WO2019009044A1 - 濃縮装置 - Google Patents

濃縮装置 Download PDF

Info

Publication number
WO2019009044A1
WO2019009044A1 PCT/JP2018/022886 JP2018022886W WO2019009044A1 WO 2019009044 A1 WO2019009044 A1 WO 2019009044A1 JP 2018022886 W JP2018022886 W JP 2018022886W WO 2019009044 A1 WO2019009044 A1 WO 2019009044A1
Authority
WO
WIPO (PCT)
Prior art keywords
bypass pipe
liquid
tubular member
concentrator
valve
Prior art date
Application number
PCT/JP2018/022886
Other languages
English (en)
French (fr)
Inventor
敏和 川口
順子 渡邉
近藤 孝志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880043679.9A priority Critical patent/CN110831684A/zh
Priority to JP2019527607A priority patent/JP6911919B2/ja
Publication of WO2019009044A1 publication Critical patent/WO2019009044A1/ja
Priority to US16/726,291 priority patent/US11498032B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D24/00Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
    • B01D24/48Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof integrally combined with devices for controlling the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/60Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor integrally combined with devices for controlling the filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/20Other self-supporting filtering material ; Other filtering material of inorganic material, e.g. asbestos paper, metallic filtering material of non-woven wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/087Single membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02232Nickel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/12Apparatus for enzymology or microbiology with sterilisation, filtration or dialysis means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/08Specific process operations in the concentrate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/252Recirculation of concentrate
    • B01D2311/2523Recirculation of concentrate to feed side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/25Recirculation, recycling or bypass, e.g. recirculation of concentrate into the feed
    • B01D2311/253Bypassing of feed
    • B01D2311/2531Bypassing of feed to permeate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/08Flow guidance means within the module or the apparatus
    • B01D2313/083Bypass routes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/18Specific valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/19Specific flow restrictors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/243Pumps

Definitions

  • the present invention relates to a cross flow type concentrator that filters a liquid containing an object to be filtered to obtain a concentrate.
  • a filtration device for filtering a liquid containing an object to be filtered for example, a filtration device described in Patent Document 1 (Japanese Patent Application Laid-Open No. 2013-210239) is known.
  • a liquid containing an object to be filtered is flowed along a surface of a filtration filter such as a hollow fiber membrane, and the liquid from which the object to be filtered is removed by passing through the filtration filter Is a device that collects
  • the liquid containing the filtration object flows along the surface of the filtration filter, so that the filtration object trapped on the surface of the filtration filter is uncaptured by the flow of the liquid.
  • clogging of the filtration filter can be suppressed, collection of filtrate can be performed continuously for a longer time, and filtration efficiency can be improved.
  • the liquid containing the filtration object is circulated many times along the surface of the filtration filter, and the filtrate is removed by the filtration filter, whereby the concentration of the filtration object is increased. It becomes possible to obtain a high concentrate.
  • a filtration device for the purpose of obtaining a concentrate is referred to as a "concentrator”.
  • an object of the present invention is to solve the above-mentioned problems, and to provide a concentrator capable of obtaining a concentrate having a higher concentration more quickly.
  • a concentrator that filters a liquid containing an object to be filtered to obtain a concentrate.
  • a liquid tank containing the liquid;
  • a tubular member disposed at both ends in the liquid tank to form a circulation channel;
  • a circulation pump for circulating the liquid contained in the liquid tank to flow from one end of the tubular member to the other end thereof;
  • a filtration filter having a porous metal membrane provided on a side wall of the tubular member for filtering the object to be filtered;
  • a bypass pipe whose both ends are connected to the side wall of the tubular member and which shorts the circulation flow path;
  • a switching valve configured to switch liquid flowing in the tubular member to flow in the bypass pipe;
  • a control unit that controls driving of the circulation pump and switching operation of the switching valve; And the like.
  • the concentrator of the present invention it is possible to obtain a concentrate having a higher concentration more quickly.
  • the present inventors obtained the following novel knowledge as a result of earnestly examining, in order to obtain a higher concentration liquid earlier.
  • a liquid containing a filtration target contained in a liquid tank is flowed by a circulation pump to a circulation flow path, and a filtration filter provided in the circulation flow path is used.
  • the liquid may be filtered to remove the filtrate and the remaining liquid may be returned to the liquid tank.
  • the liquid returned to the liquid tank is again flowed to the circulation flow path by the circulation pump, filtered by the filtration filter to remove the filtrate, and returned to the liquid tank.
  • the output of the circulation pump is increased to increase the flow velocity of the liquid, or the internal volume (length ⁇ opening area) of the circulation channel is increased to increase the liquid flowing in the circulation channel.
  • the concentrate can be obtained more quickly by
  • the object to be filtered is a biological substance such as a cell
  • the flow rate of the liquid is increased, the shearing force and the frictional force to which the biological substance is applied are increased, and the stress on the biological substance is increased.
  • the circulation flow channel is lengthened to increase the internal volume, the time taken for the biological material to flow through the circulation flow channel is long, so the stress on the biological material is increased. Therefore, there is a limit in increasing the flow rate of the liquid and lengthening the circulation flow path in order to obtain the concentrate faster.
  • the filter may be generated (the bubbles may be mixed in the liquid) because the amount of liquid is reduced. If bubbles are generated, for example, the operation of the pump may be adversely affected, and the pressure of the liquid flowing in the circulation channel may greatly fluctuate. This bubble is likely to be generated when the amount of liquid (concentrate) in the liquid tank is, for example, twice or less the internal volume of the circulation channel. For this reason, when the amount of liquid in the liquid tank is equal to or less than twice the internal volume of the circulation channel, it is desirable to stop the filtration, which makes it difficult to obtain a concentrate having a higher concentration. In particular, as the internal volume of the circulation channel is increased, the amount of liquid in the liquid tank needs to be increased, which makes it difficult to obtain a concentrate having a higher concentration.
  • the present inventors have found a configuration in which a bypass pipe is provided on the side wall of the tubular member forming the circulation flow path, and a switching valve is provided to switch the liquid flowing in the tubular member to flow through the bypass pipe. .
  • the inner volume of the circulation channel can be increased to obtain the concentrate faster.
  • by switching the switching valve at the timing when bubbles are generated it is possible to short the circulation channel and to substantially reduce the internal volume of the circulation channel. Thereby, filtration can be continued while suppressing the generation of foam, and a concentrate having a higher concentration can be obtained.
  • the concentrator according to one aspect of the present invention is What is claimed is: 1.
  • a cross-flow type concentrator that filters a liquid containing an object to be filtered to obtain a concentrate.
  • a liquid tank containing the liquid;
  • a tubular member disposed at both ends in the liquid tank to form a circulation channel;
  • a circulation pump for circulating the liquid contained in the liquid tank to flow from one end of the tubular member to the other end thereof;
  • a filtration filter having a porous metal membrane provided on a side wall of the tubular member for filtering the object to be filtered;
  • a bypass pipe whose both ends are connected to the side wall of the tubular member and which shorts the circulation flow path;
  • a switching valve configured to switch liquid flowing in the tubular member to flow in the bypass pipe;
  • a control unit that controls driving of the circulation pump and switching operation of the switching valve; Equipped with
  • the control unit switches the switching valve so that the liquid flowing in the tubular member flows in the bypass pipe when the remaining amount of the liquid stored in the liquid tank becomes equal to or less than a threshold amount. Good. According to this configuration, it is possible to obtain a concentrate having a higher concentration more quickly while suppressing the generation of bubbles.
  • control unit may switch the switching valve so that the liquid flowing in the tubular member flows in the bypass pipe when the pressure or flow velocity of the liquid flowing in the tubular member becomes lower than a threshold. According to this configuration, it is possible to obtain a concentrate having a higher concentration more quickly while suppressing the generation of bubbles.
  • the system further comprises a filtrate pump that urges a portion of the liquid flowing in the tubular member to pass through the filtration filter, and the control unit causes the liquid flowing in the tubular member to flow in the bypass pipe.
  • control may be performed to reduce the driving force of the filtrate pump.
  • the bypass pipe includes a first bypass pipe and a second bypass pipe that shorts the circulation flow path more than the first bypass pipe, and the switching valve is configured so that the liquid flowing in the tubular member is the first bypass pipe.
  • the control unit is configured to switch so as to flow in the first bypass pipe or the second bypass pipe, and the controller switches the switching valve so that liquid flowing in the tubular member flows in the first bypass pipe;
  • the filtrate pump is smaller than the first driving force when the switching valve is switched so that the liquid flowing in the tubular member flows in the second bypass pipe by driving the pump with the first driving force It may be driven by two driving forces. According to this configuration, the filtration rate can be gradually (stepwise) reduced to obtain a concentrate having a higher concentration more quickly, and the object to be filtered can be prevented from being stressed.
  • the control unit may control to switch the switching valve so that the time in which the liquid flows in the second bypass pipe is longer than the time in which the liquid flows in the first bypass pipe. According to this configuration, it is possible to further suppress stress on the object to be filtered by slowing the speed of the concentrate flowing through the second bypass pipe, which has a higher concentration than the concentrate flowing through the first bypass pipe.
  • the filtration filter for bypass pipes provided in the side wall of the said bypass pipe, and having the metal porous membrane which filters the said filtration object.
  • the filtration filter for bypass pipes provided in the side wall of the said bypass pipe, and having the metal porous membrane which filters the said filtration object.
  • the inner diameter of the bypass pipe may be smaller than the inner diameter of the tubular member. According to this configuration, it is possible to further reduce the internal volume of the circulation channel and obtain a concentrate having a higher concentration. In addition, the filtration rate can be made slower than at the initial stage to suppress stress on the object to be filtered.
  • the filtration filter is preferably provided downstream of the bypass pipe in the flow direction of the liquid. According to this configuration, the liquid can be filtered (concentrated) more stably by the filtration filter.
  • Embodiment 1 The concentrator according to the first embodiment is a crossflow-type concentrator that obtains a concentrate by filtering a liquid containing an object to be filtered.
  • FIG. 1 is a schematic configuration diagram of a concentration device according to Embodiment 1 of the present invention.
  • the concentrator 1 As shown in FIG. 1, the concentrator 1 according to the first embodiment includes a liquid tank 2 and a tubular member 3.
  • the liquid tank 2 is a container for containing the liquid 12 containing the object to be filtered 11.
  • the liquid tank 2 may be a container having an open upper surface as shown in FIG. 1 or may be a sealed container.
  • the object to be filtered 11 is a biological substance contained in the liquid.
  • biologically-derived substance means a substance derived from an organism such as a cell (eukaryote), bacteria (eubacteria), virus and the like.
  • cells eukaryotic cells
  • examples of cells include eggs, sperm, induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell clusters, suspension cells, adhesion Sex cells, nerve cells, white blood cells, lymphocytes, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells in blood (CTC), HL-60, HELA, and fungi.
  • bacteria eubacteria
  • bacteria include E. coli and tuberculosis bacteria.
  • the tubular member 3 forms a circulation channel through which the liquid 12 flows.
  • the tubular member 3 is, for example, a pipe having a cross-sectional shape such as a circle, an ellipse, or a rectangle.
  • Examples of the material of the tubular member 3 include stainless steel, silicone resin, PVDF (Teflon (registered trademark)), vinyl chloride, glass, butadiene-free resin, and the like.
  • a coating material may be applied to the inner surface of the tubular member 3 so that the object to be filtered 11 does not easily adhere.
  • Both ends of the tubular member 3 are disposed in the liquid tank 2. That is, one end 3A and the other end 3B of the tubular member 3 are disposed in the liquid tank 2.
  • a circulation pump 4 is attached to the tubular member 3 for circulating the liquid 12 contained in the liquid tank 2 from one end 3A of the tubular member 3 to the other end 3B.
  • the circulation pump 4 By driving the circulation pump 4, the liquid 12 contained in the liquid tank 2 flows from the one end 3 A to the other end 3 B of the tubular member 3 and is returned into the liquid tank 2.
  • the liquid 12 returned into the liquid tank 2 flows from the one end 3 A to the other end 3 B of the tubular member 3 and is returned again into the liquid tank 2.
  • the side wall of the tubular member 3 is provided with a filtration filter 5 for filtering the object to be filtered 11.
  • the filtration filter 5 is attached to the through hole 3a provided in a part of the side wall of the tubular member 3 along the side wall of the tubular member 3 as shown in FIG.
  • the filtration filter 5 has a porous film 51 made of metal for filtering the object 11 to be filtered, and a frame 52 holding the outer peripheral part of the porous film 51 made of metal.
  • the metal porous film 51 is disposed along the flow direction of the liquid 12.
  • the metal porous membrane 51 is a porous membrane that separates a biological substance.
  • the metal porous film 51 has a first main surface 51 a and a second main surface 51 b facing each other.
  • the metal porous film 51 is also provided with a plurality of through holes 51c penetrating the first main surface 51a and the second main surface 51b.
  • the through holes 51 c are for separating the biological material from the liquid 12.
  • the shape and size of the through hole 51c are appropriately set in accordance with the shape and size of the biological material.
  • the through holes 51c are, for example, arranged at equal intervals or periodically.
  • the shape of the through hole 51c is, for example, a square when viewed from the side of the first major surface 51a or the second major surface 51b of the porous film 51 made of metal.
  • the size of the through hole 51c is, for example, 0.1 ⁇ m to 500 ⁇ m in length, and 0.1 ⁇ m to 500 ⁇ m in width.
  • the distance between the through holes 51c is, for example, greater than one time and not more than 10 times, and more preferably, not more than three times, the opening diameter of the through holes 51c.
  • the opening ratio of the through holes 51c in the metal porous film 51 is, for example, 10% or more.
  • Examples of the material of the metal porous film 51 include gold, silver, copper, platinum, nickel, stainless steel, palladium, titanium, cobalt, alloys of these, and oxides of these.
  • the dimensions of the metal porous film 51 are, for example, a diameter of 6 mm and a thickness of 0.1 ⁇ m to 100 ⁇ m, and preferably 0.1 ⁇ m to 50 ⁇ m.
  • the outer shape of the metal porous film 51 is, for example, circular, oval, or polygonal. In the first embodiment, the outer shape of the metal porous film 51 is circular. In the outer peripheral portion of the metal porous film 51, the through hole 51c may be provided, or the through hole 51c may not be provided.
  • the frame 52 includes a first frame 52a and a second frame 52b.
  • the first frame 52 a and the second frame 52 b are each formed in an annular shape (for example, an annular shape).
  • the frame 52 holds the metal porous film 51 by sandwiching the outer peripheral portion of the metal porous film 51 with the first frame 52 a and the second frame 52 b.
  • Examples of the material of the first frame 52a and the second frame 52b include metals such as duralmin and aluminum, and resins such as polyethylene, polystyrene, polypropylene, polycarbonate, polyacetal, and polyetherimide.
  • the second frame 52 b is connected to one end 6 A of the filtrate discharge pipe 6 that forms a filtrate flow path through which the filtrate (waste solution) that has passed through the filtration filter 5 flows.
  • the other end 6B of the filtrate discharge pipe 6 is disposed in the filtrate tank 7, as shown in FIG.
  • the filtrate flowing from one end 6A to the other end 6B of the filtrate discharge pipe 6 is accommodated in the filtrate tank 7.
  • the filtrate tank 7 may be a container whose upper surface is open as shown in FIG. 1 or may be a closed container.
  • a first bypass pipe 81 and a second bypass pipe 82 which short the circulation flow path are connected to the side wall of the tubular member 3. Both ends of the first bypass pipe 81 and the second bypass pipe 82 are connected to the tubular member 3.
  • the second bypass pipe 82 is connected so as to short the circulation flow path more than the first bypass pipe 81.
  • first bypass pipe 81 and the second bypass pipe 82 are downstream of the circulation pump 4 in the flow direction of the liquid 12 and upstream of the filtration filter 5 in the flow direction of the liquid 12.
  • Is located in The first bypass pipe 81 and the second bypass pipe 82 are pipes configured with the same cross-sectional shape and material as the tubular member 3.
  • a first valve 91 is provided at a connection portion between the tubular member 3 and the one end 81 A of the first bypass pipe 81.
  • a second valve 92 is provided at a connection portion between the tubular member 3 and the other end 81 B of the first bypass pipe 81.
  • the first valve 91 and the second valve 92 constitute a switching valve that switches the liquid 12 flowing in the tubular member 3 to flow in the first bypass pipe 81.
  • a third valve 93 is provided at a connection portion between the tubular member 3 and the one end 82A of the second bypass pipe 82.
  • a fourth valve 94 is provided at a connection portion between the tubular member 3 and the other end 82 B of the second bypass pipe 82.
  • the third valve 93 and the fourth valve 94 constitute a switching valve that switches the liquid 12 flowing in the tubular member 3 to flow in the second bypass pipe 82.
  • the circulation pump 4, the first valve 91, the second valve 92, the third valve 93, and the fourth valve 94 are electrically connected to the control unit CT wirelessly or by wire.
  • the control unit CT controls the drive of the circulation pump 4 and the switching operation of the first valve 91, the second valve 92, the third valve 93, and the fourth valve 94.
  • FIG. 4 is a flowchart showing an operation of the concentrator 1 for filtering the filtration object 11 to obtain a concentrate.
  • 5 to 7 are schematic configuration diagrams showing an operation of the concentrator 1 for filtering the filtration object 11 to obtain a concentrate.
  • the controller CT drives the circulation pump 4 (step S1).
  • the liquid 12 in the liquid tank 2 flows from the one end 3A of the tubular member 3 to the other end 3B.
  • the entire length from one end 3A to the other end 3B of the tubular member 3 is a circulation flow path.
  • a portion of the liquid 12 flowing in the tubular member 3 passes through the filtration filter 5 and is stored as a filtrate in the filtrate tank 7 through the filtrate discharge pipe 6.
  • the object to be filtered 11 contained in the liquid 12 is filtered by the filtration filter 5 and stays in the tubular member 3 and flows to the other end 3 B of the tubular member 3 according to the flow of the liquid 12 and is contained in the liquid tank 2 Ru. Thereby, in the liquid tank 2, the concentration of the object to be filtered 11 contained in the liquid 12 becomes high.
  • the controller CT switches the first valve 91 and the second valve 92 so as to flow to the other end 3B of the tubular member 3 through 81 (steps S2 and S3). Thereby, the circulation flow path is short-circuited by the first bypass pipe 81.
  • the remaining amount of the liquid 12 in the liquid tank 2 can be measured, for example, by attaching a water level gauge (not shown) to the liquid tank 2.
  • a part of the liquid 12 flowing in the circulation flow path short-circuited by the first bypass pipe 81 passes through the filtration filter 5 and is stored as a filtrate in the filtrate tank 7 through the filtrate discharge pipe 6.
  • the object to be filtered 11 contained in the liquid 12 is filtered by the filtration filter 5 and stays in the tubular member 3 and flows to the other end 3 B of the tubular member 3 according to the flow of the liquid 12 and is contained in the liquid tank 2 Ru. Thereby, in the liquid tank 2, the concentration of the object to be filtered 11 contained in the liquid 12 becomes higher.
  • the controller CT switches the third valve 93 and the fourth valve 94 so as to flow to the other end 3B of 3 (steps S4 and S5). Thereby, the circulation flow path is further short circuited by the second bypass pipe 82.
  • a portion of the liquid 12 flowing in the circulation flow path further shorted by the second bypass pipe 82 passes through the filtration filter 5 and is stored in the filtrate tank 7 through the filtrate discharge pipe 6 as a filtrate.
  • the object to be filtered 11 contained in the liquid 12 is filtered by the filtration filter 5 and stays in the tubular member 3 and flows to the other end 3 B of the tubular member 3 according to the flow of the liquid 12 and is contained in the liquid tank 2 Ru. Thereby, in the liquid tank 2, the concentration of the object to be filtered 11 contained in the liquid 12 is further increased.
  • control unit CT stops the driving of the circulation pump 4 (steps S6 and S7). In this manner, a concentrate having a higher concentration can be obtained in the liquid tank 2.
  • the first valve 91 to the fourth valve 94 are switched such that the liquid 12 flowing in the tubular member 3 flows through the first bypass pipe 81 or the second bypass pipe 82.
  • the inner volume of the circulation channel can be increased to obtain the concentrate faster.
  • the circulation flow path can be short-circuited to reduce the internal volume of the circulation flow path. Thereby, filtration can be continued while suppressing the generation of foam, and a concentrate having a higher concentration can be obtained.
  • the filtration target 11 is a cell
  • shear force is easily applied to the cell while the liquid 12 containing the cell flows in the circulation channel having a small diameter.
  • the concentrator is configured such that the cells flow only in the circulation channel, stress due to the shearing force to which the cells are subjected is increased.
  • the purpose is to concentrate the liquid 12 stored in the liquid tank 2, so the first valve 91 to the fourth valve 94 are switched. All the circulation channels to be used are configured to pass through the liquid tank 2. According to this configuration, since the liquid 12 containing cells always flows to the circulation flow path via the liquid tank 2, the stress due to the shearing force received by the cells is temporarily relieved in the liquid tank 2. be able to. This makes it possible to suppress the adverse effect that cell growth does not proceed when subculturing cells.
  • the control unit CT switches the first valve 91 to the fourth valve 94 when the remaining amount of the liquid 12 stored in the liquid tank 2 becomes equal to or less than the first or second threshold amount.
  • the present invention is not limited thereto.
  • the control unit CT may control to switch the first valve 91 to the fourth valve 94 when the pressure or the flow velocity of the liquid 12 flowing in the tubular member 3 becomes lower than the threshold.
  • the pressure or flow rate of the liquid 12 flowing in the tubular member 3 can be measured, for example, by attaching a pressure gauge or a flow meter to the tubular member 3.
  • control unit CT may control to switch the first valve 91 to the fourth valve 94 when the amount of filtrate in the filtrate tank 7 becomes equal to or more than the threshold. This configuration also makes it possible to obtain a concentrate having a higher concentration more quickly while suppressing the generation of foamy spots.
  • control unit CT may control to switch the first valve 91 to the fourth valve 94 based on the output of the circulation pump 4 and the driving time. This configuration also makes it possible to obtain a concentrate having a higher concentration more quickly while suppressing the generation of foamy spots.
  • the filtration filter 5 was arrange
  • the filtration filter 5 may be disposed upstream of the first bypass pipe 81 and the second bypass pipe 82 in the flow direction of the liquid 12.
  • the filtration is started in a state where the first bypass pipe 81 and the second bypass pipe 82 are closed by the first valve 91 to the fourth valve 94, but the present invention It is not limited to this.
  • the filtration may be started in a state in which the first bypass pipe 81 and the second bypass pipe 82 are opened (for example, the state shown in FIG. 1).
  • the internal volume of the circulation channel is the sum of the internal volumes of the tubular member 3, the first bypass pipe 81, and the second bypass pipe 82, and the concentrate is more rapidly obtained by increasing the internal volume of the circulation channel. You can get it.
  • bypass pipes the first bypass pipe 81 and the second bypass pipe 82
  • the present invention is not limited to this.
  • one or more bypass pipes may be connected to the tubular member 3. That is, at least one bypass pipe may be connected to the tubular member 3.
  • the switching valve may be configured to switch the liquid 12 flowing in the tubular member 3 to flow in the bypass pipe.
  • FIG. 8 is a schematic configuration diagram of a concentrator 1A according to Embodiment 2 of the present invention.
  • the difference between the concentrator 1A according to the second embodiment and the concentrator 1 according to the first embodiment is that the filtrate discharge pipe 6 is provided with a filtrate pump 6P.
  • the filtrate pump 6P is a pump that urges a part of the liquid 12 flowing in the tubular member 3 to pass through the filtration filter 5.
  • the filtrate pump 6P is electrically connected to the control unit CT wirelessly or by wire.
  • the filtrate 13 is removed from the liquid 12 and the concentration of the object to be filtered in the liquid 12 flowing in the circulation flow channel increases, and the object to be filtered is the side wall of another object to be filtered or the tubular member 3 Clash and become susceptible to stress.
  • the control unit CT switches the driving force of the filtrate pump 6P before switching. Control is performed to drive with a smaller first driving force. Further, when the third valve 93 and the fourth valve 94 are switched so that the liquid flowing in the tubular member 3 flows through the second bypass pipe 82, the control unit CT makes the filtrate pump 6P smaller than the first driving force. Control is performed to drive with the second driving force.
  • the filtration rate (concentration rate) is gradually (stepwise) slowed to obtain a concentrate having a higher concentration more quickly, and the filtration object 11 is stressed. You can suppress receiving.
  • the controller CT switches the first valve 91 to the fourth valve 94 so that the time when the liquid 12 flows in the second bypass pipe 82 is longer than the time when the liquid 12 flows in the first bypass pipe 81. May be controlled. According to this configuration, the velocity of the concentrate flowing through the second bypass pipe 82, which is higher in concentration than the concentrate flowing through the first bypass pipe 81, can be reduced to further suppress stress on the object to be filtered. it can.
  • FIG. 9 is a schematic configuration diagram of a concentrator 1B according to Embodiment 3 of the present invention.
  • the difference between the concentrator 1B according to the third embodiment and the concentrator 1 according to the first embodiment is that the first bypass pipe 81 and the second bypass pipe 82 are each provided with a filter filter 5A for bypass pipe. It is.
  • the bypass pipe filtration filter 5A has the same configuration as the above-described filtration filter. That is, the filter filter 5A for bypass tubes has the metal porous membrane 51 shown in FIG. The filtrate that has passed through the bypass pipe filter filter 5A is stored in the filtrate tank 7 through the filtrate discharge pipe 6.
  • the concentrator 1B even if the filtration filter 5 is clogged, the filtration can be continued by the bypass pipe filtration filter 5A, so that a concentrate having a higher concentration can be obtained faster. Can.
  • the first valve 91 to the fourth valve 94 are switched at the timing of generation of bubbles, but in the third embodiment, at the timing of clogging of the filtration filter 5.
  • the first valve 91 to the fourth valve 94 may be switched. Thereby, it can suppress that filtration is continued in the state which the filtration filter 5 was clogged. As a result, it is possible to prevent the filtration target from being stressed by contact between the filtration target adhering to the filtration filter 5 and the other filtration target.
  • the filter 5 when the filter 5 is clogged, the pressure of the filtrate 13 flowing in the filtrate discharge pipe 6 is reduced. That is, the timing at which the filtration filter 5 is clogged can be estimated based on the pressure of the filtrate 13 flowing in the filtrate discharge pipe 6. Therefore, for example, a pressure gauge (not shown) is attached to the filtrate discharge pipe 6, and the control unit CT controls to switch the first valve 91 to the fourth valve 94 based on the pressure detected by the pressure gauge. It is also good.
  • a CCD camera (not shown) is attached at a position facing the filtration filter 5, and the control unit CT determines clogging of the filtration filter 5 based on the image of the CCD camera.
  • the four valves 94 may be controlled to be switched.
  • FIG. 10 is a schematic configuration diagram of a concentrator 1C according to Embodiment 4 of the present invention.
  • the difference between the concentrator 1C according to the fourth embodiment and the concentrator 1B according to the third embodiment is that the filtration filter 5 is provided in part of the tubular member 3 positioned parallel to the first bypass pipe 81. It is a point that
  • control unit CT controls the first valve 91 and the second valve 92 so that the liquid 12 flows in the first bypass pipe 81 when the filtration filter 5 provided on the tubular member 3 is clogged. Control to switch. Further, the control unit CT switches the third valve 93 and the fourth valve 94 so that the liquid 12 flows in the second bypass pipe 82 when the bypass pipe filtration filter 5A provided in the first bypass pipe 81 is clogged. .
  • the concentrator 1C even if the filtration filter 5 is clogged, the filtration can be continued by the bypass pipe filtration filter 5A, so that a concentrate having a higher concentration can be obtained faster. Can.
  • FIG. 11 is a schematic configuration diagram of a concentrator 1D according to Embodiment 5 of the present invention.
  • the difference between the concentrator 1D according to the fifth embodiment and the concentrator 1 according to the first embodiment is that the inner diameter (opening area) of the first bypass pipe 81 is smaller than the inner diameter of the tubular member 3, and the second bypass is The inner diameter of the pipe 82 is smaller than the inner diameter of the first bypass pipe 81.
  • the concentrator 1D it is possible to further reduce the internal volume of the circulation channel and obtain a concentrate having a higher concentration.
  • the filtration rate can be made slower than at the initial stage to suppress stress on the object to be filtered.
  • the tubular member 3 having a larger inner diameter is used to connect the first bypass pipe 81 or the second bypass pipe 82 having a smaller inner diameter.
  • the filtration filter 5 is preferably provided downstream of the first bypass pipe 81 and the second bypass pipe 82 in the flow direction of the liquid 12. According to this configuration, the liquid can be filtered (concentrated) more stably by the filtration filter 5.
  • Example A specific example of obtaining a concentrate by filtering the liquid 12 including the object to be filtered 11 using the concentrator 1A according to the second embodiment shown in FIG. 8 will be described.
  • the inner diameters of the tubular member 3 and the first bypass pipe 81 were each 4.3 mm.
  • the inner diameter of the second bypass pipe 82 was 1.6 mm.
  • the length of the tubular member 3 was 207 cm.
  • the length of the circulation channel short-circuited by the first bypass pipe 81 was 172 cm.
  • the length of the circulation channel short-circuited by the second bypass pipe 82 was 149 cm. That is, the internal volume of the circulation channel based on the length of the tubular member 3 was about 30 ml.
  • the internal volume of the circulation channel short-circuited by the first bypass pipe 81 was about 25 ml.
  • the internal volume of the circulation channel short-circuited by the second bypass pipe 82 was 3 ml.
  • the circulation pump 4 and the filtrate pump 6P were driven to circulate the cell suspension in the circulation flow path (see FIG. 5) based on the length of the tubular member 3.
  • the discharge amount of the circulation pump 4 was 200 ml / min
  • the discharge amount of the filtrate pump 6P was 20 ml / min.
  • the first valve 91 and the second valve 92 are switched, and the cells in the circulation flow path shorted by the first bypass pipe 81 (see FIG. 6)
  • the solution was circulated.
  • the discharge amount of the circulation pump 4 was 200 ml / min
  • the discharge amount of the filtrate pump 6P was 10 ml / min.
  • the time taken from the start of filtration to the switching of the first valve 91 and the second valve 92 was about 20 minutes.
  • the third valve 93 and the fourth valve 94 are switched, and the cells in the circulation flow path shorted by the second bypass pipe 82 (see FIG. 7)
  • the solution was circulated.
  • the discharge amount of the circulation pump 4 was 200 ml / min
  • the discharge amount of the filtrate pump 6P was 10 ml / min.
  • the time taken from the switching of the first valve 91 and the second valve 92 to the switching of the third valve 93 and the fourth valve 94 was about 5 minutes.
  • 500 ml to 10 ml of cell suspension containing 5 ⁇ 10 6 cells The time required to concentrate was over 100 minutes.
  • the present invention is particularly useful for a concentrator that obtains a concentrate by filtering a liquid containing a biological substance such as cells, since a concentrate having a higher concentration can be obtained faster.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Geology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Filtration Of Liquid (AREA)

Abstract

より濃度が高い濃縮液をより早く得ることができる濃縮装置を提供する。本発明に係る濃縮装置は、濾過対象物を含む液体を濾過して濃縮液を得るクロスフロー方式の濃縮装置であって、液体を収容する液体タンクと、両端部が液体タンク内に配置され、循環流路を形成する管状部材と、液体タンク内に収容された液体を管状部材の一端部から他端部へ流して循環させる循環ポンプと、管状部材の側壁に設けられ、濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、両端部が管状部材の側壁に接続され、循環流路を短絡するバイパス管と、管状部材内を流れる液体がバイパス管内を流れるように切り替える切替弁と、循環ポンプの駆動及び切替弁の切り替え動作を制御する制御部とを備える。

Description

濃縮装置
 本発明は、濾過対象物を含む液体を濾過して濃縮液を得るクロスフロー方式の濃縮装置に関する。
 従来、濾過対象物を含む液体を濾過する濾過装置として、例えば、特許文献1(特開2013-210239号公報)に記載の濾過装置が知られている。特許文献1の濾過装置は、濾過対象物を含む液体を中空糸膜等の濾過フィルタの表面に沿うように流し、当該濾過フィルタを通過することにより濾過対象物が取り除かれた液体(以下、濾液という)を収集する装置である。
 この種の濾過装置によれば、濾過対象物を含む液体を濾過フィルタの表面に沿うように流すので、濾過フィルタの表面で捕捉された濾過対象物が液体の流れによって捕捉が解かれる。これにより、濾過フィルタの目詰まりを抑えて、濾液の収集をより長時間連続的に行うことを可能にし、濾過効率を向上させることができる。
 また、この種の濾過装置を利用して、濾過対象物を含む液体を何度も濾過フィルタの表面に沿って流れるように循環させ、濾過フィルタで濾液を取り除くことで、濾過対象物の濃度が高い濃縮液を得ることが可能になる。以下、濃縮液を得ることを目的とする濾過装置を「濃縮装置」という。
特開2013-210239号公報
 しかしながら、従来の濾過装置では、より濃度が高い濃縮液をより早く得るという観点において、未だ改善の余地がある。
 従って、本発明の目的は、前記課題を解決することにあって、より濃度が高い濃縮液をより早く得ることができる濃縮装置を提供することにある。
 前記目的を達成するために、本発明の一態様に係る濃縮装置は、
 濾過対象物を含む液体を濾過して濃縮液を得るクロスフロー方式の濃縮装置であって、
 前記液体を収容する液体タンクと、
 両端部が前記液体タンク内に配置され、循環流路を形成する管状部材と、
 前記液体タンク内に収容された液体を前記管状部材の一端部から他端部へ流して循環させる循環ポンプと、
 前記管状部材の側壁に設けられ、前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
 両端部が前記管状部材の側壁に接続され、前記循環流路を短絡するバイパス管と、
 前記管状部材内を流れる液体が前記バイパス管内を流れるように切り替える切替弁と、
 前記循環ポンプの駆動及び前記切替弁の切り替え動作を制御する制御部と、
 を備えることを特徴とする。
 本発明に係る濃縮装置によれば、より濃度が高い濃縮液をより早く得ることができる。
本発明の実施の形態1に係る濃縮装置の概略構成図である。 図1の濃縮装置が備える濾過フィルタの近傍の構成を示す断面図である。 図2の濾過フィルタが備える金属製多孔膜の一部拡大斜視図である。 図1の濃縮装置が濾過対象物を濾過して濃縮液を得る動作を示すフローチャートである。 図1の濃縮装置が濾過対象物を濾過して濃縮液を得る動作を示す概略構成図である。 図5に続く動作を示す概略構成図である。 図6に続く動作を示す概略構成図である。 本発明の実施の形態2に係る濃縮装置の概略構成図である。 本発明の実施の形態3に係る濃縮装置の概略構成図である。 本発明の実施の形態4に係る濃縮装置の概略構成図である。 本発明の実施の形態5に係る濃縮装置の概略構成図である。
 (本発明の基礎となった知見)
 本発明者らは、より濃度が高い濃縮液をより早く得るため、鋭意検討した結果、以下の新規な知見を得た。
 従来の濾過装置を利用して濃縮液を得るには、例えば、液体タンクに収容された濾過対象物を含む液体を循環ポンプによって循環流路に流し、当該循環流路に設けられた濾過フィルタで液体を濾過して濾液を取り除き、残った液体を液体タンクに戻すように構成すればよい。液体タンクに戻された液体は、再度、循環ポンプによって循環流路に流され、濾過フィルタで濾過されて濾液を取り除かれて、液体タンクに戻る。この動作を繰り返すことにより、濾過対象物を含む液体からより多くの量の濾液を取り除き、より濃度の高い濃縮液を得ることができる。
 また、前記構成において、例えば、循環ポンプの出力を高くして液体の流速を速くしたり、循環流路の内容積(長さ×開口面積)を大きくして循環流路を流れる液体を多くしたりすることで、より早く濃縮液を得ることができる。
 しかしながら、例えば、濾過対象物が細胞などの生物由来物質である場合、液体の流速を速くすると、生物由来物質が受ける剪断力や摩擦力が大きくなり、生物由来物質にかかるストレスが大きくなる。また、循環流路を長くして内容積を大きくした場合、生物由来物質が循環流路を流れる時間が長くなるため、生物由来物質にかかるストレスが大きくなる。従って、より早く濃縮液を得るために、液体の流速を速くしたり、循環流路を長くしたりするのにも限度がある。
 また、循環流路内を流れる液体から濾過フィルタにより濾液が取り除かれると、液量が減るために、泡がみ(液体中に気泡が混入すること)が発生し得る。泡がみが発生すると、例えば、ポンプの動作に悪影響を及ぼし、循環流路内を流れる液体の圧力が大きく変動するおそれがある。この泡がみは、液体タンク内の液体(濃縮液)の量が循環流路の内容積の例えば2倍以下になると発生しやすくなる。このため、液体タンク内の液体の量が循環流路の内容積の2倍以下になると、濾過を停止することが望まれるため、より濃度が高い濃縮液を得ることが困難になる。特に、循環流路の内容積を大きくすればするほど、液体タンク内の液体の量を多くする必要があり、より濃度が高い濃縮液を得ることが困難になる。
 これに対して、本発明者らは、循環流路を形成する管状部材の側壁にバイパス管を設けるとともに、管状部材内を流れる液体がバイパス管を流れるように切り替える切替弁を設ける構成を見出した。この構成によれば、濾過の初期段階においては、循環流路の内容積を大きくして、より早く濃縮液を得ることができる。また、例えば、泡がみが発生するタイミングで切替弁を切り替えることにより、循環流路を短絡して循環流路の内容積を実質的に小さくすることができる。これにより、泡がみの発生を抑えつつ濾過を継続し、より濃度が高い濃縮液を得ることができる。これらの新規な知見に基づいて、本発明者らは、以下の発明に至った。
 本発明の一態様に係る濃縮装置は、
 濾過対象物を含む液体を濾過して濃縮液を得るクロスフロー方式の濃縮装置であって、
 前記液体を収容する液体タンクと、
 両端部が前記液体タンク内に配置され、循環流路を形成する管状部材と、
 前記液体タンク内に収容された液体を前記管状部材の一端部から他端部へ流して循環させる循環ポンプと、
 前記管状部材の側壁に設けられ、前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
 両端部が前記管状部材の側壁に接続され、前記循環流路を短絡するバイパス管と、
 前記管状部材内を流れる液体が前記バイパス管内を流れるように切り替える切替弁と、
 前記循環ポンプの駆動及び前記切替弁の切り替え動作を制御する制御部と、
 を備える。
 この構成によれば、より濃度が高い濃縮液をより早く得ることができる。
 なお、前記制御部は、前記液体タンク内に収容された液体の残量が閾量以下になったとき、前記管状部材内を流れる液体が前記バイパス管内を流れるように前記切替弁を切り替えてもよい。この構成によれば、泡がみの発生を抑えて、より濃度が高い濃縮液をより早く得ることができる。
 また、前記制御部は、前記管状部材内を流れる液体の圧力又は流速が閾値以下になったとき、前記管状部材内を流れる液体が前記バイパス管内を流れるように前記切替弁を切り替えてもよい。この構成によれば、泡がみの発生を抑えて、より濃度が高い濃縮液をより早く得ることができる。
 また、濾過が進むに連れて、循環流路中を流れる濃縮液の濃度が高くなり、濾過対象物が他の濾過対象物又は管状部材の側壁に衝突してストレスを受けやすくなる。このため、前記管状部材内を流れる液体の一部が前記濾過フィルタを通過するように促す濾液用ポンプを更に備え、前記制御部は、前記管状部材内を流れる液体が前記バイパス管内を流れるように前記切替弁を切り替えたとき、前記濾液用ポンプの駆動力を小さくするように制御してもよい。この構成によれば、濾過速度(濃縮速度)を初期段階よりも遅くして、濾過対象物がストレスを受けることを抑えることができる。
 また、前記バイパス管は、第1バイパス管と、前記第1バイパス管よりも前記循環流路を短絡させる第2バイパス管とを備え、前記切替弁は、前記管状部材内を流れる液体が前記第1バイパス管又は前記第2バイパス管内を流れるように切り替えるよう構成され、前記制御部は、前記管状部材内を流れる液体が前記第1バイパス管内を流れるように前記切替弁を切り替えたとき、前記濾液用ポンプを第1駆動力で駆動させ、前記管状部材内を流れる液体が前記第2バイパス管内を流れるように前記切替弁を切り替えたとき、前記濾液用ポンプを前記第1駆動力よりも小さい第2駆動力で駆動させてもよい。この構成によれば、濾過速度を徐々に(段階的に)遅くして、より濃度が高い濃縮液をより早く得るとともに、濾過対象物がストレスを受けることを抑えることができる。
 なお、前記制御部は、前記第2バイパス管内を液体が流れる時間が、前記第1バイパス管内を液体が流れる時間よりも長くなるように前記切替弁を切り替えるよう制御してもよい。この構成によれば、第1バイパス管を流れる濃縮液よりも濃度が高くなる第2バイパス管を流れる濃縮液の速度を遅くして、濾過対象物がストレスを受けることを一層抑えることができる。
 また、前記バイパス管の側壁に設けられ、前記濾過対象物を濾過する金属製多孔膜を有するバイパス管用濾過フィルタを更に備えてもよい。この構成によれば、例えば、濾過フィルタが目詰まりしたとしても、バイパス管用濾過フィルタによって濾過を継続することができるので、より濃度が高い濃縮液をより早く得ることができる。
 また、前記バイパス管の内径は、前記管状部材の内径よりも小さくてもよい。この構成によれば、循環流路の内容積を一層小さくして、より濃度が高い濃縮液を得ることができる。また、濾過速度を初期段階よりも遅くして、濾過対象物がストレスを受けることを抑えることができる。
 なお、この場合、バイパス管よりも液体の流れ方向の上流側では、内径が大きな管状部材から内径が小さなバイパス管に液体が流れる際に、液体の流れが阻害され、液体の圧力の制御が難しくなる。このため、前記濾過フィルタは、前記バイパス管よりも前記液体の流れ方向の下流側に設けられることが好ましい。この構成によれば、濾過フィルタによって、より安定して液体を濾過(濃縮)することができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施形態によって、本発明が限定されるものではない。
 (実施の形態1)
 本実施の形態1に係る濃縮装置は、濾過対象物を含む液体を濾過して濃縮液を得るクロスフロー方式の濃縮装置である。図1は、本発明の実施の形態1に係る濃縮装置の概略構成図である。
 図1に示すように、本実施の形態1に係る濃縮装置1は、液体タンク2と、管状部材3とを備えている。
 液体タンク2は、濾過対象物11を含む液体12を収容する容器である。液体タンク2は、図1に示すように、上面が開口する容器であってもよいし、密閉容器であってもよい。
 本実施の形態1において、濾過対象物11は、液体に含まれる生物由来物質である。本明細書において、「生物由来物質」とは、細胞(真核生物)、細菌(真性細菌)、ウィルス等の生物に由来する物質を意味する。細胞(真核生物)としては、例えば、卵、精子、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、リンパ球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、菌類を含む。細菌(真性細菌)としては、例えば、大腸菌、結核菌を含む。
 管状部材3は、液体12が流れる循環流路を形成するものである。管状部材3は、例えば、円形、楕円形、矩形などの断面形状を有する配管である。管状部材3の材質は、例えば、ステンレス鋼、シリコン樹脂、PVDF(テフロン:登録商標)、塩化ビニル、ガラス、ブタジエン非含有樹脂などが挙げられる。管状部材3の内表面には、濾過対象物11が付着しにくいようにコーティング材が塗布されてもよい。
 管状部材3の両端部は、液体タンク2内に配置されている。すなわち、管状部材3の一端部3Aと他端部3Bとが、液体タンク2内に配置されている。
 管状部材3には、液体タンク2内に収容された液体12を管状部材3の一端部3Aから他端部3Bへ流して循環させる循環ポンプ4が取り付けられている。循環ポンプ4の駆動により、液体タンク2内に収容された液体12が管状部材3の一端部3Aから他端部3Bへ流れ、液体タンク2内に戻される。循環ポンプ4の駆動が継続されることにより、液体タンク2内に戻された液体12が管状部材3の一端部3Aから他端部3Bへ流れ、液体タンク2内に再び戻される。
 管状部材3の側壁には、濾過対象物11を濾過する濾過フィルタ5が設けられている。濾過フィルタ5は、図2に示すように、管状部材3の側壁に沿うように、当該側壁の一部に設けられた貫通穴3aに取り付けられている。
 濾過フィルタ5は、濾過対象物11を濾過する金属製多孔膜51と、金属製多孔膜51の外周部を保持する枠体52とを有している。
 金属製多孔膜51は、液体12の流れ方向に沿うように配置されている。本実施の形態1において、金属製多孔膜51は、生物由来物質を分離する多孔膜である。金属製多孔膜51は、図3に示すように、互いに対向する第1主面51aと第2主面51bとを有している。また、金属製多孔膜51には、第1主面51aと第2主面51bとを貫通する複数の貫通孔51cが設けられている。貫通孔51cは、液体12から生物由来物質を分離するものである。貫通孔51cの形状及び寸法は、生物由来物質の形状、大きさに応じて適宜設定されるものである。貫通孔51cは、例えば、等間隔又は周期的に配置される。貫通孔51cの形状は、例えば、金属製多孔膜51の第1主面51a又は第2主面51b側から見て正方形である。貫通孔51cのサイズは、例えば、縦0.1μm以上500μm以下、横0.1μm以上500μm以下である。貫通孔51c間の間隔は、例えば、貫通孔51cの開口径の1倍よりも大きく10倍以下であり、より好ましくは3倍以下である。また、金属製多孔膜51における貫通孔51cの開口率は、例えば、10%以上である。
 金属製多孔膜51の材料としては、例えば、金、銀、銅、白金、ニッケル、ステンレス鋼、パラジウム、チタン、コバルト、これらの合金、及びこれらの酸化物が挙げられる。金属製多孔膜51の寸法は、例えば、直径6mm、厚さ0.1μm以上100μm以下であり、好ましくは、0.1μm以上50μm以下である。金属製多孔膜51の外形は、例えば、円形、楕円形、又は多角形のいずれかである。本実施の形態1においては、金属製多孔膜51の外形は、円形とする。金属製多孔膜51の外周部には、貫通孔51cが設けられても、貫通孔51cが設けられなくてもよい。
 枠体52は、第1枠体52aと第2枠体52bとを備えている。第1枠体52aと第2枠体52bとは、それぞれ環状(例えば、円環状)に形成されている。枠体52は、第1枠体52aと第2枠体52bとで金属製多孔膜51の外周部を挟持することにより、金属製多孔膜51を保持する。第1枠体52a及び第2枠体52bの材料としては、例えば、ジュラルミン、アルミニウムなどの金属や、ポリエチレン、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリアセタール、ポリエーテルイミドなどの樹脂が挙げられる。
 第2枠体52bには、図2に示すように、濾過フィルタ5を通過した濾液(廃液)を流す濾液流路を形成する濾液排出管6の一端部6Aが接続されている。濾液排出管6の他端部6Bは、図1に示すように、濾液タンク7内に配置されている。濾液排出管6の一端部6Aから他端部6Bに流れる濾液は、濾液タンク7に収容される。濾液タンク7は、図1に示すように、上面が開口する容器であってもよいし、密閉容器であってもよい。
 また、管状部材3の側壁には、図1に示すように、循環流路を短絡する第1バイパス管81及び第2バイパス管82が接続されている。第1バイパス管81及び第2バイパス管82は、それぞれ両端部が管状部材3に接続されている。第2バイパス管82は、第1バイパス管81よりも循環流路を短絡させるように接続されている。
 本実施の形態1において、第1バイパス管81及び第2バイパス管82は、循環ポンプ4よりも液体12の流れ方向の下流側で、且つ、濾過フィルタ5よりも液体12の流れ方向の上流側に配置されている。第1バイパス管81及び第2バイパス管82は、管状部材3と同様の断面形状及び材質で構成される配管である。
 管状部材3と第1バイパス管81の一端部81Aとの接続部分には、第1弁91が設けられている。管状部材3と第1バイパス管81の他端部81Bとの接続部分には、第2弁92が設けられている。本実施の形態1においては、第1弁91及び第2弁92により、管状部材3内を流れる液体12が第1バイパス管81内を流れるように切り替える切替弁が構成されている。
 管状部材3と第2バイパス管82の一端部82Aとの接続部分には、第3弁93が設けられている。管状部材3と第2バイパス管82の他端部82Bとの接続部分には、第4弁94が設けられている。本実施の形態1においては、第3弁93及び第4弁94により、管状部材3内を流れる液体12が第2バイパス管82内を流れるように切り替える切替弁が構成されている。
 循環ポンプ4、第1弁91、第2弁92、第3弁93、及び第4弁94は、制御部CTに無線又は有線により電気的に接続されている。制御部CTは、循環ポンプ4の駆動、第1弁91、第2弁92、第3弁93、及び第4弁94の切り替え動作を制御する。
 次に、図4~図7を参照しつつ、濃縮装置1が濾過対象物11を濾過して濃縮液を得る動作について説明する。図4は、濃縮装置1が濾過対象物11を濾過して濃縮液を得る動作を示すフローチャートである。図5~図7は、濃縮装置1が濾過対象物11を濾過して濃縮液を得る動作を示す概略構成図である。
 例えば使用者が開始ボタン(図示せず)を押圧するなどの動作に応じて、制御部CTが循環ポンプ4を駆動させる(ステップS1)。これにより、図5に示すように、液体タンク2内の液体12が管状部材3の一端部3Aから他端部3Bへ流れる。このとき、管状部材3の一端部3Aから他端部3Bまでの全長が循環流路となる。
 管状部材3内を流れる液体12の一部は、濾過フィルタ5を通過し、濾液として濾液排出管6を通じて濾液タンク7に収容される。液体12に含まれる濾過対象物11は、濾過フィルタ5により濾過されて管状部材3内に留まり、液体12の流れに応じて管状部材3の他端部3Bへ流れ、液体タンク2内に収容される。これにより、液体タンク2内において、液体12中に含まれる濾過対象物11の濃度が高くなる。
 次いで、液体タンク2内の液体12の残量(濃縮液)が第1閾量以下になると、図6に示すように、管状部材3の一端部3Aから流れてくる液体12が第1バイパス管81を通じて管状部材3の他端部3Bへ流れるように、制御部CTが第1弁91及び第2弁92を切り替える(ステップS2,S3)。これにより、第1バイパス管81により循環流路が短絡される。なお、液体タンク2内の液体12の残量は、例えば、水位計(図示せず)を液体タンク2に取り付けることにより計測することができる。
 第1バイパス管81により短絡された循環流路を流れる液体12の一部は、濾過フィルタ5を通過し、濾液として濾液排出管6を通じて濾液タンク7に収容される。液体12に含まれる濾過対象物11は、濾過フィルタ5により濾過されて管状部材3内に留まり、液体12の流れに応じて管状部材3の他端部3Bへ流れ、液体タンク2内に収容される。これにより、液体タンク2内において、液体12中に含まれる濾過対象物11の濃度がより高くなる。
 次いで、液体タンク2内の液体12の残量が第2閾量以下になると、図7に示すように、管状部材3の一端部3Aから流れてくる液体12が第2バイパス管81を通じて管状部材3の他端部3Bへ流れるように、制御部CTが第3弁93及び第4弁94を切り替える(ステップS4,S5)。これにより、第2バイパス管82により循環流路が更に短絡される。
 第2バイパス管82により更に短絡された循環流路を流れる液体12の一部は、濾過フィルタ5を通過し、濾液として濾液排出管6を通じて濾液タンク7に収容される。液体12に含まれる濾過対象物11は、濾過フィルタ5により濾過されて管状部材3内に留まり、液体12の流れに応じて管状部材3の他端部3Bへ流れ、液体タンク2内に収容される。これにより、液体タンク2内において、液体12中に含まれる濾過対象物11の濃度がより一層高くなる。
 次いで、液体タンク2内の液体12の残量が第3閾量以下になると、制御部CTが循環ポンプ4の駆動を停止させる(ステップS6,S7)。このようにして、液体タンク2内において、より濃度が高い濃縮液を得ることができる。
 本実施の形態1に係る濃縮装置1によれば、管状部材3内を流れる液体12が第1バイパス管81又は第2バイパス管82を流れるように第1弁91~第4弁94を切り替えるように構成されている。この構成によれば、濾過の初期段階においては、循環流路の内容積を大きくして、より早く濃縮液を得ることができる。また、第1弁91~第4弁94を切り替えることにより、循環流路を短絡して循環流路の内容積を小さくすることができる。これにより、泡がみの発生を抑えつつ濾過を継続し、より濃度が高い濃縮液を得ることができる。
 なお、濾過対象物11が細胞である場合、当該細胞を含む液体12が直径の小さい循環流路内を流れる間、細胞には剪断力が付与されやすくなる。このため、細胞が循環流路のみを流れるように濃縮装置が構成されている場合には、細胞が受ける剪断力によるストレスが大きくなる。
 これに対して、本実施の形態1に係る濃縮装置1では、液体タンク2に収容された液体12を濃縮することが目的であるため、第1弁91~第4弁94を切り替えることにより構成される全ての循環流路が液体タンク2を経由するように構成されている。この構成によれば、細胞を含む液体12は、必ず液体タンク2を経由して循環流路に流れることになるので、液体タンク2内において、細胞が受ける剪断力によるストレスを一時的に緩和することができる。これにより、細胞を継代培養する際に細胞増殖が進まなくなるといった悪影響が生じることを抑制することができる。
 なお、本発明は前記実施の形態に限定されるものではなく、その他種々の態様で実施できる。例えば、前記では、制御部CTは、液体タンク2内に収容された液体12の残量が第1又は第2閾量以下になったとき、第1弁91~第4弁94を切り替えるように制御したが、本発明はこれに限定されない。例えば、泡がみが発生した場合には、管状部材3内を流れる液体12の圧力又は流速が急激に低下する。すなわち、泡がみが発生するタイミングは、管状部材3内を流れる液体12の圧力又は流速に基づいて推測することができる。このため、制御部CTは、管状部材3内を流れる液体12の圧力又は流速が閾値以下になったとき、第1弁91~第4弁94を切り替えるように制御してもよい。この構成によっても、泡がみの発生を抑えて、より濃度が高い濃縮液をより早く得ることができる。なお、管状部材3内を流れる液体12の圧力又は流速は、例えば、圧力計又は流速計を管状部材3に取り付けることにより計測することができる。
 また、液体タンク2内に収容された液体12の残量は、濾液タンク7内の濾液の量と相関関係がある。このため、制御部CTは、濾液タンク7内の濾液の量が閾値以上になったとき、第1弁91~第4弁94を切り替えるように制御してもよい。この構成によっても、泡がみの発生を抑えて、より濃度が高い濃縮液をより早く得ることができる。
 また、液体タンク2内に収容された液体12の残量は、循環ポンプ4の出力及び駆動時間とも相関関係がある。このため、制御部CTは、循環ポンプ4の出力及び駆動時間に基づいて、第1弁91~第4弁94を切り替えるように制御してもよい。この構成によっても、泡がみの発生を抑えて、より濃度が高い濃縮液をより早く得ることができる。
 また、前記では、濾過フィルタ5は、第1バイパス管81及び第2バイパス管82よりも液体12の流れ方向の下流側に配置したが、本発明はこれに限定されない。例えば、濾過フィルタ5は、第1バイパス管81及び第2バイパス管82よりも液体12の流れ方向の上流側に配置してもよい。
 また、前記では、図5に示すように、第1弁91~第4弁94により第1バイパス管81及び第2バイパス管82を閉塞した状態で濾過を開始するようにしたが、本発明はこれに限定されない。例えば、第1バイパス管81及び第2バイパス管82を開放した状態(例えば、図1に示す状態)で濾過を開始するようにしてもよい。この場合、循環流路の内容積は、管状部材3、第1バイパス管81、及び第2バイパス管82の内容積の合計となり、循環流路の内容積を大きくして、より早く濃縮液を得ることができる。
 また、前記では、2つのバイパス管(第1バイパス管81及び第2バイパス管82)を管状部材3に接続するようにしたが、本発明はこれに限定されない。例えば、1つ又は3つ以上のバイパス管を管状部材3に接続するようにしてもよい。すなわち、管状部材3に少なくとも1つのバイパス管が接続されていればよい。
 また、前記では、切替弁として4つの弁(第1弁91~第4弁94)を設けたが、本発明はこれに限定されない。切替弁は、管状部材3内を流れる液体12がバイパス管を流れるように切り替えるように構成されていればよい。
 (実施の形態2)
 図8は、本発明の実施の形態2に係る濃縮装置1Aの概略構成図である。
 本実施の形態2に係る濃縮装置1Aが前記実施の形態1に係る濃縮装置1と異なる点は、濾液排出管6に濾液用ポンプ6Pが設けられている点である。
 濾液用ポンプ6Pは、管状部材3内を流れる液体12の一部が濾過フィルタ5を通過するように促すポンプである。濾液用ポンプ6Pは、制御部CTに無線又は有線により電気的に接続されている。
 濾過が進むに連れて、液体12から濾液13が取り除かれ、循環流路中を流れる液体12中の濾過対象物の濃度が高くなり、濾過対象物が他の濾過対象物又は管状部材3の側壁に衝突してストレスを受けやすくなる。
 このため、制御部CTは、管状部材3内を流れる液体が第1バイパス管81を流れるように第1弁91及び第2弁92を切り替えたとき、濾液用ポンプ6Pの駆動力を、切り替え前よりも小さい第1駆動力で駆動するように制御する。また、制御部CTは、管状部材3内を流れる液体が第2バイパス管82を流れるように第3弁93及び第4弁94を切り替えたとき、濾液用ポンプ6Pを第1駆動力よりも小さい第2駆動力で駆動するように制御する。
 本実施の形態2に係る濃縮装置1Aによれば、濾過速度(濃縮速度)を徐々に(段階的)に遅くして、より濃度が高い濃縮液をより早く得るとともに、濾過対象物11がストレスを受けることを抑えることができる。
 なお、制御部CTは、第2バイパス管82内を液体12が流れる時間が、第1バイパス管81内を液体12が流れる時間よりも長くなるように第1弁91~第4弁94を切り替えるよう制御してもよい。この構成によれば、第1バイパス管81を流れる濃縮液よりも濃度が高くなる第2バイパス管82を流れる濃縮液の速度を遅くして、濾過対象物がストレスを受けることを一層抑えることができる。
 (実施の形態3)
 図9は、本発明の実施の形態3に係る濃縮装置1Bの概略構成図である。
 本実施の形態3に係る濃縮装置1Bが前記実施の形態1に係る濃縮装置1と異なる点は、第1バイパス管81及び第2バイパス管82にそれぞれバイパス管用濾過フィルタ5Aが設けられている点である。
 本実施の形態3において、バイパス管用濾過フィルタ5Aは、前述した濾過フィルタと同様の構成を有している。すなわち、バイパス管用濾過フィルタ5Aは、図2に示す金属製多孔膜51を有している。バイパス管用濾過フィルタ5Aを通過した濾液は、濾液排出管6を通じて濾液タンク7に収容される。
 本実施の形態3に係る濃縮装置1Bによれば、濾過フィルタ5が目詰まりしたとしても、バイパス管用濾過フィルタ5Aによって濾過を継続することができるので、より濃度が高い濃縮液をより早く得ることができる。
 なお、前記実施の形態1においては、泡かみが発生するタイミングで第1弁91~第4弁94を切り替えるようにしたが、本実施の形態3においては、濾過フィルタ5の目詰まりのタイミングで第1弁91~第4弁94を切り替えるようにしてもよい。これにより、濾過フィルタ5の目詰まりした状態で濾過が継続されることを抑えることができる。その結果、濾過フィルタ5の付着した濾過対象物と他の濾過対象物とが接触して、濾過対象物がストレスを受けることを抑えることができる。
 例えば、濾過フィルタ5が目詰まりした場合、濾液排出管6内を流れる濾液13の圧力が低下する。すなわち、濾過フィルタ5が目詰まりするタイミングは、濾液排出管6内を流れる濾液13の圧力に基づいて推測することができる。このため、例えば、圧力計(図示せず)を濾液排出管6に取り付け、制御部CTは、当該圧力計の検知圧力に基づいて第1弁91~第4弁94を切り替えるように制御してもよい。
 また、例えば、濾過フィルタ5に対向する位置にCCDカメラ(図示せず)を取り付け、制御部CTは、CCDカメラの画像に基づいて濾過フィルタ5の目詰まりを判定し、第1弁91~第4弁94を切り替えるように制御してもよい。
 (実施の形態4)
 図10は、本発明の実施の形態4に係る濃縮装置1Cの概略構成図である。
 本実施の形態4に係る濃縮装置1Cが前記実施の形態3に係る濃縮装置1Bと異なる点は、濾過フィルタ5が第1バイパス管81に対して並列に位置する管状部材3の一部に設けられている点である。
 本実施の形態4において、制御部CTは、管状部材3に設けた濾過フィルタ5が目詰まりしたとき、液体12が第1バイパス管81内を流れるように第1弁91及び第2弁92を切り替えるよう制御する。また、制御部CTは、第1バイパス管81に設けたバイパス管用濾過フィルタ5Aが目詰まりしたとき、液体12が第2バイパス管82内を流れるように第3弁93及び第4弁94を切り替える。
 本実施の形態4に係る濃縮装置1Cによれば、濾過フィルタ5が目詰まりしたとしても、バイパス管用濾過フィルタ5Aによって濾過を継続することができるので、より濃度が高い濃縮液をより早く得ることができる。
 (実施の形態5)
 図11は、本発明の実施の形態5に係る濃縮装置1Dの概略構成図である。
 本実施の形態5に係る濃縮装置1Dが前記実施の形態1に係る濃縮装置1と異なる点は、第1バイパス管81の内径(開口面積)が管状部材3の内径よりも小さく、第2バイパス管82の内径が第1バイパス管81の内径よりも小さい点である。
 本実施の形態5に係る濃縮装置1Dによれば、循環流路の内容積を一層小さくして、より濃度が高い濃縮液を得ることができる。また、濾過速度を初期段階よりも遅くして、濾過対象物がストレスを受けることを抑えることができる。
 なお、この場合、第1バイパス管81及び第2バイパス管82よりも液体12の流れ方向の上流側では、内径が大きな管状部材3から内径が小さな第1バイパス管81又は第2バイパス管82に液体12が流れる際に、液体12の流れが阻害される。その結果、循環ポンプ4による液体12の圧力の制御が難しくなる。このため、濾過フィルタ5は、図11に示すように、第1バイパス管81及び第2バイパス管82よりも液体12の流れ方向の下流側に設けられることが好ましい。この構成によれば、濾過フィルタ5によって、より安定して液体を濾過(濃縮)することができる。
 なお、前記様々な実施形態のうちの任意の実施形態を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。
 (実施例)
 図8に示す実施の形態2に係る濃縮装置1Aを用いて濾過対象物11を含む液体12を濾過して濃縮液を得る具体的な実施例について説明する。
 ここでは、管状部材3及び第1バイパス管81の内径はそれぞれ4.3mmとした。第2バイパス管82の内径は1.6mmとした。また、管状部材3の長さは207cmとした。第1バイパス管81により短絡した循環流路の長さは172cmとした。第2バイパス管82により短絡した循環流路の長さは149cmとした。すなわち、管状部材3の長さに基づく循環流路の内容積は約30mlとした。第1バイパス管81により短絡した循環流路の内容積は約25mlとした。第2バイパス管82により短絡した循環流路の内容積さは3mlとした。
 まず、濾過対象物11を含む液体12として、5×10個の細胞を含む500mlの細胞濁液を液体タンク2に収容した。
 次いで、循環ポンプ4及び濾液用ポンプ6Pを駆動させ、管状部材3の長さに基づく循環流路(図5参照)で細胞濁液を循環させた。このとき、循環ポンプ4の吐出量は200ml/分とし、濾液用ポンプ6Pの吐出量は20ml/分とした。
 次いで、液体タンク2内の細胞濁液が500mlから100mlまで減少したとき、第1弁91及び第2弁92を切り替え、第1バイパス管81により短絡した循環流路(図6参照)で細胞濁液を循環させた。このとき、循環ポンプ4の吐出量は200ml/分とし、濾液用ポンプ6Pの吐出量は10ml/分とした。濾過開始から第1弁91及び第2弁92の切り替えまでに要した時間は約20分であった。
 次いで、液体タンク2内の細胞濁液が100mlから50mlまで減少したとき、第3弁93及び第4弁94を切り替え、第2バイパス管82により短絡した循環流路(図7参照)で細胞濁液を循環させた。このとき、循環ポンプ4の吐出量は200ml/分とし、濾液用ポンプ6Pの吐出量は10ml/分とした。第1弁91及び第2弁92の切り替えから第3弁93及び第4弁94の切り替えまでに要した時間は約5分であった。
 次いで、液体タンク2内の細胞濁液が50mlから10mlまで減少したとき、循環ポンプ4及び濾液用ポンプ6Pの駆動を停止させた。第3弁93及び第4弁94の切り替えから循環ポンプ4及び濾液用ポンプ6Pの駆動停止までに要した時間は約8分であった。すなわち、第2バイパス管82内を細胞濁液が流れる時間は、第1バイパス管81内を細胞濁液が流れる時間よりも長かった。
 従って、本実施例において、5×10個の細胞を含む細胞濁液を500mlから10mlまで濃縮するのに要した時間は、33分(=20分+5分+8分)であった。なお、濾過開始の時点から第2バイパス管82により短絡した循環流路(図7参照)で細胞濁液を循環させたところ、5×10個の細胞を含む細胞濁液を500mlから10mlまで濃縮するのに要した時間は100分以上であった。
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
 本発明は、より濃度が高い濃縮液をより早く得ることができるので、特に、細胞などの生物由来物質を含む液体を濾過して濃縮液を得る濃縮装置に有用である。
  1,1A,1B,1C,1D  濃縮装置
  2  液体タンク
  3  管状部材
  3a 貫通穴
  3A 一端部
  3B 他端部
  4  循環ポンプ
  5  濾過フィルタ
  5A バイパス管用濾過フィルタ
  6  濾液排出管
  6A 一端部
  6B 他端部
  7  濾液タンク
 11  濾過対象物
 12  液体
 13  濾液
 51  金属製多孔膜
 51a 第1主面
 51b 第2主面
 51c 貫通孔
 52  枠体
 52a 第1枠体
 52b 第2枠体
 81  第1バイパス管
 81A 一端部
 81B 他端部
 82  第2バイパス管
 82A 一端部
 82B 他端部
 91  第1弁
 92  第2弁
 93  第3弁
 94  第4弁
 CT  制御部

Claims (9)

  1.  濾過対象物を含む液体を濾過して濃縮液を得るクロスフロー方式の濃縮装置であって、
     前記液体を収容する液体タンクと、
     両端部が前記液体タンク内に配置され、循環流路を形成する管状部材と、
     前記液体タンク内に収容された液体を前記管状部材の一端部から他端部へ流して循環させる循環ポンプと、
     前記管状部材の側壁に設けられ、前記濾過対象物を濾過する金属製多孔膜を有する濾過フィルタと、
     両端部が前記管状部材の側壁に接続され、前記循環流路を短絡するバイパス管と、
     前記管状部材内を流れる液体が前記バイパス管内を流れるように切り替える切替弁と、
     前記循環ポンプの駆動及び前記切替弁の切り替え動作を制御する制御部と、
     を備える、濃縮装置。
  2.  前記制御部は、前記液体タンク内に収容された液体の残量が閾量以下になったとき、前記管状部材内を流れる液体が前記バイパス管内を流れるように前記切替弁を切り替える、請求項1に記載の濃縮装置。
  3.  前記制御部は、前記管状部材内を流れる液体の圧力又は流速が閾値以下になったとき、前記管状部材内を流れる液体が前記バイパス管内を流れるように前記切替弁を切り替える、請求項1に記載の濃縮装置。
  4.  前記管状部材内を流れる液体の一部が前記濾過フィルタを通過するように促す濾液用ポンプを更に備え、
     前記制御部は、前記管状部材内を流れる液体が前記バイパス管内を流れるように前記切替弁を切り替えたとき、前記濾液用ポンプの駆動力を小さくする、請求項1~3のいずれか1つに記載の濃縮装置。
  5.  前記バイパス管は、第1バイパス管と、前記第1バイパス管よりも前記循環流路を短絡させる第2バイパス管とを備え、
     前記切替弁は、前記管状部材内を流れる液体が前記第1バイパス管又は前記第2バイパス管内を流れるように切り替えるよう構成され、
     前記制御部は、
     前記管状部材内を流れる液体が前記第1バイパス管内を流れるように前記切替弁を切り替えたとき、前記濾液用ポンプを第1駆動力で駆動させ、
     前記管状部材内を流れる液体が前記第2バイパス管内を流れるように前記切替弁を切り替えたとき、前記濾液用ポンプを前記第1駆動力よりも小さい第2駆動力で駆動させる、
     請求項4に記載の濃縮装置。
  6.  前記バイパス管は、第1バイパス管と、前記第1バイパス管よりも前記循環流路を短絡させる第2バイパス管とを備え、
     前記切替弁は、前記管状部材内を流れる液体が前記第1バイパス管又は前記第2バイパス管内を流れるように切り替えるよう構成され、
     前記制御部は、
     前記第2バイパス管内を液体が流れる時間が、前記第1バイパス管内を液体が流れる時間よりも長くなるように前記切替弁を切り替える、
     請求項4に記載の濃縮装置。
  7.  前記バイパス管の側壁に設けられ、前記濾過対象物を濾過する金属製多孔膜を有するバイパス管用濾過フィルタを更に備える、請求項1~6のいずれか1つに記載の濃縮装置。
  8.  前記バイパス管の内径は、前記管状部材の内径よりも小さい、請求項1~7のいずれか1つに記載の濃縮装置。
  9.  前記濾過フィルタは、前記バイパス管よりも前記液体の流れ方向の下流側に設けられている、請求項8に記載の濃縮装置。
PCT/JP2018/022886 2017-07-03 2018-06-15 濃縮装置 WO2019009044A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880043679.9A CN110831684A (zh) 2017-07-03 2018-06-15 浓缩装置
JP2019527607A JP6911919B2 (ja) 2017-07-03 2018-06-15 濃縮装置
US16/726,291 US11498032B2 (en) 2017-07-03 2019-12-24 Concentration apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-130613 2017-07-03
JP2017130613 2017-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/726,291 Continuation US11498032B2 (en) 2017-07-03 2019-12-24 Concentration apparatus

Publications (1)

Publication Number Publication Date
WO2019009044A1 true WO2019009044A1 (ja) 2019-01-10

Family

ID=64950789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022886 WO2019009044A1 (ja) 2017-07-03 2018-06-15 濃縮装置

Country Status (4)

Country Link
US (1) US11498032B2 (ja)
JP (1) JP6911919B2 (ja)
CN (1) CN110831684A (ja)
WO (1) WO2019009044A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171669A (ja) * 1985-11-04 1987-07-28 エンドトロニツクス インコ−ポレ−テツド 細胞を培養し、老廃物を取出し、生産物を濃縮する装置および方法
JPH0267452A (ja) * 1988-08-31 1990-03-07 Aisin Seiki Co Ltd 吸気音消音器
JP2003512594A (ja) * 1999-02-22 2003-04-02 コフ,ヘンリー 生体物質の精製
WO2010038613A1 (ja) * 2008-09-30 2010-04-08 東レ株式会社 化学品の製造方法および連続培養装置
WO2017104259A1 (ja) * 2015-12-14 2017-06-22 株式会社村田製作所 濾過フィルタ

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3831771A1 (de) * 1988-09-19 1990-03-29 Heraeus Sepatech Verfahren zum abtrennen von hochmolekularen substanzen aus fluessigen naehrmedien sowie vorrichtung zur durchfuehrung des verfahrens
JPH0464184A (ja) 1990-07-03 1992-02-28 Fujitsu Ltd ニューラル・ネットワークによるif―then型ルール演算装置
JP2945773B2 (ja) 1991-03-20 1999-09-06 日本碍子株式会社 クロスフロー濾過方法
JPH10156156A (ja) * 1996-11-28 1998-06-16 Kurita Water Ind Ltd 膜モジュール性能測定装置
US6160864A (en) 1999-03-05 2000-12-12 General Electric Company Seismic isolators
US20040137571A1 (en) * 2002-11-26 2004-07-15 Jan Markussen Method for purifying a fermentation-derived product
CN101935614A (zh) * 2009-07-01 2011-01-05 镇江东方生物工程设备技术有限责任公司 一种连续发酵和分离耦合生物反应器
JP2011211961A (ja) * 2010-03-31 2011-10-27 Honda Motor Co Ltd ろ過装置
US9644221B2 (en) * 2012-03-30 2017-05-09 Toray Industries, Inc. Method of producing chemical by continuous fermentation and continuous fermentation apparatus
JP6322882B2 (ja) 2012-03-30 2018-05-16 栗田工業株式会社 水系におけるオンライン測定用前処理装置、および該オンライン測定用前処理装置を用いたオンライン測定装置、並びにオンライン測定における前処理方法、および該前処理方法を用いたオンライン測定方法
ES2688710T3 (es) * 2013-06-21 2018-11-06 Toray Industries, Inc. Dispositivo de filtrado, uso de tal dispositivo de filtrado y método para utilizar tal dispositivo de filtrado

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62171669A (ja) * 1985-11-04 1987-07-28 エンドトロニツクス インコ−ポレ−テツド 細胞を培養し、老廃物を取出し、生産物を濃縮する装置および方法
JPH0267452A (ja) * 1988-08-31 1990-03-07 Aisin Seiki Co Ltd 吸気音消音器
JP2003512594A (ja) * 1999-02-22 2003-04-02 コフ,ヘンリー 生体物質の精製
WO2010038613A1 (ja) * 2008-09-30 2010-04-08 東レ株式会社 化学品の製造方法および連続培養装置
WO2017104259A1 (ja) * 2015-12-14 2017-06-22 株式会社村田製作所 濾過フィルタ

Also Published As

Publication number Publication date
US20200129925A1 (en) 2020-04-30
CN110831684A (zh) 2020-02-21
US11498032B2 (en) 2022-11-15
JP6911919B2 (ja) 2021-07-28
JPWO2019009044A1 (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
JP7082453B2 (ja) 高体積分率粒子精密濾過のための外壁集束のための装置及びその製造方法
JP4445862B2 (ja) 中空糸膜モジュール、中空糸膜モジュールユニット及びこれを用いた膜濾過装置と、その運転方法
WO2004084263A3 (en) Integrated apparatus and methods for treating liquids
TW201105408A (en) Flat membrane element for filtration, flat membrane type separation membrane module, and filtration device
US11110398B2 (en) Method for enhancing filtration yields in tangential flow filtration system
JP2020535840A (ja) 細胞濃縮にクロスフローろ過を利用するためのシステム
KR20220019059A (ko) 두꺼운 벽의 중공 섬유 접선방향 유동 필터
JPWO2014017604A1 (ja) 血液処理フィルター、血液回路、及び血液処理方法
JP2012115747A (ja) 中空糸膜モジュールおよび中空糸膜モジュール濾過装置
JP2018070519A (ja) 細胞製剤の製造方法および製造装置並びにこの製造装置で製造された細胞製剤
WO2017104261A1 (ja) 濾過装置
WO2019009044A1 (ja) 濃縮装置
JP6343589B2 (ja) 流動分別型の孔拡散膜分離モジュール
JP2013237016A (ja) 孔拡散型あるいは流導分別型膜分離装置と該分離装置を利用した方法
JP6422032B2 (ja) 流動分別型の濃縮用孔拡散膜分離モジュール
JP5036026B2 (ja) 血液成分分離装置及びその使用方法
WO2022123953A1 (ja) 濾過装置、濾過システム及び濾過方法
JP2016190824A (ja) 血小板製剤の製造方法および製造装置、およびこの製造方法またはこの製造装置で製造された血小板製剤
US11680239B2 (en) Filter for mammalian cell culture perfusion and clarification with hydrophobic hollow fiber
US20170007757A1 (en) Cell filter separation system
JP2019201657A (ja) 細胞培養液回収フィルタユニット、細胞培養液回収方法、及び細胞培養液回収キット
JP2017217579A (ja) 中空糸膜濾過装置及びその洗浄方法
JP6534068B2 (ja) 高分子溶液中の成分分子を分画する孔拡散膜分離用モジュール
WO2017104260A1 (ja) 濾過装置
JPH05220219A (ja) 腹水処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828012

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527607

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828012

Country of ref document: EP

Kind code of ref document: A1