WO2019008639A1 - 高周波スイッチ - Google Patents

高周波スイッチ Download PDF

Info

Publication number
WO2019008639A1
WO2019008639A1 PCT/JP2017/024359 JP2017024359W WO2019008639A1 WO 2019008639 A1 WO2019008639 A1 WO 2019008639A1 JP 2017024359 W JP2017024359 W JP 2017024359W WO 2019008639 A1 WO2019008639 A1 WO 2019008639A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
gate
source
drain
back gate
Prior art date
Application number
PCT/JP2017/024359
Other languages
English (en)
French (fr)
Inventor
孝信 藤原
充弘 下澤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US16/616,849 priority Critical patent/US11088685B2/en
Priority to JP2019528206A priority patent/JP6701451B2/ja
Priority to EP17916875.2A priority patent/EP3641134B1/en
Priority to PCT/JP2017/024359 priority patent/WO2019008639A1/ja
Publication of WO2019008639A1 publication Critical patent/WO2019008639A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/16Modifications for eliminating interference voltages or currents
    • H03K17/161Modifications for eliminating interference voltages or currents in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K2017/066Maximizing the OFF-resistance instead of minimizing the ON-resistance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0018Special modifications or use of the back gate voltage of a FET
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0054Gating switches, e.g. pass gates

Definitions

  • the present invention relates to a high frequency switch using a semiconductor switch.
  • a high frequency switch using FET (Field Effect Transistor) manufactured by a triple well process is known as a high frequency switch used in a wireless communication device.
  • the basic operation of the high frequency switch is to switch the signal between the source and the drain between the conductive state and the blocked state by the control voltage to the gate.
  • the voltage of the source or drain changes with time according to the input signal amplitude.
  • the gate or back gate is biased at a fixed potential, the voltage of the source or drain changes, so that Vgs (source-gate voltage) or Vgb (back gate-gate voltage) of the FET is timed. Change and cause signal distortion.
  • the gate and the back gate of the FET have open impedance not only at the time of conduction but also at the time of interruption. Therefore, there has been a problem that a signal input from the source (or drain) at the time of shutoff leaks to the drain (or source) through the parasitic capacitance, and the isolation at the time of shutoff is deteriorated.
  • the present invention has been made to solve such problems, and it is an object of the present invention to provide a high frequency switch capable of suppressing signal leakage through a gate and a back gate at shutoff.
  • a high frequency switch has a drain, a source, a gate and a back gate, and a transistor electrically connected or disconnected between the drain and the source by controlling the voltage of the gate, and between the back gate and the high frequency ground. And a first switch circuit disposed in parallel with the resistive element between the back gate and the high frequency ground and shorting the back gate and the high frequency ground at the time of shutoff.
  • the high frequency switch according to the present invention is provided with a first switch circuit disposed in parallel with the resistive element between the back gate and the high frequency ground, and shorting the back gate and the high frequency ground at the time of interruption. This makes it possible to suppress signal leakage through the gate and back gate at the time of cutoff.
  • FIG. 1 is a block diagram of the high frequency switch according to the present embodiment.
  • the high frequency switch according to the present embodiment includes an NMOS transistor 105 having a source 101, a drain 102, a gate 103, and a back gate 104, resistive elements 109b and 109a for biasing the gate 103 and the back gate 104, and a first switch circuit. 106a and a second switch circuit 106b.
  • the gate 103 is connected to the gate control terminal 108 through the resistive element 109 b
  • the back gate 104 is connected to the high frequency ground 107 through the resistive element 109 a.
  • the first switch circuit 106 a is connected in parallel with the resistive element 109 a between the back gate 104 and the high frequency ground 107.
  • the second switch circuit 106 b is connected in parallel with the resistive element 109 b between the gate 103 and the high frequency ground 107.
  • the NMOS transistor 105 most widely used as a high frequency switch electrically connects or disconnects between the source 101 and the drain 102 by an applied voltage to the gate 103 (hereinafter referred to as “conductive state” or “cut off state”). Called).
  • conductive state or “cut off state”.
  • the voltage applied to the gate control terminal 108 is applied to the gate 103 of the NMOS transistor 105 via the resistive element 109b which is a bias resistor and exceeds the threshold of the NMOS transistor 105, it becomes “conductive”.
  • the voltage applied to the gate 103 is less than or equal to the threshold value, it will be in the "off state”.
  • the voltage applied to the gate 103 is set to the maximum voltage (hereinafter referred to as High) of the transistor in the “conductive state” and to the ground potential (hereinafter referred to as “Low”) in the “blocked state”.
  • the first switch circuit 106 a and the second switch circuit 106 b make the back gate 104 and the gate 103 an open impedance in the “conductive state”, and make the back gate 104 and the gate 103 a short circuit impedance in the “cut state”.
  • isolation hereinafter simply referred to as isolation
  • the input signal from the source 101 leaks to the drain 102 via the parasitic capacitance of the device itself of the NMOS transistor 105 and the node of the gate 103 or the back gate 104, even in the “shutdown state”. This is the cause of the low isolation in the "off state” in the conventional high frequency switch.
  • the input signal from the source 101 or the drain 102 in the “cutoff state” can be released to the high frequency ground 107 via the first switch circuit 106 a and the second switch circuit 106 b. it can. As a result, isolation in the "off state” can be improved.
  • the first switch circuit 106a and the second switch circuit 106 b can be realized by, for example, a switch circuit 205 using an NMOS transistor 202 as shown in FIG.
  • the control voltage source 204 controls the gate 206 of the NMOS transistor 202.
  • the back gate 104 and the gate 103 in FIG. 1 are connected to the terminal 201.
  • the terminal 201 is connected to the drain of the NMOS transistor 202, and the source of the NMOS transistor 202 is connected to the high frequency ground 203.
  • the first switch circuit 106a and the second switch circuit 106b can also be realized by a switch circuit 305 using an NMOS transistor 302 and an impedance transformer 306 at a desired frequency as shown in FIG. is there.
  • the impedance transformer 306 is connected between the terminal 301 and the drain of the NMOS transistor 302, and the source of the NMOS transistor 302 is connected to the high frequency ground 303.
  • a control voltage source 304 is connected to apply a voltage to the gate 307 of the NMOS transistor 302. This circuit configuration is effective when it is desired to arrange the NMOS transistor 302 physically far from the NMOS transistor 105 used for signal conduction.
  • the operation of the control voltage source 304 is different between the control voltage source 204 described in FIG. 2 and the output voltage is inverted between High and Low.
  • Low is applied from the control voltage source 304 to the gate 307
  • High is applied from the control voltage source 304 to the gate 307.
  • the impedance transformer 306 further inverts the impedance of the terminal 301 (i.e., the back gate 104 and the gate 103) by shorting and opening. Become.
  • the purpose of the first switch circuit 106 a and the second switch circuit 106 b is to short the gate 103 and the back gate 104 to the high frequency ground 107 in the “off state”, and many configurations having similar operations are considered. Therefore, the first switch circuit 106 a and the second switch circuit 106 b are not limited to the configurations shown in FIGS. 2 and 3.
  • a transistor having a drain, a source, a gate, and a back gate, and controlling the voltage of the gate electrically connects or disconnects the drain and the source.
  • a resistive element disposed between the back gate and the high frequency ground, and a first switch circuit disposed in parallel with the resistive element between the back gate and the high frequency ground and shorting the back gate and the high frequency ground at the time of disconnection
  • signal leakage through the gate and back gate at shutoff can be suppressed.
  • the second switch circuit disposed between the gate and the high frequency ground and shorting the gate and the high frequency ground at the time of disconnection is provided, isolation at the time of disconnection is further added. It can be improved.
  • FIG. 4 is a block diagram of the high frequency switch according to the second embodiment.
  • FIG. 5 is a cross-sectional view of a transistor in the high frequency switch of the second embodiment.
  • the high frequency switch according to the second embodiment includes an NMOS transistor 405 having a source 401, a drain 402, a gate 403 and a back gate 404, a resistive element 409 for biasing the gate 403, a first switch circuit 406a and a second switch.
  • a circuit 406b is provided.
  • the NMOS transistor 405 including the source 401, the drain 402, the gate 403, and the back gate 404 is the same as the NMOS transistor 105 including the source 101, the drain 102, the gate 103, and the back gate 104 in the first embodiment.
  • the resistance element 409 and the gate control terminal 408 which are connected to the gate 403 are the same as the resistance element 109 b and the gate control terminal 108 in the first embodiment.
  • the first switch circuit 406 a in the second embodiment is configured using the parasitic diode 411 of the NMOS transistor 405. That is, the first switch circuit 406 a is connected to the parasitic diode 411 whose anode side is connected to the back gate 404, the bias potential control terminal 412 connected to the cathode side of the parasitic diode 411, and the bias potential control terminal 412. It comprises a first control voltage source 415a. Further, a bias potential control terminal 413 is disposed on the anode side of the parasitic diode 411 via the resistance element 410, and the second control voltage source 415b is connected to the bias potential control terminal 413.
  • the second switch circuit 406b in the second embodiment is configured the same as the second switch circuit 106b in the first embodiment, but may be configured the same as the first switch circuit 406a.
  • a bias potential control terminal (source / drain bias control terminal) 414 is provided for the source 401 and the drain 402 via the resistance element 409, and a third control voltage is applied to the bias potential control terminal 414.
  • a source (source drain bias control voltage source) 415 c is connected. Note that a resistive element 409 connected between the bias potential control terminal 414 and the source 401, a resistive element 409 connected between the bias potential control terminal 414 and the drain 402, a gate 403 and a gate control terminal 408.
  • the resistance values of the resistance elements 409 connected between the two are equal, but may be appropriately different depending on the design conditions.
  • the NMOS transistor 405 includes a drain 501 and a source 503 to be an N-type semiconductor, an N well 505 for back gate separation, a back gate 504 to be a P-type semiconductor, a silicon common substrate 506 and a gate 502 for channel control. .
  • a parasitic diode 507 formed on the PN junction plane between the back gate 504 and the N well 505 corresponds to the parasitic diode 411 in FIG.
  • the relationship with the structure of FIG. 4 of another structure is as follows. 5 corresponds to the drain 402, the gate 502 to the gate 403, the source 503 to the source 401, the back gate 504 to the back gate 404, and the N well 505 to the bias potential control terminal 412, respectively.
  • the parasitic diode 411 is used to short the back gate 404 to the high frequency ground in the “off state”.
  • the anode side of the parasitic diode 411 is connected to the second control voltage source 415b via the bias resistance element 410, and the cathode side is connected to the first control voltage source 415a. Therefore, parasitic diode 411 (parasitic diode 507 in FIG. 5) is electrically shorted by setting parasitic diode 411 to forward bias or reverse bias in first control voltage source 415a and second control voltage source 415b. Or can be open.
  • the back gate 404 and the first control voltage source 415 a are shorted by setting the parasitic diode 411 forward bias. Since the first control voltage source 415a is a voltage source and has a low output impedance, a signal leaked from the source 401 or drain 402 to the back gate 404 can be released to the first control voltage source 415a.
  • the back gate 404 and the first control voltage source 415a can be electrically separated by reverse-biasing the parasitic diode 411. Therefore, the signal leaked from the source 401 or the drain 402 to the back gate 404 does not escape to the first control voltage source 415a. As a result, it is possible to prevent passage loss deterioration as a high frequency switch.
  • the second control voltage source 415 b is biased to a threshold voltage or more of the diode and
  • the control voltage source 415c is biased to the breakdown voltage of the NMOS transistor 405, and the first control voltage source 415a is biased to ground.
  • the reason for controlling the bias potential by the third control voltage source 415c in the above-described operation will be described.
  • the on-resistance is reduced by increasing the voltage between the gate 403 and the source 401 / drain 402 of the NMOS transistor 405 to minimize the passage loss. That is, by biasing the third control voltage source 415 c to the ground, the voltage between the gate 403 and the drain 402 (or the voltage between the gate 403 and the source 401) is determined by the relationship with the voltage applied from the gate control terminal 408. It can be enlarged.
  • the PN junction capacitance is reduced by reverse biasing the back gate 404, which is a P-type semiconductor, and the source 401 and the drain 402, which are N-type semiconductors. Signal leakage to 404 can be suppressed and isolation can be further improved. That is, signal leakage from the source 401 and the drain 402 to the back gate 404 is achieved by setting the third control voltage source 415 c to the withstand voltage of the NMOS transistor 405 equal to or higher than the bias voltage of the second control voltage source 415 b. Can be reduced.
  • the configuration of the resistive element 409 connected to the source 401 and the drain 402, the bias potential control terminal 414, and the third control voltage source 415c may be applied to the NMOS transistor 105 of the first embodiment.
  • the transistor is an NMOS transistor
  • the first switch circuit is an N well for electrically disconnecting the semiconductor substrate and the back gate in the NMOS transistor.
  • the switch circuit is separately disposed because the parasitic diode formed on the junction surface between the gate and the back gate and the control voltage source for controlling the bias potential of the parasitic diode are used. There is no need for this, which can contribute to the miniaturization of the high frequency switch.
  • the bias potential via the source / drain bias control terminal depending on the source / drain bias control terminal for controlling the bias potential of the source and drain and the conduction or cutoff state of the transistor since the source-drain bias control voltage source for controlling the power supply voltage is provided, the passage loss in the conduction state can be reduced, and the isolation at the time of interruption can be further improved.
  • the present invention allows free combination of each embodiment, or modification of any component of each embodiment, or omission of any component in each embodiment. .
  • the high frequency switch according to the present invention relates to a configuration in which the signal between the source and the drain is switched to the conduction state or the blocking state by the control voltage to the gate, and is suitable for use as a high frequency switch of a wireless communication device. ing.

Landscapes

  • Electronic Switches (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

NMOSトランジスタ(105)は、ゲート(103)の電位を制御することでドレイン(102)とソース(101)間を電気的に導通または遮断する。NMOSトランジスタ(105)のバックゲート(104)と高周波接地(107)との間に抵抗素子(109a)が接続される。バックゲート(104)と高周波接地(107)との間に抵抗素子(109a)と並列に第1のスイッチ回路(106a)を配置し、遮断時にバックゲート(104)と高周波接地(107)とを短絡する。

Description

高周波スイッチ
 本発明は、半導体スイッチを用いた高周波スイッチに関する。
 無線通信機器で使用される高周波スイッチには、トリプルウエルプロセスにより製造されたFET(Field Effect Transistor)を用いた高周波スイッチが知られている。高周波スイッチは、ゲートへの制御電圧によってソースとドレイン間の信号を導通と遮断の状態に切り替えることが基本動作となる。
 高周波スイッチに高周波信号を印加する時、入力信号振幅に応じてソースまたはドレインの電圧が時間変化する。このとき、ゲートやバックゲートを固定電位でバイアスしてしまうと、ソースまたはドレインの電圧が変化することで、FETのVgs(ソース―ゲート間電圧)やVgb(バックゲート―ゲート間電圧)が時間で変化し、信号歪みの原因となる。そこで、従来では、ゲートやバックゲートと高周波接地との間に抵抗素子を配置した構成があった(例えば、特許文献1参照)。この抵抗素子により、ゲートやバックゲートが高周波的に開放インピーダンスとなり、またFET自体のゲートやバックゲートとソースやドレインとの寄生容量により、ゲートやバックゲートの電位をソースやドレイン電位の時間変動に追従させることができる。結果として、VgsやVgbが一定となり、信号歪みを回避することができる。
特開平10-242826公報
 しかしながら、上記従来の高周波スイッチでは、導通時だけではなく遮断時にもFETのゲート及びバックゲートを開放インピーダンスとする。従って、遮断時にソース(またはドレイン)から入力された信号が寄生容量を介してドレイン(またはソース)へとリークし、遮断時のアイソレーションが劣化するという課題があった。
 この発明は、かかる問題を解決するためになされたもので、遮断時のゲート及びバックゲートを介した信号リークを抑えることのできる高周波スイッチを提供することを目的とする。
 この発明に係る高周波スイッチは、ドレイン、ソース、ゲート及びバックゲートを有し、ゲートの電圧を制御することでドレインとソース間を電気的に導通または遮断するトランジスタと、バックゲートと高周波接地の間に配置された抵抗素子と、バックゲートと高周波接地の間に抵抗素子と並列に配置され、遮断時にバックゲートと高周波接地間を短絡する第1のスイッチ回路とを備えたものである。
 この発明に係る高周波スイッチは、バックゲートと高周波接地の間に抵抗素子と並列に配置され、遮断時にバックゲートと高周波接地間を短絡する第1のスイッチ回路を備えたものである。これにより、遮断時のゲート及びバックゲートを介した信号リークを抑えることができる。
この発明の実施の形態1の高周波スイッチを示す構成図である。 この発明の実施の形態1の高周波スイッチにおけるスイッチ回路の詳細を示す構成図である。 この発明の実施の形態1の高周波スイッチにおけるスイッチ回路の他の例の詳細を示す構成図である。 この発明の実施の形態2の高周波スイッチを示す構成図である。 この発明の実施の形態2の高周波スイッチにおけるNMOSトランジスタの断面図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、本実施の形態による高周波スイッチの構成図である。
 本実施の形態による高周波スイッチは、ソース101、ドレイン102、ゲート103、バックゲート104を有するNMOSトランジスタ105と、ゲート103及びバックゲート104のバイアス用の抵抗素子109b及び109aと、第1のスイッチ回路106a及び第2のスイッチ回路106bを備える。ゲート103は抵抗素子109bを介してゲート制御端子108に接続され、バックゲート104は抵抗素子109aを介して高周波接地107に接続されている。第1のスイッチ回路106aはバックゲート104と高周波接地107との間に抵抗素子109aと並列に接続されている。第2のスイッチ回路106bは、ゲート103と高周波接地107との間に、抵抗素子109bと並列に接続されている。
 高周波スイッチとして最も広く用いられるNMOSトランジスタ105は、ゲート103への印加電圧によって、ソース101とドレイン102の間を電気的に導通または遮断する(以降、これを「導通状態」または「遮断状態」と称する)。ゲート制御端子108への印加電圧がバイアス抵抗である抵抗素子109bを介してNMOSトランジスタ105のゲート103へ印加されて、NMOSトランジスタ105のしきい値を超えると、「導通状態」となる。逆に、ゲート103への印加電圧がしきい値以下だと「遮断状態」となる。一般的にゲート103への印加電圧は、「導通状態」ではトランジスタの最大電圧(以降、Highと称する)に、「遮断状態」では接地電位(以降、Lowに称する)に設定する。
 次に、第1のスイッチ回路106aと第2のスイッチ回路106bの動作を説明する。これら第1のスイッチ回路106a及び第2のスイッチ回路106bは、「導通状態」ではバックゲート104及びゲート103を開放インピーダンスとし、「遮断状態」ではバックゲート104及びゲート103を短絡インピーダンスとする。
 これらの第1のスイッチ回路106a及び第2のスイッチ回路106bにより、「遮断状態」のソース101とドレイン102との電気的なアイソレーション(以降、単にアイソレーションと称する)を改善することのできる理由を説明する。例えばソース101からの入力信号は、「遮断状態」であっても、NMOSトランジスタ105のデバイス自体が有する寄生容量とゲート103またはバックゲート104のノードを経由して、ドレイン102へと漏えいする。これが従来の高周波スイッチにおける「遮断状態」のアイソレーションが低い原因である。しかしながら、本実施の形態では、「遮断状態」におけるソース101またはドレイン102からの入力信号を、第1のスイッチ回路106a及び第2のスイッチ回路106bを経由して、高周波接地107へと逃がすことができる。結果として、「遮断状態」のアイソレーションを改善することができる。
 次に、第1のスイッチ回路106a及び第2のスイッチ回路106bの具体的な構成について説明する。
 第1のスイッチ回路106a及び第2のスイッチ回路106bは、例えば図2に示すようなNMOSトランジスタ202を用いたスイッチ回路205にて実現できる。NMOSトランジスタ202のゲート206は制御電圧源204が制御する。図1中のバックゲート104及びゲート103は端子201と接続される。端子201はNMOSトランジスタ202のドレインと接続され、NMOSトランジスタ202のソースが高周波接地203と接続されている。「遮断状態」では制御電圧源204からNMOSトランジスタ202のゲート206にHighを印加して、端子201を高周波接地203に短絡する。「導通状態」では制御電圧源204からゲート206にLowを印加することで、端子201を開放インピーダンスとする。
 また、他にも第1のスイッチ回路106a及び第2のスイッチ回路106bは、図3に示すようなNMOSトランジスタ302と所望周波数におけるインピーダンス変成器306を用いたスイッチ回路305により実現することも可能である。インピーダンス変成器306は、端子301とNMOSトランジスタ302のドレイン間に接続され、NMOSトランジスタ302のソースは高周波接地303に接続されている。また、制御電圧源304がNMOSトランジスタ302のゲート307に電圧を印加するよう接続されている。
 この回路構成は、NMOSトランジスタ302を信号導通に用いられるNMOSトランジスタ105から、物理的に遠い位置に配置したい場合に有効である。この構成では、制御電圧源304の動作が、図2にて説明した制御電圧源204とは異なり、出力電圧がHighとLowで反転する。「遮断状態」では制御電圧源304からゲート307へLowを印加し、「導通状態」では制御電圧源304からゲート307にHighを印加する。NMOSトランジスタ302の動作状態が図2の例とは反転するが、インピーダンス変成器306が、端子301(すなわちバックゲート104およびゲート103)のインピーダンスをさらに短絡と開放で反転するため、所望の動作となる。
 第1のスイッチ回路106a及び第2のスイッチ回路106bの目的は、ゲート103及びバックゲート104を、「遮断状態」で高周波接地107へとショートすることであり、同様な動作をする構成は多数考えられるため、第1のスイッチ回路106a及び第2のスイッチ回路106bとして図2や図3に示す構成に限定するものではない。
 以上説明したように、実施の形態1の高周波スイッチによれば、ドレイン、ソース、ゲート及びバックゲートを有し、ゲートの電圧を制御することでドレインとソース間を電気的に導通または遮断するトランジスタと、バックゲートと高周波接地の間に配置された抵抗素子と、バックゲートと高周波接地の間に抵抗素子と並列に配置され、遮断時にバックゲートと高周波接地間を短絡する第1のスイッチ回路とを備えたので、遮断時のゲート及びバックゲートを介した信号リークを抑えることができる。
 また、実施の形態1の高周波スイッチによれば、ゲートと高周波接地の間に配置され、遮断時にゲートと高周波接地間を短絡する第2のスイッチ回路を備えたので、遮断時のアイソレーションをさらに改善することができる。
実施の形態2.
 図4は実施の形態2に係る高周波スイッチの構成図である。図5は、実施の形態2の高周波スイッチにおけるトランジスタの断面図である。
 実施の形態2の高周波スイッチは、ソース401、ドレイン402、ゲート403、バックゲート404を有するNMOSトランジスタ405と、ゲート403のバイアス用の抵抗素子409と、第1のスイッチ回路406a及び第2のスイッチ回路406bを備える。ここで、ソース401、ドレイン402、ゲート403、バックゲート404を有するNMOSトランジスタ405は、実施の形態1における、ソース101、ドレイン102、ゲート103、バックゲート104を有するNMOSトランジスタ105と同様である。また、ゲート403に接続される抵抗素子409及びゲート制御端子408は、実施の形態1の抵抗素子109b及びゲート制御端子108と同様である。
 また、実施の形態2における第1のスイッチ回路406aは、NMOSトランジスタ405の寄生ダイオード411を利用して構成されている。すなわち、第1のスイッチ回路406aは、バックゲート404にアノード側が接続される寄生ダイオード411と、寄生ダイオード411のカソード側に接続されるバイアス電位制御端子412と、バイアス電位制御端子412に接続される第1の制御電圧源415aからなる。また、寄生ダイオード411のアノード側には、抵抗素子410を介してバイアス電位制御端子413が配置され、このバイアス電位制御端子413に第2の制御電圧源415bが接続されている。なお、実施の形態2における第2のスイッチ回路406bは、実施の形態1の第2のスイッチ回路106bと同様に構成されているが、第1のスイッチ回路406aと同様に構成してもよい。
 さらに、実施の形態2では、ソース401とドレイン402に対して抵抗素子409を介してバイアス電位制御端子(ソースドレインバイアス制御端子)414が設けられ、このバイアス電位制御端子414に第3の制御電圧源(ソースドレインバイアス制御電圧源)415cが接続されている。なお、バイアス電位制御端子414とソース401との間に接続された抵抗素子409と、バイアス電位制御端子414とドレイン402との間に接続された抵抗素子409と、ゲート403とゲート制御端子408との間に接続された抵抗素子409の抵抗値は等しい値であるが、設計条件に応じてそれぞれ適宜異なる値としても良い。
 次に、NMOSトランジスタ405について図5を用いて説明する。
 NMOSトランジスタ405は、N型半導体となるドレイン501とソース503とバックゲート分離用のNウエル505と、P型半導体となるバックゲート504とシリコン共通基板506とチャネル制御用のゲート502から構成される。バックゲート504とNウエル505とのPN接合面に形成される寄生ダイオード507が図4中の寄生ダイオード411に相当する。また、他の構成の図4の構成との関係は次の通りである。すなわち、図5のドレイン501がドレイン402に、ゲート502がゲート403に、ソース503がソース401に、バックゲート504がバックゲート404に、Nウエル505がバイアス電位制御端子412にそれぞれ対応する。
 次に、実施の形態2の高周波スイッチの動作について説明する。
 実施の形態2では、「遮断状態」にて、バックゲート404を高周波接地に短絡するために、寄生ダイオード411が利用される。寄生ダイオード411のアノード側はバイアス用の抵抗素子410を介して第2の制御電圧源415bが接続され、カソード側は第1の制御電圧源415aに接続されている。従って、第1の制御電圧源415a及び第2の制御電圧源415bにて寄生ダイオード411を順バイアスまたは逆バイアスに設定することで、寄生ダイオード411(図5における寄生ダイオード507)を電気的に短絡または開放させることができる。
 「遮断状態」では、寄生ダイオード411を順バイアスとすることでバックゲート404と第1の制御電圧源415aをショートする。第1の制御電圧源415aは、電圧源であり出力インピーダンスが低いため、ソース401またはドレイン402からバックゲート404へと漏えいした信号を第1の制御電圧源415aへ逃がすことができる。一方、「導通状態」では、寄生ダイオード411を逆バイアスとすることで、バックゲート404と第1の制御電圧源415aとを電気的に分離できる。従って、ソース401またはドレイン402からバックゲート404へと漏えいした信号は第1の制御電圧源415aへ逃げない。結果として、高周波スイッチとしての通過損失劣化を防止することができる。
 次に、第1の制御電圧源415aによるバイアス電位制御端子412への電圧印加と第2の制御電圧源415bによるバイアス電位制御端子413への電圧印加及び第3の制御電圧源415cによるバイアス電位制御端子414への電圧印加の一例について説明する。
 寄生ダイオード411を逆バイアスにする場合(寄生ダイオード411はオープン、高周波スイッチは「導通状態」)は、第2の制御電圧源415bと第3の制御電圧源415cをグランドにバイアスし、第1の制御電圧源415aをNMOSトランジスタ405の耐圧電圧にバイアスする。なお、第3の制御電圧源415cをグランドにバイアスする理由については後述する。一方、寄生ダイオード411を順バイアスにする場合(寄生ダイオード411はショート、高周波スイッチは「遮断状態」)は、第2の制御電圧源415bをダイオードのしきい値電圧以上にバイアスすると共に、第3の制御電圧源415cをNMOSトランジスタ405の耐圧電圧にバイアスし、第1の制御電圧源415aをグランドにバイアスする。このような動作により、実施の形態1の第1のスイッチ回路106aと同様の動作を行うことができる。
 次に、上記の動作で、第3の制御電圧源415cによるバイアス電位の制御を行う理由について説明する。「導通状態」では、NMOSトランジスタ405のゲート403とソース401/ドレイン402間電圧を大きくすることで、オン抵抗を小さくして、通過損失を最小化するためである。すなわち、第3の制御電圧源415cをグランドにバイアスすることにより、ゲート制御端子408から印加される電圧との関係により、ゲート403-ドレイン402間電圧(または、ゲート403-ソース401間電圧)を大きくすることができる。
 また、「遮断状態」では、P型半導体であるバックゲート404とN型半導体であるソース401及びドレイン402を逆バイアスとすることで、PN接合容量を小さくし、ソース401及びドレイン402からバックゲート404への信号漏えいを抑え、アイソレーションをさらに向上することができる。すなわち、第3の制御電圧源415cを第2の制御電圧源415bのバイアス電圧で同等かそれ以上のNMOSトランジスタ405の耐圧電圧とすることで、ソース401及びドレイン402からバックゲート404への信号漏えいを抑えることができる。
 なお、ソース401及びドレイン402に接続された抵抗素子409とバイアス電位制御端子414と第3の制御電圧源415cの構成を実施の形態1のNMOSトランジスタ105に対して適用しても良い。
 以上説明したように、実施の形態2の高周波スイッチによれば、トランジスタはNMOSトランジスタであり、第1のスイッチ回路を、NMOSトランジスタにおける半導体基板とバックゲート間を電気的に遮断するためのNウエルとバックゲートとの接合面に形成される寄生ダイオードと、寄生ダイオードのバイアス電位を制御する制御電圧源とを用いて構成したので、実施の形態1の効果に加えて、スイッチ回路を別途配置する必要がなく、高周波スイッチの小型化に寄与することができる。
 また、実施の形態2の高周波スイッチによれば、ソース及びドレインのバイアス電位を制御するためのソースドレインバイアス制御端子と、トランジスタの導通または遮断の状態によって、ソースドレインバイアス制御端子を介してバイアス電位を制御するソースドレインバイアス制御電圧源とを備えたので、導通状態での通過損失を小さくすることができると共に、遮断時のアイソレーションをさらに向上させることができる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 以上のように、この発明に係る高周波スイッチは、ゲートへの制御電圧によってソースとドレイン間の信号を導通と遮断の状態に切り替える構成に関するものであり、無線通信機器の高周波スイッチとして用いるのに適している。
 101,401,503 ソース、102,402,501 ドレイン、103,206,307,403,502 ゲート、104,404,504 バックゲート、105,202,302,405 NMOSトランジスタ、106a,406a 第1のスイッチ回路、106b,406b 第2のスイッチ回路、107,203,303,407 高周波接地、108,408 ゲート制御端子、109a,109b,409,410 抵抗素子、201,301 端子、204,304 制御電圧源、205,305 スイッチ回路、306 インピーダンス変成器、411,507 寄生ダイオード、412,413 バイアス電位制御端子、414 バイアス電位制御端子(ソースドレインバイアス制御端子)、415a 第1の制御電圧源、415b 第2の制御電圧源、415c 第3の制御電圧源(ソースドレインバイアス制御電圧源)、505 Nウエル、506 シリコン共通基板。

Claims (4)

  1.  ドレイン、ソース、ゲート及びバックゲートを有し、前記ゲートの電圧を制御することで前記ドレインと前記ソース間を電気的に導通または遮断するトランジスタと、
     前記バックゲートと高周波接地の間に配置された抵抗素子と、
     前記バックゲートと前記高周波接地の間に前記抵抗素子と並列に配置され、前記遮断時に当該バックゲートと前記高周波接地間を短絡する第1のスイッチ回路とを備えたことを特徴とする高周波スイッチ。
  2.  前記ゲートと前記高周波接地の間に配置され、前記遮断時に当該ゲートと前記高周波接地間を短絡する第2のスイッチ回路を備えたことを特徴とする請求項1記載の高周波スイッチ。
  3.  前記トランジスタはNMOSトランジスタであり、
     前記第1のスイッチ回路を、前記NMOSトランジスタにおける半導体基板と前記バックゲート間を電気的に遮断するためのNウエルと前記バックゲートとの接合面に形成される寄生ダイオードと、当該寄生ダイオードのバイアス電位を制御する制御電圧源とを用いて構成したことを特徴とする請求項1記載の高周波スイッチ。
  4.  前記ソース及び前記ドレインのバイアス電位を制御するためのソースドレインバイアス制御端子と、
     前記トランジスタの導通または遮断の状態によって、前記ソースドレインバイアス制御端子を介して前記バイアス電位を制御するソースドレインバイアス制御電圧源とを備えたことを特徴とする請求項1から請求項3のうちのいずれか1項記載の高周波スイッチ。
PCT/JP2017/024359 2017-07-03 2017-07-03 高周波スイッチ WO2019008639A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/616,849 US11088685B2 (en) 2017-07-03 2017-07-03 High-frequency switch
JP2019528206A JP6701451B2 (ja) 2017-07-03 2017-07-03 高周波スイッチ
EP17916875.2A EP3641134B1 (en) 2017-07-03 2017-07-03 High frequency switch
PCT/JP2017/024359 WO2019008639A1 (ja) 2017-07-03 2017-07-03 高周波スイッチ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/024359 WO2019008639A1 (ja) 2017-07-03 2017-07-03 高周波スイッチ

Publications (1)

Publication Number Publication Date
WO2019008639A1 true WO2019008639A1 (ja) 2019-01-10

Family

ID=64949777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024359 WO2019008639A1 (ja) 2017-07-03 2017-07-03 高周波スイッチ

Country Status (4)

Country Link
US (1) US11088685B2 (ja)
EP (1) EP3641134B1 (ja)
JP (1) JP6701451B2 (ja)
WO (1) WO2019008639A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11133836B1 (en) * 2020-07-16 2021-09-28 Nxp Usa, Inc. High isolation radio frequency switch
EP4380052A1 (en) * 2022-12-01 2024-06-05 NXP USA, Inc. Bidirectional power switch circuit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242826A (ja) 1997-02-26 1998-09-11 Nec Corp 高周波スイッチ回路
JP2001217701A (ja) * 1999-12-03 2001-08-10 Fairchild Semiconductor Corp 高周波mosスイッチ
JP2006332416A (ja) * 2005-05-27 2006-12-07 Nec Electronics Corp 半導体装置
JP2008270964A (ja) * 2007-04-17 2008-11-06 Toshiba Corp 高周波スイッチ回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6396325B2 (en) * 1999-12-03 2002-05-28 Fairchild Semiconductor Corporation High frequency MOSFET switch
WO2008036047A1 (en) 2006-09-21 2008-03-27 Nanyang Technological University Triple well transmit-receive switch transistor
JP2008153385A (ja) 2006-12-15 2008-07-03 Toshiba Corp 高周波スイッチ
US7928794B2 (en) * 2008-07-21 2011-04-19 Analog Devices, Inc. Method and apparatus for a dynamically self-bootstrapped switch
US8368463B2 (en) 2010-06-07 2013-02-05 Skyworks Solutions, Inc. Voltage distribution for controlling CMOS RF switch
US8482336B2 (en) * 2011-04-08 2013-07-09 International Business Machines Corporation Variable impedance single pole double throw CMOS switch
CN103812483A (zh) 2014-01-13 2014-05-21 智坤(江苏)半导体有限公司 Cmos射频开关

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10242826A (ja) 1997-02-26 1998-09-11 Nec Corp 高周波スイッチ回路
JP2001217701A (ja) * 1999-12-03 2001-08-10 Fairchild Semiconductor Corp 高周波mosスイッチ
JP2006332416A (ja) * 2005-05-27 2006-12-07 Nec Electronics Corp 半導体装置
JP2008270964A (ja) * 2007-04-17 2008-11-06 Toshiba Corp 高周波スイッチ回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3641134A4

Also Published As

Publication number Publication date
EP3641134A1 (en) 2020-04-22
US20210175882A1 (en) 2021-06-10
EP3641134B1 (en) 2022-06-22
EP3641134A4 (en) 2020-07-15
US11088685B2 (en) 2021-08-10
JP6701451B2 (ja) 2020-05-27
JPWO2019008639A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP5632663B2 (ja) 半導体装置
US8975947B1 (en) Shunt switch
JP5041154B2 (ja) 高周波スイッチ回路
JP5814547B2 (ja) 高周波スイッチ
US9537472B2 (en) Integrated switch and self-activating adjustable power limiter
US9799646B2 (en) Cascode configured semiconductor component
JP2006332416A (ja) 半導体装置
TW201508894A (zh) 緊密靜電放電保護結構
US9590674B2 (en) Semiconductor devices with switchable ground-body connection
JP2010220200A (ja) 導通切替回路、導通切替回路ブロック、及び導通切替回路の動作方法
JP2012134317A (ja) 半導体装置
JPWO2004019493A1 (ja) スイッチ装置
WO2019008639A1 (ja) 高周波スイッチ
US9935092B2 (en) Radio frequency transistor stack with improved linearity
KR101865492B1 (ko) Esd 보호 구조를 갖는 반도체 디바이스
US7733133B2 (en) Power switch circuit having variable resistor coupled between input terminal and output transistor and changing its resistance based on state of output transistor
US11631663B2 (en) Control circuit and high electron mobility element
US20230369421A1 (en) Threshold voltage adjustment using adaptively biased shield plate
WO2019208371A1 (ja) 増幅回路
US9837399B2 (en) Cascode configured semiconductor component and method
US9673800B2 (en) Analog switch circuit applicable to high frequency signal
JP5450955B2 (ja) 高周波スイッチ
US10530357B1 (en) Dynamic impedance circuit for uniform voltage distribution in a high power switch branch
JP2010278110A (ja) 半導体装置及び高周波スイッチ回路
KR20220001812A (ko) Rf 스위치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916875

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528206

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017916875

Country of ref document: EP

Effective date: 20200113