JP2010278110A - 半導体装置及び高周波スイッチ回路 - Google Patents

半導体装置及び高周波スイッチ回路 Download PDF

Info

Publication number
JP2010278110A
JP2010278110A JP2009127429A JP2009127429A JP2010278110A JP 2010278110 A JP2010278110 A JP 2010278110A JP 2009127429 A JP2009127429 A JP 2009127429A JP 2009127429 A JP2009127429 A JP 2009127429A JP 2010278110 A JP2010278110 A JP 2010278110A
Authority
JP
Japan
Prior art keywords
semiconductor region
region
semiconductor
insulating layer
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009127429A
Other languages
English (en)
Inventor
Masami Nagaoka
正見 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009127429A priority Critical patent/JP2010278110A/ja
Publication of JP2010278110A publication Critical patent/JP2010278110A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)
  • Electronic Switches (AREA)

Abstract

【課題】高周波入力に対して低歪みの半導体装置及び高周波スイッチ回路を提供する。
【解決手段】本発明の半導体装置は、絶縁層12上に第2導電型の第3の半導体領域15に接して設けられた第2導電型の第4の半導体領域16と、第3の半導体領域15及び第4の半導体領域16上に設けられた絶縁膜17と、絶縁膜17上に設けられたゲート電極18と、第4の半導体領域16と電気的に接続され直流電圧が印加されるボディ電極23と、を備え、ゲート電極18に閾値電圧以上の電圧が印加されたオン状態で、第4の半導体領域16が空乏化して、ボディ電極23と第3の半導体領域15との間の直流の通過を遮断する。
【選択図】図1

Description

本発明は、半導体装置及び高周波スイッチ回路に関する。
近年、携帯電話に代表される高周波移動体通信機の高機能化に伴い、アンテナと送信回路との間及びアンテナと受信回路との間に設けられる高周波スイッチ回路の小型化、高集積化、低消費電力化が求められている。これに伴い、PINダイオードを用いたモジュールに代わり、電界効果トランジスタをスイッチ素子として用いたスイッチICが多用されるようになってきた。そのスイッチ素子として、GaAsを使ったHEMT(High Electron Mobility Transistor)が多く使用されている(例えば非特許文献1) 。その理由は主に、電子移動度が高いことでオン抵抗を小さくでき、かつ、半絶縁性基板の使用により寄生容量を小さくできるからである。
また、近年、低コスト化、高集積化、高機能化のために、シリコンのMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)を用いた高周波スイッチ回路の開発が進められている。特に、SOI(Silicon On Insulator)構造で、なおかつ概ね1(kΩ・cm)以上の抵抗率を有する高抵抗シリコン基板を用いることによって、寄生容量低減が見込め、特性の向上が図られている(例えば非特許文献2)。非特許文献2ではボディ浮遊型のMOSFETが用いられている。しかし、スイッチ回路への入力電力が35(dBm)にもなるGSM(Global System for Mobile Communications)に適用した場合、高調波歪みが大きく、実用上問題がある。
高調波歪み、相互変調歪みなどの歪み信号発生の原因のひとつとして、MOSFETのボディ・ソース間、あるいはボディ・ドレイン間の寄生PN接合の容量非線形性がある。印加された高周波信号がMOSFETの寄生PN接合により変調され、歪みを生じる。入力電力が大きくなると寄生PN接合にかかる電圧が大きくなり、歪みも大きくなる。ソース・ドレイン間電圧Vdsはオン状態でほぼゼロであるのに対し、オフ状態で大きくなるため、この寄生PN接合による歪みは主にオフ状態で発生する。
ボディ・ソース間、あるいはボディ・ドレイン間の寄生PN接合の容量非線形性を抑える方法としては、たとえばボディ領域の不純物濃度を低くし、空乏容量を減らす方法が考えられる。しかし、この方法では、パンチスルーが起き易くなるため、入力電力が大きくなってソース・ドレイン間電圧Vdsが大きくなると、やはり大きな歪みを出力してしまう。また、オフ状態のMOSFETが扱えるソース・ドレイン間電圧Vdsは、Vds<2|Vth−Vgs|(Vthは閾値電圧、Vgsはゲート・ソース間DC電圧)で制限されることが知られており、ボディ領域の不純物濃度を低くすると、閾値電圧Vthが負側にシフトし、大きな入力電力を扱うことへの障害となる。
寄生PN接合の容量非線形性を抑える他の方法として、ボディ・ソース間、およびボディ・ドレイン間の寄生PN接合に逆バイアスを与え、蓄積電荷を引き抜き、空乏領域を伸ばす方法がある。この方法によれば、ボディ・ソース間、あるいはボディ・ドレイン間の寄生PN接合の容量非線形性を抑えることができるうえ、大きな入力電力を扱ううえで課題となるパンチスルーやインパクトイオン化も起きにくくなる。しかし、ボディ領域に直流バイアスを与えるために、ボディ領域と同一導電型の引き出し導電領域が必要となり、この引き出し導電領域とソース領域、あるいは引き出し導電領域とドレイン領域との間に新たな寄生PN接合ができ、容量非線形性を生じてしまうことが懸念される。
この寄生PN接合の影響を抑えるために、ボディバイアス供給側を高インピーダンスにみせるとともに、オフ状態だけでなくオン状態でも負のボディバイアスを与える方法がある(例えば特許文献1)。しかし、負のボディバイアスを与えると、MOSFETの閾値電圧Vthが正側にシフトするため、オン抵抗が増大し、スイッチ素子の通過損失を増大させる問題が生じる。
特表2009−500868号公報
K.Kohama,et.al.,"An Antenna Switch MMIC for GSM/UMTS Handsets Using E/D-Mode JPHEMT Technology", IEEE RFIC Symp. Dig. pp.509-512, 2005 C.Tinella,et.al.,"0.13/spl mu/m CMOS SOI SP6T antenna switch for multi-standard handsets", 2006 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems. Dig. pp.58-61, 2006
本発明は、高周波入力に対して低歪みの半導体装置及び高周波スイッチ回路を提供する。
本発明の一態様によれば、絶縁層と、前記絶縁層上に設けられた第1導電型の第1の半導体領域と、前記絶縁層上に前記第1の半導体領域に対して離間して設けられた第1導電型の第2の半導体領域と、前記絶縁層上における前記第1の半導体領域と前記第2の半導体領域との間に設けられ、前記第1の半導体領域及び前記第2の半導体領域に接している第2導電型の第3の半導体領域と、前記絶縁層上に前記第3の半導体領域に接して設けられた第2導電型の第4の半導体領域と、前記第3の半導体領域及び前記第4の半導体領域上に設けられた絶縁膜と、前記絶縁膜上に設けられたゲート電極と、前記第4の半導体領域と電気的に接続され、直流電圧が印加されるボディ電極と、を備え、前記ゲート電極に閾値電圧以上の電圧が印加されたオン状態で、前記第4の半導体領域が空乏化して、前記ボディ電極と前記第3の半導体領域との間の直流の通過を遮断することを特徴とする半導体装置が提供される。
また、本発明の他の一態様によれば、絶縁層と、前記絶縁層上に設けられた第1導電型の第1の半導体領域と、前記絶縁層上に前記第1の半導体領域に対して離間して設けられた第1導電型の第2の半導体領域と、前記絶縁層上における前記第1の半導体領域と前記第2の半導体領域との間に設けられ、前記第1の半導体領域及び前記第2の半導体領域に接している第2導電型の第3の半導体領域と、前記絶縁層上に前記第3の半導体領域に接して設けられ、前記第3の半導体領域よりも第2導電型不純物濃度が低い第2導電型の第4の半導体領域と、前記第3の半導体領域及び前記第4の半導体領域上に設けられた絶縁膜と、前記絶縁膜上に設けられたゲート電極と、前記第4の半導体領域と電気的に接続され、直流電圧が印加されるボディ電極と、を備えたことを特徴とする半導体装置が提供される。
また、本発明のさらに他の一態様によれば、複数の端子間に接続され、前記端子間の高周波信号の通過と遮断とを切り替えるスイッチ素子を備え、前記スイッチ素子は、上記半導体装置であることを特徴とする高周波スイッチ回路が提供される。
本発明によれば、高周波入力に対して低歪みの半導体装置及び高周波スイッチ回路が提供される。
本発明の実施形態に係る半導体装置の模式図。 図1におけるC−C断面に対応する断面図。 本発明の実施形態に係るスイッチ素子の模式図。 本発明の実施形態に係る高周波スイッチ回路の模式図。 本発明の他の実施形態に係る半導体装置の模式図。
以下、図面を参照し、本発明の実施形態について説明する。各図面中、同じ要素には同一の符号を付している。本実施形態では、半導体材料は例えばシリコンとするが、シリコンに限らず他の半導体材料を用いてもよい。また、第1導電型をN型、第2導電型をP型として説明するが、第1導電型がP型、第2導電型がN型であってもよい。
図1に本発明の実施形態に係る半導体装置を示す。本実施形態に係る半導体装置は、SOI(Silicon On Insulator)構造に設けられた電界効果トランジスタを含む。
図1(b)は平面図を示す。図1(a)は図1(b)におけるA−A断面を、図1(d)は図1(b)におけるB−B断面を示す。図1(c)は、図1(b)においてドレイン電極21、ソース電極22、ゲート電極18およびサイドウォール絶縁層19を取り除いた平面図を示す。図2(a)は、図1(b)におけるC−C断面を示す。図2(b)、図2(c)は、図2(a)同じ断面部分の他の構造例を示す。
基板11上に絶縁層12が設けられている。例えば、基板11はシリコン基板であり、絶縁層12はシリコン酸化物である。なお、基板11及び絶縁層12の代わりに、例えばサファイアなどの絶縁性基板を用いてもよい。
絶縁層12上に半導体層(シリコン層)が設けられている。その半導体層に、第1の半導体領域であるドレイン領域13、第2の半導体領域であるソース領域14、第3の半導体領域であるボディ領域15、第4の半導体領域である引き出し導電領域16、およびボディコンタクト領域24が形成されている。
ドレイン領域13とソース領域14とは離間している。ボディ領域15は、ドレイン領域13とソース領域14との間に設けられ、ドレイン領域13及びソース領域14に接している。ドレイン領域13及びソース領域14はN型である。ボディ領域15はP型である。したがって、本実施形態の電界効果トランジスタはNチャネル型である。
引き出し導電領域16は、図1(c)に示すように、ドレイン領域13、ソース領域14およびボディ領域15が形成された領域から突出するように形成されている。引き出し導電領域16は、ボディ領域15に接している。引き出し導電領域16は、ボディ領域15よりもP型不純物濃度が低いP型である。ボディ領域15のP型不純物濃度は、1〜3×1017(cm−3)ほどである。引き出し導電領域16のP型不純物濃度は、ボディ領域15よりもおよそ一桁低い濃度に設定されている。
また、引き出し導電領域16は、ボディコンタクト領域24に接している。引き出し導電領域16は、ボディ領域15とボディコンタクト領域24との間に形成されている。ボディコンタクト領域24は、ボディ領域15及び引き出し導電領域16よりもP型不純物濃度が高いP型である。
絶縁層12上におけるドレイン領域13、ソース領域14、ボディ領域15、引き出し導電領域16およびボディコンタクト領域24以外の部分には、トレンチ内に絶縁層25が埋め込まれたSTI(Shallow Trench Isolation)構造が設けられている。なお、この部分は、他のアイソレーション構造であってもよい。
ドレイン領域13と引き出し導電領域16との間に絶縁層25が設けられ、ドレイン領域13と引き出し導電領域16とは接していない。ソース領域14と引き出し導電領域16との間に絶縁層25が設けられ、ソース領域14と引き出し導電領域16とは接していない。
ボディ領域15及び引き出し導電領域16の上にはゲート絶縁膜17が設けられている。ゲート絶縁膜17は、例えばシリコン酸化膜である。ゲート絶縁膜17上に、ゲート電極18が設けられている。図2(a)に示すように、ボディ領域15及び引き出し導電領域16は、ゲート絶縁膜17を介してゲート電極18に対向している。
ドレイン領域13上に、第1の主電極としてドレイン電極21が設けられている。ドレイン領域13はドレイン電極21と電気的に接続されている。ソース領域14上に、第2の主電極としてソース電極22が設けられている。ソース領域14はソース電極22と電気的に接続されている。
ボディコンタクト領域24上にはボディ電極23が設けられている。ボディコンタクト領域24はボディ電極23と電気的に接続されている。
ゲート電極18の周囲にはサイドウォール絶縁層19が設けられている。サイドウォール絶縁層19は、例えばシリコン酸化物、シリコン窒化物などを含む。サイドウォール絶縁層19は、ドレイン電極21とゲート電極18との間に設けられ、ドレイン電極21とゲート電極18とを分離している。サイドウォール絶縁層19は、ソース電極22とゲート電極18との間に設けられ、ソース電極22とゲート電極18とを分離している。サイドウォール絶縁層19は、ボディ電極23とゲート電極18との間に設けられ、ボディ電極23とゲート電極18とを分離している。
前述した本実施形態に係る半導体装置は、図3に示すスイッチ素子Tとして用いることができる。
スイッチ素子Tのゲート電極18は、抵抗R1を介してゲート制御端子101に接続されている。ボディ電極23は、抵抗R2を介してボディ制御端子102に接続されている。
図4は、本発明の実施形態に係る高周波スイッチ回路の回路例を示す。この高周波スイッチ回路は、スイッチ素子T1とスイッチ素子T2を有する。スイッチ素子T1及びスイッチ素子T2は、図3に示すスイッチ素子Tと同じ構成である。すなわち、スイッチ素子T1及びスイッチ素子T2は、図1、2に示す半導体装置の構造を有する。
スイッチ素子T1のソース及びドレインの一方は高周波端子RF1に接続され、他方はアンテナ端子ANTに接続されている。スイッチ素子T2のソース及びドレインの一方は高周波端子RF2に接続され、他方はアンテナ端子ANTに接続されている。
高周波端子RF1とアンテナ端子ANTとの間に、複数段のスイッチ素子T1が直列接続されていてもよく、高周波端子RF2とアンテナ端子ANTとの間に、複数段のスイッチ素子T2が直列接続されていてもよい。
スイッチ素子T1のゲートは抵抗R1を介してゲート制御回路30に接続されている。スイッチ素子T2のゲートは抵抗R1を介してゲート制御回路30に接続されている。抵抗R1は、高周波信号がゲート制御回路30に漏洩しない程度の高い抵抗値を有する。
スイッチ素子T1及びスイッチ素子T2は、N型電界効果トランジスタであり、それぞれの閾値電圧Vthは約0Vである。スイッチ素子T1は、高周波端子RF1とアンテナ端子ANT間の高周波信号の通過と遮断とを切り替える。スイッチ素子T2は、高周波端子RF2とアンテナ端子ANT間の高周波信号の通過と遮断とを切り替える。
スイッチ素子T1及びスイッチ素子T2のいずれか一方のゲートにHigh-Level電圧Vhighが与えられ、他方のゲートにLow-Level電圧Vlowが与えられる。Vhighは、スイッチ素子T1、T2がオン状態となり、そのオン抵抗が十分低い値になるゲート電位である。例えば、Vhigh=2〜5Vである。Vlowは、スイッチ素子T1、T2がオフ状態となり、振幅の大きな高周波信号が重畳してもオフ状態を維持できるゲート電位である。そのため、Vlowは負電位であり、例えばVlow=−1V〜−5Vである。
スイッチ素子T1のソース及びドレインに対する直流バイアス電圧をVdcとすると、スイッチ素子T1について、Vlow−Vdc<Vth<Vhigh−Vdcが成り立っている。スイッチ素子T2についても同様である。高周波端子RF1、RF2の外部に直列にDC(direct current)カット容量が接続されていない場合、通常、Vdc=0Vである。また、ボディ制御端子102には、負電圧Vb(例えばVb=−3V)が与えられる。
スイッチ素子T1のゲートにVhighが与えられ、スイッチ素子T2のゲートにVlowが与えられると、スイッチ素子T1はオン状態となり、スイッチ素子T2はオフ状態となる。高周波端子RF1とアンテナ端子ANT間は導通し、高周波端子RF2とアンテナ端子ANT間は遮断される。したがって、高周波端子RF1とアンテナ端子ANTとの間で高周波信号の送信または受信が行われる。
スイッチ素子T2のゲートにVhighが与えられ、スイッチ素子T1のゲートにVlowが与えられると、スイッチ素子T2はオン状態となり、スイッチ素子T1はオフ状態となる。高周波端子RF2とアンテナ端子ANT間は導通し、高周波端子RF1とアンテナ端子ANT間は遮断される。したがって、高周波端子RF2とアンテナ端子ANTとの間で高周波信号の送信または受信が行われる。
次に、本発明の実施形態に対する2つの比較例1、2について説明する。
比較例1は、図1に示した本実施形態に係る半導体装置に対して、引き出し導電領域16、ボディコンタクト領域24およびボディ電極23がない構造である。比較例1の半導体装置におけるボディ領域には直流バイアス電圧は印加されず、ボディ領域はフローティングとなっている。
比較例2は、図1に示した本実施形態に係る半導体装置に対して、引き出し導電領域16に相当する構成がない。比較例2のボディ領域は直接ボディコンタクト領域と接している。比較例2のボディ領域はボディコンタクト領域を介してボディ電極と電気的に接続され、比較例2のボディ領域にはボディ電極の電位Vbが与えられる。
本実施形態と、比較例1と、比較例2とで、ゲート長Lgを0.25μm、Vhighを2.4V、Vbを−3Vに設定したオン状態における、単位ゲート幅あたりのオン抵抗を調べた。本実施形態と比較例1では、オン抵抗の最大値が1.4Ωmmだった。これに対して、比較例2ではオン抵抗の最大値が1.6Ωmmであり、本実施形態に比べて高かった。
ゲート電極18に負電位Vlowが与えられたオフ状態で、本実施形態の半導体装置におけるボディ領域15とボディ電極23との間には、引き出し導電領域16及びボディコンタクト領域24を介して直流が導通する。したがって、ボディ領域15の電位は、オフ状態でボディ電極23の電位Vbとされる。
ゲート電極18に閾値電圧以上の正電位Vhighが印加されたオン状態では、そのVhighと、ボディ電極23の負電位Vbとの電位差によって、引き出し導電領域16が空乏化する。引き出し導電領域16の空乏化によって、ボディ領域15とボディ電極23との間の直流の通過が遮断される。この結果、ボディ領域15の電位は、Vbが与えられているオフ時よりも上昇する。このボディ領域15の電位上昇によりドレイン電流が増加し、オン状態においてもボディ領域にVbが与えられている比較例2よりも、低オン抵抗となる。
引き出し導電領域16のP型不純物濃度を、ボディ領域15のP型不純物濃度及びボディコンタクト領域24のP型不純物濃度よりも低く設定することで、上記オン動作時における引き出し導電領域16の空乏化を促進させることができる。
また、図2(b)に示すように、引き出し導電領域16の膜厚を、ボディ領域15の膜厚より薄くすることも、引き出し導電領域16の空乏化促進に有効である。
また、図2(c)に示す構造では、引き出し導電領域16上のゲート絶縁膜17の膜厚を、ボディ領域15上のゲート絶縁膜17の膜厚よりも厚くしている。引き出し導電領域16上のゲート絶縁膜17の膜厚を厚くすることで、オン時、ゲート電圧のばらつきが引き出し導電領域16の空乏化に影響しにくくできる。したがって、より広い範囲のゲート電圧に対して引き出し導電領域16の完全空乏化状態を維持しやすくなる。
なお、引き出し導電領域16は完全空乏化することに限らない、すなわち、オン時、ボディ領域15とボディ電極23との間の直流の通過が必ずしも完全に遮断されなくてもよい。ボディ領域15の電位がオフ状態のVbから上昇して、実用上有用な低オン抵抗化が図れればよい。例えば、オン時に、引き出し導電領域16の空乏化により、ボディ領域15とボディ電極23との間に流れる直流電流値が、オフ時よりも一桁程度低下すれば、期待するオン抵抗低減効果が得られる。
また、本実施形態の半導体装置と比較例1の半導体装置をそれぞれスイッチ素子として用いて、図4または図4と類似構成の高周波スイッチ回路を試作した。各半導体装置のゲート幅Wgは2.4mmとした。また、各高周波端子とアンテナ端子との間に8段のスイッチ素子を直列接続した。各スイッチ素子のゲートとゲート制御回路30との間に、100kΩの抵抗R1を接続した。
例えば、スイッチ素子T1がオン状態、スイッチ素子T2がオフ状態で、高周波端子RF1に900MHz、35dBmの高周波信号を入力した時、比較例1の半導体装置を用いた高周波スイッチ回路では、−70dBcを上回る大きな高調波歪みが発生した。これに対し、本実施形態の半導体装置を用いた高周波スイッチ回路では、高調波歪みは−80dBc以下と実用上十分に低い値であった。
本実施形態の半導体装置では、ゲート電極18に負電位Vlowが与えられたオフ時、引き出し導電領域16は空乏化せず、ボディ領域15にはボディ電極23の負電位Vbが与えられる。このため、ボディ領域15とソース領域14との間の寄生PN接合、およびボディ領域15とドレイン領域13との間の寄生PN接合に逆バイアスが与えられ、ボディ領域15の蓄積電荷がボディ電極23に引き抜かれる。この結果、ボディ領域15とソース領域14との間の寄生PN接合、およびボディ領域15とドレイン領域13との間の寄生PN接合の容量非線形性を抑制し、高調波歪みを低減することができる。さらに、パンチスルーやインパクトイオン化も起きにくくなり、結果として大きな高周波入力を扱える。
以上説明したように、本実施形態によれば、低オン抵抗かつ高周波入力に対して低歪みの半導体装置及び高周波スイッチ回路を提供できる。
また、図1(c)に示すように、引き出し導電領域16とソース領域14との間には絶縁層25が設けられ、引き出し導電領域16とドレイン領域13との間にも絶縁層25が設けられている。したがって、引き出し導電領域16は、ドレイン領域13及びソース領域14に対してPN接合していない。これにより、そのPN接合の容量非線形性に起因する歪みが生じない。
図5は、本発明の他の実施形態に係る半導体装置を示す。図5(a)は図1(b)に対応する平面図であり、図5(b)は図1(c)に対応する平面図である。図5(c)は図5(a)におけるD−D断面図である。
本実施形態の引き出し導電領域16も、ボディ領域15及びボディコンタクト領域24に接している。さらに、引き出し導電領域16は、ドレイン領域13、ソース領域14およびボディ領域15が形成された領域と、ボディコンタクト領域24との間で、ボディ領域15のチャネル長方向に延在している。そのチャネル長方向に延在する引き出し導電領域16上にもゲート絶縁膜17を介してゲート電極18が設けられている。
図5(a)に示すように、ゲート電極18の周囲には、サイドウォール絶縁層19が設けられている。サイドウォール絶縁層19は、ドレイン電極21とゲート電極18との間に設けられ、ドレイン電極21とゲート電極18とを分離している。また、サイドウォール絶縁層19は、ソース電極22とゲート電極18との間に設けられ、ソース電極22とゲート電極18とを分離している。さらに、サイドウォール絶縁層19は、ゲート電極18とボディ電極23との間に設けられ、ゲート電極18とボディ電極23とを分離している。
引き出し導電領域16とドレイン領域13との間、および引き出し導電領域16とソース領域14との間には絶縁層が設けられず、引き出し導電領域16とドレイン領域13とはPN接合し、引き出し導電領域16とソース領域14とはPN接合している。引き出し導電領域16とドレイン領域13との間、および引き出し導電領域16とソース領域14との間に、トレンチを形成する工程及びそのトレンチ内に絶縁層を埋め込む工程が不要であるため、プロセスコストの低減を図れる。
以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明は、それらに限定されるものではなく、本発明の技術的思想に基づいて種々の変形が可能である。
11…基板、12…絶縁層、13…ドレイン領域、14…ソース領域、15…ボディ領域、16…引き出し導電領域、17…ゲート絶縁膜、18…ゲート電極、19…サイドウォール絶縁層、21…ドレイン電極、22…ソース電極、23…ボディ電極、24…ボディコンタクト領域、25…絶縁層、30…ゲート制御回路

Claims (9)

  1. 絶縁層と、
    前記絶縁層上に設けられた第1導電型の第1の半導体領域と、
    前記絶縁層上に前記第1の半導体領域に対して離間して設けられた第1導電型の第2の半導体領域と、
    前記絶縁層上における前記第1の半導体領域と前記第2の半導体領域との間に設けられ、前記第1の半導体領域及び前記第2の半導体領域に接している第2導電型の第3の半導体領域と、
    前記絶縁層上に前記第3の半導体領域に接して設けられた第2導電型の第4の半導体領域と、
    前記第3の半導体領域及び前記第4の半導体領域上に設けられた絶縁膜と、
    前記絶縁膜上に設けられたゲート電極と、
    前記第4の半導体領域と電気的に接続され、直流電圧が印加されるボディ電極と、
    を備え、
    前記ゲート電極に閾値電圧以上の電圧が印加されたオン状態で、前記第4の半導体領域が空乏化して、前記ボディ電極と前記第3の半導体領域との間の直流の通過を遮断することを特徴とする半導体装置。
  2. 絶縁層と、
    前記絶縁層上に設けられた第1導電型の第1の半導体領域と、
    前記絶縁層上に前記第1の半導体領域に対して離間して設けられた第1導電型の第2の半導体領域と、
    前記絶縁層上における前記第1の半導体領域と前記第2の半導体領域との間に設けられ、前記第1の半導体領域及び前記第2の半導体領域に接している第2導電型の第3の半導体領域と、
    前記絶縁層上に前記第3の半導体領域に接して設けられ、前記第3の半導体領域よりも第2導電型不純物濃度が低い第2導電型の第4の半導体領域と、
    前記第3の半導体領域及び前記第4の半導体領域上に設けられた絶縁膜と、
    前記絶縁膜上に設けられたゲート電極と、
    前記第4の半導体領域と電気的に接続され、直流電圧が印加されるボディ電極と、
    を備えたことを特徴とする半導体装置。
  3. 前記ゲート電極に閾値電圧以上の電圧が印加されたオン状態で、前記第4の半導体領域が空乏化して、前記ボディ電極と前記第3の半導体領域との間の直流の通過を遮断することを特徴とする請求項2記載の半導体装置。
  4. 前記ゲート電極に閾値電圧より低い電圧が印加されたオフ状態で、前記第3の半導体領域には前記第4の半導体領域を介して前記ボディ電極の電位が与えられることを特徴とする請求項1〜3のいずれか1つに記載の半導体装置。
  5. 前記第4の半導体領域は、前記第3の半導体領域よりも薄いことを特徴とする請求項1〜4のいずれか1つに記載の半導体装置。
  6. 前記第4の半導体領域上の前記絶縁膜の膜厚は、前記第3の半導体領域上の前記絶縁膜の膜厚よりも厚いことを特徴とする請求項1〜5のいずれか1つに記載の半導体装置。
  7. 前記第4の半導体領域は、前記第1の半導体領域及び前記第2の半導体領域に接していないことを特徴とする請求項1〜6のいずれか1つに記載の半導体装置。
  8. 前記第4の半導体領域は、前記第4の半導体領域よりも第2導電型不純物濃度が高い第2導電型のボディコンタクト領域を介して前記ボディ電極と接続されていることを特徴とする請求項1〜7のいずれか1つに記載の半導体装置。
  9. 複数の端子間に接続され、前記端子間の高周波信号の通過と遮断とを切り替えるスイッチ素子を備え、
    前記スイッチ素子は、請求項1〜8のいずれか1つに記載の半導体装置であることを特徴とする高周波スイッチ回路。
JP2009127429A 2009-05-27 2009-05-27 半導体装置及び高周波スイッチ回路 Pending JP2010278110A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009127429A JP2010278110A (ja) 2009-05-27 2009-05-27 半導体装置及び高周波スイッチ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009127429A JP2010278110A (ja) 2009-05-27 2009-05-27 半導体装置及び高周波スイッチ回路

Publications (1)

Publication Number Publication Date
JP2010278110A true JP2010278110A (ja) 2010-12-09

Family

ID=43424829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009127429A Pending JP2010278110A (ja) 2009-05-27 2009-05-27 半導体装置及び高周波スイッチ回路

Country Status (1)

Country Link
JP (1) JP2010278110A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123796B2 (en) 2013-05-22 2015-09-01 Kabushiki Kaisha Toshiba Semiconductor device
US10756724B2 (en) 2015-03-06 2020-08-25 Qualcomm Incorporated RF circuit with switch transistor with body connection
US11777492B2 (en) 2021-11-29 2023-10-03 Kabushiki Kaisha Toshiba Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123796B2 (en) 2013-05-22 2015-09-01 Kabushiki Kaisha Toshiba Semiconductor device
US10756724B2 (en) 2015-03-06 2020-08-25 Qualcomm Incorporated RF circuit with switch transistor with body connection
US11539360B2 (en) 2015-03-06 2022-12-27 Qualcomm Incorporated RF switch having independently generated gate and body voltages
US11777492B2 (en) 2021-11-29 2023-10-03 Kabushiki Kaisha Toshiba Semiconductor device

Similar Documents

Publication Publication Date Title
US11967948B2 (en) Method and apparatus for use in improving linearity of MOSFETs using an accumulated charge sink
US10256287B2 (en) Floating body contact circuit method for improving ESD performance and switching speed
TWI675551B (zh) 經本體偏壓的切換裝置
US9685432B2 (en) Compact electrostatic discharge (ESD) protection structure
US9123796B2 (en) Semiconductor device
US11901459B2 (en) Method and apparatus improving gate oxide reliability by controlling accumulated charge
US20080230834A1 (en) Semiconductor apparatus having lateral type MIS transistor
CN103812483A (zh) Cmos射频开关
TW201729422A (zh) 半導體裝置
US9418992B2 (en) High performance power cell for RF power amplifier
JP2007027563A (ja) 高周波スイッチ回路を有する高周波装置
JP2010278110A (ja) 半導体装置及び高周波スイッチ回路
US11088685B2 (en) High-frequency switch
Im et al. Characterization and optimization of partially depleted SOI MOSFETs for high power RF switch applications
JP5450955B2 (ja) 高周波スイッチ
JP2016174240A (ja) 半導体スイッチ
Purakh et al. A 130nm RFSOI technology with switch, LNA, and EDNMOS devices for integrated front-end module SoC applications
US10277226B1 (en) Voltage translator device
KR101605401B1 (ko) 노멀리 온 동작을 하는 스위칭 소자를 위한 게이트 드라이버
JP2008153385A (ja) 高周波スイッチ