WO2019012746A1 - 移動体検知システム及びその制御方法 - Google Patents

移動体検知システム及びその制御方法 Download PDF

Info

Publication number
WO2019012746A1
WO2019012746A1 PCT/JP2018/012234 JP2018012234W WO2019012746A1 WO 2019012746 A1 WO2019012746 A1 WO 2019012746A1 JP 2018012234 W JP2018012234 W JP 2018012234W WO 2019012746 A1 WO2019012746 A1 WO 2019012746A1
Authority
WO
WIPO (PCT)
Prior art keywords
radars
radar
group
traveling path
detection system
Prior art date
Application number
PCT/JP2018/012234
Other languages
English (en)
French (fr)
Inventor
高橋 昌義
健太郎 大久保
秋山 仁
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2019012746A1 publication Critical patent/WO2019012746A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/91Radar or analogous systems specially adapted for specific applications for traffic control
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles

Definitions

  • the present invention relates to a mobile object detection system and its control method, and is suitably applied to, for example, a traffic system.
  • the first requirement is the establishment of verification that the radar detection results are correct.
  • two radars a radar group
  • two radars are installed so that detection areas overlap, a mobile is detected by these two radars, and it is compared and verified that detection results of both radars are the same.
  • the second requirement is to be able to always detect the position of a mobile object to be controlled or monitored. To this end, it is required to eliminate blind spots or undetected areas between radar detectable areas.
  • a plurality of radars are installed along the moving path of the moving body so that the detection areas thereof sequentially overlap, or the detection areas of those radars are sequentially brought closer to the moving path of the moving body It is necessary to install along.
  • Patent Document 1 discloses an invention which suppresses interference between a plurality of radars by installing polarization planes of the plurality of radars at mutually different angles.
  • inter-radar interference refers to the fact that the transmitted wave of one radar or its reflected wave is received by the receiver of another radar. Interference between radars may cause deterioration in detection accuracy or false detection.
  • Patent Document 2 discloses an invention that suppresses interference between a plurality of radars by performing control to shift the transmission and reception timings of radio waves of each of the plurality of radars. ing.
  • radar In a traffic system that achieves control or monitoring of moving objects using radar, radar interferes with each other by satisfying the two requirements of establishing verification of correct detection results and always detecting the position of an object There is a problem that the characteristic of the radar is difficult.
  • the present invention has been made in consideration of the above points, and an object thereof is to propose a mobile object detection system capable of detecting a mobile object with high reliability and a control method thereof.
  • a mobile object detection system for detecting a mobile object moving on a traveling path has a plurality of radars respectively multiplexed, and a plurality of radars are sequentially installed alternately along the traveling path.
  • each of the radars of the first and second radar groups transmitting a transmission wave consisting of an electromagnetic wave
  • the radars of the first group of radars have different polarization directions
  • the radars of the second group of radars also have polarization directions different from one another.
  • Each train of one radar group Do not overlap the time zone during which the radar is irradiating the transmission wave toward the traveling path and the time zone during which the radars of the second radar group are irradiating the transmission wave toward the traveling path.
  • the radars of the first group of radars and the radars of the second group of radars are alternately operated.
  • the mobile object detection system in a control method of a mobile object detection system for detecting a mobile object moving on a traveling road, has a plurality of radars respectively multiplexed and alternates sequentially along the traveling road. And a controller for driving and controlling the radars of the first and second radar groups, each of the radars of the first and second radar groups being electromagnetic waves And a transmitting antenna for irradiating the transmitting wave toward the traveling path, and a polarization direction which is the same as the polarization direction of the transmitting antenna, and a reflected wave formed by the transmitting wave being reflected on a moving body traveling on the traveling path
  • Each of the radars of the first group of radars has different polarization directions
  • each of the radars of the second group of radars also has different polarization directions.
  • the control device A first step of operating each group of radars, a time zone in which the control device is irradiating each of the radars of the first group of radars toward the traveling path, and a second group of radars.
  • a second step of operating each radar of the second radar group so that the time zone in which the radar emits the transmission wave toward the traveling path does not overlap;
  • the time zone during which each radar is irradiating the transmission wave toward the traveling path and the time zone during which each radar of the second radar group is irradiating the transmission wave toward the traveling path do not overlap.
  • a third step of operating each radar of one radar group and a fourth step of repeating the second step and the third step are provided.
  • the present invention it is possible to realize a mobile object detection system capable of detecting a mobile object with high reliability and a control method thereof.
  • FIG. 1 indicates a mobile object detection system according to the present embodiment as a whole.
  • the moving body detection system 1 includes a first radar group 4 and a second radar group 5 sequentially and alternately installed along the traveling path 3 on one side of the traveling path 3 on which the moving body 2 travels, and And a system controller 8 for driving and controlling the first and second radar groups 4 and 5.
  • the first radar group 4 is configured to include first and second radars 4A and 4B installed such that the irradiation ranges 6A and 6B of the transmission wave 15A (FIG. 2) consisting of electromagnetic waves overlap.
  • the first and second radars 4A and 4B can detect the mobile object 2 in duplicate.
  • the second radar group 5 is configured to include the first and second radars 5A and 5B installed such that the irradiation ranges 7A and 7B of the transmission wave 15A overlap each other.
  • the two radars 5A and 5B can detect the mobile unit 2 in duplicate.
  • first and second radars 4A, 5A, 4B, 5B of the first and second radar groups 4, 5 transmit the transmission wave 15A from the diagonally forward direction with respect to the moving body 2 traveling on the traveling path 3, respectively.
  • a range E2 on the traveling path 3 which can detect the moving object 2 by the second radar group 5 is installed so as to sequentially contact.
  • interval of the adjacent 1st and 2nd radar groups 4 and 5 spreads the mobile 2 by either one of the 1st and 2nd radar groups 4 and 5 over the whole range of the traveling path 3 In order to be able to detect continuously, it is selected within the measurable distance range (for example, 100 m) of the first and second radar groups 4 and 5.
  • the installation intervals of the first and second radar groups 4 and 5 are adjacent to each other via the second radar group 5 and between the adjacent first radar groups 4 and the first radar group 4.
  • the radar groups 5 are also selected so as not to be located within the measurable distance range of the first and second radar groups 4 and 5.
  • FIG. 2 shows a schematic configuration of the first radar 4A of the first radar group 4.
  • the first radar 4A of the first radar group 4 includes the communication unit 26, the radar control unit 24, the transmission circuit 22, the transmission antenna 15, the reception antenna 16, the reception circuit 23, and data.
  • the processing unit 25 is configured.
  • the communication unit 26 is a communication device connected to the system control device 8 via the communication line 21. As shown in FIG. 3A, the communication unit 26 receives a pulse P of a constant cycle T1 from the system control device 8 as a system command through the communication line 21. Then, the system command (pulse P) is transferred from the communication unit 26 to the radar control unit 24.
  • the radar control unit 24 is a control device that controls the transmission circuit 22 and the reception circuit 23 based on the system command.
  • the radar control unit 24 has a linear shape from F1 to a predetermined frequency F2 for a predetermined period t1 from the falling timing of the pulse P given as a system command.
  • the transmission circuit 22 is controlled so as to emit the transmission wave 15A whose frequency rises and then falls to F1 only for a predetermined period t1.
  • the transmission circuit 22 drives the transmission antenna 15 under the control of the radar control unit 24 to irradiate the transmission wave 15A having the frequency characteristics as described above from the transmission antenna 15 toward the traveling path 3.
  • the transmission wave 15A emitted from the transmission antenna 15 is thereafter reflected by the mobile body 2 and received by the reception antenna 16 as a reflected wave 16A. Then, the receiving antenna 16 transmits to the receiving circuit 23 a reception signal of a signal level according to the frequency of the received reflected wave 16A.
  • the reception circuit 23 is only for the above period t1 from the fall timing of the pulse P given as the system command (that is, the transmission wave 15A is emitted from the transmission antenna 15).
  • the reception signal output from the reception antenna 16 is subjected to predetermined reception processing such as analog / digital conversion processing, and the reception data thus obtained is sent to the data processing unit 25 through the radar control unit 24. Send.
  • the data processing unit 25 executes a predetermined data processing operation based on the received data to receive the position of the mobile unit 2 or the like.
  • the speed or the like is calculated (period t2), and the calculation result is transmitted as measurement data to the system control device 8 through the communication unit 26 (period t3).
  • the first radar 4A measures the position of the moving body 2 for each period T1 under the control of the system control device 8, and transmits the measurement result to the system control device 8 as measurement data.
  • the second radar 4B of the first radar group 4 and the first and second radars 5A and 5B of the second radar group 5 are configured in the same manner as the first radar 4A of the first radar group 4. And transmits the measurement results (measurement data) acquired as described above based on the system command given from the system control device 8 to the system control device 8 through the communication line 21.
  • the system control device 8 is a computer device provided with information processing resources such as a CPU (Central Processing Unit) and a memory.
  • the system control device 8 compares the values of measurement data from the first and second radars 4A and 4B of the first radar group 4, and when the difference is within a predetermined range, the first and second It is determined that the two radars 4A and 4B are operating normally, and the position information of the mobile unit 2 is updated as necessary using these measurement data.
  • information processing resources such as a CPU (Central Processing Unit) and a memory.
  • the system control device 8 compares the values of measurement data from the first and second radars 4A and 4B of the first radar group 4, and when the difference is within a predetermined range, the first and second It is determined that the two radars 4A and 4B are operating normally, and the position information of the mobile unit 2 is updated as necessary using these measurement data.
  • the system control device 8 compares the values of measurement data from the first and second radars 5A and 5B of the second radar group 5, and when the difference is within a predetermined range, It is determined that the first and second radars 5A and 5B are operating normally, and the position information of the mobile unit 2 is updated as necessary using these measurement data.
  • a millimeter wave radar is used as the first and second radars 4A, 4B, 5A, 5B of the first and second radar groups 4, 5.
  • a detection method of the moving object 2 using the millimeter wave radar a Doppler type capable of detecting the velocity of the measurement object, a standing wave method capable of detecting the velocity and distance of the measurement object, or the transmission output is low
  • An FM-CW (Frequency Modulated Continuous Wave) method capable of detecting a distance is known.
  • a linearly polarized antenna whose polarization direction is one direction such as horizontal direction or vertical direction is generally used as the transmitting antenna 15 and the receiving antenna 16, and the transmitting antenna 15 is also used in the present embodiment.
  • a linearly polarized antenna is applied as the receiving antenna 16.
  • FIG. 4A shows the transmission antenna 15 and the reception antenna 16 of the first and second radars 4A, 5A, 4B, 5B of the first and second radar groups 4 and 5 from the right side of FIG. Show what you saw.
  • the polarization directions of the transmitting antenna 15 and the receiving antenna 16 are indicated by arrows a and b, respectively.
  • the polarization direction (arrow b) of the reception antenna 16 is set in the same direction as the polarization direction (arrow a) of the transmission antenna 15.
  • the polarization direction of the reflected wave 16A and the polarization direction of the reception antenna 16 should be the same direction by aligning the polarization direction of the transmission antenna 15 and the polarization direction of the reception antenna 16 in the same direction.
  • the receiving sensitivity of the receiving antenna 16 to the reflected wave 16A can be maximized.
  • FIG. 4A exemplifies the case where the transmitting antenna 15 and the receiving antenna 16 are disposed side by side on the same plane, if the polarization direction is the same, the transmitting antenna 15 and the reception are illustrated.
  • the antennas 16 may be installed at different heights.
  • the first and second radars 4A and 4B of the first radar group 4 and the first and second radars 5A and 5B of the second radar group 5 are in the same place as described above. It is controlled by the system controller 8 so as to be installed and operate at the same timing.
  • the first and second radars 4A and 4B of the first radar group 4 are installed at the same place and operated at the same timing, interference between the radars occurs. Specifically, the transmission wave 15A emitted from the first radar 4A is reflected by the moving body 2, and the reflected wave 16A is received by the second radar 4B to generate interference. Further, the transmission wave 15A emitted from the second radar 4B is reflected by the moving body 2, and the reflected wave 16A is received by the first radar 4A, causing interference. The interference between the radars similarly occurs in the second radar group 5 as well.
  • the first and second radars 4A and 4B of the first radar group 4 and the first and second of the second radar group 5 do not have the same direction of polarization as that of the second radars 4B and 5B.
  • the two radars 5A and 5B are installed by being inclined in different directions.
  • the first radars 4A and 5A are installed in a state in which the polarization direction is rotated 45 degrees counterclockwise with respect to the horizontal direction 19 as shown in FIG. 4B, and the second radar 4B , 5B are installed in a state where the polarization direction is rotated 45.degree. Clockwise with respect to the horizontal direction 19 as shown in FIG. 4C.
  • the polarization angle in a state in which the polarization direction is inclined counterclockwise with respect to the horizontal direction 19 is represented by a plus, and the polarization direction is inclined in a clockwise direction with respect to the horizontal direction 19
  • the wave angle shall be expressed by minus.
  • the angle formed with the horizontal direction 19 may be an angle other than ⁇ 45 °.
  • the relationship between the polarization angles of the first and second radars 4A and 4B of the first radar group 4 and the polarization angles of the first and second radars 5A and 5B of the second radar group 5 is The present invention is not limited to the case where the polarization directions of the first radars 4A and 5A are orthogonal to the polarization directions of the second radars 4B and 5B.
  • the first and second radars 4A, 5A, 4B, and so on are set such that the polarization angles of the first radars 4A and 5A are + 30 ° and the polarization angles of the second radars 4B and 5B are -30 °. You may make it install 5B. Further, in the present embodiment, three or more radars may be installed so as to have different polarization angles at the places where the first radar group 4 and the second radar group 5 are installed.
  • the polarization angles of the first and second radars 4A and 4B of the first radar group 4 and the polarization angles of the first and second radars 5A and 5B of the second radar group 5 Even if it is determined, the problem of interference between the first and second radar groups 4 and 5 is not solved. Specifically, the transmission wave 15A of the first radar 4A of the first radar group 4 and the transmission wave 15A of the second radar 4B is reflected by the moving body 2, and the reflected wave 16A is reflected by the first of the second radar group 5. Interference with the radar occurs by being incident on the radar 5A and the second radar 5B.
  • the transmission wave 15A irradiated from the first radar 5A and the second radar 5B of the second radar group 5 is reflected by the moving body 2, and the reflected wave 16A is reflected by the first radar of the first radar group 4 Interference with the radar occurs by being incident on the 4A and the second radar 4B.
  • the mobile object detection system 1 in order to suppress such radar interference between the first and second radar groups 4 and 5, the first and second radars 4A, the first and second radars 4A, The time zone in which 4B irradiates the transmission wave 15A toward the traveling path 3 and the first and second radars 5A and 5B of the second radar group 5 irradiate the transmission wave 15A toward the traveling path 3
  • the first and second radars 4A and 4B of the first radar group 4 and the first and second radars 5A of the second radar group 5 so that the overlapping time zones do not overlap on the time axis. , 5B are controlled by the system controller 8.
  • FIG. 5 in which the parts corresponding to FIG. 3 are given suffixes “A” or “B”, shows the first and second radars 4A, 4B of the first radar group 4 thus controlled, and 7 shows operation timings of the first and second radars 5A and 5B of the second radar group 5.
  • the part related to the first radar group 4 is given the suffix “A”
  • the part related to the second radar group 5 is given the suffix “B”.
  • the system control device 8 controls the first and second radar groups 4 for the first and second radars 5 A and 5 B of the second radar group 5. transmitting the pulse P B as a system command at a timing different from that of the radar 4A, the timing of transmitting the pulse P a of the system command to 4B of.
  • the system controller 8 transmits the first and second radars 4A and 4B of the first radar group 4 and the first and second radars 5A and 5B of the second radar group 5 to the transmitted wave 15A.
  • Pulses P A and P B are alternately transmitted.
  • the interference between the first and second radars 4A and 4B of the first radar group 4 and the first and second radars 5A and 5B of the second radar group 5 can be suppressed. it can.
  • the period T1 is a transmission period of P B, first and second of the first radar unit 4
  • the intervals at which the radars 4A and 4B and the first and second radars 5A and 5B of the second radar group 5 irradiate the transmission wave 15A toward the traveling path 3 can be maximized.
  • the interference between the first and second radars 4A and 4B of the first radar group 4 and the first and second radars 5A and 5B of the second radar group 5 is minimized. can do.
  • the first and second radars 4A and 4B of the first radar group 4 and the first and second radars 5A and 5B of the second radar group 5 irradiate the transmission wave 15A toward the traveling path 3
  • the first period t1 (FIG. 3) is a period (for example, about 1/10 to 1/5) sufficiently smaller than half of the period T1 described above. Interference between radars is suppressed by a period T1, which is a time interval at which the first and second radars 5A and 5B of the radars 4A and 4B and the second radar group 5 irradiate the transmission wave 15A toward the traveling path 3. There is no need to be long. For this reason, the mobile unit detection system 1 can detect the mobile unit 2 at appropriate time intervals.
  • the in-travel object detection process is started by the radar control unit 24 when the radar control unit 24 detects a pulse P as a system command.
  • the radar control unit 24 first controls the transmission circuit 22 so that the transmission wave 15A having the frequency characteristic described above with reference to FIG. 5 is emitted from the transmission antenna 15 at the falling timing of the pulse P (S11).
  • the radar control unit 24 is a reception circuit to convert the reception signal output from the reception antenna 16 that has received the reflected wave 16A into reception data only during the above period t1 from the falling timing of the pulse P.
  • the processing result of the reception process output from the receiving circuit 23 is transferred to the data processing unit 25 as measurement data (S13).
  • the radar control unit 24 waits for the period t1 to elapse after the control of the transmission circuit 22 is started (S14), and when the period t1 elapses after the control of the transmission circuit 22 is started, the inside of this traveling path End the object detection process.
  • the first radars 4A and 5A and the second radars are used for the first and second radar groups 4 and 5. Since the first radars 4A, 5A and the second radars 4B, 5B are installed so that the polarization directions of 4B, 5B are not parallel, the inside of the first and second radar groups 4, 5 can be installed. The interference between the first radars 4A and 5A and the second radars 4B and 5B in the above can be suppressed.
  • a time zone in which the first and second radars 4A and 4B of the first radar group 4 irradiate the traveling wave 3 with the transmission wave 15A, and the second radar group 5 The first and second radar groups 4 of the first radar group 4 do not overlap on the time axis with the time zone in which the first and second radars 5A and 5B irradiate the transmission wave 15A toward the traveling path 3. Since the radars 4A and 4B and the first and second radars 5A and 5B of the second radar group 5 are alternately operated, the interference between the first and second radar groups 4 and 5 is also generated. It can be suppressed.
  • the present embodiment it is possible to effectively prevent the occurrence of the detection accuracy of the mobile unit 2 or the false detection due to the interference between the radars, and thus the mobile unit 2 is detected with high reliability. It is possible to realize a mobile object detection system that can
  • first radar group 4 and the second radar group 5 are installed only on one side of the traveling path 3 has been described.
  • the invention is not limited to this, and the first and second radar groups 4 and 5 may be installed on the upper side or the lower side of the traveling path 3.
  • the lateral space in the tunnel can be used for other applications.
  • the straddle-type monorail by installing the first and second radar groups 4 and 5 under the rail, it is possible to use the limited space beside the rail for other applications. .
  • first and second radar groups 4 and 5 are installed on the upper side and the lower side of the traveling path 3, the first and second radar groups 4 and 5 are the same as in the above embodiment.
  • the first and second radars 4A, 5A, 4B, 5B can detect the moving object 2 by the first radar group 4 so that the transmission wave 15A is emitted obliquely to the traveling path 3
  • the range E1 on the traveling path 3 and the range E2 on the traveling path 3 which can detect the moving object 2 by the second radar group 5 are installed so as to sequentially contact or partially overlap.
  • first and second radars 4A, 5A, 4B, 5B of the first and second radar groups 4, 5 are installed such that the irradiation direction is opposite to the traveling path 3 in the traveling direction of the movable body 2 As a result, it is possible to quickly detect the moving object 2 that has entered the ranges E1 and E2.
  • the first radars 4A and 5A and the second radars 4B and 5B of the first and second radar groups 4 and 5 are installed on one side of the traveling path 3.
  • the present invention has been described, the present invention is not limited thereto.
  • the first radar 4A of the first and second radar groups 4 and 5 is shown.
  • the second radars 4B and 5B of the first and second radar groups 4 and 5 in the lateral direction of the traveling path 3 It may be arranged along the traveling path 3 on the other side.
  • the first radars 4A and 5A and the second radars 4B and 5B of the first and second radar groups 4 and 5 can simultaneously detect the same moving object 2 in this case.
  • Radars (the first and second radars 4A and 4B of the first radar group 4 and the first and second radars 5A and 5B of the second radar group 5) It is necessary to install in a direction perpendicular to the traveling path 3.
  • the present invention is not limited to this.
  • two or more lanes for example, an up lane and a down lane
  • the present invention can also be applied to the detection of a moving object 2.
  • the first and second radars 4A of the first radar group 4 may be The time zone in which 4B irradiates the transmission wave 15A toward the traveling paths 3A and 3B, and the first and second radars 5A and 5B of the second radar group 5 transmit the transmission wave 15A to the traveling paths 3A and 3B.
  • There is no interference between the radars because control is performed so that they do not overlap on the time axis with the time period for which they are directed. Therefore, even with this configuration, the same effect as that of the above-described embodiment can be obtained.
  • both of the first and second radars 4A and 4B of the first radar group 4 and the first and second radars 5A and 5B of the second radar group 5 are used.
  • the present invention is not limited thereto and is shown in FIG.
  • the irradiation direction of the transmission wave 15A is It may be installed orthogonal to the traveling path 3. Even in this case, the same effect as that of the above-described embodiment can be obtained.
  • the first and second radars 4A and 4B of the first radar group 4 are directed to the travel paths 3A and 3B although the irradiation ranges 7A and 7B of the transmission wave 15A emitted from the two radars 5A and 5B overlap with each other.
  • the time zone in which the first and second radars 5A and 5B of the second radar group 5 radiate the transmission wave 15A toward the traveling paths 3A and 3B are on the time axis. No interference occurs between the radars because control is performed so as not to overlap each other. Therefore, even with this configuration, the same effect as that of the above-described embodiment can be obtained.
  • the first radar group 4 can detect the first and second radars 4A, 5A, 4B, 5B of the first and second radar groups 4, 5, and the mobile unit 2 can be detected. It has been described that the range E1 on the traveling path 3 and the range E2 on the traveling path 3 where the mobile unit 2 can be detected by the second radar group 5 are sequentially in contact with each other.
  • the present invention is not limited to this, and a part of the range E1 on the traveling path 3 which can detect the moving body 2 by the first radar group 4 and the traveling path 3 which can detect the moving body 2 by the second radar group 5
  • the first and second radars 4A, 5A, 4B, 5B of the first and second radar groups 4, 5 may be installed so that they partially overlap with the range E2. Even in this case, the same effect as that of the above-described embodiment can be obtained.
  • the present invention is not limited to this, Transmit the transmission wave 15A to the moving body 2 traveling on the traveling path 3 obliquely from the rear side to the moving body 2 (radially transmit the transmission wave 15A from the same direction as the traveling direction of the moving body 2)
  • the first and second radars 4A, 5A, 4B, 5B of the first and second radar groups 4, 5 may be installed. Even in this case, the same effect as that of the above-described embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

第1及び第2のレーダ群の各レーダに、送信波を走行路に向けて照射する送信アンテナと、送信アンテナの偏波方向と同じの偏波方向を有し、送信波が走行路を走行する移動体において反射してなる反射波を受信する受信アンテナとをそれぞれ設け、第1のレーダ群の各レーダの偏波方向をそれぞれ異なる方向とすると共に、第2のレーダ群の各レーダの偏波方向をそれぞれ異なる方向とし、第1のレーダ群の各レーダが送信波を走行路に向けて照射している時間帯と、第2のレーダ群の各レーダが送信波を走行路に向けて照射している時間帯とが重ならないように、第1のレーダ群の各レーダと、第2のレーダ群の各レーダとを交互に動作させるようにした。

Description

移動体検知システム及びその制御方法
 本発明は、移動体検知システム及びその制御方法に関し、例えば、交通システムに適用して好適なものである。
 近年、自動車や鉄道などの移動体を用いた交通システムの分野では、移動体の速度や障害物までの距離などをミリ波レーダやレーザレーダ等の高精度かつ信頼性の高いレーダによって計測し、計測結果を移動体の運行管理や自動制御、又は、障害物の監視に利用する取り組みが注目されている。
 このようなレーダを用いて移動体の制御又は監視を実現する交通システムにおいては、以下の2つの要件の両立が求められる。
 1つ目の要件は、レーダの検知結果が正しいことの検証の確立である。そのための方法の1つとして、2つのレーダ(レーダ群)を検知領域が重なるように設置してこれら2つのレーダで移動体を検知し、双方のレーダの検知結果が同一であることを比較検証することで、レーダが正しく移動体を検知できたことを確認する方法がある。この方法では、2つのレーダ(レーダ群)が同時刻に移動体を検知することが必須となる。
 また2つ目の要件は、制御又は監視対象の移動体の位置を常に検知できるようにすることである。このためには、レーダで検知可能な領域間の死角又は検知漏れ領域をなくすことが要求される。この要求を満たすために、複数のレーダを、その検知領域が順次重なるように移動体の移動路に沿って設置し、又は、それらのレーダの検知領域を順次近接させて移動体の移動路に沿って設置する必要がある。
 なお第1の要件に関連して、例えば特許文献1には、複数のレーダの偏波面を互いに異なる角度に設置することにより、複数のレーダ間での干渉を抑制する発明が開示されている。ここで、「レーダ間の干渉」とは、あるレーダの送信波又はその反射波が別のレーダの受信部で受信されることを指す。レーダ間の干渉は、検知精度の劣化や誤検知を発生させることがある。
 また第2の要件に関連して、例えば特許文献2には、複数のレーダそれぞれの電波の送受信のタイミングをずらす制御を行うことにより、複数のレーダの間での干渉を抑制する発明が開示されている。
特開2013-213761号公報 特開2011-232055号公報
 レーダを用いて移動体の制御又は監視を実現する交通システムにおいて、検知結果が正しいことの検証の確立と、対象物の位置を常に検知するという2つの要件を満たすことは、レーダは互いに干渉するというレーダの特性上困難であるという問題がある。
 このため、このような2つの要件を同時に満たす交通システムを構築できれば、レーダ間の干渉に起因する移動体の検知精度の劣化や誤検知の発生を防止でき、これにより信頼性高く移動体を検知し得る移動体検知システムを実現し得るものと考えられる。
 本発明は以上の点を考慮してなされたもので、信頼性高く移動体を検知し得る移動体検知システム及びその制御方法を提案しようとするものである。
 かかる課題を解決するため本発明においては、走行路を移動する移動体を検知する移動体検知システムにおいて、それぞれ多重化された複数のレーダを有し、走行路に沿って順次交互に複数設置された第1及び第2のレーダ群と、第1及び第2のレーダ群のレーダを駆動制御する制御装置とを備え、第1及び第2のレーダ群の各レーダは、電磁波でなる送信波を走行路に向けて照射する送信アンテナと、送信アンテナの偏波方向と同じの偏波方向を有し、送信波が走行路を走行する移動体において反射してなる反射波を受信する受信アンテナとをそれぞれ有し、第1のレーダ群の各レーダは、それぞれ互いに異なる偏波方向を有し、第2のレーダ群の各レーダも、それぞれ互いに異なる偏波方向を有し、制御装置は、第1のレーダ群の各レーダが送信波を走行路に向けて照射している時間帯と、第2のレーダ群の各レーダが送信波を走行路に向けて照射している時間帯とが重ならないように、第1のレーダ群の各レーダと、第2のレーダ群の各レーダとを交互に動作させるようにした。
 また本発明においては、走行路を移動する移動体を検知する移動体検知システムの制御方法において、移動体検知システムは、それぞれ多重化された複数のレーダを有し、走行路に沿って順次交互に複数設置された第1及び第2のレーダ群と、第1及び第2のレーダ群のレーダを駆動制御する制御装置とを有し、第1及び第2のレーダ群の各レーダは、電磁波でなる送信波を走行路に向けて照射する送信アンテナと、送信アンテナの偏波方向と同じの偏波方向を有し、送信波が走行路を走行する移動体において反射してなる反射波を受信する受信アンテナとをそれぞれ有し、第1のレーダ群の各レーダは、それぞれ互いに異なる偏波方向を有し、第2のレーダ群の各レーダも、それぞれ互いに異なる偏波方向を有し、制御装置が、第1のレーダ群の各レーダを動作させる第1のステップと、制御装置が、第1のレーダ群の各レーダが送信波を走行路に向けて照射している時間帯と、第2のレーダ群の各レーダが送信波を走行路に向けて照射している時間帯とが重ならないように、第2のレーダ群の各レーダを動作させる第2のステップと、制御装置が、第1のレーダ群の各レーダが送信波を走行路に向けて照射している時間帯と、第2のレーダ群の各レーダが送信波を走行路に向けて照射している時間帯とが重ならないように、第1のレーダ群の各レーダを動作させる第3のステップと、第2のステップ及び第3のステップを繰り返す第4のステップとを設けるようにした。
 本発明によれば、信頼性高く移動体を検知し得る移動体検知システム及びその制御方法を実現できる。
本実施の形態による移動体検知システムの全体構成を概念的に示す概念図である。 本実施の形態による移動体検知システムの構成を示すブロック図である。 本実施の形態によるレーダのタイミングチャートである。 本実施の形態によるレーダの偏波角の説明に供する図である。 本実施の形態による移動体検知システムのタイミングチャートである。 本実施の形態による走行路内物体検知処理の処理手順を示すフローチャートである。 他の実施の形態による移動体検知システムの全体構成を概念的に示す概念図である。 他の実施の形態による移動体検知システムの全体構成を概念的に示す概念図である。 他の実施の形態による移動体検知システムの全体構成を概念的に示す概念図である。
 以下図面について、本発明の一実施の形態を詳述する。
(1)本実施の形態による移動体検知システムの構成
 図1において、1は全体として本実施の形態による移動体検知システムを示す。この移動体検知システム1は、移動体2が走行する走行路3の片側に、当該走行路3に沿って順次交互に設置された第1のレーダ群4及び第2のレーダ群5と、これら第1及び第2のレーダ群4,5を駆動制御するシステム制御装置8とを備える。
 第1のレーダ群4は、電磁波でなる送信波15A(図2)の照射範囲6A,6Bが重複するように設置された第1及び第2のレーダ4A,4Bを備えて構成されており、これら第1及び第2のレーダ4A,4Bによって移動体2の検知を2重に行い得るようになされている。同様に第2のレーダ群5は、送信波15Aの照射範囲7A,7Bが重複するように設置された第1及び第2のレーダ5A,5Bを備えて構成されており、これら第1及び第2のレーダ5A,5Bによって移動体2の検知を2重に行い得るようになされている。
 また、第1及び第2のレーダ群4,5の第1及び第2のレーダ4A,5A,4B,5Bは、それぞれ走行路3を走行する移動体2に対して斜め前方向から送信波15Aを照射(移動体2の走行方向の反対方向から斜めに送信波15Aを照射)するように、かつ第1のレーダ群4により移動体2を検知可能な走行路3上の範囲E1と、第2のレーダ群5により移動体2を検知可能な走行路3上の範囲E2とが順次接するように設置されている。
 この際、隣接する第1及び第2のレーダ群4,5の設置間隔は、走行路3の全範囲に亘って第1及び第2のレーダ群4,5のいずれか一方によって移動体2を連続的に検知できるように、第1及び第2のレーダ群4,5の測定可能距離範囲(例えば100m)内に選定される。
 一方で、第1及び第2のレーダ群4,5の設置間隔は、第2のレーダ群5を介して隣接する第1のレーダ群4同士や、第1のレーダ群4を介して隣接する第2のレーダ群5同士での信号干渉を回避すべく、第2のレーダ群5を介して隣接する第1のレーダ群4同士や、第1のレーダ群4を介して隣接する第2のレーダ群5同士が第1及び第2のレーダ群4,5の測定可能距離範囲内に位置しないようにも選定される。
 図2は、第1のレーダ群4の第1のレーダ4Aの概略構成を示す。この図2からも明らかなように、第1のレーダ群4の第1のレーダ4Aは、通信部26、レーダ制御部24、送信回路22、送信アンテナ15、受信アンテナ16、受信回路23及びデータ処理部25を備えて構成される。
 通信部26は、システム制御装置8と通信線21を介して接続された通信装置である。この通信部26には、図3(A)に示すように、システム制御装置8から一定周期T1のパルスPがシステム指令として通信線21を介して与えられる。そして、このシステム指令(パルスP)は、通信部26からレーダ制御部24に転送される。
 レーダ制御部24は、かかるシステム指令に基づいて送信回路22及び受信回路23を制御する制御装置である。実際上、レーダ制御部24は、図3(B)に示すように、システム指令として与えられたパルスPの立ち下がりのタイミングから所定期間t1の間に周波数がF1から所定のF2まで線形状に上昇し、その後、周波数がF1に立ち下がる送信波15Aを所定期間t1の間のみ発射するよう送信回路22を制御する。
 かくして送信回路22は、レーダ制御部24の制御のもとに送信アンテナ15を駆動することにより、上述のような周波数特性を有する送信波15Aを送信アンテナ15から走行路3に向けて照射させる。
 一方、送信アンテナ15から発射されたこの送信波15Aは、この後、移動体2において反射し、反射波16Aとして受信アンテナ16に受信される。そして受信アンテナ16は、受信した反射波16Aの周波数に応じた信号レベルの受信信号を受信回路23に送信する。
 受信回路23は、レーダ制御部24の制御のもとに、システム指令として与えられたパルスPの立ち下がりのタイミングから上述の期間t1の間だけ(つまり送信アンテナ15から送信波15Aが発射されている期間だけ)、受信アンテナ16から出力される受信信号に対してアナログ/ディジタル変換処理等の所定の受信処理を施し、かくして得られた受信データをレーダ制御部24を介してデータ処理部25に送信する。
 データ処理部25は、図3(C)に示すように、かかる受信データを受領すると(期間t1)、受領した受信データに基づいて所定のデータ処理演算を実行することにより移動体2の位置や速度などを算出し(期間t2)、算出結果を測定データとして通信部26を介してシステム制御装置8に送信する(期間t3)。
 このように第1のレーダ4Aは、システム制御装置8の制御のもとに、移動体2の位置を周期T1毎に測定し、その測定結果を測定データとしてシステム制御装置8に送信する。
 なお、第1のレーダ群4の第2のレーダ4Bや、第2のレーダ群5の第1及び第2のレーダ5A,5Bも第1のレーダ群4の第1のレーダ4Aと同様に構成されており、それぞれシステム制御装置8から与えられるシステム指令に基づいて上述のように取得した測定結果(測定データ)を通信線21を介してシステム制御装置8に送信する。
 システム制御装置8は、CPU(Central Processing Unit)及びメモリ等の情報処理資源を備えたコンピュータ装置である。システム制御装置8は、第1のレーダ群4の第1及び第2のレーダ4A,4Bからの測定データの値を比較し、その差分が所定の範囲内である場合に、これら第1及び第2のレーダ4A,4Bが正常に動作していると判断して、これらの測定データを用いて移動体2の位置情報を必要に応じて更新する。
 同様に、システム制御装置8は、第2のレーダ群5の第1及び第2のレーダ5A,5Bからの測定データの値を比較し、その差分が所定の範囲内である場合に、これら第1及び第2のレーダ5A,5Bが正常に動作していると判断して、これらの測定データを用いて移動体2の位置情報を必要に応じて更新する。
 なお本実施の形態の場合、第1及び第2のレーダ群4,5の第1及び第2のレーダ4A,4B,5A,5Bとして、ミリ波レーダが用いられている。ミリ波レーダを用いた移動体2の検知方式としては、計測対象の速度検知が可能なドップラ式や、計測対象の速度及び距離の検知が可能な定在波方式や、送信出力が低くても距離の検知が可能なFM-CW(Frequency Modulated Continuous Wave)方式などが知られている。
 これらの方式では、送信アンテナ15及び受信アンテナ16として、通常、偏波方向が水平方向や垂直方向などの一方向である直線偏波アンテナが用いられており、本実施の形態においても送信アンテナ15及び受信アンテナ16として直線偏波アンテナが適用されている。
 図4(A)は、このような第1及び第2のレーダ群4,5の第1及び第2のレーダ4A,5A,4B,5Bの送信アンテナ15及び受信アンテナ16を図2の右側から見た様子を示す。図4(A)では、これら送信アンテナ15及び受信アンテナ16の偏波方向をそれぞれ矢印a及び矢印bで示している。
 この図4(A)に示すように、受信アンテナ16の偏波方向(矢印b)は、送信アンテナ15の偏波方向(矢印a)と同一方向に設定されている。このように送信アンテナ15偏波方向と、受信アンテナ16の偏波方向とを同一方向に揃えることにより、反射波16Aの偏波方向と、受信アンテナ16の偏波方向とを同じ方向とすることができ、これにより反射波16Aに対する受信アンテナ16の受信感度を最大にすることができる。
 なお図4(A)では、送信アンテナ15及び受信アンテナ16を同一平面上に左右に並べて設置した場合を例示しているが、偏波方向を同一方向とするのであれば、送信アンテナ15及び受信アンテナ16を異なる高さ位置に設置するようにしてもよい。
 ここで、第1のレーダ群4の第1及び第2のレーダ4A,4B同士や、第2のレーダ群5の第1及び第2のレーダ5A,5B同士は、上述のように同じ場所に設置されて同一のタイミングで動作するようシステム制御装置8により制御される。
 しかしながら、第1のレーダ群4の第1及び第2のレーダ4A,4Bを同じ場所に設置して同一のタイミングで動作させた場合、レーダ間の干渉が発生する。具体的には、第1のレーダ4Aから照射された送信波15Aが移動体2で反射され、その反射波16Aが第2のレーダ4Bで受信されることで干渉が発生する。また第2のレーダ4Bから照射された送信波15Aが移動体2で反射され、その反射波16Aが第1のレーダ4Aで受信されることで干渉が発生する。第2のレーダ群5についても同様にレーダ間の干渉が発生する。
 そこで本移動体検知システム1では、このようなレーダ間の干渉を抑制するため、第1及び第2のレーダ群4,5のいずれにおいても、第1のレーダ4A,5Aの偏波方向と、第2のレーダ4B,5Bの偏波方向とが同一方向とならないように、第1のレーダ群4の第1及び第2のレーダ4A,4Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bとをそれぞれ異なる方向に傾けて設置する。
 具体的には、反射波16Aの偏波方向が受信アンテナ16の偏波方向と直交する場合に、レーダ間の干渉の抑制効果を最大にすることができるため、本移動体検知システム1においては、第1のレーダ4A,5Aを、図4(B)のように偏波方向が水平方向19に対して反時計回りに45°回転した状態に傾けた状態に設置し、第2のレーダ4B,5Bを、図4(C)のように偏波方向が水平方向19に対して時計回りに45°回転した状態に傾けた状態に設置する。なお、以下においては、偏波方向が水平方向19に対して反時計回りに傾いた状態の偏波角をプラスで表わし、偏波方向が水平方向19に対して時計回りに傾いた状態の偏波角をマイナスで表わすものとする。
 ただし第1のレーダ4A,5Aの偏波方向と、第2のレーダ4B,5Bの偏波方向とが直交するのであれば、これら第1のレーダ4A,5A及び第2のレーダ4B,5Bが水平方向19となす角(以下、これを偏波角と呼ぶ)が±45°以外の角度であってもよい。
 また第1のレーダ4A,5Aの偏波角と、第2のレーダ4B,5Bの偏波角との差分が0°又は180°以外であれば、レーダ間の干渉の抑制効果がある程度期待できるため、第1のレーダ群4の第1及び第2のレーダ4A,4Bの偏波角と、第2のレーダ群5の第1及び第2のレーダ5A,5Bの偏波角との関係は、第1のレーダ4A,5Aの偏波方向と、第2のレーダ4B,5Bの偏波方向とが直交する場合に限定されない。例えば、第1のレーダ4A,5Aの偏波角が+30°、第2のレーダ4B,5Bの偏波角が-30°となるようにこれら第1及び第2のレーダ4A,5A,4B,5Bを設置するようにしてもよい。さらに本実施の形態で第1のレーダ群4や第2のレーダ群5を設置した場所に、それぞれ異なる偏波角となるようレーダを3つ以上設置するようにしてもよい。
 ところで、上述のように第1のレーダ群4の第1及び第2のレーダ4A,4Bの偏波角と、第2のレーダ群5の第1及び第2のレーダ5A,5Bの偏波角とを決定したとしても、第1及び第2のレーダ群4,5間の干渉の問題は解決しない。具体的には、第1のレーダ群4の第1のレーダ4A及び第2のレーダ4Bの送信波15Aが移動体2で反射され、その反射波16Aが第2のレーダ群5の第1のレーダ5A及び第2のレーダ5Bに入射することによりレーダ間の干渉が発生する。また第2のレーダ群5の第1のレーダ5A及び第2のレーダ5Bから照射された送信波15Aが移動体2で反射され、その反射波16Aが第1のレーダ群4の第1のレーダ4A及び第2のレーダ4Bに入射することによりレーダ間の干渉が発生する。
 そこで本移動体検知システム1では、このような第1及び第2のレーダ群4,5間におけるレーダの干渉を抑制するために、第1のレーダ群4の第1及び第2のレーダ4A,4Bが送信波15Aを走行路3に向けて照射している時間帯と、第2のレーダ群5の第1及び第2のレーダ5A,5Bが送信波15Aを走行路3に向けて照射している時間帯とが時間軸上で重ならないように、これら第1のレーダ群4の第1及び第2のレーダ4A,4Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bとの動作タイミングをシステム制御装置8が制御する。
 図3との対応部分に添え字「A」又は「B」を付して示す図5は、このように制御された第1のレーダ群4の第1及び第2のレーダ4A,4B、並びに、第2のレーダ群5の第1及び第2のレーダ5A,5Bの動作タイミングを示す。図5では、第1のレーダ群4に関する箇所については添え字「A」を付し、第2のレーダ群5に関する箇所については添え字「B」を付している。
 この図5からも明らかなように、システム制御装置8は、第2のレーダ群5の第1及び第2のレーダ5A,5Bに対しては、第1のレーダ群4の第1及び第2のレーダ4A,4Bにシステム指令としてのパルスPを送信するタイミングとは異なるタイミングでシステム指令としてのパルスPを送信する。
 実際上、システム制御装置8は、第1のレーダ群4の第1及び第2のレーダ4A,4Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bとが送信波15Aを走行路3に向けて照射している期間t1,t1(時間帯)が時間軸上で重ならないように、第1のレーダ群4及び第2のレーダ群5に対してシステム指令としてのパルスP,Pを交互に送信する。このことで、第1のレーダ群4の第1及び第2のレーダ4A,4Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bとの間の干渉を抑制することができる。
 ここで第1のレーダ群4の第1及び第2のレーダ4A,4Bにシステム指令としてのパルスPを送信するタイミングと、第2のレーダ群5の第1及び第2のレーダ5A,5Bにシステム指令としてのパルスPを送信するタイミングとを、これらパルスP,Pの送信周期である周期T1の半周期だけずらすことで、第1のレーダ群4の第1及び第2のレーダ4A,4Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bとがそれぞれ送信波15Aを走行路3に向けて照射する間隔を最大とすることができる。このことで、第1のレーダ群4の第1及び第2のレーダ4A,4Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bとの間の干渉を最大限に抑制することができる。
 なお第1のレーダ群4の第1及び第2のレーダ4A,4Bや、第2のレーダ群5の第1及び第2のレーダ5A,5Bが送信波15Aを走行路3に向けて照射している期間t1(図3)は、上述の周期T1の半分よりも十分に小さい期間(例えば1/10~1/5程度)であるため、第1のレーダ群4の第1及び第2のレーダ4A,4Bや、第2のレーダ群5の第1及び第2のレーダ5A,5Bが送信波15Aを走行路3に向けて照射する時間間隔である周期T1をレーダ間の干渉を抑制するために長くする必要がない。このため、本移動体検知システム1は、適切な時間間隔で移動体2を検知できる。
(2)走行路内物体検知処理
 次に走行路3内の移動体2を検知するために、第1のレーダ4A,5A及び第2のレーダ4B,5Bのレーダ制御部24により実行される走行路内物体検知処理について図6を用いて説明する。説明を簡単にするため第1のレーダ4Aについて説明するが、第1のレーダ5A及び第2のレーダ4B,5Bについても同様とする。
 この走行路内物体検知処理は、システム指令としてのパルスPをレーダ制御部24が検出するとレーダ制御部24により開始される。そしてレーダ制御部24は、まず、かかるパルスPの立ち下がりのタイミングで図5について上述した周波数特性を有する送信波15Aを送信アンテナ15から発射させるように送信回路22を制御する(S11)。
 続いて、レーダ制御部24は、かかるパルスPの立ち下がりのタイミングから上述の期間t1の間だけ、反射波16Aを受信した受信アンテナ16から出力される受信信号を受信データに変換するよう受信回路23を制御すると共に(S12)、受信回路23から出力される当該受信処理の処理結果を測定データとしてデータ処理部25に転送する(S13)。
 この後、レーダ制御部24は、送信回路22を制御し始めてからかかる期間t1が経過するのを待ち受け(S14)、やがて送信回路22を制御し始めてからかかる期間t1が経過すると、この走行路内物体検知処理を終了する。
(3)本実施の形態の効果
 以上のように本実施の形態の移動体検知システム1では、第1及び第2のレーダ群4,5について、第1のレーダ4A,5A及び第2のレーダ4B,5Bの偏波方向が平行とならないようにこれら第1のレーダ4A,5A及び第2のレーダ4B,5Bを設置するようにしているため、第1及び第2のレーダ群4,5内部における第1のレーダ4A,5A及び第2のレーダ4B,5B間の干渉を抑制することができる。
 また本移動体検知システム1では、第1のレーダ群4の第1及び第2のレーダ4A,4Bが走行路3に向けて送信波15Aを照射する時間帯と、第2のレーダ群5の第1及び第2のレーダ5A,5Bが走行路3に向けて送信波15Aを照射する時間帯とが時間軸上で重ならないように、これら第1のレーダ群4の第1及び第2のレーダ4A,4Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bとを交互に動作させるようにしているため、第1及び第2のレーダ群4,5間の干渉も抑制することができる。
 従って、本実施の形態によれば、レーダ間の干渉に起因する移動体2の検知精度の劣化や誤検知の発生を未然かつ有効に防止することができ、かくして信頼性高く移動体2を検知し得る移動体検知システムを実現できる。
(4)他の実施の形態
 なお上述の実施の形態においては、第1のレーダ群4及び第2のレーダ群5を走行路3の片側にのみ設置するようにした場合について述べたが、本発明はこれに限らず、第1及び第2のレーダ群4,5を走行路3の上側や下側に設置するようにしてもよい。
 例えば、地下鉄の場合には、トンネルの天井に第1及び第2のレーダ群4,5を設置することにより、トンネル内の横方向の空間を別の用途に使用することが可能となる。また跨座式モノレールの場合には、レールの下部に第1及び第2のレーダ群4,5を設置することにより、レール横の限られた空間を別の用途に使用することが可能となる。
 なお第1及び第2のレーダ群4,5を走行路3の上側や下側に設置するようにした場合においても、上述の実施形態と同様に、第1及び第2のレーダ群4,5の第1及び第2のレーダ4A,5A,4B,5Bは、それぞれ走行路3に対して斜め方向に送信波15Aを照射するように、かつ第1のレーダ群4により移動体2を検知可能な走行路3上の範囲E1と、第2のレーダ群5により移動体2を検知可能な走行路3上の範囲E2とが順次接する又は一部で重なるように設置されている。なお第1及び第2のレーダ群4,5の第1及び第2のレーダ4A,5A,4B,5Bは、照射方向が走行路3に対して移動体2の進行方向に対向するように設置されることで、範囲E1,E2に進入した移動体2をいち早く検知することができる。
 また上述の実施の形態においては、第1及び第2のレーダ群4,5の第1のレーダ4A,5A及び第2のレーダ4B,5Bを走行路3の片側に設置するようにした場合について述べたが、本発明はこれに限らず、例えば、図1との対応部分に同一符号を付した図7に示すように、第1及び第2のレーダ群4,5の第1のレーダ4A,5Aを走行路3の横方向の一方側に当該走行路3に沿って設置し、第1及び第2のレーダ群4,5の第2のレーダ4B,5Bを走行路3の横方向の他方側に当該走行路3に沿って配置するようにしてもよい。
 なおこの場合には、第1及び第2のレーダ群4,5の第1のレーダ4A,5A及び第2のレーダ4B,5Bが同一の移動体2を同時に検出することができるように、対をなすレーダ同士(第1のレーダ群4の第1及び第2のレーダ4A,4Bや、第2のレーダ群5の第1及び第2のレーダ5A,5B)をそれぞれ走行路3を介して当該走行路3と直交する方向に並ぶように設置する必要がある。
 さらに上述の実施の形態においては、本発明を一車線の走行路3を走行する移動体2の検知に適用するようにした場合について述べたが、本発明はこれに限らず、例えば図1との対応部分に同一符号を付した図8に示すように、2つ以上の車線(例えば、上り車線及び下り車線)が平行して設けられている場合に、これらの走行路3A,3Bを走行する移動体2の検知にも適用することができる。
 なおこの場合には、第1のレーダ群4の第1及び第2のレーダ4A,4Bからそれぞれ照射された送信波15Aの照射範囲6A,6Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bからそれぞれ照射された送信波15Aの照射範囲7A,7Bとが重なる範囲52が出現する可能性があるものの、第1のレーダ群4の第1及び第2のレーダ4A,4Bが送信波15Aを走行路3A,3Bに向けて照射している時間帯と、第2のレーダ群5の第1及び第2のレーダ5A,5Bが送信波15Aを走行路3A,3Bに向けて照射している時間帯とが時間軸上で重ならないような制御が行われるため、レーダ間の干渉は発生しない。従って、このようにしても上述の実施の形態と同様の効果を得ることができる。
 さらに上述の実施の形態においては、第1のレーダ群4の第1及び第2のレーダ4A,4B、並びに、第2のレーダ群5の第1及び第2のレーダ5A,5Bを、いずれも送信波15Aの照射方向が走行路3に対して所定角度傾くように設置する場合について述べたが、本発明はこれに限らず、図1との対応部分に同一符号を付した図9に示すように第1のレーダ群4の第1及び第2のレーダ4A,4B、並びに、第2のレーダ群5の第1及び第2のレーダ5A,5Bを、いずれも送信波15Aの照射方向が走行路3に直交するように設置してもよい。このようにしても上述の実施の形態と同様の効果を得ることができる。
 なおこの場合には、第1のレーダ群4の第1及び第2のレーダ4A,4Bからそれぞれ照射された送信波15Aの照射範囲6A,6Bと、第2のレーダ群5の第1及び第2のレーダ5A,5Bからそれぞれ照射された送信波15Aの照射範囲7A,7Bとが重なるものの、第1のレーダ群4の第1及び第2のレーダ4A,4Bが走行路3A,3Bに向けて送信波15Aを照射する時間帯と、第2のレーダ群5の第1及び第2のレーダ5A,5Bが走行路3A,3Bに向けて送信波15Aを照射する時間帯とが時間軸上で重ならないような制御が行われるため、レーダ間の干渉は発生しない。よって、このようにしても上述の実施の形態と同様の効果を得ることができる。
 加えて、このように第1のレーダ群4の第1及び第2のレーダ4A,4B、並びに、第2のレーダ群5の第1及び第2のレーダ5A,5Bを設置することによって、すべての送信波15Aの照射方向が走行路3に直交するため、移動体2の移動方向に関わらず安定して移動体2を検知できるという効果も得ることができる。
 さらに上述の実施の形態においては、第1及び第2のレーダ群4,5の第1及び第2のレーダ4A,5A,4B,5Bを、第1のレーダ群4により移動体2を検知可能な走行路3上の範囲E1と、第2のレーダ群5により移動体2を検知可能な走行路3上の範囲E2とが順次接するように設置するようにした場合について述べたが、本発明はこれに限らず、第1のレーダ群4により移動体2を検知可能な走行路3上の範囲E1の一部と、第2のレーダ群5により移動体2を検知可能な走行路3上の範囲E2の一部とが順次重なるように第1及び第2のレーダ群4,5の第1及び第2のレーダ4A,5A,4B,5Bを設置するようにしてもよい。このようにしても上述の実施の形態と同様の効果を得ることができる。
 さらに上述の実施の形態においては、走行路3を走行する移動体2に対して斜め前方向から送信波15Aを照射し得るように設置する場合について述べたが、本発明はこれに限らず、走行路3を走行する移動体2に対して当該移動体2に対して斜め後ろ側から送信波15Aを照射(移動体2の走行方向と同じ方向から斜めに送信波15Aを照射)するように第1及び第2のレーダ群4,5の第1及び第2のレーダ4A,5A,4B,5Bを設置してもよい。このようにしても上述の実施の形態と同様の効果を得ることができる。
 1……移動体検知システム、2……移動体、3……走行路、4……第1のレーダ群、4A,5A……第1のレーダ、4B,5B……第2のレーダ、5……第2のレーダ群、6A,6B,7A,7B……照射範囲、8……システム制御装置、15……送信アンテナ、16……受信アンテナ、17,18……偏波方向、19……水平方向、21……通信線、22……送信回路、23……受信回路、24……レーダ制御部、25……データ処理部、26……通信部。

Claims (8)

  1.  走行路を移動する移動体を検知する移動体検知システムにおいて、
     それぞれ多重化された複数のレーダを有し、前記走行路に沿って順次交互に複数設置された第1及び第2のレーダ群と、
     前記第1及び第2のレーダ群の前記レーダを駆動制御する制御装置と
     を備え、
     前記第1及び第2のレーダ群の各前記レーダは、
     電磁波でなる送信波を前記走行路に向けて照射する送信アンテナと、
     前記送信アンテナの偏波方向と同じの偏波方向を有し、前記送信波が前記走行路を走行する移動体において反射してなる反射波を受信する受信アンテナと
     をそれぞれ有し、
     前記第1のレーダ群の各前記レーダは、それぞれ互いに異なる前記偏波方向を有し、
     前記第2のレーダ群の各前記レーダも、それぞれ互いに異なる前記偏波方向を有し、
     前記制御装置は、
     前記前記第1のレーダ群の各前記レーダが前記送信波を前記走行路に向けて照射している時間帯と、前記第2のレーダ群の各前記レーダが前記送信波を前記走行路に向けて照射している時間帯とが重ならないように、前記第1のレーダ群の各前記レーダと、前記第2のレーダ群の各前記レーダとを交互に動作させる
     ことを特徴とする移動体検知システム。
  2.  前記第1及び第2のレーダ群の各前記レーダは、前記走行路を走行する前記移動体に対して斜め方向から前記送信波を照射するように、かつ、前記第1のレーダ群の各前記レーダにより前記移動体を検知可能な前記走行路上の範囲と前記第2のレーダ群の各前記レーダにより前記移動体を検知可能な前記走行路上の範囲とが順次接し又は一部が順次重なるように設置された
     ことを特徴とする請求項1に記載の移動体検知システム。
  3.  前記第1及び第2のレーダ群の各前記レーダが前記走行路の片側に設置された
     ことを特徴とする請求項2に記載の移動体検知システム。
  4.  前記第1及び第2のレーダ群の各前記レーダが前記走行路の上側又は下側に設置された
     ことを特徴とする請求項2に記載の移動体検知システム。
  5.  前記第1及び第2のレーダ群の各前記レーダは、前記走行路3を走行する前記移動体に対して斜め前方向から前記送信波を照射する
     ことを特徴とする請求項3又は4に記載の移動体検知システム。
  6.  前記第1及び第2のレーダ群の各前記レーダは、
     一部が前記走行路の一方側に設置されると共に、残りが前記走行路の他方側に設置され、
     前記第1のレーダ群内の対をなす各前記レーダ同士、及び、前記第2のレーダ群内の対をなす各前記レーダ同士がそれぞれ前記走行路を介して当該走行路と直交する方向に並ぶように設置された
     ことを特徴とする請求項1に記載の移動体検知システム。
  7.  前記第1のレーダ群及び前記第2のレーダ群と、他の前記第1のレーダ群及び他の前記第2のレーダ群とを所定の距離を離して設置する
     ことを特徴とする請求項1に記載の移動体検知システム。
  8.  走行路を移動する移動体を検知する移動体検知システムの制御方法において、
     前記移動体検知システムは、
     それぞれ多重化された複数のレーダを有し、前記走行路に沿って順次交互に複数設置された第1及び第2のレーダ群と、
     前記第1及び第2のレーダ群の前記レーダを駆動制御する制御装置と
     を有し、
     前記第1及び第2のレーダ群の各前記レーダは、
     電磁波でなる送信波を前記走行路に向けて照射する送信アンテナと、
     前記送信アンテナの偏波方向と同じの偏波方向を有し、前記送信波が前記走行路を走行する移動体において反射してなる反射波を受信する受信アンテナと
     をそれぞれ有し、
     前記第1のレーダ群の各前記レーダは、それぞれ互いに異なる前記偏波方向を有し、
     前記第2のレーダ群の各前記レーダも、それぞれ互いに異なる前記偏波方向を有し、
     前記制御装置が、前記第1のレーダ群の各前記レーダを動作させる第1のステップと、
     前記制御装置が、前記前記第1のレーダ群の各前記レーダが前記送信波を前記走行路に向けて照射している時間帯と、前記第2のレーダ群の各前記レーダが前記送信波を前記走行路に向けて照射している時間帯とが重ならないように、前記第2のレーダ群の各前記レーダを動作させる第2のステップと、
     前記制御装置が、前記前記第1のレーダ群の各前記レーダが前記送信波を前記走行路に向けて照射している時間帯と、前記第2のレーダ群の各前記レーダが前記送信波を前記走行路に向けて照射している時間帯とが重ならないように、前記第1のレーダ群の各前記レーダを動作させる第3のステップと、
     前記第2のステップ及び前記第3のステップを繰り返す第4のステップと
     を備えることを特徴とする移動体検知システムの制御方法。
PCT/JP2018/012234 2017-07-14 2018-03-26 移動体検知システム及びその制御方法 WO2019012746A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017138455 2017-07-14
JP2017-138455 2017-07-14

Publications (1)

Publication Number Publication Date
WO2019012746A1 true WO2019012746A1 (ja) 2019-01-17

Family

ID=65002417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012234 WO2019012746A1 (ja) 2017-07-14 2018-03-26 移動体検知システム及びその制御方法

Country Status (1)

Country Link
WO (1) WO2019012746A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755743A (zh) * 2019-03-11 2019-05-14 青岛海信移动通信技术股份有限公司 天线和终端
CN113678017A (zh) * 2019-04-25 2021-11-19 京瓷株式会社 电子设备、电子设备的控制方法以及电子设备的控制程序

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854603A (ja) * 1971-11-10 1973-08-01
JPS507299A (ja) * 1973-01-02 1975-01-24
JPH0669054U (ja) * 1993-03-16 1994-09-27 東日本旅客鉄道株式会社 踏切警報機の警報制御用列車検知装置
JP2016065721A (ja) * 2014-09-22 2016-04-28 公益財団法人鉄道総合技術研究所 障害物検知システム、判定装置、判定方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4854603A (ja) * 1971-11-10 1973-08-01
JPS507299A (ja) * 1973-01-02 1975-01-24
JPH0669054U (ja) * 1993-03-16 1994-09-27 東日本旅客鉄道株式会社 踏切警報機の警報制御用列車検知装置
JP2016065721A (ja) * 2014-09-22 2016-04-28 公益財団法人鉄道総合技術研究所 障害物検知システム、判定装置、判定方法およびプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109755743A (zh) * 2019-03-11 2019-05-14 青岛海信移动通信技术股份有限公司 天线和终端
CN113678017A (zh) * 2019-04-25 2021-11-19 京瓷株式会社 电子设备、电子设备的控制方法以及电子设备的控制程序

Similar Documents

Publication Publication Date Title
US6587763B2 (en) Train control system and method therefor
AU2014201587B2 (en) Method for detecting traffic violations in a traffic lights zone by way of vehicle rear end measurement using a radar device
JP2017003347A (ja) 物体検知装置及び物体検知方法
RU2010118091A (ru) Устройство для обнаружения транспортного средства на полосе аэропорта
JPS5844228B2 (ja) 車両用障害物検出レ−ダ
JP6734405B2 (ja) 移動体検知システム
SE1530158A1 (en) Radar system and method
JP6144479B2 (ja) 車両の相互位置検出装置
WO2019012746A1 (ja) 移動体検知システム及びその制御方法
JP2008224614A (ja) 物体検知方法
CN107580682A (zh) 用于机动车的雷达传感器
US9429648B2 (en) Radar apparatus and computer-readable storage medium
JP5678692B2 (ja) レーダ装置
JP5134453B2 (ja) 踏切障害物検知装置
CN102679942A (zh) 用于借助组合的声学和电磁广角传感装置确定车道表面性质的方法和装置
JP4387827B2 (ja) 踏切障害物検知装置
EP3461715A1 (en) On-board antenna for rail vehicle
JP2004067035A (ja) 踏切障害物検知装置
US20170234969A1 (en) Radar device
JP4863679B2 (ja) 位置測定装置
JP5127058B2 (ja) 踏切障害物検知装置
JP4169677B2 (ja) 障害物検知装置
JPH0792258A (ja) 車両用レーダ装置
JP3651769B2 (ja) 航空機検知システム
JP7395797B2 (ja) レーダーシステム、レーダー装置、及び監視方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18832458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP