WO2019011113A1 - 一种基于软件逻辑功能配合的晶闸管阀测试系统 - Google Patents

一种基于软件逻辑功能配合的晶闸管阀测试系统 Download PDF

Info

Publication number
WO2019011113A1
WO2019011113A1 PCT/CN2018/091974 CN2018091974W WO2019011113A1 WO 2019011113 A1 WO2019011113 A1 WO 2019011113A1 CN 2018091974 W CN2018091974 W CN 2018091974W WO 2019011113 A1 WO2019011113 A1 WO 2019011113A1
Authority
WO
WIPO (PCT)
Prior art keywords
thyristor
valve
control unit
test
tester
Prior art date
Application number
PCT/CN2018/091974
Other languages
English (en)
French (fr)
Inventor
杨帆
刘磊
张翔
周晨
潘卫明
方太勋
Original Assignee
南京南瑞继保电气有限公司
南京南瑞继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南瑞继保电气有限公司, 南京南瑞继保工程技术有限公司 filed Critical 南京南瑞继保电气有限公司
Priority to BR112019020370-2A priority Critical patent/BR112019020370B1/pt
Priority to JP2019543908A priority patent/JP6921213B2/ja
Priority to KR1020197023654A priority patent/KR102078519B1/ko
Priority to US16/496,384 priority patent/US11009542B2/en
Priority to CA3057554A priority patent/CA3057554C/en
Priority to RU2019132054A priority patent/RU2730388C1/ru
Priority to EP18832716.7A priority patent/EP3588112B1/en
Publication of WO2019011113A1 publication Critical patent/WO2019011113A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/263Circuits therefor for testing thyristors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2642Testing semiconductor operation lifetime or reliability, e.g. by accelerated life tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/333Testing of the switching capacity of high-voltage circuit-breakers ; Testing of breaking capacity or related variables, e.g. post arc current or transient recovery voltage
    • G01R31/3333Apparatus, systems or circuits therefor
    • G01R31/3336Synthetic testing, i.e. with separate current and voltage generators simulating distance fault conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to a test system and a corresponding test method for functional testing of a thyristor valve at an engineering site, and belongs to the field of power electronics.
  • the trigger system of UHV DC transmission generally includes a control protection system, a valve-based electronic device VBE and a thyristor control unit TCU, wherein the control protection system is responsible for generating a trigger pulse (CP) for transmission to the VBE, and the valve-based electronic device is a control protection system and thyristor control.
  • the bridge between the units is responsible for converting the CP into an ignition pulse (FP) to the TCU under certain conditions.
  • the TCU is a monitoring, control, and protection device on the converter valve tower.
  • the TCU monitoring function mainly includes: when the thyristor stage voltage is greater than a certain threshold value, the TCU sends a pulse width 1 return pulse to the VBE; when the thyristor stage has a protective trigger, the TCU sends a pulse width 2 return pulse to the VBE.
  • the control function mainly means that when the TCU receives the FP, it sends a trigger signal to the thyristor gate level to turn on the thyristor.
  • the protection function mainly includes: when the thyristor stage is in the reverse recovery period and suddenly bears the forward voltage of amplitude 1, the TCU sends a trigger signal to the thyristor gate stage to turn on the thyristor; when the thyristor stage is subjected to the amplitude 2 at any time When the voltage is applied, the TCU sends a trigger signal to the thyristor gate stage to turn on the thyristor.
  • TCU monitoring, control and protection functions based on TCU have a significant impact on the operation of the converter valve.
  • the control and protection functions of the TCU can be verified by the electrical signals at the thyristor level.
  • the monitoring function of the TCU needs to be verified by the optical signal it returns.
  • the problem to be solved by the present invention is that, in view of the shortcomings of the above test system and test method, it is proposed that a connected optical fiber can be connected without being plugged and unplugged, and all test functions and test requirements of the thyristor valve can be satisfied by mutual cooperation between the tester and the VBE. Program.
  • the invention provides a test system for a thyristor valve, the test system comprising: a thyristor valve to be tested, a tester and a valve control unit.
  • the thyristor valve to be tested comprises at least one thyristor stage, each thyristor stage comprising at least one thyristor, a triggering unit and a required auxiliary circuit.
  • valve control unit has a dedicated test mode:
  • the valve control unit sends a trigger pulse to the trigger unit every time it receives N return pulses 1;
  • valve control unit After receiving the return pulse 2, the valve control unit does not send a trigger pulse to the trigger unit when receiving the N return pulses 1 continuously;
  • valve control unit does not receive any return pulse within a certain time T, then the number of all pulses is calculated from zero.
  • each test item of the tester is divided into three steps:
  • step b Apply the excitation to the sinusoidal voltage.
  • the tester detects whether the thyristor is conducting, and determines whether the optical signal returned by the thyristor valve to the valve control unit is correct in step b.
  • the optical thyristor valve and the valve control unit are connected by a fiber, and the thyristor valve and the tester are connected by a cable, and between the valve control unit and the tester No connection.
  • the technology proposed by the present invention eliminates the test method that requires a single plug-in fiber in the field test, and only needs to set the VCU to the test mode, and utilizes the existing VCU and commutation.
  • the trigger between the valves returns the fiber, and the tester is connected to the thyristor valve to be tested one by one.
  • each project is divided into three steps, which can detect the return signals of the optical path, circuit and trigger unit, and achieve the test without failing to increase the field test equipment and test workload, and complete the test in a comprehensive and reliable manner.
  • the purpose, especially for projects with a large number of thyristors, is highly practical.
  • Figure 1 is a schematic diagram of a conventional test system for a thyristor valve.
  • FIG. 2 is a schematic diagram of a thyristor test system proposed by the present invention.
  • FIG. 3 is a spatial layout diagram of a thyristor test system according to the present invention.
  • FIG. 4 is a logic flow chart of a test mode of a valve control unit according to the present invention.
  • FIG. 5 is a schematic diagram of a test procedure of a tester according to the present invention.
  • the test system provided in this example is shown in FIG. 2, and consists of a tester 4, a thyristor valve 5 to be tested, and a valve control unit 3.
  • the measured thyristor valve 5 and the valve control unit 3 have only two optical fibers connected, one for each transmission, for transmitting the trigger return signal; the measured thyristor valve 5 and the tester 4 have only two cable connections For the tester 4 to apply the test voltage current to the thyristor valve 5 to be tested; there is no connection between the tester 4 and the valve control unit 3.
  • the spatial arrangement of the test system provided in this example is shown in FIG. 3.
  • the thyristor valve 5 to be tested is connected through the optical fiber 1 to the valve control unit 3 located in the control room 6, and the tester 4 is located in the valve hall 7, and is close to the thyristor valve 5 to be tested. Connected to the thyristor valve 5 to be tested via the cable 2.
  • valve control unit 3 and the tester 4 in this example can achieve the correctness of the TCU returning optical signal without the need of fiber connection by functional logic coordination.
  • the specific method is as follows:
  • the valve control unit 3 has a dedicated test mode in addition to the normal trigger function.
  • the tester can switch the valve control unit 3 to the test mode by setting a control word or other method.
  • the functional logic of the valve control unit 3 is shown in Figure 4:
  • the valve control unit 3 When the valve control unit 3 receives a return pulse having a width of less than 15 us, the return counter is incremented by 1. When the count value is 10, if the value of the auxiliary counter is 0, the valve control unit 3 sends the detected thyristor valve 5 to the thyristor valve 5 to be tested. A trigger pulse and clear the counter. If the value of the auxiliary counter is 1, the valve control unit 3 does not send a trigger pulse, and directly clears all counters;
  • valve control unit 3 When the valve control unit 3 receives the return pulse having a width greater than 15 us, the auxiliary counter is incremented by 1 and the return counter is cleared;
  • valve control unit 3 When the valve control unit 3 does not receive the return pulse within 2 s, all the counters are cleared.
  • the tester 4 applies incentives in each test item in three steps, as shown in Figure 5:
  • the first stage applies a sinusoidal voltage of 15 cycles.
  • the valve control unit 3 sends a trigger pulse to the thyristor valve 5 to be tested. If all circuits and optical paths are normal, the thyristor valve 5 will be measured. Turning on, the tester 4 detects the thyristor current in this stage, and is used to judge whether the entire thyristor-level circuit and the optical path are normal;
  • the second stage applies the excitation to the sinusoidal voltage or the surge voltage or the superposition of the forward voltage and the surge voltage corresponding to the content of the test item.
  • This stage is the main stage of the test, in which the tester 4 detects the thyristor voltage and current, and determines the thyristor. Whether the valve meets the test requirements of this test item in terms of electrical aspects;
  • the third stage applies an excitation to a 15 cycle sinusoidal voltage.
  • the valve control unit 3 determines whether to send a trigger pulse to the thyristor valve 5 under test according to whether the feedback signal received in the second stage is correct.
  • the meter detects whether the thyristor is turned on, and judges whether the optical signal reported by the thyristor valve 5 to the valve control unit 3 in the second stage is correct.
  • the invention is characterized in that all the test items and test requirements can be met by the function logic of the valve control unit and the tester without plugging and unplugging the field connected fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Conversion In General (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Rectifiers (AREA)

Abstract

一种基于软件逻辑功能配合的晶闸管阀测试系统,其主要内容为,测试系统包括:被测晶闸管阀(5)、阀控单元(3)和测试仪(4),阀控单元(3)具有专门的测试模式,测试仪(4)在进行每项测试时都分为三个步骤。被测晶闸管阀(5)和阀控单元(3)之间采用光纤(1)连接,被测晶闸管阀(5)和测试仪(4)之间采用电缆(2)连接,阀控单元(3)和测试仪(4)之间无任何连接。

Description

一种基于软件逻辑功能配合的晶闸管测试系统 技术领域
本发明涉及一种用于在工程现场给晶闸管阀进行功能测试的测试系统及对应的测试方法,属于电力电子领域。
背景技术
特高压直流输电的触发系统一般包括控制保护系统、阀基电子设备VBE和晶闸管控制单元TCU,其中控制保护系统负责产生触发脉冲(CP)发送给VBE,阀基电子设备是控制保护系统和晶闸管控制单元之间的桥梁,负责将CP在一定条件下转换成点火脉冲(FP)发送给TCU,TCU是换流阀塔上的监测、控制、保护设备。TCU监测功能主要包括:当晶闸管级电压大于一定门槛值时,TCU向VBE发送脉宽1的回报脉冲;当晶闸管级发生保护性触发时,TCU向VBE发送脉宽2的回报脉冲。控制功能主要指当TCU接收到FP时,向晶闸管门级发送触发信号使晶闸管导通。保护功能主要包括:当晶闸管级处于反向恢复期时突然承受幅值1的正向电压时,TCU向晶闸管门级发送触发信号使晶闸管导通;当晶闸管级在任何时候承受幅值2的正向电压时,TCU向晶闸管门级发送触发信号使晶闸管导通。
基于TCU以上这些监测、控制和保护功能对换流阀运行影响重大,在有晶闸管阀应用的工程现场,一般在投运前、年检或者设备发生故障更换后,需要对晶闸管阀进行专门的功能测试,TCU的控制、保护功能可以通过晶闸管级的电气信号进行验证,TCU的监测功能需要通过对其回报的光信号进行验证。在工程现场进行测试时,一般所有的TCU和VBE之间的光纤铺设和连接已经完成,所以以往测试时一般将TCU上和VBE连接的光纤拔出,然后再用另外的光纤将TCU和测试仪连接,如图1所示,这样TCU和测试仪之间可以直接进行光信号的传输,以满 足试验的需要。但这种做法存在一个较大的隐患,即每对一个晶闸管级进行试验时,都至少需要在TCU上进行两次光纤插拔,若该晶闸管级试验并不顺利,则在检查过程中可能多次插拔光纤,而每次插拔光纤都可能对光纤以及TCU的光接口处造成污秽和磨损,影响光信号的传输。在以往的工程现场曾经出现过在完成测试仪对晶闸管阀的功能测试,将原来光纤恢复后,在后续的试验中发现光路故障的情况。由于所有光路在前期完成光纤敷设后会统一进行测试,说明该光路故障是由于后续用测试仪对晶闸管阀的测试过程中的反复插拔导致,而由于光路测试的工作量巨大,不可能进行复测,所以受损光纤便遗漏到后续试验过程中,造成影响。
发明内容
本发明所要解决的问题是,针对上述测试系统和测试方法的缺点,提出一种不用插拔现场已连接光纤,通过测试仪和VBE之间相互配合,便能满足晶闸管阀所有测试功能和测试要求的方案。
本发明提供一种晶闸管阀的测试系统,所述测试系统包括:被测晶闸管阀、测试仪和阀控单元。
其中,所述被测晶闸管阀包括至少一个晶闸管级,每个晶闸管级至少包括一个晶闸管、一个触发单元和所需辅助回路。
其中,所述阀控单元具有专用的测试模式:
1.阀控单元每连续收到N个回报脉冲1时,向触发单元发送一个触发脉冲;
2.阀控单元收到回报脉冲2后,在下一次连续收到N个回报脉冲1时,不向触发单元发送触发脉冲;
3.阀控单元若在一定时间T内没有收到任何回报脉冲时,则所有脉冲个数从零计算。
其中,所述测试仪的每个测试项目均分为3个步骤:
1.施加激励为正弦电压,测试仪在该阶段中检测晶闸管是否导通,判断整个晶闸管级电路及光路是否正常;
2.施加激励为对应本测试项目内容的正弦电压或冲击电压或正向电压和冲击电压的叠加,测试仪在该阶段中检测晶闸管电压及电流,判断本测试项目中晶闸管阀在电气方面是否满足要求;
3.施加激励为正弦电压,测试仪在该阶段中检测晶闸管是否导通,判断在步骤b中晶闸管阀向阀控单元回报的光信号是否正确。
其中,所述的被测晶闸管阀和所述阀控单元之间采用光纤连接,所述被测晶闸管阀和所述测试仪之间采用电缆连接,所述阀控单元和所述测试仪之间无任何连接。
与现有测试系统和测试方法相比,本发明所提出的技术在现场测试时摒弃了原先需要挨个插拔光纤的测试方法,仅需将VCU设置为测试模式,利用已有的VCU和换流阀之间的触发回报光纤,将测试仪逐个和被测晶闸管阀连接,进行测试。测试过程中由于每个项目都分为3个步骤,可以对光路、电路和触发单元的回报信号进行检测,达到了即不增加现场测试设备和测试工作量,又能全面可靠高效地完成测试的目的,尤其对于晶闸管数目庞大的工程,具有很高的实用性。
附图说明
图1为原有的一种用于晶闸管阀的测试系统示意图。
图2为本发明提出的一种晶闸管测试系统示意图。
图3为本发明提出的一种晶闸管测试系统空间布置图。
图4为本发明提出的一种阀控单元的测试模式逻辑流程图。
图5为本发明提出的一种的测试仪的测试步骤示意图。
具体实施方式
下面结合一种实施例,对本发明进行进一步的介绍和描述,但本发明的保护 范围不局限于此。
本实例提供的测试系统如图2所示,由测试仪4、被测晶闸管阀5和阀控单元3组成。其中,被测晶闸管阀5和阀控单元3有且仅有两根光纤连接,一收一发,用于传输触发回报信号;被测晶闸管阀5和测试仪4有且仅有两根电缆连接,用于测试仪4向被测晶闸管阀5施加测试电压电流;测试仪4和阀控单元3之间没有任何连接。
本实例提供的测试系统的空间布置如图3所示,被测晶闸管阀5通过光纤1和位于控制室6的阀控单元3连接,测试仪4位于阀厅7,并靠近被测晶闸管阀5,通过电缆2和被测晶闸管阀5连接。
本实例中的阀控单元3和测试仪4通过功能逻辑上的配合,实现无需光纤连接也可以测试TCU回报光信号的正确性,具体方法如下:
阀控单元3除正常触发功能外,具有专用的测试模式。测试人员可以通过设置控制字或其他方法将阀控单元3切换到测试模式。在测试模式下,阀控单元3的功能逻辑如图4所示:
阀控单元3每收到1个宽度小于15us的回报脉冲时,则回报计数器加1,当计数值=10时,若辅助计数器的值=0,则阀控单元3向被测晶闸管阀5发送一个触发脉冲并清零计数器,若辅助计数器的值=1,则阀控单元3不发送触发脉冲,直接清零所有计数器;
阀控单元3在收到宽度大于15us的回报脉冲时,辅助计数器加1且清零回报计数器;
阀控单元3在2s内没有收到回报脉冲时,则所有计数器清零。
测试仪4在每个测试项目中施加激励均分为3个步骤,如图5所示:
第一阶段施加激励为15个周波的正弦电压,在该阶段中,阀控单元3会向被测晶闸管阀5发送一个触发脉冲,若所有电路及光路均正常,则被测晶闸管阀 5将会导通,测试仪4在该阶段中检测晶闸管电流,用于判断整个晶闸管级电路及光路是否正常;
第二阶段施加激励为对应本测试项目内容的正弦电压或冲击电压或正向电压和冲击电压的叠加,该阶段为测试的主要阶段,测试仪4在该阶段中检测晶闸管电压及电流,判断晶闸管阀在电气方面是否满足本测试项目的测试要求;
第三阶段施加激励为15个周波的正弦电压,在该阶段中,阀控单元3会根据第二阶段中接收到的回报信号是否正确,来决定是否向被测晶闸管阀5发送触发脉冲,测试仪在该阶段中检测晶闸管是否导通,用于判断在第2阶段中被测晶闸管阀5向阀控单元3回报的光信号是否正确。
本发明的特点是,不用插拔现场已连接光纤,而是通过阀控单元和测试仪之间功能逻辑方面的配合,便能满足所有测试项目和测试要求。
本领域的技术人员可以在本发明的权利要求范围内作出变形和修改,只要没有超过所述权利要求的范围,都在本发明的保护范围之内。

Claims (2)

  1. [根据细则91更正 01.08.2018]
    一种基于软件逻辑功能配合的晶闸管阀测试系统,其特征在于,所述测试系统包括:被测晶闸管阀、测试仪和阀控单元,所述被测晶闸管阀和所述阀控单元之间采用光纤连接,用于传输触发回报信号;被测晶闸管阀和所述测试仪之间采用电缆连接,用于测试仪向被测晶闸管阀施加测试激励;所述阀控单元和所述测试仪之间无任何连接;被测晶闸管阀包括至少一个晶闸管级,所述晶闸管级至少包括一个晶闸管、一个触发单元和辅助回路;所述触发单元在正常取能时向阀控单元回报脉冲1,在保护性触发时向所述阀控单元回报脉冲2;
    阀控单元设置有相应的测试模式,在测试模式下:
    a.阀控单元每连续收到N个回报脉冲1时,向触发单元发送一个触发脉冲;
    b.阀控单元收到回报脉冲2后,在下一次连续收到N个回报脉冲1时,不向触发单元发送触发脉冲;
    c.阀控单元若在一定时间T内没有收到任何回报脉冲时,则所有脉冲个数从零计算;
    测试仪按测试需求分不同阶段施加激励。
  2. [根据细则91更正 01.08.2018]
    如权利要求1所述的一种基于软件逻辑功能配合的晶闸管阀测试系统,其特征在于,所述测试仪按测试需求分不同阶段施加激励,具体是指每个测试项目均包含3个步骤:
    a.施加激励为正弦电压,测试仪在该阶段中检测晶闸管是否导通,判断整个晶闸管级电路及光路是否正常;
    b.施加激励为对应本测试项目内容的正弦电压或冲击电压或正向电压和冲击电压的叠加,测试仪在该阶段中检测晶闸管电压及电流,判断本测试项目中晶闸管阀在电气方面是否满足要求;
    c.施加激励为正弦电压,测试仪在该阶段中检测晶闸管是否导通,判断在 步骤b中晶闸管阀向阀控单元发送的光信号是否正确。
PCT/CN2018/091974 2017-07-10 2018-06-20 一种基于软件逻辑功能配合的晶闸管阀测试系统 WO2019011113A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112019020370-2A BR112019020370B1 (pt) 2017-07-10 2018-06-20 Sistema de teste de válvula de tiristor baseado na cooperação das funções lógicas de software
JP2019543908A JP6921213B2 (ja) 2017-07-10 2018-06-20 ソフトウェア論理機能の連携に基づくサイリスタバルブ試験システム
KR1020197023654A KR102078519B1 (ko) 2017-07-10 2018-06-20 소프트웨어의 논리적 기능 협력에 기반한 사이리스터 밸브 테스트 시스템
US16/496,384 US11009542B2 (en) 2017-07-10 2018-06-20 Thyristor valve test system based on cooperation of logical functions of software
CA3057554A CA3057554C (en) 2017-07-10 2018-06-20 Thyristor valve test system based on cooperation of logical functions of software
RU2019132054A RU2730388C1 (ru) 2017-07-10 2018-06-20 Система тестирования тиристорного вентиля на основе взаимодействия логических функций программного обеспечения
EP18832716.7A EP3588112B1 (en) 2017-07-10 2018-06-20 Thyristor valve test system based on cooperation of logical functions of software

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710555210.0A CN109239564B (zh) 2017-07-10 2017-07-10 一种基于软件逻辑功能配合的晶闸管测试系统
CN201710555210.0 2017-07-10

Publications (1)

Publication Number Publication Date
WO2019011113A1 true WO2019011113A1 (zh) 2019-01-17

Family

ID=65001048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091974 WO2019011113A1 (zh) 2017-07-10 2018-06-20 一种基于软件逻辑功能配合的晶闸管阀测试系统

Country Status (8)

Country Link
US (1) US11009542B2 (zh)
EP (1) EP3588112B1 (zh)
JP (1) JP6921213B2 (zh)
KR (1) KR102078519B1 (zh)
CN (1) CN109239564B (zh)
CA (1) CA3057554C (zh)
RU (1) RU2730388C1 (zh)
WO (1) WO2019011113A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669119A (zh) * 2019-02-13 2019-04-23 云南电网有限责任公司电力科学研究院 一种阀基电子设备的检测系统及方法
CN110568294A (zh) * 2019-09-29 2019-12-13 南京南瑞继保电气有限公司 一种电力电子设备测试系统及测试方法
CN112763878A (zh) * 2020-11-25 2021-05-07 国网宁夏电力有限公司检修公司 基于无线信号传输的换流阀晶闸管导通测试方法及系统
CN113252951B (zh) * 2021-06-24 2021-10-22 陕西开尔文测控技术有限公司 减小半导体测试夹具脉冲源延时的装置及方法
CN115774174A (zh) * 2021-09-07 2023-03-10 南京南瑞继保电气有限公司 晶闸管设备测试仪
CN114993464B (zh) * 2022-08-03 2023-09-15 中国南方电网有限责任公司超高压输电公司广州局 换流阀晶闸管控制单元的光功率检测系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201130234Y (zh) * 2007-12-21 2008-10-08 西安电力机械制造公司 直流输电晶闸管换流阀的电压监测板电路结构
CN102035189A (zh) * 2010-10-12 2011-04-27 中国电力科学研究院 一种新型换流阀模块试验晶闸管监测与保护系统
CN103219798A (zh) * 2013-03-25 2013-07-24 国网智能电网研究院 一种直流输电换流阀控制保护系统及其控制保护方法
CN103713250A (zh) * 2013-12-27 2014-04-09 国家电网公司 一种晶闸管阀运行试验的工作模式自适应设置方法
CN104038034A (zh) * 2014-06-20 2014-09-10 中国西电电气股份有限公司 一种特高压直流输电用晶闸管换流阀控制监测方法
KR20150017256A (ko) * 2013-08-06 2015-02-16 엘에스산전 주식회사 밸브 베이스 일렉트로닉스 장치의 시험 장치

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0767228B2 (ja) * 1988-04-27 1995-07-19 川崎製鉄株式会社 サイリスタ素子の異常診断装置
JP2801631B2 (ja) 1989-04-17 1998-09-21 株式会社東芝 Vвоフリーサイリスタ変換装置
SE507139C2 (sv) * 1992-08-31 1998-04-06 Asea Brown Boveri Sätt och anordning för funktionskontroll av ljustända halvledarventilenheter i HVDC-ventilanläggningar
US6211792B1 (en) * 1999-08-13 2001-04-03 JADRIć IVAN Method and apparatus detecting a failed thyristor
RU2185632C2 (ru) * 2000-03-06 2002-07-20 Ростовский военный институт ракетных войск Устройство бесконтактного определения технического состояния тиристоров источника питания
US6791852B2 (en) * 2001-12-28 2004-09-14 General Electric Company Method for detecting and identifying shorted thyristors
JP3706070B2 (ja) 2002-01-15 2005-10-12 株式会社シマノ
RU2310877C1 (ru) * 2006-05-30 2007-11-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Способ диагностики трехфазного тиристорного выпрямителя
CN101588061B (zh) * 2008-12-31 2012-06-13 中国电力科学研究院 一种故障电流限制器的晶闸管阀触发与监测系统
CN101964544B (zh) * 2010-09-20 2014-03-12 中国电力科学研究院 一种hvdc换流阀晶闸管级运行状况监视方法
CN101958638B (zh) * 2010-09-20 2014-07-02 中国电力科学研究院 一种直流换流阀晶闸管电流断续保护实现方法
CN101982789A (zh) * 2010-09-20 2011-03-02 中国电力科学研究院 一种新型直流换流阀晶闸管低电压触发试验方法
CN102156223B (zh) * 2011-03-02 2014-12-31 中国电力科学研究院 一种直流换流阀晶闸管级阻抗测试装置
CN103926524B (zh) * 2014-04-21 2016-10-05 许继集团有限公司 一种换流阀控制设备低电压控制模式的测试方法
DE102014105719B4 (de) * 2014-04-23 2015-11-26 Ge Energy Power Conversion Gmbh Schaltungsvorrichtung mit einer Thyristorschaltung sowie ein Verfahren zum Prüfen der Thyristorschaltung
CN104808070B (zh) * 2015-04-23 2018-01-23 许继集团有限公司 一种换流阀晶闸管级阻尼回路参数测试装置和方法
CN204903667U (zh) * 2015-06-11 2015-12-23 中国南方电网有限责任公司超高压输电公司贵阳局 一种极接地状态下换流阀及其附属设备状态检测装置
CN106324464B (zh) * 2015-07-08 2023-06-27 南京南瑞继保电气有限公司 晶闸管阀合成试验电路及方法
CN105070697B (zh) * 2015-07-28 2017-02-22 南京南瑞继保电气有限公司 用于直流换流阀的晶闸管组件散热器
KR20170013774A (ko) * 2015-07-28 2017-02-07 엘에스산전 주식회사 사이리스터 밸브를 위한 합성 시험 회로
CN105471232B (zh) * 2015-11-20 2017-11-07 中国南方电网有限责任公司超高压输电公司检修试验中心 换流阀电触发晶闸管与阀基电子设备信息交换的控制方法
CN105703481B (zh) * 2016-03-03 2018-03-30 南京南瑞继保电气有限公司 一种换流阀均压状态一致性统计方法
CN105826913B (zh) * 2016-04-29 2018-09-21 南方电网科学研究院有限责任公司 一种直流输电系统换流阀的控制方法及阀基电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201130234Y (zh) * 2007-12-21 2008-10-08 西安电力机械制造公司 直流输电晶闸管换流阀的电压监测板电路结构
CN102035189A (zh) * 2010-10-12 2011-04-27 中国电力科学研究院 一种新型换流阀模块试验晶闸管监测与保护系统
CN103219798A (zh) * 2013-03-25 2013-07-24 国网智能电网研究院 一种直流输电换流阀控制保护系统及其控制保护方法
KR20150017256A (ko) * 2013-08-06 2015-02-16 엘에스산전 주식회사 밸브 베이스 일렉트로닉스 장치의 시험 장치
CN103713250A (zh) * 2013-12-27 2014-04-09 国家电网公司 一种晶闸管阀运行试验的工作模式自适应设置方法
CN104038034A (zh) * 2014-06-20 2014-09-10 中国西电电气股份有限公司 一种特高压直流输电用晶闸管换流阀控制监测方法

Also Published As

Publication number Publication date
EP3588112A1 (en) 2020-01-01
RU2730388C1 (ru) 2020-08-21
CA3057554A1 (en) 2019-01-17
JP6921213B2 (ja) 2021-08-18
KR20190099086A (ko) 2019-08-23
EP3588112B1 (en) 2024-07-24
JP2020516860A (ja) 2020-06-11
EP3588112A4 (en) 2020-04-29
BR112019020370A2 (pt) 2020-04-28
CN109239564B (zh) 2021-02-26
CA3057554C (en) 2020-07-07
KR102078519B1 (ko) 2020-02-17
CN109239564A (zh) 2019-01-18
US20200011923A1 (en) 2020-01-09
US11009542B2 (en) 2021-05-18

Similar Documents

Publication Publication Date Title
WO2019011113A1 (zh) 一种基于软件逻辑功能配合的晶闸管阀测试系统
AU2017221132B2 (en) Fault current limiter and method thereof
WO2019011080A1 (zh) 一种基于透明转发的晶闸管阀测试系统
CN103308816A (zh) 一种三相交流电错、断相检测电路及其检测方法
CN102901905A (zh) 一种并行总线测试装置及方法
CN103346497B (zh) 智能变电站电气虚回路隔离方法与系统
WO2022021839A1 (zh) 一种带校验功能的板件智能测试系统
CN112180192A (zh) 一种电力电子设备现场试验检测方法
CN107102567B (zh) 一种仿真测试系统和测试方法
US3967103A (en) Decoder/analyzer test unit
CN102508064A (zh) 电气设备故障诊断方法、设备、系统和工程机械
CN107765118A (zh) 一种光控换流阀反向恢复期保护单元的测试装置与方法
CN207037055U (zh) 一种基于光触发晶闸管的高压直流换流阀触发回路tvm板检测装置
CN204168262U (zh) 整流触发脉冲检测装置
CN111983420B (zh) 一种基于三相可控硅调压电路的单管开路故障诊断方法
CN107024647B (zh) 模拟运行工况的tbs整组触发试验方法
CN109581174B (zh) 一种核电站动态仿真试验系统和试验方法
CN202903931U (zh) 一种继电保护跳闸节点校验装置
CN112332886A (zh) 一种通用电缆测试系统及测试方法
CN204989369U (zh) 扶梯全电脑自动检测装置
CN217180981U (zh) 电压分接试验线接头装置
BR112019020370B1 (pt) Sistema de teste de válvula de tiristor baseado na cooperação das funções lógicas de software
CN103207618A (zh) 一种采煤机电控系统综合检测仪
US11588317B2 (en) Ground fault circuit interrupter with leakage protection module and self-test module
CN107144422B (zh) 一种检测光纤回路的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18832716

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197023654

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019543908

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3057554

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018832716

Country of ref document: EP

Effective date: 20190923

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019020370

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112019020370

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190927