017-07-14 | ||
JP2017138417 | 2017-07-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019012988A1 true WO2019012988A1 (ja) | 2019-01-17 |
Family
ID=65002603
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/024338 WO2019012988A1 (ja) | 2017-07-14 | 2018-06-27 | 地形情報送信装置、施工管理システム及び地形情報送信方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11250623B2 (ja) |
JP (1) | JPWO2019012988A1 (ja) |
CN (1) | CN110546674A (ja) |
AU (1) | AU2018299284A1 (ja) |
DE (1) | DE112018001447T5 (ja) |
WO (1) | WO2019012988A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020143476A (ja) * | 2019-03-05 | 2020-09-10 | 住友重機械工業株式会社 | 作業機械用画像取得装置、情報管理システム、情報端末、作業機械用画像取得プログラム |
JP2020200660A (ja) * | 2019-06-10 | 2020-12-17 | コベルコ建機株式会社 | 遠隔操作システムおよび遠隔操作サーバ |
WO2023106324A1 (ja) * | 2021-12-10 | 2023-06-15 | 株式会社小松製作所 | 表示システム及び表示方法 |
WO2023106323A1 (ja) * | 2021-12-10 | 2023-06-15 | 株式会社小松製作所 | 施工管理システム及び施工管理方法 |
US11726451B2 (en) | 2021-05-26 | 2023-08-15 | Caterpillar Inc. | Remote processing of sensor data for machine operation |
US12043988B2 (en) | 2021-05-26 | 2024-07-23 | Caterpillar Inc. | Selectively causing remote processing of data for an autonomous digging operation |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7392422B2 (ja) * | 2019-11-25 | 2023-12-06 | コベルコ建機株式会社 | 作業支援サーバおよび作業支援システム |
JP7349956B2 (ja) * | 2020-04-14 | 2023-09-25 | 株式会社小松製作所 | 施工方法及び施工システム |
US11906981B2 (en) * | 2022-02-08 | 2024-02-20 | Caterpillar Inc. | System and method for updating virtual worksite |
DE102022211957A1 (de) | 2022-11-11 | 2024-05-16 | Robert Bosch Gesellschaft mit beschränkter Haftung | Verfahren zum Betreiben einer Erdbaumaschine, Vorrichtung und Erdbaumaschine |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243500A (ja) * | 2000-03-01 | 2001-09-07 | Hitachi Eng Co Ltd | 三次元点群データ処理装置 |
JP2007170820A (ja) * | 2005-12-19 | 2007-07-05 | Enzan Kobo:Kk | 三次元変位計測方法 |
WO2017061517A1 (ja) * | 2015-10-05 | 2017-04-13 | 株式会社小松製作所 | 施工管理システム及び施工管理方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002235318A (ja) * | 2001-02-07 | 2002-08-23 | Sumitomo Forestry Co Ltd | 敷地調査報告システム |
DE10109541A1 (de) * | 2001-02-28 | 2002-09-12 | Siemens Ag | Rechnergestütztes Projektierungswerkzeug |
US8768667B2 (en) * | 2010-10-25 | 2014-07-01 | Trimble Navigation Limited | Water erosion management incorporating topography, soil type, and weather statistics |
US8773512B1 (en) * | 2011-06-30 | 2014-07-08 | Aquifi, Inc. | Portable remote control device enabling three-dimensional user interaction with at least one appliance |
JP5802476B2 (ja) | 2011-08-09 | 2015-10-28 | 株式会社トプコン | 建設機械制御システム |
US9972120B2 (en) * | 2012-03-22 | 2018-05-15 | University Of Notre Dame Du Lac | Systems and methods for geometrically mapping two-dimensional images to three-dimensional surfaces |
CA2912432C (en) * | 2012-05-15 | 2020-09-15 | Tesman Inc. | Mapping of mining excavations |
JP6081034B2 (ja) * | 2014-10-08 | 2017-02-15 | 三菱電機株式会社 | 車載カメラ制御装置 |
JP6496182B2 (ja) * | 2015-04-28 | 2019-04-03 | 株式会社小松製作所 | 施工計画システム |
JP2017138417A (ja) | 2016-02-02 | 2017-08-10 | 東洋インキScホールディングス株式会社 | カラーフィルタ用着色組成物及びカラーフィルタ |
US10670725B2 (en) * | 2017-07-25 | 2020-06-02 | Waymo Llc | Determining yaw error from map data, lasers, and cameras |
-
2018
- 2018-06-27 CN CN201880025473.3A patent/CN110546674A/zh active Pending
- 2018-06-27 JP JP2019529042A patent/JPWO2019012988A1/ja active Pending
- 2018-06-27 WO PCT/JP2018/024338 patent/WO2019012988A1/ja active Application Filing
- 2018-06-27 DE DE112018001447.9T patent/DE112018001447T5/de active Pending
- 2018-06-27 US US16/605,256 patent/US11250623B2/en active Active
- 2018-06-27 AU AU2018299284A patent/AU2018299284A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001243500A (ja) * | 2000-03-01 | 2001-09-07 | Hitachi Eng Co Ltd | 三次元点群データ処理装置 |
JP2007170820A (ja) * | 2005-12-19 | 2007-07-05 | Enzan Kobo:Kk | 三次元変位計測方法 |
WO2017061517A1 (ja) * | 2015-10-05 | 2017-04-13 | 株式会社小松製作所 | 施工管理システム及び施工管理方法 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020143476A (ja) * | 2019-03-05 | 2020-09-10 | 住友重機械工業株式会社 | 作業機械用画像取得装置、情報管理システム、情報端末、作業機械用画像取得プログラム |
JP2020200660A (ja) * | 2019-06-10 | 2020-12-17 | コベルコ建機株式会社 | 遠隔操作システムおよび遠隔操作サーバ |
CN113994052A (zh) * | 2019-06-10 | 2022-01-28 | 神钢建机株式会社 | 远程操作系统及远程操作服务器 |
EP3951094A4 (en) * | 2019-06-10 | 2022-06-15 | Kobelco Construction Machinery Co., Ltd. | REMOTE CONTROL SYSTEM AND REMOTE CONTROL SERVER |
JP7247769B2 (ja) | 2019-06-10 | 2023-03-29 | コベルコ建機株式会社 | 遠隔操作システム |
CN113994052B (zh) * | 2019-06-10 | 2023-09-05 | 神钢建机株式会社 | 远程操作系统及远程操作服务器 |
US11726451B2 (en) | 2021-05-26 | 2023-08-15 | Caterpillar Inc. | Remote processing of sensor data for machine operation |
US12043988B2 (en) | 2021-05-26 | 2024-07-23 | Caterpillar Inc. | Selectively causing remote processing of data for an autonomous digging operation |
WO2023106324A1 (ja) * | 2021-12-10 | 2023-06-15 | 株式会社小松製作所 | 表示システム及び表示方法 |
WO2023106323A1 (ja) * | 2021-12-10 | 2023-06-15 | 株式会社小松製作所 | 施工管理システム及び施工管理方法 |
Also Published As
Publication number | Publication date |
---|---|
US11250623B2 (en) | 2022-02-15 |
CN110546674A (zh) | 2019-12-06 |
AU2018299284A1 (en) | 2019-10-24 |
DE112018001447T5 (de) | 2019-12-12 |
JPWO2019012988A1 (ja) | 2019-11-07 |
US20210142557A1 (en) | 2021-05-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019012988A1 (ja) | 地形情報送信装置、施工管理システム及び地形情報送信方法 | |
US10419657B2 (en) | Swarm approach to consolidating and enhancing smartphone target imagery by virtually linking smartphone camera collectors across space and time using machine-to machine networks | |
WO2019012993A1 (ja) | 稼働情報送信装置、施工管理システム、稼働情報送信方法及びプログラム | |
US10867282B2 (en) | Method and system for GPS enabled model and site interaction and collaboration for BIM and other design platforms | |
CN104541248B (zh) | 计算系统对屏障命令的处理 | |
JP2022050380A (ja) | 車両を監視する方法、装置、電子機器、記憶媒体、コンピュータプログラム及びクラウド制御プラットフォーム | |
US10097615B1 (en) | Method for vehicle data collection | |
US20190297474A1 (en) | Connecting and managing vehicles using a publish-subscribe system | |
US20220113423A1 (en) | Representation data generation of three-dimensional mapping data | |
JP2016207004A (ja) | データ処理装置、データ処理システム、データ処理方法及びプログラム | |
CN109815198B (zh) | 移动游戏大数据贴源层实现方法及装置 | |
EP3089421A1 (en) | Network element data access method and apparatus, and network management system | |
KR20130040361A (ko) | 증강현실 네비게이션 기반 실시간 교통 정보 제공 방법, 서버, 및 기록 매체 | |
US11258939B2 (en) | System, method and apparatus for networking independent synchronized generation of a series of images | |
JP2019128837A (ja) | サーバ装置、情報収集システム、およびプログラム | |
JP6838510B2 (ja) | 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム | |
CN103368969A (zh) | 传输管理eml-nml间全量配置同步的方法及系统 | |
CN110348525B (zh) | 地图兴趣点获取方法、装置、设备及存储介质 | |
CN114035861A (zh) | 集群配置方法、装置、电子设备和计算机可读介质 | |
JP6921317B2 (ja) | 情報収集装置 | |
JP2010252075A (ja) | 画像管理装置 | |
CN113936776B (zh) | 分布式的多病种人工智能病理分析系统 | |
JP2003288220A (ja) | ジョブネットの関連近傍ジョブネットの導出及びその表示方法 | |
CN114710527B (zh) | 分布式智能驾驶数据的采集系统、方法及可读存储介质 | |
JP2014178721A (ja) | 画像照合システム及び画像照合方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18831138 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019529042 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018299284 Country of ref document: AU Date of ref document: 20180627 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18831138 Country of ref document: EP Kind code of ref document: A1 |