WO2019008649A1 - 運転支援車両の目標車速生成方法及び目標車速生成装置 - Google Patents

運転支援車両の目標車速生成方法及び目標車速生成装置 Download PDF

Info

Publication number
WO2019008649A1
WO2019008649A1 PCT/JP2017/024401 JP2017024401W WO2019008649A1 WO 2019008649 A1 WO2019008649 A1 WO 2019008649A1 JP 2017024401 W JP2017024401 W JP 2017024401W WO 2019008649 A1 WO2019008649 A1 WO 2019008649A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
vehicle
acceleration
target
limit
Prior art date
Application number
PCT/JP2017/024401
Other languages
English (en)
French (fr)
Inventor
明之 後藤
孝志 福重
田家 智
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2017/024401 priority Critical patent/WO2019008649A1/ja
Priority to BR112020000079-5A priority patent/BR112020000079A2/pt
Priority to CN201780091967.7A priority patent/CN110770105B/zh
Priority to JP2019528216A priority patent/JP6760502B2/ja
Priority to RU2020104286A priority patent/RU2750871C1/ru
Priority to EP17917114.5A priority patent/EP3650294B1/en
Priority to US16/617,012 priority patent/US11400932B2/en
Priority to KR1020207002732A priority patent/KR20200022482A/ko
Priority to MX2019015812A priority patent/MX2019015812A/es
Priority to CA3068955A priority patent/CA3068955A1/en
Publication of WO2019008649A1 publication Critical patent/WO2019008649A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • B60W30/146Speed limiting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/12Lateral speed
    • B60W2520/125Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/406Traffic density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/103Speed profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/14Cruise control
    • B60Y2300/143Speed control
    • B60Y2300/146Speed limiting

Definitions

  • the present disclosure relates to a target vehicle speed generation method and a target vehicle speed generation device for a driving support vehicle that generates a target acceleration / deceleration of a host vehicle according to a speed limit of a host vehicle travel path.
  • the present disclosure has been made in view of the above problems, and when traveling with driving assistance, to cope with various roads with different speed limits, and to prevent the passenger from giving an uncomfortable feeling without disturbing the traffic flow. With the goal.
  • the present disclosure is a method of generating a target vehicle speed of a driving support vehicle that generates a target vehicle speed of the own vehicle according to the speed limit of the own vehicle traveling path. While driving, get the speed limit of the own road.
  • the target vehicle speed is generated according to the speed limit and the target acceleration is generated.
  • the acceleration limit value is set larger in the direction in which the acceleration limit is loosened as the speed limit is higher.
  • FIG. 1 is an entire system diagram showing an automatic driving control system to which a target vehicle speed generation method and a target vehicle speed generation device according to a first embodiment are applied. It is a block diagram which shows the detailed structure of the target vehicle speed production
  • 5 is a flowchart showing a flow of acceleration characteristic control processing executed by the automatic driving control unit of the first embodiment. It is a flowchart which shows the flow of the speed limit setting process in step S2 of the flowchart of FIG. It is a flowchart which shows the flow of the acceleration restriction
  • 5 is a flowchart showing a flow of deceleration characteristic control processing executed by the automatic driving control unit of the first embodiment. It is a flowchart which shows the flow of the deceleration restriction
  • the target vehicle speed generation method and the target vehicle speed generation apparatus use the generated target acceleration / deceleration information for vehicle speed control, and an automatically driven vehicle (steering / driving / braking is automatically controlled by selection of an automatic driving mode Application to a vehicle).
  • an automatically driven vehicle steering / driving / braking is automatically controlled by selection of an automatic driving mode Application to a vehicle.
  • the configuration of the first embodiment will be described by being divided into “overall system configuration” and “detailed configuration of target vehicle speed generation unit”.
  • FIG. 1 is an overall system diagram showing an automatic driving control system to which a target vehicle speed generation method and a target vehicle speed generation device according to a first embodiment are applied. Hereinafter, the entire system configuration will be described based on FIG.
  • the automatic driving control system includes a sensor 1, an automatic driving control unit 2, and an actuator 3.
  • the automatic driving control unit 2 is a computer that includes an arithmetic processing unit such as a CPU and executes arithmetic processing.
  • the sensor 1 includes a surrounding recognition camera 11, a rider / radar 12 (LIDAR ⁇ RADAR), a wheel speed sensor 13, a yaw rate sensor 14, a map (MAP) 15, and a GPS 16.
  • a rider / radar 12 LIDAR ⁇ RADAR
  • a wheel speed sensor 13 a wheel speed sensor 13
  • a yaw rate sensor 14 a map (MAP) 15, and a GPS 16.
  • MAP map
  • the surrounding recognition camera 11 is an on-vehicle imaging device provided with an imaging device such as a CCD, for example.
  • the surrounding recognition camera 11 is installed at a predetermined position of the host vehicle and captures an object around the host vehicle.
  • an obstacle on the road on which the vehicle is traveling or an obstacle outside the road on which the vehicle is traveling road structure, leading vehicle, following vehicle, oncoming vehicle, oncoming vehicle, surrounding vehicles, pedestrians, bicycles, two-wheeled vehicles
  • a plurality of on-vehicle cameras may be combined as the surroundings recognition camera 11.
  • the rider / radar 12 is a distance measuring sensor, and may use a method known at the time of application, such as a laser radar, a millimeter wave radar, an ultrasonic radar, a laser range finder, and the like.
  • the rider / radar 12 detects obstacles on the road on which the vehicle is traveling and obstacles outside the road on which the vehicle is traveling (road structures, leading vehicles, following vehicles, oncoming vehicles, oncoming vehicles, surrounding vehicles, pedestrians, bicycles, two-wheeled vehicles). If the viewing angle is insufficient, a plurality of vehicles may be mounted.
  • a rider a distance measurement sensor that emits light
  • a radar a distance measurement sensor that emits a radio wave
  • the wheel speed sensor 13 is provided on each of the four wheels and detects the wheel speed of each wheel. Then, the wheel speed average value of the left and right driven wheels is used as the current vehicle speed detection value (current vehicle speed).
  • the yaw rate sensor 14 is an attitude sensor that detects a yaw rate of the vehicle (rotational angular velocity about a vertical axis passing through the center of gravity of the vehicle).
  • a yaw rate of the vehicle rotational angular velocity about a vertical axis passing through the center of gravity of the vehicle.
  • the gyro sensor which can detect the pitch angle of a vehicle, a yaw angle, and a roll angle is included.
  • the map 15 is a so-called electronic map, and is information in which latitude and longitude are associated with map information.
  • the map 15 has road information associated with each point, and the road information is defined by nodes and links connecting the nodes.
  • the road information includes information specifying the road by the position / area of the road, the road type for each road, the road width for each road, and the shape information of the road.
  • the road information associates and stores information on the position of the intersection, the approach direction of the intersection, the type of the intersection, and other intersections for each identification information of each road link.
  • the road information includes road type, road width, road shape, whether to go straight, whether to advance, whether to overtake (possibility of entering an adjacent lane), speed limit, etc. for each identification information of each road link. Corresponds and stores information on roads in
  • the GPS 16 (abbreviation of "Global Positioning System”) detects the traveling position (latitude / longitude) of the own vehicle while traveling.
  • the automatic driving control unit 2 includes a target travel route generation unit 21, a speed limit information acquisition unit 22, a target vehicle speed generation unit 23, a drive control unit 24, a braking control unit 25, and a steering angle control unit 26. Prepare.
  • the target travel route generation unit 21 receives information from the surrounding area recognition camera 11, the rider / radar 12, the map 15, and the GPS 16, and generates a target travel route of the vehicle.
  • the speed limit information acquisition unit 22 inputs information from the surrounding area recognition camera 11, the rider / radar 12, the map 15, and the GPS 16, and acquires speed limit information.
  • the speed limit information acquisition unit 22 estimates the traffic flow by the sign recognition unit 221 that recognizes the speed limit sign, the surrounding vehicle recognition unit 222 that recognizes the surrounding vehicle of the own vehicle, and the moving speed of the surrounding vehicle of the own vehicle And a traffic flow estimation unit 223.
  • the speed limit information of the host vehicle travel road is acquired by any of the following (a1) to (d1).
  • (a1) The legal speed by recognizing the road sign from the sign recognition unit 221 is acquired as the speed limit.
  • (b1) Acquire legal speed based on prior information from map data as speed limit.
  • the traffic flow estimation unit 223 estimates the traffic flow based on the plurality of surrounding vehicle position information obtained from the surrounding vehicle recognition unit 222. Based on the estimated traffic flow information, the speed determined as the speed at which the vehicle can travel without significantly departing from the traffic flow is acquired as the speed limit.
  • (d1) When a plurality of speed limits are obtained simultaneously from a road sign, map data, etc., the minimum value of the plurality of speed limits is selected as the speed limit.
  • the target vehicle speed generation unit 23 receives the speed limit information from the speed limit information acquisition unit 22 and the vehicle speed information from the wheel speed sensor 13 and generates a target vehicle speed of the vehicle.
  • the target vehicle speed is generated according to the actual vehicle speed of the host vehicle and the speed limit of the road on which the host vehicle is traveling, and the target acceleration and target deceleration are generated.
  • the drive control unit 24 receives the target vehicle speed and the target acceleration from the target vehicle speed generation unit 23, calculates a drive control command value by vehicle speed servo control, and outputs the calculation result to the engine actuator 31.
  • the braking control unit 25 receives the target vehicle speed and the target deceleration from the target vehicle speed generating unit 23, calculates the braking control command value by the vehicle speed servo control, and outputs the calculation result to the brake hydraulic actuator 32.
  • the steering angle control unit 26 receives the target travel route information of the vehicle from the target travel route generation unit 21 and determines the target steering angle so that the vehicle follows the target travel route of the vehicle. Then, the steering angle control command value is calculated so that the actual steering angle matches the target steering angle, and the calculation result is output to the steering angle actuator 33.
  • the actuator 3 has an engine actuator 31, a brake hydraulic actuator 32, and a steering angle actuator 33.
  • the engine actuator 31 is an actuator that receives a drive control command value from the drive control unit 24 and controls the engine drive force.
  • an engine actuator and a motor actuator may be used, and in the case of an electric vehicle, a motor actuator may be used.
  • the brake hydraulic actuator 32 is a hydraulic booster that receives a brake control command value from the brake control unit 25 and controls the brake hydraulic braking force.
  • the steering angle actuator 33 is a steering angle control motor that receives a steering angle control command value from the steering angle control unit 26 and controls the steering angle of the steered wheels.
  • FIG. 2 shows a detailed configuration of the target vehicle speed generation unit 23 of the target vehicle speed generation device of the first embodiment.
  • the detailed configuration of the target vehicle speed generation unit 23 provided in the automatic driving control unit 2 will be described based on FIG.
  • the target vehicle speed generation unit 23 includes a vehicle speed command calculation unit 231 (a speed limit), another vehicle speed command calculation unit 232, and a minimum vehicle speed command arbitration unit 233.
  • the target acceleration is generated in the transition period when the target vehicle speed increases, and conversely, the target vehicle speed decreases.
  • the target deceleration is generated in the transition period.
  • a speed difference calculation unit 231a between the speed limit and the actual vehicle speed a first acceleration limiter calculation unit 231b, a second acceleration limiter calculation unit 231c, an acceleration limiter arbitration unit 231d, and an acceleration jerk limit value
  • a setting unit 231e, a deceleration limiter calculation unit 231f, and a deceleration jerk limit value setting unit 231g are included.
  • the speed difference calculation unit 231a calculates the speed difference between the speed limit and the own vehicle speed.
  • the first acceleration limiter (acceleration limit value setting unit) generates the target acceleration based on the limit speed
  • the first acceleration limiter (first acceleration limit value) moves in a direction to ease the acceleration limit as the limit speed increases. Set the larger. That is, when the first acceleration limiter is large, a target acceleration in which the slope of the vehicle speed rise is steep is generated, and when the first acceleration limiter is small, the slope of the vehicle speed rise is a moderate target acceleration.
  • the second acceleration limiter calculation unit 231c (acceleration limit value setting unit) sets the second acceleration limiter (second acceleration restriction value) larger in the direction of loosening the acceleration limitation as the speed difference from the speed difference calculation unit 231a increases. That is, when the speed difference is large, the slope of the vehicle speed increase generates a steep target acceleration, and when the speed difference is small, the slope of the vehicle speed increase generates a moderate target acceleration.
  • the acceleration limiter arbitration unit 231d selects the smaller one of the first acceleration limiter from the first acceleration limiter calculation unit 231b and the second acceleration limiter from the second acceleration limiter calculation unit 231c. Then, the limiter value selected by the minimum value selection is taken as the final acceleration limiter (acceleration limit value).
  • the acceleration jerk limit value setting unit 231 e sets the acceleration jerk limit value larger in the direction to ease the limitation of the acceleration jerk as the speed limit is higher.
  • the acceleration jerk limit value setting unit 231e receives an acceleration limiter (acceleration limit value) from the acceleration limiter mediation unit 231d, and outputs an acceleration limiter whose acceleration time change (acceleration jerk) is suppressed as a target acceleration.
  • the deceleration limiter calculation unit 231 f (deceleration limitation value setting unit) sets the deceleration limiter (deceleration limitation value) larger in the direction of loosening the deceleration limitation as the limitation speed is lower. That is, when the deceleration limiter is large, the vehicle speed decrease gradient generates a steep target deceleration, and when the deceleration limiter is small, the vehicle speed decrease gradient generates a gradual target deceleration.
  • the deceleration jerk limit value setting unit 231g sets the deceleration jerk limit value larger in the direction of loosening the limitation of the deceleration jerk as the speed limit is lower.
  • the deceleration jerk limit value setting unit 231g receives the deceleration limiter (deceleration limitation value) from the deceleration limiter calculation unit 231f and reduces the deceleration time change (deceleration jerk) of the deceleration limiter into a target reduction. Output as speed.
  • Another vehicle speed command calculation unit 232 calculates vehicle speed command values different in type from the vehicle speed command calculation unit 231 (speed limit). For example, a vehicle speed profile compatible with ACC is created based on ACC (abbreviation of "Adaptive Cruise Control"), and a vehicle speed command value (ACC) is calculated from the created vehicle speed profile.
  • the vehicle speed profile corresponding to the stop line is created based on the stop line ahead of the own vehicle, and the vehicle speed command value (stop line) is calculated from the created vehicle speed profile.
  • a vehicle speed profile compatible with corner deceleration is created, and a vehicle speed command value (corner deceleration) is calculated from the created vehicle speed profile.
  • the vehicle speed profile corresponding to the obstacle is created based on the obstacle present in the traveling route of the own vehicle, and the vehicle speed command value (obstacle) is calculated by the created vehicle speed profile.
  • FIG. 3 shows the flow of the acceleration characteristic control process executed by the automatic driving control unit 2 of the first embodiment.
  • FIG. 4 shows the flow of the speed limit setting process in step S2 of the flowchart of FIG.
  • FIG. 5 shows the flow of the acceleration limit setting process in step S3 of the flowchart of FIG.
  • the acceleration characteristic control processing operation will be described below based on FIGS. 3 to 8.
  • step S4 speed limit setting processing (FIG. 4) is executed in step S1, and the process proceeds to step S2.
  • step S2 following setting of the speed limit in step S1, acceleration restriction setting processing (FIG. 5) is executed, and the process proceeds to step S3.
  • step S3 following the setting of the acceleration restriction in step S2, drive control according to the acceleration restriction amount is executed, and the acceleration characteristic control is ended.
  • the acceleration speed limit setting process (FIG. 5) is executed based on the speed limit, following the speed limit setting process (FIG. 4).
  • Target acceleration is generated.
  • the acceleration travel with the acceleration characteristic limited based on the speed limit is realized.
  • step S1 of FIG. 3 executed by the speed limit information acquisition unit 22 will be described with reference to the flowchart shown in FIG.
  • step S11 when the speed limit setting process is started, it is determined whether or not there is a map or sign that can acquire the speed limit. In the case of YES (map / mark present), the process proceeds to step S12, and in the case of NO (map / no mark), the process proceeds to step S13.
  • step S12 following the determination of the presence of the map and the sign in step S11, the speed limit of the road on which the vehicle is traveling is acquired by the map and the sign, and the process proceeds to step S14.
  • step S13 following the determination of no map or sign in step S11, the traffic flow of surrounding vehicles is estimated, the upper limit vehicle speed at which the vehicle can travel on the traffic flow is calculated, and the process proceeds to step S14.
  • step S14 following the acquisition of the speed limit in step S12 or the calculation of the upper limit vehicle speed in step S13, the speed limit of the road on which the vehicle travels is set, and the speed limit setting process is ended.
  • the minimum speed is set as the speed limit.
  • the upper limit vehicle speed is calculated in step S13, this upper limit vehicle speed is set as the speed limit.
  • the acquired speed limit is used as the speed limit information as it is. If the speed limit is not acquired from the map or the sign, the traffic flow of the surrounding vehicle is estimated, and the upper limit vehicle speed calculated as the vehicle speed at which the vehicle can travel on the traffic flow is used as the speed limit information. When two speed limits are acquired from the map and the sign, the minimum speed by the select row is used as speed limit information.
  • step S2 of FIG. 3 executed by the speed difference calculation unit 231a, the first acceleration limiter calculation unit 231b, the second acceleration limiter calculation unit 231c, and the acceleration limiter arbitration unit 231d is shown in FIG. This will be described by the flowchart.
  • step S21 when the acceleration restriction setting process is started, the first acceleration restriction map shown in FIG. 6 is read, the acceleration upper limit value corresponding to the speed limit is determined using the first acceleration restriction map, and the process proceeds to step S24.
  • the first acceleration restriction map is set to a low acceleration upper limit value in urban area travel where the speed limit is low, and on an expressway travel where the speed limit is high. Is set to a high acceleration upper limit value. Then, in traveling on a suburban road from a low vehicle speed to a high vehicle speed, the speed limit is set to a variable value connecting a low value and a high value.
  • step S22 when the acceleration restriction setting process is started, the own vehicle speed is acquired, and the process proceeds to step S23.
  • step S23 following the acquisition of the host vehicle speed in step S22, the second acceleration restriction map shown in FIG. 8 is read, the deviation (speed difference) between the speed limit and the host vehicle speed is calculated, and the second acceleration restriction map is used.
  • the acceleration limit value is determined by the speed difference, and the process proceeds to step S24.
  • the acceleration restriction value is set to a high value in a region where the speed difference Vdif is large, and the acceleration restriction value is set to a low value in a region where the speed difference Vdif is small. Be done. Then, in an area where the speed difference Vdif transitions from a large area to a small area, it is set to a variable value connecting a high value and a low value.
  • step S24 following step S21 and step S23, the minimum value of the plurality of acceleration restriction amounts is selected, the value by the selection of the minimum value is set as the final acceleration restriction value, and the acceleration restriction setting processing is ended.
  • the value obtained by selecting the minimum value is the final one of the acceleration upper limit value determined according to the speed limit and the acceleration limit value determined according to the speed difference Vdif.
  • the acceleration limit value is taken.
  • the acceleration is limited as follows by the first acceleration limit map of FIG. (a2) When driving in urban areas where the speed limit is low, acceleration restrictions are tightened. (b2) When driving on a freeway with a high speed limit, the acceleration limit is relaxed. (c2) When traveling on a suburban road with a medium speed limit, the acceleration limit is relaxed as the speed limit increases.
  • the acceleration limit value determined according to the speed difference Vdif is made the final acceleration limit value
  • the acceleration is limited as follows by the second acceleration limit map of FIG. (a3) If the speed difference Vdif is small, the acceleration limit is tightened. (b3) If the speed difference Vdif is large, the acceleration limit is relaxed. (c3) When the speed difference Vdif is medium, the acceleration restriction is relaxed as the speed difference Vdif increases.
  • FIG. 9 shows the flow of the deceleration characteristic control process executed by the automatic driving control unit 2 of the first embodiment.
  • FIG. 10 shows the flow of the deceleration limit setting process in step S5 of the flowchart of FIG.
  • the deceleration characteristic control processing operation will be described based on FIGS. 9 to 11.
  • step S4 the speed limit setting process (FIG. 4) is executed in step S4, and the process proceeds to step S5.
  • step S5 following the setting of the speed limit in step S4, deceleration restriction setting processing (FIG. 10) is executed, and the process proceeds to step S6.
  • step S6 following the setting of the deceleration limit in step S5, the braking control corresponding to the deceleration limit amount is executed, and the deceleration characteristic control is ended.
  • step S4 of FIG. 9 performed by the speed limit information acquisition unit 22 is performed according to the flowchart shown in FIG.
  • step S5 of FIG. 9 executed by the deceleration limiter calculation unit 231f will be described with reference to the flowchart shown in FIG.
  • step S51 when the deceleration restriction setting process is started, the deceleration restriction map shown in FIG. 11 is read out, and the deceleration restriction value according to the speed limit is determined using the deceleration restriction map, and the deceleration restriction setting process is performed. Finish.
  • the deceleration limit map is set to a high value that allows a large deceleration, and the speed limit is a high vehicle speed, when traveling in an urban area where the speed limit is low.
  • the deceleration limit value In expressway driving, the deceleration limit value is set to a low value which is limited by a small deceleration. Then, in traveling on a suburban road from a low vehicle speed to a high vehicle speed, the speed limit is set to a variable value connecting a high value and a low value.
  • control for limiting the upper limit of the deceleration is a deceleration limit value determined according to the speed limit.
  • the deceleration limit map shown in FIG. 11 limits the deceleration as follows. (a4) When traveling in urban areas where the speed limit is low, the deceleration limit is relaxed. (b4) When driving on a freeway with a high speed limit, the deceleration limit is tightened. (c4) When traveling on a suburban road with a medium speed limit, the higher the speed limit, the stricter the deceleration limit.
  • FIG. 12 shows the merging action in the merging channel from the general road to the expressway
  • FIG. 13 shows the vehicle speed characteristic by acceleration when merging from the suburbs road to the expressway in the comparative example
  • the vehicle speed characteristic by acceleration is shown.
  • the subject of a comparative example is demonstrated based on FIG.12 and FIG.13.
  • the comparative example refers to one in which the limited acceleration is set according to the deviation (speed difference) between the limited speed and the own vehicle speed.
  • the same acceleration vehicle speed increase gradient
  • the acceleration is set to a high speed when driving at a high speed limit
  • acceleration will be excessive when traveling in a city area, which will disturb the traffic flow and give the occupants a sense of discomfort.
  • an appropriate acceleration is set when traveling at a low speed in a city area, acceleration becomes insufficient when traveling on a freeway, disturbing the traffic flow and giving the occupants a sense of discomfort.
  • the speed of the vehicle is high when the speed of the vehicle traveling on the freeway is high when joining in the junction from the general road to the freeway. Approach running at a low level, and it is not possible to join the expressway. Then, in the case of a driving support vehicle such as an autonomous driving vehicle, the occupants intend to smoothly join on the traffic flow of the freeway, and feel uneasy because they do not intend to be waiting for merging.
  • a driving support vehicle such as an autonomous driving vehicle
  • FIG. 14 shows a vehicle speed characteristic by acceleration when joining a suburb road to an expressway and a vehicle speed characteristic by acceleration when starting to stop on a city road in Example 1.
  • the acceleration characteristic control action will be described based on FIG.
  • acceleration restriction is relaxed by traveling on an expressway with a high speed limit. That is, because the speed limit is high, as shown in the upper part of FIG. 14, the acceleration characteristic (vehicle speed increase slope characteristic) is set sharply as compared with the comparative example (broken line characteristic).
  • the vehicle speed of the own vehicle can be responsively increased to the vehicle speeds of other vehicles traveling on the expressway, and can join smoothly on the traffic flow of the expressway . And since it becomes middle acceleration driving
  • the acceleration restriction is intensified by the fact that the city travels at a low speed limit. That is, as shown in the lower part of FIG. 14, the acceleration characteristic (the vehicle speed increase gradient characteristic) is set to be duller than the comparative example (the broken line characteristic) because the speed limit is low.
  • the vehicle speed gradually increases, and it is possible to smoothly join the traffic flow of vehicles around the vehicle traveling at a substantially constant speed. Then, when the vehicle is started on a city road, since the vehicle is gradually started and accelerated as intended by the occupant, the occupant does not feel discomfort.
  • FIG. 15 shows the vehicle speed characteristic by deceleration when diverting from the expressway to the suburban road in the first embodiment and the vehicle speed characteristic by deceleration when stopping from low speed traveling on an urban road.
  • the deceleration characteristic control operation will be described based on FIG.
  • the deceleration limit is strengthened contrary to the acceleration limit. That is, on a freeway, the deceleration characteristic (vehicle speed decrease gradient characteristic) is set to be dull as shown in the upper part of FIG. 15 due to the high speed limit.
  • the vehicle speed gradually decreases, and it is possible to divert smoothly so as to get on the traffic flow of vehicles around the host vehicle on the suburbs. Then, since the vehicle is decelerated traveling due to a gradual change in vehicle speed as intended by the passenger when branching from the expressway to the suburban road, the passenger does not feel discomfort.
  • the deceleration restriction When stopping from low speed traveling on an urban road in the first embodiment, the deceleration restriction is loosened contrary to the acceleration restriction by being an urban area traveling with a low speed limit. That is, in the city area, the deceleration characteristic (vehicle speed decrease gradient characteristic) is set sharply as shown in the lower part of FIG. 15 because the speed limit is low.
  • a method of generating a target vehicle speed of a driving assistance vehicle that generates a target vehicle speed of the own vehicle according to the speed limit of the own vehicle traveling path. While driving, get the speed limit of the own road.
  • the target vehicle speed is generated according to the speed limit and the target acceleration is generated.
  • the acceleration limit value (acceleration limiter) is set to be larger in the direction of loosening the acceleration limit as the speed limit is higher (target vehicle speed generation unit 23: FIG. 6). For this reason, when driving with driving assistance (automatic driving), the driving support vehicle (automatic driving vehicle) that copes with various roads with different speed limits and prevents giving discomfort to the occupant without disturbing the traffic flow.
  • a target vehicle speed generation method can be provided.
  • the target acceleration is generated by the speed limit, it is possible to set an acceleration characteristic according to the speed limit of the traveling road of the vehicle. And it can drive
  • the acceleration jerk limit value is set larger in the direction to ease the limitation of the acceleration jerk as the speed limit is higher (acceleration jerk limit value setting unit 231e: FIG. 2). For this reason, in addition to the effect of (1) or (2), by limiting the acceleration jerk, the time change of the acceleration becomes smooth, and it is possible to realize both the feeling of acceleration and the ride comfort.
  • the first acceleration limit value (first acceleration limiter) is set larger as the speed limit is higher (first acceleration limiter calculation unit 231b), and the speed difference between the speed limit and the own vehicle speed is
  • the second acceleration limit value (second acceleration limiter) is set larger as the value is larger (second acceleration limiter calculation unit 231c), and the smaller one of the first acceleration limit value and the second acceleration limit value is selected (acceleration limiter arbitration Section 231d: FIG. 2).
  • a method of generating a target vehicle speed of a driving support vehicle that generates a target vehicle speed of the own vehicle according to the speed limit of the own vehicle traveling path. While driving, get the speed limit of the own road. The target vehicle speed is generated according to the speed limit and the target deceleration is generated.
  • the deceleration limit value (deceleration limiter) is set to be larger in the direction of loosening the deceleration limit as the speed limit is lower (vehicle speed command calculation unit 231: FIG. 11). For this reason, when traveling with driving assistance (automatic driving), a driving support vehicle (automatic driving vehicle) that responds to a sudden deceleration request in urban area travel etc.
  • a target vehicle speed generation method of That is, in order to generate the target deceleration based on the speed limit, it is possible to set the deceleration characteristic according to the speed limit of the traveling road of the vehicle. And, in response to a rapid deceleration request for a sudden jumping out or the like in urban driving, safety can be positively secured. Furthermore, the lower the speed limit is, the larger the deceleration limit value (deceleration limiter) is set in the direction of loosening the deceleration limit. Therefore, the difference between the sense of deceleration and the ride between high speed and low speed It is possible to realize both.
  • the speed reduction jerk limit value is set larger in the direction to loosen the speed reduction jerk limit as the speed limit is lower (speed reduction jerk limit value setting unit 231g: FIG. 2). For this reason, in addition to the effect of (5) or (6), by limiting the deceleration jerk, the time change of the deceleration becomes smooth, and it is possible to realize both a sense of deceleration and a ride comfort.
  • a target vehicle speed generation device for a driving support vehicle equipped with a controller (automatic driving control unit 2) for generating a target vehicle speed of the own vehicle according to the speed limit of the own vehicle traveling path includes a speed limit information acquisition unit 22 and a target vehicle speed generation unit 23. While traveling, the speed limit information acquisition unit 22 acquires the speed limit of the vehicle travel path.
  • the target vehicle speed generation unit 23 generates a target vehicle speed and a target acceleration according to the speed limit, and when generating the target acceleration, sets the acceleration limit value larger in the direction of loosening the acceleration restriction as the speed limit increases. Figure 1). For this reason, when driving with driving assistance (automatic driving), the driving support vehicle (automatic driving vehicle) that copes with various roads with different speed limits and prevents giving discomfort to the occupant without disturbing the traffic flow.
  • a target vehicle speed generator can be provided.
  • the target vehicle speed generation method and the target vehicle speed generation device of the driving assistance vehicle of the present disclosure have been described based on the first embodiment.
  • the specific configuration is not limited to the first embodiment, and changes and additions in design are permitted without departing from the scope of the invention according to each claim in the claims.
  • the speed limit information acquisition unit 22 acquires the speed limit from the road sign, the map data, and the traffic flow around the vehicle.
  • the speed limit information acquisition unit includes an example of acquiring speed limit information when the speed limit is temporarily changed due to the weather or the like by the traffic-related infrastructure information.
  • the acceleration limit value and the deceleration limit value are obtained by performing limiter calculation processing of the target acceleration characteristic and the target deceleration characteristic before limitation according to the speed limit.
  • the acceleration limitation value or the deceleration limitation value may be obtained by filtering the target acceleration characteristic or the target deceleration characteristic before limitation using a filter corresponding to the limitation speed.
  • Example 1 the example which applied the target vehicle speed production
  • the target vehicle speed generation method and the target vehicle speed generation device according to the present disclosure use the target vehicle speed as in a driving support vehicle that performs driving assistance of the driver by displaying the target vehicle speed or a driving support vehicle equipped with only ACC.
  • the present invention can be applied to any vehicle that provides driving assistance to the driver.

Abstract

運転支援により走行する際、制限速度が異なる様々な道路に対応し、交通流を乱すことなく、乗員に違和感を与えるのを防止すること。 自車走行路の制限速度に応じて自車の目標車速を生成する自動運転コントロールユニット(2)(コントローラ)を搭載した自動運転車両(運転支援車両)の目標車速生成装置であって、自動運転コントロールユニット(2)は、制限速度情報取得部(22)と、目標車速生成部(23)と、を備える。制限速度情報取得部(22)は、走行中、自車走行路の制限速度を取得する。目標車速生成部(23)の車速指令算出部(231)は、制限速度に応じて目標車速を生成すると共に目標加速度を生成する。そして、目標加速度を生成する際、制限速度が高いほど加速制限を緩める方向に加速度リミッタを大きく設定する第1加速度リミッタ計算部(231b)を有する(図6)。

Description

運転支援車両の目標車速生成方法及び目標車速生成装置
 本開示は、自車走行路の制限速度に応じて自車の目標加減速度を生成する運転支援車両の目標車速生成方法及び目標車速生成装置に関する。
 従来、制限速度と自車速の偏差に応じて、制限加速度を設定する車速制限装置が知られている(例えば、特許文献1参照)。
特開2016-183647号公報
 しかしながら、従来装置にあっては、制限速度と自車速の偏差のみを考慮し、制限速度そのものを考慮していないため、制限速度が高い高速道路走行と制限速度が低い市街地走行での適切な加速感の両立が難しい。つまり、制限速度と自車速の偏差が同じである場合には、同じ加速度(車速上昇勾配)に設定される。従って、制限速度が高い高速道路走行のときに適切な加速度に設定すると、市街地走行のときに加速過剰となり、交通流を乱すと共に乗員に違和感を与える。一方、制限速度が低い市街地走行のときに適切な加速度に設定すると、高速道路走行のときに加速不足となり、交通流を乱すと共に乗員に違和感を与える。
 本開示は、上記問題に着目してなされたもので、運転支援により走行する際、制限速度が異なる様々な道路に対応し、交通流を乱すことなく、乗員に違和感を与えるのを防止することを目的とする。
 上記目的を達成するため、本開示は、自車走行路の制限速度に応じて自車の目標車速を生成する運転支援車両の目標車速生成方法である。
走行中、自車走行路の制限速度を取得する。
制限速度に応じて目標車速を生成すると共に目標加速度を生成する。
目標加速度を生成する際、制限速度が高いほど加速制限を緩める方向に加速度制限値を大きく設定する。
 上記のように、自車走行路の制限速度に応じた加速特性による車速計画を立案することで、運転支援により走行する際、制限速度が異なる様々な道路に対応し、交通流を乱すことなく、乗員に違和感を与えるのを防止することができる。
実施例1の目標車速生成方法及び目標車速生成装置が適用された自動運転制御システムを示す全体システム図である。 実施例1の目標車速生成方法及び目標車速生成装置の目標車速生成部の詳細構成を示すブロック図である。 実施例1の自動運転コントロールユニットにて実行される加速特性制御処理の流れを示すフローチャートである。 図3のフローチャートのステップS2における制限速度設定処理の流れを示すフローチャートである。 図3のフローチャートのステップS3における加速度制限設定処理の流れを示すフローチャートである。 加速度制限設定処理において用いられる第1加速度制限マップの一例を示すマップ図である。 制限速度と実車速の速度差を示す速度差説明図である。 加速度制限設定処理において用いられる第2加速度制限マップの一例を示すマップ図である。 実施例1の自動運転コントロールユニットにて実行される減速特性制御処理の流れを示すフローチャートである。 図9のフローチャートのステップS5における減速度制限設定処理の流れを示すフローチャートである。 減速度制限設定処理において用いられる減速度制限マップの一例を示すマップ図である。 一般道から高速道路への合流路における合流作用を示す作用説明図である。 比較例において郊外路から高速道路へ合流する際の加速による車速特性と市街地道路で停車から発進する際の加速による車速特性を示すタイムチャートである。 実施例1において郊外路から高速道路へ合流する際の加速による車速特性と市街地道路で停車から発進する際の加速による車速特性を示すタイムチャートである。 実施例1において高速道路から郊外路へ分流する際の減速による車速特性と市街地道路で低速走行から停車する際の減速による車速特性を示すタイムチャートである。
 以下、本開示による運転支援車両の目標車速生成方法及び目標車速生成装置を実現する最良の実施形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
実施例1における目標車速生成方法及び目標車速生成装置は、生成される目標加減速度情報を車速制御に用い、自動運転モードの選択により操舵/駆動/制動が自動制御される自動運転車両(運転支援車両の一例)に適用したものである。以下、実施例1の構成を、「全体システム構成」、「目標車速生成部の詳細構成」に分けて説明する。
 [全体システム構成]
 図1は、実施例1の目標車速生成方法及び目標車速生成装置が適用された自動運転制御システムを示す全体システム図である。以下、図1に基づいて全体システム構成を説明する。
 自動運転制御システムは、図1に示すように、センサ1と、自動運転コントロールユニット2と、アクチュエータ3と、を備えている。なお、自動運転コントロールユニット2は、CPUなどの演算処理装置を備え、演算処理を実行するコンピュータである。
 センサ1は、周囲認識カメラ11と、ライダー/レーダー12(LIDAR・RADAR)と、車輪速センサ13と、ヨーレートセンサ14と、地図(MAP)15と、GPS16と、を有する。
 周囲認識カメラ11は、例えば、CCD等の撮像素子を備える車載の撮像装置であり、自車の所定の位置に設置され、自車の周囲の対象物を撮像する。この周囲認識カメラ11では、自車走行路上障害物・自車走行路外障害物(道路構造物、先行車、後続車、対向車、周囲車両、歩行者、自転車、二輪車)・自車走行路(道路白線、道路境界、停止線、横断歩道)・道路標識(制限速度)などを検出する。なお、周囲認識カメラ11としては、複数個の車載カメラを組み合わせても良い。
 ライダー/レーダー12は、測距センサであり、レーザーレーダー、ミリ波レーダー、超音波レーダー、レーザーレンジファインダーなどの出願時に知られた方式のものを用いることができる。このライダー/レーダー12では、自車走行路上障害物・自車走行路外障害物(道路構造物、先行車、後続車、対向車、周囲車両、歩行者、自転車、二輪車)などを検出する。なお、視野角が不足すれば、車両に複数個搭載してもよい。また、ライダー(光を発光する測距センサ)とレーダー(電波を放射する測距センサ)とを組み合わせても良い。
 車輪速センサ13は、4輪の各輪に設けられ、各輪の車輪速を検出する。そして、左右従動輪の車輪速平均値を、現時点での車速検出値(現車速)として用いる。
 ヨーレートセンサ14は、車両のヨーレート(車両の重心点を通る鉛直軸まわりの回転角速度)を検出する姿勢センサである。なお、姿勢センサとしては、車両のピッチ角、ヨー角、ロール角を検出できるジャイロセンサを含む。
 地図15は、いわゆる電子地図であり、緯度経度と地図情報が対応づけられた情報である。地図15には、各地点に対応づけられた道路情報を有し、道路情報は、ノードと、ノード間を接続するリンクにより定義される。道路情報は、道路の位置/領域により道路を特定する情報と、道路ごとの道路種別、道路ごとの道路幅、道路の形状情報とを含む。道路情報は、各道路リンクの識別情報ごとに、交差点の位置、交差点の進入方向、交差点の種別その他の交差点に関する情報を対応づけて記憶する。また、道路情報は、各道路リンクの識別情報ごとに、道路種別、道路幅、道路形状、直進の可否、進行の優先関係、追い越しの可否(隣接レーンへの進入の可否)、制限速度、その他の道路に関する情報を対応づけて記憶する。
 GPS16(「Global Positioning System」の略称)は、走行中の自車の走行位置(緯度・経度)を検出する。
 自動運転コントロールユニット2は、目標走行経路生成部21と、制限速度情報取得部22と、目標車速生成部23と、駆動制御部24と、制動制御部25と、舵角制御部26と、を備える。
 目標走行経路生成部21は、周囲認識カメラ11、ライダー/レーダー12、地図15、GPS16からの情報を入力し、自車の目標走行経路を生成する。
 制限速度情報取得部22は、周囲認識カメラ11とライダー/レーダー12、地図15、GPS16からの情報を入力し、制限速度情報を取得する。この制限速度情報取得部22には、制限速度標識を認識する標識認識部221と、自車の周囲車両を認識する周囲車両認識部222と、自車の周囲車両の移動速度により交通流を推定する交通流推定部223と、を有する。
 そして、下記(a1)~(d1)の何れかにより、自車走行道路の制限速度情報を取得する。
(a1) 標識認識部221からの道路標識を認識することによる法定速度を、制限速度として取得する。
(b1) 地図データからの事前情報による法定速度を、制限速度として取得する。
(c1) 道路標識や地図データから制限速度を取得できないとき、交通流推定部223において、周囲車両認識部222から得られる複数の周囲車両位置情報に基づき交通流を推定する。推定された交通流情報に基づき、交通流から大きく逸脱することなく走行できる速度として決定した速度を、制限速度として取得する。
(d1) 道路標識や地図データなどから同時に複数の制限速度が取得されたとき、複数の制限速度の最小値を制限速度として選択する。
 目標車速生成部23は、制限速度情報取得部22からの制限速度情報と、車輪速センサ13からの車速情報と、を入力し、自車の目標車速を生成する。
ここで、「目標車速生成部23」では、自車の実車速と自車が走行する道路の制限速度に応じて目標車速が生成されると共に目標加速度と目標減速度が生成される。
 駆動制御部24は、目標車速生成部23からの目標車速及び目標加速度を入力し、車速サーボ制御により駆動制御指令値を演算し、演算結果をエンジンアクチュエータ31へ出力する。
 制動制御部25は、目標車速生成部23からの目標車速及び目標減速度を入力し、車速サーボ制御により制動制御指令値を演算し、演算結果をブレーキ油圧アクチュエータ32へ出力する。
 ここで、車速サーボ制御により制御指令値の演算手法としては、例えば、目標加減速度に応じたF/F制御と、目標車速と現在車速の差に応じたF/B制御と、を併せたF/F+F/B制御を行う。このとき、道路勾配等による目標値との乖離も考慮する。
 舵角制御部26は、目標走行経路生成部21からの自車の目標走行経路情報を入力し、自車の目標走行経路に自車が追従するように目標舵角を決める。そして、実舵角が目標舵角に一致するように舵角制御指令値を演算し、演算結果を舵角アクチュエータ33へ出力する。
 アクチュエータ3は、エンジンアクチュエータ31と、ブレーキ油圧アクチュエータ32と、舵角アクチュエータ33と、を有する。
 エンジンアクチュエータ31は、駆動制御部24から駆動制御指令値を入力し、エンジン駆動力を制御するアクチュエータである。なお、ハイブリッド車の場合、エンジンアクチュエータとモータアクチュエータを用いても良いし、また、電気自動車の場合、モータアクチュエータを用いても良い。
 ブレーキ油圧アクチュエータ32は、制動制御部25から制動制御指令値を入力し、ブレーキ油圧制動力を制御する油圧ブースタである。なお、油圧ブースタを搭載していない電動車両の場合、電動ブースタを用いても良い。
 舵角アクチュエータ33は、舵角制御部26から舵角制御指令値を入力し、操舵輪の転舵角を制御する舵角制御モータである。
 [目標車速生成部の詳細構成]
 図2は、実施例1の目標車速生成装置の目標車速生成部23の詳細構成を示す。以下、図2に基づいて自動運転コントロールユニット2に有する目標車速生成部23の詳細構成について説明する。
 目標車速生成部23は、図2に示すように、車速指令算出部231(制限速度)と、他の車速指令算出部232と、最小車速指令調停部233と、を備えている。
 車速指令算出部231は、制限速度情報取得部22からの制限速度と車輪速センサ13からの実車速とを入力し、目標車速(=制限速度)と目標加速度と目標減速度を生成する。
つまり、最終の目標車速として制限速度が選択されているとき、自車が走行する道路の制限速度が変わらない間は一定値による制限速度が目標車速とされ、目標加速度及び目標減速度は何れもゼロとされる。しかし、制限速度が低車速から高車速へ移行する過渡期に目標加速度が生成され、逆に、制限速度が高車速から低車速へ移行する過渡期に目標減速度が生成される。また、最終の目標車速が制限速度以外の種類による目標車速から制限速度による目標車速へと切り替えられたとき、目標車速が上昇する過渡期に目標加速度が生成され、逆に、目標車速が低下する過渡期に目標減速度が生成される。
 車速指令算出部231には、制限速度と実車速の速度差計算部231aと、第1加速度リミッタ計算部231bと、第2加速度リミッタ計算部231cと、加速度リミッタ調停部231dと、加速ジャーク制限値設定部231eと、減速度リミッタ計算部231fと、減速ジャーク制限値設定部231gと、を有する。
 速度差計算部231aは、制限速度と自車速の速度差を計算する。
 第1加速度リミッタ計算部231b(加速度制限値設定部)は、制限速度に基づいて目標加速度を生成する際、制限速度が高いほど加速制限を緩める方向に第1加速度リミッタ(第1加速度制限値)を大きく設定する。つまり、第1加速度リミッタが大きいとき、車速上昇の勾配が急な目標加速度を生成し、第1加速度リミッタが小さいとき、車速上昇の勾配が緩やかな目標加速度を生成する。
 第2加速度リミッタ計算部231c(加速度制限値設定部)は、速度差計算部231aからの速度差が大きいほど加速制限を緩める方向に第2加速度リミッタ(第2加速度制限値)を大きく設定する。つまり、速度差が大きいとき、車速上昇の勾配が急な目標加速度を生成し、速度差が小さいとき、車速上昇の勾配が緩やかな目標加速度を生成する。
 加速度リミッタ調停部231dは、第1加速度リミッタ計算部231bからの第1加速度リミッタと、第2加速度リミッタ計算部231cからの第2加速度リミッタのいずれか小さい方を選択する。そして、最小値選択により選択されたリミッタ値を、最終の加速度リミッタ(加速度制限値)とする。
 加速ジャーク制限値設定部231eは、制限速度が高いほど加速ジャークの制限を緩める方向に加速ジャーク制限値を大きく設定する。この加速ジャーク制限値設定部231eは、加速度リミッタ調停部231dからの加速度リミッタ(加速度制限値)を入力し、加速度リミッタの加速度時間変化(加速ジャーク)を抑えたものを目標加速度として出力する。
 減速度リミッタ計算部231f(減速度制限値設定部)は、制限速度が低いほど減速制限を緩める方向に減速度リミッタ(減速度制限値)を大きく設定する。つまり、減速度リミッタが大きいとき、車速低下の勾配が急な目標減速度を生成し、減速度リミッタが小さいとき、車速低下の勾配が緩やかな目標減速度を生成する。
 減速ジャーク制限値設定部231gは、制限速度が低いほど減速ジャークの制限を緩める方向に減速ジャーク制限値を大きく設定する。この減速ジャーク制限値設定部231gは、減速度リミッタ計算部231fからの減速度リミッタ(減速度制限値)を入力し、減速度リミッタの減速度時間変化(減速ジャーク)を抑えたものを目標減速度として出力する。
 他の車速指令算出部232は、車速指令算出部231(制限速度)に対し、種類が異なる車速指令値を算出する。例えば、ACC(「Adaptive Cruise Control」の略称)に基づいてACC対応の車速プロファイルを作成し、作成した車速プロファイルにより車速指令値(ACC)を算出する。自車の先の停止線に基づいて停止線対応の車速プロファイルを作成し、作成した車速プロファイルにより車速指令値(停止線)を算出する。自車の先のタイトなコーナーに基づいてコーナー減速対応の車速プロファイルを作成し、作成した車速プロファイルにより車速指令値(コーナー減速)を算出する。自車の走行経路に存在する障害物に基づいて障害物対応の車速プロファイルを作成し、作成した車速プロファイルにより車速指令値(障害物)を算出する。
 最小車速指令調停部233は、車速指令算出部231及び他の車速指令算出部232によって算出された複数の車速指令値のうち、最小値を目標車速として選択する。この最小車速指令調停部233では、最小値となる目標車速を選択することに加えて、選択された目標車速の種類に応じた目標加減速度を同時に選択する。つまり、車速指令算出部231(制限速度)により算出された車速指令値が最小車速指令調停部233により選択されると、自車の走行道路の制限速度に基づいて目標車速(=制限速度)及び目標加減速度が生成されることになる。
 次に、作用を説明する。
実施例1の作用を、「加速特性制御処理作用」、「減速特性制御処理作用」、「比較例の課題」、「加速特性制御作用」、「減速特性制御作用」に分けて説明する。
 [加速特性制御処理作用]
 図3は、実施例1の自動運転コントロールユニット2にて実行される加速特性制御処理の流れを示す。図4は、図3のフローチャートのステップS2における制限速度設定処理の流れを示す。図5は、図3のフローチャートのステップS3における加速度制限設定処理の流れを示す。以下、図3~図8に基づいて加速特性制御処理作用を説明する。
 図3の各ステップについて説明する。加速特性制御を開始すると、ステップS1において制限速度設定処理(図4)が実行され、ステップS2へ進む。ステップS2では、ステップS1での制限速度の設定に続き、加速度制限設定処理(図5)が実行され、ステップS3へ進む。ステップS3では、ステップS2での加速度制限の設定に続き、加速度制限量に応じた駆動制御が実行され、加速度特性制御を終了する。
 このように、自車の走行道路の制限速度が高くなるときの加速度特性制御においては、制限速度設定処理(図4)に続き、制限速度に基づいて加速度制限設定処理(図5)が実行され、目標加速度が生成される。そして、自車の走行道路の制限速度が高くなるとき、生成された目標加速度を得る駆動制御を実行することで、制限速度に基づいて制限された加速度特性による加速走行が実現される。
 次に、制限速度情報取得部22により実行される図3のステップS1における制限速度設定処理作用を、図4に示すフローチャートにより説明する。
 ステップS11では、制限速度設定処理が開始されると、制限速度を取得できる地図・標識があるか否かを判断する。YES(地図・標識有り)の場合はステップS12へ進み、NO(地図・標識無し)の場合はステップS13へ進む。
 ステップS12では、ステップS11での地図・標識有りとの判断に続き、地図・標識により自車が走行する道路の制限速度を取得し、ステップS14へ進む。
 ステップS13では、ステップS11での地図・標識無しとの判断に続き、周囲車両の交通流を推定し、交通流に乗って自車が走行可能な上限車速を計算し、ステップS14へ進む。
 ステップS14では、ステップS12での制限速度の取得、或いは、ステップS13での上限車速の計算に続き、自車が走行する道路の制限速度を設定し、制限速度設定処理を終了する。
ここで、ステップS12で地図と標識から2つの制限速度が取得されると、最小速度を制限速度として設定する。ステップS13で上限車速が計算されると、この上限車速を制限速度とする。
 このように、制限速度の取得に際しては、地図又は標識から制限速度が取得されると、取得された制限速度がそのまま制限速度情報とされる。地図又は標識から制限速度が取得されないと、周囲車両の交通流を推定し、交通流に乗って自車が走行可能な車速として計算された上限車速が制限速度情報とされる。なお、地図と標識から2つの制限速度が取得されると、セレクトローによる最小速度が制限速度情報とされる。
 次に、速度差計算部231a、第1加速度リミッタ計算部231b、第2加速度リミッタ計算部231c、加速度リミッタ調停部231dにより実行される図3のステップS2における加速度制限設定処理を、図5に示すフローチャートにより説明する。
 ステップS21では、加速度制限設定処理が開始されると、図6に示す第1加速度制限マップを読み出し、第1加速度制限マップを用いて制限速度に応じた加速度上限値を決め、ステップS24へ進む。
ここで、第1加速度制限マップは、図6に示すように、制限速度が低車速である市街地走行においては、加速度上限値が低い値に設定され、制限速度が高車速である高速道路走行においては、加速度上限値が高い値に設定される。そして、制限速度が低車速から高車速までの郊外路走行においては、低い値と高い値を結ぶ可変値に設定される。
 ステップS22では、加速度制限設定処理が開始されると、自車速を取得し、ステップS23へ進む。
 ステップS23では、ステップS22での自車速の取得に続き、図8に示す第2加速度制限マップを読み出し、制限速度と自車速の偏差(速度差)を計算し、第2加速度制限マップを用いて速度差により加速度制限値を決め、ステップS24へ進む。
ここで、速度差Vdifは、図7に示すように、制限速度Vlimから自車速Vsenseを差し引いた(Vdif=Vlim-Vsense)の式により計算される。第2加速度制限マップは、図8に示すように、速度差Vdifが大きい領域においては、加速度制限値が高い値に設定され、速度差Vdifが小さい領域においては、加速度制限値が低い値に設定される。そして、速度差Vdifが大きい領域から小さい領域へ移行する領域においては、高い値と低い値を結ぶ可変値に設定される。
 ステップS24では、ステップS21とステップS23に続き、複数の加速度制限量の最小値を選択し、最小値選択による値を最終の加速度制限値とし、加速度制限設定処理を終了する。
 このように、加速度の上限を制限する制御は、制限速度に応じて決められた加速度上限値と、速度差Vdifに応じて決められた加速度制限値とのうち、最小値選択による値が最終の加速度制限値とされる。
 よって、制限速度に応じて決められた加速度上限値が最終の加速度制限値とされた際には、図6の第1加速度制限マップにより下記のように加速度が制限される。
(a2) 制限速度が低い市街地走行のときは、加速制限が厳しくされる。
(b2) 制限速度が高い高速道路走行のときは、加速制限が緩められる。
(c2) 制限速度が中程度の郊外路走行のときは、制限速度が高くなるほど加速制限が緩められる。
 一方、速度差Vdifに応じて決められた加速度制限値が最終の加速度制限値とされた際には、図8の第2加速度制限マップにより下記のように加速度が制限される。
(a3) 速度差Vdifが小さい場合は、加速制限が厳しくされる。
(b3) 速度差Vdifが大きい場合は、加速制限が緩められる。
(c3) 速度差Vdifが中程度の場合は、速度差Vdifが大きくなるほど加速制限が緩められる。
 [減速特性制御処理作用]
 図9は、実施例1の自動運転コントロールユニット2にて実行される減速特性制御処理の流れを示す。図10は、図9のフローチャートのステップS5における減速度制限設定処理の流れを示す。以下、図9~図11に基づいて減速特性制御処理作用を説明する。
 図9の各ステップについて説明する。減速特性制御を開始すると、ステップS4において制限速度設定処理(図4)が実行され、ステップS5へ進む。ステップS5では、ステップS4での制限速度の設定に続き、減速度制限設定処理(図10)が実行され、ステップS6へ進む。ステップS6では、ステップS5での減速度制限の設定に続き、減速度制限量に応じた制動制御が実行され、減速度特性制御を終了する。
 ここで、制限速度情報取得部22により実行される図9のステップS4における制限速度設定処理は、加速特性制御処理作用での図4に示すフローチャートにより実行されるため、説明を省略する。
 次に、減速度リミッタ計算部231fにより実行される図9のステップS5における減速度制限設定処理作用を、図10に示すフローチャートにより説明する。
 ステップS51では、減速度制限設定処理が開始されると、図11に示す減速度制限マップを読み出し、減速度制限マップを用いて制限速度に応じた減速度制限値を決め、減速度制限設定処理を終了する。
ここで、減速度制限マップは、図11に示すように、制限速度が低車速である市街地走行においては、減速度制限値が大きな減速度を許容する高い値に設定され、制限速度が高車速である高速道路走行においては、減速度制限値が小さな減速度により制限する低い値に設定される。そして、制限速度が低車速から高車速までの郊外路走行においては、高い値と低い値を結ぶ可変値に設定される。
 このように、減速度の上限を制限する制御は、制限速度に応じて決められた減速度制限値とされる。
 よって、図11の減速度制限マップにより下記のように減速度が制限される。
(a4) 制限速度が低い市街地走行のときは、減速制限が緩められる。
(b4) 制限速度が高い高速道路走行のときは、減速制限が厳しくされる。
(c4) 制限速度が中程度の郊外路走行のときは、制限速度が高くなるほど減速制限が厳しくされる。
 [比較例の課題]
 図12は、一般道から高速道路への合流路における合流作用を示し、図13は、比較例において郊外路から高速道路へ合流する際の加速による車速特性と市街地道路で停車から発進する際の加速による車速特性を示す。以下、図12及び図13に基づいて比較例の課題を説明する。
 まず、比較例は、制限速度と自車速の偏差(速度差)に応じて、制限加速度を設定するものをいう。
 この比較例にあっては、制限速度と自車速の速度差のみを考慮し、自車が走行する道路の制限速度そのものを考慮していない。このため、制限速度が高い高速道路走行と制限速度が低い市街地走行での適切な加速感の両立が難しいという課題がある。
 つまり、制限速度と自車速の速度差が同じである場合には、図13に示すように、同じ加速度(車速上昇勾配)に設定される。従って、制限速度が高い高速道路走行のときに適切な加速度に設定すると、市街地走行のときに加速過剰となり、交通流を乱すと共に乗員に違和感を与える。一方、制限速度が低い市街地走行のときに適切な加速度に設定すると、高速道路走行のときに加速不足となり、交通流を乱すと共に乗員に違和感を与える。
 特に、市街地走行のときに加速過剰になると、自車の周囲の車両がほぼ定速走行しているときに自車のみが加速してしまい、市街地での交通流を乱す。そして、自動運転車両のような運転支援車両の場合には、乗員は交通流に乗って走行することを意図し、自車のみが加速すること意図しないために違和感となる。
 また、高速道路走行のときに加速不足になると、図12に示すように、一般道から高速道路への合流路において合流するとき、高速道路を走行する車両の車速が高いときに自車の車速が低いままのアプローチ走行となり、高速道路へ合流ができない。そして、自動運転車両のような運転支援車両の場合には、乗員は高速道路の交通流に乗ってスムーズに合流することを意図し、合流待ちになることを意図しないために違和感となる。
 [加速特性制御作用]
 図14は、実施例1において郊外路から高速道路へ合流する際の加速による車速特性と市街地道路で停車から発進する際の加速による車速特性を示す。以下、図14に基づいて加速特性制御作用を説明する。
 実施例1において郊外路から高速道路へ合流する際は、制限速度が高い高速道路走行になることで、加速制限が緩められる。つまり、制限速度が高いことで、図14の上部に示すように、比較例(破線特性)に比べて加速度特性(車速上昇勾配特性)が鋭く設定される。
 従って、郊外路から高速道路へ合流するときのアプローチ走行では、自車の車速が高速道路を走行する他車の車速まで応答良く高まり、高速道路の交通流に乗ってスムーズに合流することができる。そして、高速道路へ合流するときに乗員の意図通りの中間加速走行になるため、乗員に違和感を与えることがない。
 実施例1において市街地道路で停車から発進する際は、制限速度が低い市街地走行になることで、加速制限が強められる。つまり、制限速度が低いことで、図14の下部に示すように、比較例(破線特性)に比べて加速度特性(車速上昇勾配特性)が鈍く設定される。
 従って、市街地道路で停車から発進するとき、緩やかに車速が上昇し、ほぼ定速走行している自車の周囲の車両の交通流に乗ってスムーズに合流することができる。そして、市街地道路で発進するときに乗員が意図する通りの緩やかな発進加速走行になるため、乗員に違和感を与えることがない。
 [減速特性制御作用]
 図15は、実施例1において高速道路から郊外路へ分流する際の減速による車速特性と市街地道路で低速走行から停車する際の減速による車速特性を示す。以下、図15に基づいて減速特性制御作用を説明する。
 実施例1において高速道路から郊外路へ分流する際は、制限速度が高い高速道路走行になることで、加速制限とは逆に減速制限が強められる。つまり、高速道路では、制限速度が高いことで、図15の上部に示すように、減速度特性(車速低下勾配特性)が鈍く設定される。
 従って、高速道路から郊外路へ分流するとき、緩やかに車速が低下し、郊外路での自車の周囲の車両の交通流に乗るようにスムーズに分流することができる。そして、高速道路から郊外路へ分流するときに乗員が意図する通りの緩やかな車速変化による減速走行になるため、乗員に違和感を与えることがない。
 実施例1において市街地道路で低速走行から停車する際は、制限速度が低い市街地走行になることで、加速制限とは逆に減速制限が緩められる。つまり、市街地では、制限速度が低いことで、図15の下部に示すように、減速度特性(車速低下勾配特性)が鋭く設定される。
 従って、市街地道路において、制限車速が下がった場合に素早い減速を行うことができ、見通しの悪い道路や急な飛び出しの可能性がある制限車速が低い道路での積極的な安全確保を容易にする。
 次に、効果を説明する。
実施例1における自動運転車両の目標車速生成方法及び目標車速生成装置にあっては、下記に列挙する効果が得られる。
 (1) 自車走行路の制限速度に応じて自車の目標車速を生成する運転支援車両(自動運転車両)の目標車速生成方法である。
走行中、自車走行路の制限速度を取得する。
制限速度に応じて目標車速を生成すると共に目標加速度を生成する。
目標加速度を生成する際、制限速度が高いほど加速制限を緩める方向に加速度制限値(加速度リミッタ)を大きく設定する(目標車速生成部23:図6)。
  このため、運転支援(自動運転)により走行する際、制限速度が異なる様々な道路に対応し、交通流を乱すことなく、乗員に違和感を与えるのを防止する運転支援車両(自動運転車両)の目標車速生成方法を提供することができる。つまり、制限速度により目標加速度を生成するため、自車の走行道路の制限速度に応じた加速特性を設定することができる。そして、様々な道路に対応して、交通流を乱すことなく、乗員に違和感を与えることなく走行することができる。さらに、制限速度が高いほど加速制限を緩める方向に加速度制限値(加速度リミッタ)を大きく設定するため、制限速度が高いときと制限速度が低いときとで、加速感・乗り心地の違いの両立を実現することができる。
 (2) 目標加速度を生成する際、加速度制限値(加速度リミッタ)が大きいとき、車速上昇の勾配が急な目標加速度を生成し、加速度制限値(加速度リミッタ)が小さいとき、車速上昇の勾配が緩やかな目標加速度を生成する(車速指令算出部231:図14)。
  このため、(1)の効果に加え、高速道路走行で交通流の流れに乗るための鋭い加速と、市街地走行で安心感を実現するための緩い加速とを両立することができる。
 (3)目標加速度を生成する際、制限速度が高いほど加速ジャークの制限を緩める方向に加速ジャーク制限値を大きく設定する(加速ジャーク制限値設定部231e:図2)。
  このため、(1)又は(2)の効果に加え、加速ジャークを制限することにより、加速度の時間変化が滑らかになり、加速感・乗り心地の両立を実現することができる。
 (4) 加速度制限値を設定する際、制限速度が高いほど第1加速度制限値(第1加速度リミッタ)を大きく設定し(第1加速度リミッタ計算部231b)、制限速度と自車速の速度差が大きいほど第2加速度制限値(第2加速度リミッタ)を大きく設定し(第2加速度リミッタ計算部231c)、第1加速度制限値と第2加速度制限値のいずれか小さい方を選択する(加速度リミッタ調停部231d:図2)。
  このため、(1)~(3)の効果に加え、制限速度と自車速が離れている間は制限速度に応じた加速を出しながら、制限速度に近づいてきたら、加速を緩めることができる。
 (5) 自車走行路の制限速度に応じて自車の目標車速を生成する運転支援車両(自動運転車両)の目標車速生成方法である。
走行中、自車走行路の制限速度を取得する。
制限速度に応じて目標車速を生成すると共に目標減速度を生成する。目標減速度を生成する際、制限速度が低いほど減速制限を緩める方向に減速度制限値(減速リミッタ)を大きく設定する(車速指令算出部231:図11)。
  このため、運転支援(自動運転)により走行する際、制限速度が異なる様々な道路に対応し、交通流を乱すことなく、市街地走行等での急減速要求に応える運転支援車両(自動運転車両)の目標車速生成方法を提供することができる。つまり、制限速度により目標減速度を生成するため、自車の走行道路の制限速度に応じた減速特性を設定することができる。そして、市街地走行での急な飛び出し等に対する急減速要求に応え、積極的に安全を確保することができる。さらに、制限速度が低いほど減速制限を緩める方向に減速度制限値(減速度リミッタ)を大きく設定するため、制限速度が高いときと制限速度が低いときとで、減速感・乗り心地の違いの両立を実現することができる。
 (6) 目標減速度を生成する際、減速度制限値(減速度リミッタ)が大きいとき、車速低下の勾配が急な目標減速度を生成し、減速度制限値(減速度リミッタ)が小さいとき、車速低下の勾配が緩やかな目標減速度を生成する(車速指令算出部231:図15)。
  このため、(5)の効果に加え、高速道路走行での違和感を生じない緩い減速と、市街地走行で積極的な安全確保を容易にするための鈍い減速とを両立することができる。
 (7)目標減速度を生成する際、制限速度が低いほど減速ジャークの制限を緩める方向に減速ジャーク制限値を大きく設定する(減速ジャーク制限値設定部231g:図2)。
  このため、(5)又は(6)の効果に加え、減速ジャークを制限することにより、減速度の時間変化が滑らかになり、減速感・乗り心地の両立を実現することができる。
 (8) 制限速度情報を取得する際、道路標識を認識することによる法定速度を、制限速度として取得する(制限速度情報取得部22:図1)。
  このため、(1)~(7)の効果に加え、道路標識に記載された法定速度に応じて、加速特性及び減速特性を変更することができる。
 (9) 制限速度情報を取得する際、地図データからの事前情報による法定速度を、制限速度として取得する(制限速度情報取得部22:図1)。
  このため、(1)~(8)の効果に加え、地図データで表現された法定速度に応じて、加速特性及び減速特性を変更することができる。
 (10) 制限速度情報を取得する際、道路標識や地図データから制限速度を取得できないとき、車載センサから得られる複数の周囲車両位置情報から推定される交通流情報に基づき、交通流から大きく逸脱することなく走行できる速度として決定した速度を、制限速度として取得する(制限速度情報取得部22:図1)。
  このため、(1)~(9)の効果に加え、道路標識や地図データから制限速度を取得できないとき、交通流情報に基づいて制限速度を取得することができる。
 (11) 制限速度情報を取得する際、複数の制限速度が取得されたとき、複数の制限速度の最小値を制限速度として選択する(制限速度情報取得部22:図1)。
  このため、(1)~(9)の効果に加え、複数の制限速度に対して、より安全な走行が確保される方を選択することができる。
 (12) 自車走行路の制限速度に応じて自車の目標車速を生成するコントローラ(自動運転コントロールユニット2)を搭載した運転支援車両の目標車速生成装置であって、コントローラ(自動運転コントロールユニット2)は、制限速度情報取得部22と、目標車速生成部23と、を備える。
制限速度情報取得部22は、走行中、自車走行路の制限速度を取得する。
目標車速生成部23は、制限速度に応じて目標車速を生成すると共に目標加速度を生成し、目標加速度を生成する際、制限速度が高いほど加速制限を緩める方向に加速度制限値を大きく設定する(図1)。
  このため、運転支援(自動運転)により走行する際、制限速度が異なる様々な道路に対応し、交通流を乱すことなく、乗員に違和感を与えるのを防止する運転支援車両(自動運転車両)の目標車速生成装置を提供することができる。
 以上、本開示の運転支援車両の目標車速生成方法及び目標車速生成装置を実施例1に基づき説明してきた。しかし、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、制限速度情報取得部22として、道路標識と地図データと自車周囲の交通流から制限速度を取得する例を示した。しかし、制限速度情報取得部としては、交通関係のインフラ情報により、制限速度が天候などにより一時的に変更されたときの制限速度情報を取得する例なども含まれる。
 実施例1では、制限前の目標加速度特性や目標減速度特性を制限速度に応じてリミッタ計算処理することで加速度制限値や減速度制限値を得る例を示した。しかし、例えば、制限前の目標加速度特性や目標減速度特性を制限速度に応じたフィルタを用いるフィルタ処理により加速度制限値や減速度制限値を得るようにしても良い。
 実施例1では、本開示の目標車速生成方法及び目標車速生成装置を、自動運転モードの選択により操舵/駆動/制動が自動制御される自動運転車両に適用する例を示した。しかし、本開示の目標車速生成方法及び目標車速生成装置は、目標車速を表示することでドライバの運転支援をする運転支援車両やACCのみを搭載した運転支援車両などにように、目標車速を用いてドライバの運転支援をする車両であれば適用することができる。

Claims (12)

  1.  自車走行路の制限速度に応じて自車の目標車速を生成する運転支援車両の目標車速生成方法であって、
     走行中、自車走行路の制限速度を取得し、
     前記制限速度に応じて目標車速を生成すると共に目標加速度を生成し、
     前記目標加速度を生成する際、前記制限速度が高いほど加速制限を緩める方向に加速度制限値を大きく設定する
     ことを特徴とする運転支援車両の目標車速生成方法。
  2.  請求項1に記載された運転支援車両の目標車速生成方法において、
     前記目標加速度を生成する際、前記加速度制限値が大きいとき、車速上昇の勾配が急な目標加速度を生成し、前記加速度制限値が小さいとき、車速上昇の勾配が緩やかな目標加速度を生成する
     ことを特徴とする運転支援車両の目標車速生成方法。
  3.  請求項1又は2に記載された運転支援車両の目標車速生成方法において、
     前記目標加速度を生成する際、前記制限速度が高いほど加速ジャークの制限を緩める方向に加速ジャーク制限値を大きく設定する
     ことを特徴とする運転支援車両の目標車速生成方法。
  4.  請求項1から3までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記加速度制限値を設定する際、前記制限速度が高いほど第1加速度制限値を大きく設定し、前記制限速度と自車速の速度差が大きいほど第2加速度制限値を大きく設定し、前記第1加速度制限値と前記第2加速度制限値のいずれか小さい方を前記加速度制限値として選択する
     ことを特徴とする運転支援車両の目標車速生成方法。
  5.  自車走行路の制限速度に応じて自車の目標車速を生成する運転支援車両の目標車速生成方法であって、
     走行中、自車走行路の制限速度を取得し、
     前記制限速度に応じて目標車速を生成すると共に目標減速度を生成し、
     前記目標減速度を生成する際、前記制限速度が低いほど減速制限を緩める方向に減速度制限値を大きく設定する
     ことを特徴とする運転支援車両の目標車速生成方法。
  6.  請求項5に記載された運転支援車両の目標車速生成方法において、
     前記目標減速度を生成する際、前記減速度制限値が大きいとき、車速低下の勾配が急な目標減速度を生成し、前記減速度制限値が小さいとき、車速低下の勾配が緩やかな目標減速度を生成する
     ことを特徴とする運転支援車両の目標車速生成方法。
  7.  請求項5又は6に記載された運転支援車両の目標車速生成方法において、
     前記目標減速度を生成する際、前記制限速度が低いほど減速ジャークの制限を緩める方向に減速ジャーク制限値を大きく設定する
     ことを特徴とする運転支援車両の目標車速生成方法。
  8.  請求項1から7までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記制限速度情報を取得する際、道路標識を認識することによる法定速度を、制限速度として取得する
     ことを特徴とする運転支援車両の目標車速生成方法。
  9.  請求項1から7までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記制限速度情報を取得する際、地図データからの事前情報による法定速度を、制限速度として取得する
     ことを特徴とする運転支援車両の目標車速生成方法。
  10.  請求項1から7までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記制限速度情報を取得する際、道路標識や地図データから制限速度を取得できないとき、車載センサから得られる複数の周囲車両位置情報から推定される交通流情報に基づき、交通流から大きく逸脱することなく走行できる速度として決定した速度を、制限速度として取得する
     ことを特徴とする運転支援車両の目標車速生成方法。
  11.  請求項8から10までの何れか一項に記載された運転支援車両の目標車速生成方法において、
     前記制限速度情報を取得する際、複数の制限速度が取得されたとき、複数の制限速度の最小値を制限速度として選択する
     ことを特徴とする運転支援車両の目標車速生成方法。
  12.  自車走行路の制限速度に応じて自車の目標車速を生成するコントローラを搭載した運転支援車両の目標車速生成装置であって、
     前記コントローラは、
     走行中、自車走行路の制限速度を取得する制限速度情報取得部と、
     前記制限速度に応じて目標車速を生成すると共に目標加速度を生成する目標車速生成部と、を備え、
     前記目標車速生成部は、前記目標加速度を生成する際、前記制限速度が高いほど加速制限を緩める方向に加速度制限値を大きく設定する
     ことを特徴とする運転支援車両の目標車速生成装置。
PCT/JP2017/024401 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置 WO2019008649A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2017/024401 WO2019008649A1 (ja) 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置
BR112020000079-5A BR112020000079A2 (pt) 2017-07-03 2017-07-03 método de geração de velocidade alvo do veículo e dispositivo de geração de velocidade alvo do veículo para veículos com direção assistida
CN201780091967.7A CN110770105B (zh) 2017-07-03 2017-07-03 驾驶辅助车辆的目标车速生成方法及目标车速生成装置
JP2019528216A JP6760502B2 (ja) 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置
RU2020104286A RU2750871C1 (ru) 2017-07-03 2017-07-03 Способ формирования целевой скорости транспортного средства и устройство формирования целевой скорости транспортного средства для транспортного средства с помощью при вождении
EP17917114.5A EP3650294B1 (en) 2017-07-03 2017-07-03 Target vehicle speed generation method and target vehicle speed generation device of driving assistance vehicle
US16/617,012 US11400932B2 (en) 2017-07-03 2017-07-03 Target vehicle speed generation method and target vehicle speed generation device for driving-assisted vehicle
KR1020207002732A KR20200022482A (ko) 2017-07-03 2017-07-03 운전 지원 차량의 목표 차속 생성 방법 및 목표 차속 생성 장치
MX2019015812A MX2019015812A (es) 2017-07-03 2017-07-03 Metodo de generacion de velocidad de vehiculo objetivo y dispositivo de generacion de velocidad de vehiculo objetivo para vehiculo de conduccion asistida.
CA3068955A CA3068955A1 (en) 2017-07-03 2017-07-03 Target vehicle speed generation method and target vehicle speed generation device for driving-assisted vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024401 WO2019008649A1 (ja) 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置

Publications (1)

Publication Number Publication Date
WO2019008649A1 true WO2019008649A1 (ja) 2019-01-10

Family

ID=64949790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024401 WO2019008649A1 (ja) 2017-07-03 2017-07-03 運転支援車両の目標車速生成方法及び目標車速生成装置

Country Status (10)

Country Link
US (1) US11400932B2 (ja)
EP (1) EP3650294B1 (ja)
JP (1) JP6760502B2 (ja)
KR (1) KR20200022482A (ja)
CN (1) CN110770105B (ja)
BR (1) BR112020000079A2 (ja)
CA (1) CA3068955A1 (ja)
MX (1) MX2019015812A (ja)
RU (1) RU2750871C1 (ja)
WO (1) WO2019008649A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172811A (zh) * 2019-07-03 2021-01-05 丰田自动车株式会社 车辆
WO2021172496A1 (ja) * 2020-02-28 2021-09-02 いすゞ自動車株式会社 運転支援装置
CN113895446A (zh) * 2021-12-13 2022-01-07 智道网联科技(北京)有限公司 自动驾驶车辆速度确定方法、装置、设备及存储介质
JP2022014171A (ja) * 2020-07-06 2022-01-19 本田技研工業株式会社 制御装置、制御方法、およびプログラム
WO2022249490A1 (ja) * 2021-05-28 2022-12-01 日産自動車株式会社 運転制御方法及び運転制御装置
US11608061B2 (en) 2019-09-12 2023-03-21 Toyota Jidosha Kabushiki Kaisha Vehicle control device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111179590B (zh) * 2019-12-24 2020-11-20 山东国惠安创智能物联发展有限公司 一种电动车行车速度的远程控制方法及服务器
JP7140153B2 (ja) * 2020-03-03 2022-09-21 トヨタ自動車株式会社 表示制御装置
US11623662B2 (en) * 2020-05-08 2023-04-11 Baidu Usa Llc Planning system for speed limit changes for autonomous vehicles
CN114355868A (zh) * 2020-09-27 2022-04-15 财团法人车辆研究测试中心 自驾车的动态速度规划方法及其系统
US11681780B2 (en) 2020-09-30 2023-06-20 Nissan North America, Inc. Annotation and mapping for vehicle operation in low-confidence object detection conditions
CN112477630B (zh) * 2020-12-04 2022-06-24 江苏科技大学 一种提升电动车起步舒适度的控制方法
US20230117152A1 (en) * 2021-10-18 2023-04-20 Kawasaki Motors, Ltd. Control requirement determiner, rough terrain vehicle, and control requirement determining method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355232A (ja) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd 先行車追従制御装置
JP2011020510A (ja) * 2009-07-14 2011-02-03 Toyota Motor Corp 走行支援装置
JP2016183647A (ja) 2015-03-26 2016-10-20 トヨタ自動車株式会社 車速制限装置
JP2016215791A (ja) * 2015-05-19 2016-12-22 トヨタ自動車株式会社 車速制御装置及び車両

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19938266A1 (de) * 1999-08-12 2001-02-15 Volkswagen Ag Verfahren und Einrichtung zur elektronischen bzw. elektronisch visuellen Erkennung von Verkehrszeichen
DE10241059A1 (de) * 2002-09-05 2004-03-18 Robert Bosch Gmbh Verfahren und Vorrichtung zur Begrenzung der Geschwindigkeit eines Fahrzeugs
DE10358968B4 (de) 2003-12-16 2012-04-26 Bayerische Motoren Werke Aktiengesellschaft Fahrgeschwindigkeitsregelvorrichtung für ein Kraftfahrzeug, die mit einem Navigationssystem verbunden ist
JP4807107B2 (ja) * 2006-03-02 2011-11-02 日産自動車株式会社 車両用走行制御装置
JP2007255382A (ja) * 2006-03-24 2007-10-04 Toyota Motor Corp 車両走行制御装置および車両走行制御方法
US8055427B2 (en) * 2008-12-18 2011-11-08 GM Global Technology Operations LLC Method and apparatus for speed-limit following cruise control
GB2499657B (en) * 2012-02-27 2018-07-11 Ford Global Tech Llc Vehicle speed control apparatus and method
DE102012104069B3 (de) * 2012-05-09 2013-03-14 Continental Teves Ag & Co. Ohg Verfahren zur Ermittlung einer Geschwindigkeitsempfehlung
KR101358330B1 (ko) * 2012-09-26 2014-02-12 현대모비스 주식회사 차속 제어 장치, 이를 포함하는 차속 제어 시스템 및 그 제어 방법
DE102014215671A1 (de) * 2014-08-07 2016-02-11 Bayerische Motoren Werke Aktiengesellschaft Fahrerassistenzsystem in einem Kraftfahrzeug
JP5982034B1 (ja) * 2015-03-30 2016-08-31 富士重工業株式会社 車両の運転支援システム
JP2017001485A (ja) * 2015-06-09 2017-01-05 トヨタ自動車株式会社 車両の運転支援装置
EP3144197B1 (de) * 2015-09-15 2021-07-14 Ford Global Technologies, LLC Verfahren zur automatischen beschleunigungsanpassung bei einem kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000355232A (ja) * 1999-06-15 2000-12-26 Nissan Motor Co Ltd 先行車追従制御装置
JP2011020510A (ja) * 2009-07-14 2011-02-03 Toyota Motor Corp 走行支援装置
JP2016183647A (ja) 2015-03-26 2016-10-20 トヨタ自動車株式会社 車速制限装置
JP2016215791A (ja) * 2015-05-19 2016-12-22 トヨタ自動車株式会社 車速制御装置及び車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650294A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112172811A (zh) * 2019-07-03 2021-01-05 丰田自动车株式会社 车辆
US11608061B2 (en) 2019-09-12 2023-03-21 Toyota Jidosha Kabushiki Kaisha Vehicle control device
WO2021172496A1 (ja) * 2020-02-28 2021-09-02 いすゞ自動車株式会社 運転支援装置
JP2022014171A (ja) * 2020-07-06 2022-01-19 本田技研工業株式会社 制御装置、制御方法、およびプログラム
JP7154256B2 (ja) 2020-07-06 2022-10-17 本田技研工業株式会社 制御装置、制御方法、およびプログラム
US11891093B2 (en) 2020-07-06 2024-02-06 Honda Motor Co., Ltd. Control device, control method, and storage medium for controlling a mobile device along a conditions-varying travel path
WO2022249490A1 (ja) * 2021-05-28 2022-12-01 日産自動車株式会社 運転制御方法及び運転制御装置
JP7211551B1 (ja) * 2021-05-28 2023-01-24 日産自動車株式会社 運転制御方法及び運転制御装置
CN113895446A (zh) * 2021-12-13 2022-01-07 智道网联科技(北京)有限公司 自动驾驶车辆速度确定方法、装置、设备及存储介质
CN113895446B (zh) * 2021-12-13 2022-02-22 智道网联科技(北京)有限公司 自动驾驶车辆速度确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN110770105B (zh) 2022-07-05
RU2750871C1 (ru) 2021-07-05
JPWO2019008649A1 (ja) 2020-03-19
US11400932B2 (en) 2022-08-02
KR20200022482A (ko) 2020-03-03
CA3068955A1 (en) 2019-01-10
MX2019015812A (es) 2020-02-07
JP6760502B2 (ja) 2020-09-23
EP3650294A1 (en) 2020-05-13
US20210276550A1 (en) 2021-09-09
CN110770105A (zh) 2020-02-07
EP3650294A4 (en) 2020-08-26
EP3650294B1 (en) 2022-03-23
BR112020000079A2 (pt) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6760502B2 (ja) 運転支援車両の目標車速生成方法及び目標車速生成装置
CN110053619B (zh) 车辆控制装置
JP6656601B2 (ja) 車両制御装置
RU2660158C1 (ru) Устройство управления движением и способ управления движением
CN107792064B (zh) 车辆控制装置
WO2017047261A1 (ja) 車線変更制御装置
CN111433094A (zh) 车辆控制装置
CN111247045A (zh) 车辆控制装置
CN111278706A (zh) 车辆控制装置
CN110650877A (zh) 车辆控制装置
KR20170091144A (ko) 목표 경로 생성 장치 및 주행 제어 장치
CN108012539B (zh) 车辆控制装置
CN111132883A (zh) 车辆控制装置
WO2016110733A1 (ja) 目標経路生成装置およぴ走行制御装置
JP2019084842A (ja) 車両制御装置
CN111132882A (zh) 车辆控制装置
JP6954469B2 (ja) 運転支援方法及び運転支援装置
CN108064207B (zh) 车辆控制装置
JP6376522B2 (ja) 車両制御装置
JP6673531B2 (ja) 運転支援車両の目標車速生成方法及び目標車速生成装置
JP6376520B2 (ja) 車両制御装置
JP2021099541A (ja) 走行支援方法及び走行支援装置
JP2020023214A (ja) 運転支援方法及び運転支援装置
US11851084B2 (en) Systems and methods for controlling an autonomous vehicle
WO2022130842A1 (ja) 車両運動制御装置、および、車両運動制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528216

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3068955

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020000079

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207002732

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017917114

Country of ref document: EP

Effective date: 20200203

ENP Entry into the national phase

Ref document number: 112020000079

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200102