WO2019007625A1 - Leistungsmodul mit einem oberseitig und/oder unterseitig elektrisch zu kontaktierenden halbleiterträgerelement und mindestens einem oberflächenmontierten elektrischen kontaktierungselement - Google Patents

Leistungsmodul mit einem oberseitig und/oder unterseitig elektrisch zu kontaktierenden halbleiterträgerelement und mindestens einem oberflächenmontierten elektrischen kontaktierungselement Download PDF

Info

Publication number
WO2019007625A1
WO2019007625A1 PCT/EP2018/064996 EP2018064996W WO2019007625A1 WO 2019007625 A1 WO2019007625 A1 WO 2019007625A1 EP 2018064996 W EP2018064996 W EP 2018064996W WO 2019007625 A1 WO2019007625 A1 WO 2019007625A1
Authority
WO
WIPO (PCT)
Prior art keywords
power module
electrical contacting
semiconductor
mounted electrical
module according
Prior art date
Application number
PCT/EP2018/064996
Other languages
English (en)
French (fr)
Inventor
Ewgenij Ochs
Pascal WERNER
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2019007625A1 publication Critical patent/WO2019007625A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • H01L25/072Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/32227Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the layer connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4846Connecting portions with multiple bonds on the same bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • H01L2224/854Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/85438Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/85447Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the invention relates to a power module with a devisei ⁇ tig and / or bottom side electrically contacting semiconductor support member.
  • the interest is mainly in particular power modules that are used in the field of power electronics.
  • the field of power electronics usually deals with the transformation of electrical energy with switching semiconductor devices.
  • These semiconductor devices which are also referred to as power electronic components, may be formed, for example, as power diodes, power MOSFETs or IGBTs.
  • one or more semiconductor devices which also referred to as chips ⁇ to be arranged on a substrate and thus form a so- ⁇ -called power module.
  • the substrate on which the one or more semiconductor components by means of a deployment and Verbin ⁇ applications technology are mechanically attached may also serve to electrically connect the semiconductor devices.
  • Such substrates may for example comprise a carrier element made of a ceramic, which is coated for electrical contacting and the mechanical fastening of the semiconductor elements with Lei ⁇ terbahnen and electrical contact elements which are formed for example from copper.
  • a carrier element made of a ceramic
  • Lei ⁇ terbahnen and electrical contact elements which are formed for example from copper.
  • the properties of the electrical connections between the upper side of the semiconductor component or the chip and a contact element of the substrate often limit the durability of the power module .
  • More recent technologies ⁇ play as the copper thick wire bonding or the so-called "ribbon bonding" before.
  • Other solutions consist of sintered metallized plastic films.
  • soldered busbars made of thick copper are known.
  • SiPLIT technology Siemens Planar Interconnect Technology
  • solderable pins solderable pins, press-pins, round springs or bent metal springs ⁇ .
  • the solder pins or press-in pins are first mechanically fixed in the module housing or connected in the housing with aluminum bonding wires.
  • the solder pins are then soldered in a wave soldering process in the circuit board.
  • the press pins are pressed in during the final assembly of the corresponding device by means of a hydraulic press.
  • These pins can be on one side in the circuit board gelö- tet, wherein the other side with a bonding wire ver ⁇ prevented.
  • the round spring or the bent metal spring are inserted into a module housing. The one rounded side of the two springs suppressed by the pre ⁇ tension against the circuit board, while the other contacted under tension the DCB substrate.
  • the object of the present invention since ⁇ rin to provide a power module which allows a simple way an electrical contacting of the semiconductor assembly ⁇ elements.
  • a power module with a top and bottom side electrically prestigeie ⁇ - generating semiconductor carrier element.
  • the invention is characterized in that on at least one surface mounted device (SMD), the semiconductor support member having ei ⁇ ner circuit board in an automated process, and in particular is a pick-and-place process contacted electrically.
  • SMD surface mounted device
  • DCBs are now populated with semiconductors using a Pick & Place process.
  • the essence of the invention is that the semiconductor carrier elements with both the semiconductors and with the mechanically flexible SMD connections on the same pick & place process, ie, in the same manufacturing ⁇ step, are equipped.
  • the same vacuum brazing process is also used according to the invention for this assembly. Extensive adaptation of the production line to this production process is not required for this, since the SMD connection elements merely have to be introduced into the process as an additional tray. Because of this intervention in the production process, the product is now available as an at least partially ⁇ functional unit and can be tested for possible errors, so that the finished unit can be stored. For further processing, the products are again automatically placed in a pick & place process on the assembly and soldered together with other components with the circuit board.
  • This mechanically flexible SMD connection does not require costly housing-specific mounting ⁇ holders, such as in the IGBT modules, since this compound according to the invention is an inherently stable SMD component. This eliminates investment for additional tools, since this variant of the invention can be made frameless. This results in the consequence that even small quantities can be economically viable.
  • This SMD connection according to the invention dampens by its Fe ⁇ derkontur all mechanical vibrations of the circuit board and thus relieves the vulnerable solder joints of the device during operation.
  • the mechanically-flexible SMD connection allows higher electrical currents since the electrical Ver ⁇ connection is realized over a relatively large solder surface. In addition, however, smaller currents are reliably connected at low voltages, since oxidation is ruled out, as with MiniSkiip, for example.
  • the SMD connection due to its very low height compared to conventional spring elements, allows a more compact overall power module. Due to the stable connection, a minimum spring travel is sufficient to prevent mechanical vibrations of the PCB relative to the DCB.
  • the DCB can also be cooled via the printed circuit board via the relatively massive connection. By suitable shaping, the destabilization of bond connections due to vibrations occurring can be prevented.
  • Connections can be distributed freely over the complete, to be equipped building area of the power module.
  • alternatives such as an Econo Pack are limitations because the connections can be carried out at the edge.
  • the SMD connection allows due to their shape a very stable reflow soldering, so that the processing is very just appears.
  • the mechanical-flexible SMD connection fits easily into existing invention, automatable ⁇ te series SMD processes that without creating new process loops. A manual assembly is not required, ie, all components can be equipped automatically.
  • the SMD connection is soldered to the DCB substrate in the same reflow soldering process step as the semiconductor chips. In the sequence of further process steps, it is possible that the units produced are stored or alternatively processed further. This made-Zwischenein ⁇ ness can now also be placed on a pick and place process on ei ⁇ ner assembly.
  • a continuation of the inventive concept can provide that via at least one surface-mounted electrical ⁇ cal contacting elements (SMD connection), the semiconductor ⁇ carrier element is electrically contacted with a circuit board in an automated pick & place process.
  • a special embodiment of this inventive concept may consist in that the surface-mounted electrical contacting elements are formed mechanically flexible, preferably in the form of a spring.
  • An advantageous embodiment of the inventive concept may consist in that the surface-mounted electrical contacting elements are formed in different designs.
  • a continuation of the inventive concept may provide the surface mount electrical contacting elements in particular U-, S-, or W-shaped, or even in walls ⁇ ren shapes are formed.
  • a special embodiment of this inventive concept may consist in that both the assembly with surface-mounted electrical contacting elements and the integration of a semiconductor chip on a Semiconductor support element in the same pick & place process is ⁇ settable.
  • An advantageous embodiment of the inventive concept can consist in that both the fixation of the surface-mounted electrical contacting elements and that of a semiconductor chip on a semiconductor carrier element can be implemented in the same vacuum soldering process.
  • a continuation of the inventive concept can provide that the electrical contact between the semiconductor carrier and the printed circuit board via the surface-mounted electrical contacting elements in a direct Maisie ⁇ tion, without additional mounting brackets for the contacting elements, is formed.
  • a special embodiment of this inventive concept can consist in that the surface-mounted electrical contacting elements are designed both for small and for large electrical currents.
  • the power module according to the invention has a base plate which is positioned on the underside on a heat sink having a top side coated ⁇ thermal grease, pre preferably by a fastener such as egg ⁇ ne screw.
  • the upper side, a solder ⁇ layer is coated on the base plate, on which a semiconductor substrate is arranged in the form of a DCB substrate.
  • the semiconductor carrier is preferably formed in three layers with a centrally arranged insulated metal substrate, which is coated on the upper side and underside with copper.
  • semiconductor chips preferably silicon chips connected via bonding wires to the copper layer of the DCB substrate ⁇ .
  • connection elements An electrical contacting of a preferably over ⁇ ordered printed circuit board (PCB) is implemented via connection elements .
  • this connecting element is made of an electrically conductive Ma ⁇ TERIAL and can in different execution shapes are used.
  • This connection element is a surface-mounted electrical contacting element and is also referred to as an SMD (surface mount device) connection ⁇ net and can be mechanically-flexible, for example U-, S- and W-shaped.
  • FIG. 1 shows a schematic illustration of a power module known from the prior art
  • FIG. 2 is a perspective view of a first exemplary embodiment of a surface-mounted electrical contacting element (SMD) for electrical contacting;
  • SMD surface-mounted electrical contacting element
  • FIG. 3 is a perspective view of a second embodiment of a surface-mounted electrical contacting element (SMD) for electrical contacting;
  • SMD surface-mounted electrical contacting element
  • SMD surface-mounted electrical contacting element
  • FIG. 5 shows a perspective view of a semiconductor carrier element with surface-mounted electrical contacting elements according to the invention
  • Fig. 6 in a plan view of the expanded view of FIG. 5 as a printed circuit board.
  • FIG. 1 shows a structure of a power module known from the prior art.
  • the power module according to the invention comprises a base plate 1 on which te bottom side on a heat sink 2 with a top side coated réelleleitpas- 3 is positioned, preferably by a fastening ⁇ medium 4 such as a screw.
  • a solder layer 5 is applied, on which a semiconductor carrier element 6 in the form of a DCB substrate with a centrally positioned insulated ceramic substrate 7, which is coated on the upper side and underside with a copper surface 8, 9 arranged.
  • semiconductor chip 10 preferably Silizi ⁇ connected to chip via bonding wires 11 to the copper surface 8 of the semiconductor support member.
  • connection elements 12 an electrical contacting of a preferably over ⁇ ordered printed circuit board 13 (PCB) is implemented.
  • FIG. 2 a first embodiment of a devisflä ⁇ chenmont lying on a circuit board and ei ⁇ nem semiconductor carrier element in the form of a DCB substrate is set is ⁇ .
  • This contact element 14 of the invention replaces the connecting element of Fig. 1.
  • this connecting element is made of an electrically conductive ma- TERIAL and can be used in different execution ⁇ form.
  • Fig. 2 shows the U-shape of the
  • FIG. 3 shows a second embodiment of a devisflä ⁇ chenmont striv electrical contacting element (SMD) 15 for the electrical contact between the circuit board and semiconductor support member in S-shape.
  • FIG. 4 is a third embodiment of a devisflä ⁇ chenmont striv electrical contacting element (SMD) 16 for the electrical contact between the circuit board and semiconductor support element in W-shape.
  • Fig. 5 shows a semiconductor support member 17 with any ver ⁇ divides arranged einfindungsdorfen surface mount electrical contacting elements (SMD) 14, 15, 16.
  • the semiconductor support member 17 is preferably formed in three layers, insulated with a centrally located
  • Kup ⁇ feroberzan 19, 20 can be both the top side as well as un- ter jewel electronic components as well as ENachimon ⁇ oriented electrical contacting elements (SMD) 14, 15 may be disposed sixteenth
  • FIG. 6 the extended view of FIG. 5 is shown as a printed circuit board, ie, over the assembled with components and surface mounted electrical contacting elements 14 semiconductor support member 17 is a Leiter ⁇ plate 21 is arranged, which via the surface-mounted electrical contacting elements 14 with the semiconductor carrier element 17 is electrically connected.
  • the power module according to the invention is characterized in that it is a cost-effective solution, since the plastic housing is eliminated and additional investments can be saved for other tools. By which he ⁇ -making art solution smaller quantities will host ⁇ economically sensible.
  • the SMD compound of the invention he ⁇ enables the flexibility of the components a more compact design, which can associate with the resulting variability customer benefits. New inverter topologies can be used in new products such as 3 level IGBT modules. Closing ⁇ Lich SMD compound of the invention enables more accurate measurements, a longer life cycle, a significantly improved by the stable len solder reliability so ⁇ as an automated and simplified production of the connection between DCB substrate and printed circuit board. Reference sign list

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Ein Leistungsmodul weist einen oberseitig und/oder unterseitig elektrisch zu kontaktierenden Halbleiterträgerelement (17) auf, wobei über mindestens ein oberflächenmontiertes, mechanisch-flexibles elektrisches Kontaktierungselement (14, 15, 16) das Halbleiterträgerelement (17) mit einer Leiterplatte (21) in einem automatisierten Prozess, insbesondere einem Pick&Place-Prozess elektrisch kontaktiert ist. Das Halbleiterträgerelement (17) wird sowohl mit einem Halbleiter als auch mit dem mechanisch-flexiblen elektrischen Kontaktierungselement (14, 15, 16) über den gleichen Pick&Place-Prozess, d.h. im selben Herstellungsschritt, bestückt. Zudem wird auch derselbe Vakuumlötprozess für diese Bestückung genutzt.

Description

Beschreibung
LEISTUNGSMODUL MIT EINEM OBERSEITIG UND/ODER UNTERSEITIG ELEKTRISCH ZU KONTAKTIERENDEN HALBLEITERTRÄGERELEMENT UND MINDESTENS EINEM OBERFLÄCHENMONTIERTEN ELEKTRISCHEN KONTAKTIERUNGSELEMENT
Die Erfindung betrifft ein Leistungsmodul mit einem obersei¬ tig und/oder unterseitig elektrisch zu kontaktierenden Halbleiterträgerelement .
Das Interesse gilt vorwiegend insbesondere Leistungsmodulen, die im Bereich der Leistungselektronik eingesetzt werden. Der Bereich der Leistungselektronik beschäftigt sich üblicherweise mit der Umformung elektrischer Energie mit schaltenden Halbleiterbauelementen. Diese Halbleiterbauelemente, die auch als leistungselektronische Bauelemente bezeichnet werden, können beispielsweise als Leistungsdioden, Leistungs-MOSFETs oder IGBTs ausgebildet sein. Dabei können ein oder mehrere Halbleiterbauelemente, welche auch als Chips bezeichnet wer¬ den, auf einem Substrat angeordnet sein und somit ein soge¬ nanntes Leistungsmodul bilden. Das Substrat, auf dem das oder die Halbleiterbauelemente mittels einer Aufbau- und Verbin¬ dungstechnik mechanisch befestigt sind, kann auch zur elektrischen Verbindung der Halbleiterbauelemente dienen. Solche Substrate können beispielsweise ein Trägerelement aus einer Keramik umfassen, welches zur elektrischen Kontaktierung und mechanischen Befestigung der Halbleiterbauelemente mit Lei¬ terbahnen und elektrischen Kontaktelementen, die beispielsweise aus Kupfer gebildet sind, beschichtet ist. Insbesondere bei der elektrischen Kontaktierung der Halbleiterbauelemente auf der Oberseite ist es erforderlich, eine zuverlässige elektrische Verbindung und damit einen Strom- fluss zu den Anschlüssen beziehungsweise Kontaktelementen herzustellen. Die Eigenschaften der elektrischen Verbindungen zwischen der Oberseite des Halbleiterbauelements beziehungs¬ weise des Chips und einem Kontaktelement des Substrats be¬ grenzen häufig die Haltbarkeit des Leistungsmoduls. Aus dem Stand der Technik ist es beispielsweise bekannt, für diese elektrischen Verbindungen entsprechende Aluminium-Dickdrähte zu verwenden, welche auf dem Halbleiterbauelement und dem Kontaktelement fixiert werden. Neuere Technologien sehen bei¬ spielsweise das Kupfer-Dickdraht-Bonden oder das sogenannte „Bändchenbonden" vor. Andere Lösungen bestehen aus gesinterten, metallisierten Kunststofffolien . Weiterhin sind gelötete Stromschienen aus dickem Kupfer bekannt. Außerdem ist die sogenannte SIPLIT-Technologie (Siemens Planar Interconnect Technology) bekannt.
Bisher wurde die Kontaktierung des DCB-Substrats mit der Lei¬ terplatte durch lötbare Pins, Press-Pins, Rundfedern oder ge¬ bogene Metallfedern gelöst. Dabei werden die Löt-Pins bzw. Einpress-Pins zunächst im Modul-Gehäuse mechanisch fixiert bzw. im Gehäuse mit Aluminium-Bonddrähten verbunden. Die Löt- Pins werden danach in einem Wellenlötprozess in die Leiterplatte gelötet. Die Press-Pins werden bei der Endmontage des entsprechenden Geräts mittels einer Hydraulikpresse einge- presst. Diese Pins können einseitig in die Leiterplatte gelö- tet werden, wobei die andere Seite mit einem Bonddraht ver¬ bunden wird. Im Gegensatz dazu werden die Rundfeder bzw. die gebogene Metallfeder in ein Modul-Gehäuse eingelegt. Die eine abgerundete Seite der beiden Federn drückt durch die Vor¬ spannkraft gegen die Leiterplatte, während die andere unter Spannung das DCB-Substrat kontaktiert.
Der Nachteil dieser Lösungen besteht darin, dass diese elektrischen Verbindungsmittel gehäusespezifische Positionie¬ rungsmittel benötigen.
Demgemäß besteht die Aufgabe der vorliegenden Erfindung da¬ rin, ein Leistungsmodul zu schaffen, welches auf einfache Art und Weise eine elektrische Kontaktierung des Halbleiterbau¬ elements ermöglicht.
Diese Aufgabe wird erfindungsgemäß durch ein Leistungsmodul mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Aus- und Weiterbildungen, welche einzeln oder in Kombination miteinander eingesetzt werden können, sind der Gegenstand der abhängigen Ansprüche.
Erfindungsgemäß wird diese Aufgabe durch ein Leistungsmodul mit einem oberseitig und unterseitig elektrisch zu kontaktie¬ renden Halbleiterträgerelement gelöst. Die Erfindung zeichnet sich dadurch aus, dass über mindestens ein oberflächenmontiertes Bauelement (SMD) das Halbleiterträgerelement mit ei¬ ner Leiterplatte in einem automatisierten Prozess, insbeson- dere einem Pick&Place-Prozess elektrisch kontaktiert ist.
DCBs werden heute mittels eines Pick&Place-Prozesses mit Halbleitern bestückt. Der Kern der Erfindung besteht darin, dass die Halbleiterträgerelemente sowohl mit den Halbleitern als auch mit den mechanisch-flexiblen SMD-Verbindungen über den gleichen Pick&Place-Prozess, d.h. im selben Herstellungs¬ schritt, bestückt werden. Zudem wird auch derselbe Vakuumlöt- prozess für diese Bestückung erfindungsgemäß genutzt. Eine umfangreiche Anpassung der Fertigungsanlage an diesen Her- stellungsprozess wird hierfür nicht benötigt, da die SMD- Verbindungselemente lediglich als zusätzliches Tray in den Ablauf eingeführt werden müssen. Aufgrund dieses Eingriffs in den Herstellungsablauf liegt das Erzeugnis jetzt als zumin¬ dest teilweise funktionsfähige Einheit vor und kann so auf mögliche Fehler getestet werden, so dass die fertige Einheit zwischengelagert werden kann. Zur Weiterverarbeitung werden die Erzeugnisse wieder automatisiert in einem Pick&Place- Prozess auf der Baugruppe platziert und zusammen mit anderen Bauelementen mit der Leiterplatte verlötet.
Der große Vorteil dieser mechanisch-flexiblen SMD-Verbindung benötigt keine kostenintensiven gehäusespezifische Montage¬ halterungen wie beispielsweise bei den IGBT-Modulen, da diese erfindungsgemäße Verbindung ein in sich stabiles SMD-Bauteil ist. Dadurch entfallen Investitionen für zusätzliche Werkzeuge, da diese erfindungsgemäße Variante rahmenlos gefertigt werden kann. Daraus ergibt sich die Konsequenz, dass bereits geringe Stückzahlen wirtschaftlich sinnvoll sein können. Diese erfindungsgemäße SMD-Verbindung dämpft durch ihre Fe¬ derkontur sämtliche mechanische Vibrationen der Leiterplatte und entlastet somit die anfälligen Lötstellen des Geräts im Betrieb. Außerdem ermöglicht die mechanisch-flexible SMD- Verbindung höhere elektrische Ströme, da die elektrische Ver¬ bindung über eine relativ große Lotfläche realisiert wird. Zusätzlich werden aber auch kleinere Ströme bei kleinen Spannungen zuverlässig angebunden, da eine Oxidation wie beispielsweise bei MiniSkiip ausgeschlossen ist.
Des Weiteren ermöglicht die SMD-Verbindung durch ihre sehr niedrige Bauhöhe, verglichen mit herkömmlichen Federelementen, ein insgesamt kompakteres Leistungsmodul. Aufgrund der stabilen Anbindung ist ein minimaler Federweg ausreichend, um mechanische Schwingungen der Leiterplatte relativ zum DCB-
Substrat auszugleichen. Die heute bekannten Lösungen wie z.B. MiniSkip benötigen für diesen Toleranzausgleich einen längeren Federweg. Durch diese kürzeren Federn werden parasitäre Elemente wie Induktivität und Widerstand minimiert. Aufgrund der SMD-Verbindung können die aufgebauten Einheiten im Kurzschlussfall ein robusteres Verhalten gegenüber den heutigen Modulen zeigen. Die DCB kann über die relativ massive Verbindung auch über die Leiterplatte gekühlt werden. Durch eine geeignete Formgebung kann die Destabilisierung von Bondver- bindungen durch auftretende Schwingungen verhindert werden.
Ein weiterer Vorteil dieser erfindungsgemäßen Lösung besteht darin, dass die vorhandenen Baugruppen nur geringfügig ange- passt werden müssen. Die Anpassung erfolgt lediglich in der Fläche, in welcher die heutigen Module aufliegen. Die SMD-
Verbindungen können über der kompletten, zu bestückenden Baufläche des Leistungsmoduls beliebig verteilt werden. Bei heu¬ tigen Alternativen wie z.B. einem Econo Pack bestehen Einschränkungen, da die Anschlüsse nur am Rand ausgeführt werden können.
Zudem ermöglicht die SMD-Verbindung aufgrund ihrer Form ein sehr stabiles Reflow-Löten, so dass die Verarbeitung sehr einfach erscheint. Die mechanisch-flexible SMD-Verbindung fügt sich erfindungsgemäß leicht in bestehende, automatisier¬ te Serien-SMD-Prozesse ein, ohne dabei neue Prozessschleifen zu erzeugen. Eine Handmontage ist nicht erforderlich, d.h., alle Bauteile können automatisiert bestückt werden. Die SMD- Verbindung wird im selben Reflow-Lötprozessschritt wie die Halbleiter-Chips auf das DCB-Substrat gelötet. In der Abfolge der weiteren Prozessschritte besteht die Möglichkeit, dass die hergestellten Einheiten gelagert werden oder alternativ weiter verarbeitet werden. Diese so gefertigte Zwischenein¬ heit kann nun ebenfalls über einen Pick&Place-Prozess auf ei¬ ner Baugruppe platziert werden.
Eine Fortführung des erfindungsgemäßen Konzepts kann vorse- hen, dass über mindestens ein oberflächenmontiertes elektri¬ sches Kontaktierungselemente ( SMD-Verbindung) das Halbleiter¬ trägerelement mit einer Leiterplatte in einem automatisierten Pick&Place-Prozess elektrisch kontaktiert ist. Eine spezielle Ausgestaltung dieses erfindungsgemäßen Konzepts kann darin bestehen, dass die oberflächenmontierten elektrischen Kontaktierungselementen mechanisch-flexibel, vorzugsweise in Form einer Feder ausgebildet sind. Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Konzepts kann darin bestehen, dass die oberflächenmontierten elektrischen Kontaktierungselemente in unterschiedlichen Bauformen ausgebildet sind. Eine Fortführung des erfindungsgemäßen Konzepts kann vorsehen, die oberflächenmontierten elektrischen Kontaktierungselemente insbesondere U-, S- oder W-förmig oder auch in ande¬ ren Formgebungen ausgebildet sind. Eine spezielle Ausgestaltung dieses erfindungsgemäßen Konzepts kann darin bestehen, dass sowohl die Bestückung mit oberflächenmontierten elektrischen Kontaktierungselementen als auch die Integration eines Halbleiterchips auf einem Halbleiterträgerelement im gleichen Pick&Place-Prozess um¬ setzbar ist.
Eine vorteilhafte Ausgestaltung des erfindungsgemäßen Kon- zepts kann darin bestehen, dass sowohl die Fixierung der oberflächenmontierten elektrischen Kontaktierungselemente als auch die eines Halbleiterchips auf einem Halbleiterträgerele¬ ment im gleichen Vakuumlötprozess umsetzbar ist. Eine Fortführung des erfindungsgemäßen Konzepts kann vorsehen, dass die elektrische Kontaktierung zwischen Halbleiterträger und Leiterplatte über die oberflächenmontierten elektrischen Kontaktierungselemente in einer direkten Kontaktie¬ rung, ohne zusätzliche Montagehalterungen für die Kontaktie- rungselemente, ausgebildet ist.
Eine spezielle Ausgestaltung dieses erfindungsgemäßen Konzepts kann darin bestehen, dass die oberflächenmontierten elektrischen Kontaktierungselemente sowohl für kleine als auch für große elektrische Ströme ausgebildet sind.
Das erfindungsgemäße Leistungsmodul weist eine Grundplatte auf, welche unterseitig auf einem Kühlkörper mit einer ober¬ seitig aufgetragenen Wärmeleitpaste positioniert ist, vor- zugsweise durch ein Befestigungsmittel wie beispielsweise ei¬ ne Schraube. Oberseitig ist auf der Grundplatte eine Lot¬ schicht aufgetragen, auf welcher ein Halbleiterträger in Form eines DCB-Substrats angeordnet ist. Der Halbleiterträger ist vorzugsweise in drei Schichten ausgebildet mit einem mittig angeordneten isolierten Metallsubstrat, welches oberseitig und unterseitig mit Kupfer beschichtet ist. Auf dem Halblei¬ terträger in Form des DCB-Substrats werden Halbleiterchips, vorzugsweise Silizium-Chips über Bonddrähte mit der Kupfer¬ schicht des DCB-Substrats verbunden. Über Anschlusselemente wird eine elektrische Kontaktierung einer vorzugsweise über¬ geordneten Leiterplatte (PCB) umgesetzt. Erfindungsgemäß ist dieses Anschlusselement aus einem elektrisch leitfähigen Ma¬ terial gefertigt und kann in unterschiedlichen Ausführungs- formen verwendet werden. Dieses Anschlusselement ist ein oberflächenmontiertes elektrisches Kontaktierungselement und wird auch als SMD (surface mount device) -Verbindung bezeich¬ net und kann mechanisch-flexibel beispielsweise U-, S- und W- förmig ausgebildet sein.
Weitere Ausführungen und Vorteile der Erfindung werden nachfolgend anhand eines Ausführungsbeispiels sowie anhand der Zeichnung erläutert.
Dabei zeigen:
Fig. 1 in einer schematischen Darstellung ein aus dem Stand der Technik bekanntes Leistungsmodul;
Fig. 2 in einer perspektivischen Darstellung ein erstes Ausführungsbeispiel eines oberflächenmontierten elektrischen Kontaktierungselements (SMD) für die elektrische Kontaktie- rung;
Fig. 3 in einer perspektivischen Darstellung ein zweites Ausführungsbeispiel eines oberflächenmontierten elektrischen Kontaktierungselements (SMD) für die elektrische Kontaktie- rung;
Fig. 4 in einer perspektivischen Darstellung ein drittes Ausführungsbeispiel eines oberflächenmontierten elektrischen Kontaktierungselements (SMD) für die elektrische Kontaktie- rung;
Fig. 5 in einer perspektivischen Darstellung ein Halbleiterträgerelement mit erfindungsgemäßen oberflächenmontierten elektrischen Kontaktierungselernenten; Fig. 6 in einer Draufsicht die erweiterte Darstellung nach Fig. 5 als Flachbaugruppe. Fig. 1 zeigt einen Aufbau eines aus dem Stand der Technik be¬ kannten Leistungsmoduls. Das erfindungsgemäße Leistungsmodul weist eine Grundplatte 1 auf, welche unterseitig auf einem Kühlkörper 2 mit einer oberseitig aufgetragenen Wärmeleitpas- te 3 positioniert ist, vorzugsweise durch ein Befestigungs¬ mittel 4 wie beispielsweise eine Schraube. Oberseitig ist auf der Grundplatte 1 eine Lotschicht 5 aufgetragen, auf welcher ein Halbleiterträgerelement 6 in Form eines DCB-Substrats mit einem mittig positionierten isolierten Keramiksubstrat 7, welches oberseitig und unterseitig mit einer Kupferoberfläche 8, 9 beschichtet ist, angeordnet ist. Auf dem Halbleiterträ¬ gerelement 6 werden Halbleiterchips 10, vorzugsweise Silizi¬ um-Chips über Bonddrähte 11 mit der Kupferoberfläche 8 des Halbleiterträgerelements verbunden. Über Anschlusselemente 12 wird eine elektrische Kontaktierung einer vorzugsweise über¬ geordneten Leiterplatte 13 (PCB) umgesetzt.
In Fig. 2 ist ein erstes Ausführungsbeispiel eines oberflä¬ chenmontierten elektrischen Kontaktierungselements 14 für die elektrische Kontaktierung zwischen einer Leiterplatte und ei¬ nem Halbleiterträgerelement in Form eines DCB-Substrats dar¬ gestellt. Dieses erfindungsgemäße Kontaktierungselement 14 ersetzt das Anschlusselement aus Fig. 1. Erfindungsgemäß ist dieses Anschlusselement aus einem elektrisch leitfähigen Ma- terial gefertigt und kann in unterschiedlichen Ausführungs¬ formen verwendet werden. Fig. 2 zeigt die U-Form des oberflä¬ chenmontierten elektrischen Kontaktierungselements 14, welches zudem mechanisch-flexibel ausgeführt ist. Fig. 3 zeigt ein zweites Ausführungsbeispiel eines oberflä¬ chenmontierten elektrischen Kontaktierungselements (SMD) 15 für die elektrische Kontaktierung zwischen Leiterplatte und Halbleiterträgerelement in S-Form. In Fig. 4 ist ein drittes Ausführungsbeispiel eines oberflä¬ chenmontierten elektrischen Kontaktierungselements (SMD) 16 für die elektrische Kontaktierung zwischen Leiterplatte und Halbleiterträgerelement in W-Form. Fig. 5 zeigt ein Halbleiterträgerelement 17 mit beliebig ver¬ teilt angeordneten einfindungsgemäßen oberflächenmontierten elektrischen Kontaktierungselementen (SMD) 14, 15, 16. Das Halbleiterträgerelement 17 ist vorzugsweise in drei Schichten ausgebildet, mit einem mittig angeordneten isolierten
Keramiksubstrat 18, welches oberseitig und unterseitig mit einer Kupferoberfläche 19, 20 beschichtet ist. Auf den Kup¬ feroberflächen 19, 20 können sowohl oberseitig als auch un- terseitig elektronische Bauelemente als auch oberflächenmon¬ tierte elektrische Kontaktierungselemente (SMD) 14, 15, 16 angeordnet sein.
In Fig. 6 ist die erweiterte Darstellung nach Fig. 5 als Flachbaugruppe dargestellt, d.h., über dem mit Bauelementen und oberflächenmontierten elektrischen Kontaktierungselementen 14 bestückten Halbleiterträgerelement 17 ist eine Leiter¬ platte 21 angeordnet, welche über die oberflächenmontierten elektrischen Kontaktierungselementen 14 mit dem Halbleiter- trägerelement 17 elektrisch verbunden ist.
Das erfindungsgemäße Leistungsmodul zeichnet sich dadurch aus, dass es sich um eine kostengünstige Lösung handelt, da das Kunststoffgehäuse entfällt und zusätzliche Investionen für weitere Werkzeuge eingespart werden können. Durch die er¬ findungsgemäße Lösung werden auch kleinere Stückzahlen wirt¬ schaftlich sinnvoll. Die erfindungsgemäße SMD-Verbindung er¬ möglicht durch die Flexibilität der Bauteile eine kompaktere Bauform, welche in Verbindung mit der sich daraus ergebenden Variabilität dem Kunden Vorteile bringen kann. Es können zu¬ dem neue Wechselrichtertopologien in neuen Produkten verwendet werden wie beispielsweise 3 Level IGBT Module. Schlie߬ lich ermöglicht die erfindungsgemäße SMD-Verbindung genauere Messungen, einen längeren Lebenszyklus, eine durch die stabi- len Lötverbindungen deutlich verbesserte Zuverlässigkeit so¬ wie eine automatisierte und stark vereinfachte Fertigung der Verbindung zwischen DCB-Substrat und Leiterplatte. Bezugs zeichenliste
1 Grundplatte
2 Kühlkörper
3 Wärmeleitpaste
4 Befestigungsmittel
5 Lotschicht
6 Halbleiterträgerelement
7 Isoliertes Keramiksubstrat
8 Kupferoberfläche
9 Kupferoberfläche
10 Halbleiterchips
11 Bonddraht
12 Anschlusselemente
13 Leiterplatte
14 oberflächenmontiertes elektrisches Kontaktierungsele- ment U-Form (SMD)
15 oberflächenmontiertes elektrisches Kontaktierungsele- ment S-Form (SMD)
16 oberflächenmontiertes elektrisches Kontaktierungsele- ment W-Form (SMD)
17 Halbleiterträgerelement
18 Isoliertes Keramiksubstrat
19 Kupferoberfläche
20 Kupferoberfläche
21 Leiterplatte

Claims

Patentansprüche
1. Leistungsmodul mit einem oberseitig und/oder unterseitig elektrisch zu kontaktierenden Halbleiterträgerelement (17), dadurch gekennzeichnet, dass über mindestens ein oberflächen¬ montiertes elektrisches Kontaktierungselement das Halbleiter¬ trägerelement (17) mit einer Leiterplatte (21) in einem auto¬ matisierten Prozess, insbesondere einem Pick&Place-Prozess elektrisch kontaktiert ist.
2. Leistungsmodul nach Anspruch 1, dadurch gekennzeichnet, dass die oberflächenmontierten elektrischen Kontaktierungs- elemente (14, 15, 16) mechanisch-flexibel ausgebildet sind.
3. Leistungsmodul nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die oberflächenmontierten elektrischen Kontak- tierungselemente (14, 15, 16) in unterschiedlichen Bauformen ausgebildet sind.
4. Leistungsmodul nach Anspruch 3, dadurch gekennzeichnet, dass die oberflächenmontierten elektrischen Kontaktierungs- elemente insbesondere U-(14), S-(15) oder W- ( 16) -förmig oder auch in anderen Formgebungen ausgebildet sind.
5. Leistungsmodul nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass sowohl die Bestückung mit oberflächenmontierten elektrischen Kontaktierungselementen (14, 15, 16) als auch die Integration eines Halbleiterchips auf einem Halblei¬ terträgerelement (17) im gleichen Prozess, inbesondere einem Pick&Place-Prozess umsetzbar ist.
6. Leistungsmodul nach Anspruch 5, dadurch gekennzeichnet, dass sowohl die Fixierung der oberflächenmontierten elektrischen Kontaktierungselemente (14, 15, 16) als auch die eines Halbleiterchips auf einem Halbleiterträgerelement (17) im gleichen Vakuumlötprozess umsetzbar ist.
7. Leistungsmodul nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die elektrische Kontaktierung zwischen Halbleiterträgerelement (17) und Leiterplatte (21) über die oberflächenmontierten elektrischen Kontaktierungselemente (14, 15, 16) in einer direkten Kontaktierung, ohne zusätzliche Montagehalterungen für die Kontaktierungselemente (14, 15, 16), ausgebildet ist.
8. Leistungsmodul nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die oberflächenmontierten elektrischen
Kontaktierungselemente (14, 15, 16) sowohl für kleine als auch für große elektrische Ströme ausgebildet sind.
PCT/EP2018/064996 2017-07-04 2018-06-07 Leistungsmodul mit einem oberseitig und/oder unterseitig elektrisch zu kontaktierenden halbleiterträgerelement und mindestens einem oberflächenmontierten elektrischen kontaktierungselement WO2019007625A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017211336.7A DE102017211336B4 (de) 2017-07-04 2017-07-04 Leistungsmodul mit oberflächenmontierten elektrischen Kontaktierungselementen
DE102017211336.7 2017-07-04

Publications (1)

Publication Number Publication Date
WO2019007625A1 true WO2019007625A1 (de) 2019-01-10

Family

ID=62748912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/064996 WO2019007625A1 (de) 2017-07-04 2018-06-07 Leistungsmodul mit einem oberseitig und/oder unterseitig elektrisch zu kontaktierenden halbleiterträgerelement und mindestens einem oberflächenmontierten elektrischen kontaktierungselement

Country Status (2)

Country Link
DE (1) DE102017211336B4 (de)
WO (1) WO2019007625A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020114569A1 (de) 2020-05-29 2021-12-02 Bayerische Motoren Werke Aktiengesellschaft Kontaktierungsvorrichtung zum Modifizieren eines elektrischen oder elektronischen Bauelements, Bauteil mit einer solchen Kontaktierungsvorrichtung und Verfahren zum Herstellen einer elektrischen und/oder elektronischen Baugruppe
DE102021104793B4 (de) 2021-03-01 2024-01-25 Infineon Technologies Ag Leistungshalbleitermodul mit externem kontaktelement

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576182A1 (de) * 1992-06-26 1993-12-29 Fuji Electric Co. Ltd. Halbleiteranordnung
JP2001284524A (ja) * 2000-01-28 2001-10-12 Toshiba Corp 電力用半導体モジュール
DE102006032436A1 (de) * 2006-07-13 2008-01-17 Siemens Ag Vorrichtung zur Anordnung an einer Leiterplatte
US20080191340A1 (en) * 2007-02-12 2008-08-14 Thilo Stolze Power Semiconductor Module And Method For Its Manufacture
DE102008005547A1 (de) * 2008-01-23 2009-11-05 Infineon Technologies Ag Kontaktelement, Leistungshalbleitermodul und Schaltungsanordnung mit einem Leistungshalbleitermodul
DE102012215055A1 (de) * 2011-09-29 2013-04-04 Infineon Technologies Ag Verfahren zur Herstellung einer Leistungshalbleiteranordnung
JP2014107378A (ja) * 2012-11-27 2014-06-09 Mitsubishi Electric Corp 電力用半導体装置
WO2015020176A1 (ja) * 2013-08-09 2015-02-12 日本発條株式会社 接続端子、パワーモジュールおよび通電ユニット
DE102015112452A1 (de) * 2015-07-30 2017-02-02 Danfoss Silicon Power Gmbh Leistungshalbleitermodul und Leistungshalbleiterbaugruppe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10342047A1 (de) * 2003-04-17 2004-11-04 Robert Bosch Gmbh Elektrisches Verbindungselement
TWM253946U (en) * 2004-04-02 2004-12-21 Delta Electronics Inc Connector and circuit board assembly using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0576182A1 (de) * 1992-06-26 1993-12-29 Fuji Electric Co. Ltd. Halbleiteranordnung
JP2001284524A (ja) * 2000-01-28 2001-10-12 Toshiba Corp 電力用半導体モジュール
DE102006032436A1 (de) * 2006-07-13 2008-01-17 Siemens Ag Vorrichtung zur Anordnung an einer Leiterplatte
US20080191340A1 (en) * 2007-02-12 2008-08-14 Thilo Stolze Power Semiconductor Module And Method For Its Manufacture
DE102008005547A1 (de) * 2008-01-23 2009-11-05 Infineon Technologies Ag Kontaktelement, Leistungshalbleitermodul und Schaltungsanordnung mit einem Leistungshalbleitermodul
DE102012215055A1 (de) * 2011-09-29 2013-04-04 Infineon Technologies Ag Verfahren zur Herstellung einer Leistungshalbleiteranordnung
JP2014107378A (ja) * 2012-11-27 2014-06-09 Mitsubishi Electric Corp 電力用半導体装置
WO2015020176A1 (ja) * 2013-08-09 2015-02-12 日本発條株式会社 接続端子、パワーモジュールおよび通電ユニット
DE102015112452A1 (de) * 2015-07-30 2017-02-02 Danfoss Silicon Power Gmbh Leistungshalbleitermodul und Leistungshalbleiterbaugruppe

Also Published As

Publication number Publication date
DE102017211336B4 (de) 2021-03-25
DE102017211336A1 (de) 2019-01-10

Similar Documents

Publication Publication Date Title
EP1713124B1 (de) Leistungshalbleitermodul mit Verbindungsbahnen und mit Anschlusselementen, die mit den Verbindungsbahnen verbunden sind
EP0931346B1 (de) Mikroelektronisches bauteil in sandwich-bauweise
DE102008012570B4 (de) Leistungshalbleitermodul-System, Leistungshalbleitermodulanordnung und Verfahren zur Herstellung einer Leistungshalbleitermodulanordnung
DE10306643B4 (de) Anordnung in Druckkontaktierung mit einem Leistungshalbleitermodul
WO1998015005A9 (de) Mikroelektronisches bauteil in sandwich-bauweise
EP3262667A1 (de) Elektrischer anschlusskontakt fuer ein keramisches bauelement, keramisches bauelement und bauelementanordnung
DE112007000183T5 (de) Hochleistungsmodul mit offener Rahmenbaugruppe
DE102006014582A1 (de) Halbleitermodul
DE19924993C2 (de) Intelligentes Leistungsmodul in Sandwich-Bauweise
DE102014010373A1 (de) Elektronisches Modul für ein Kraftfahrzeug
DE102009027416B4 (de) Halbleitermodul mit steckbarem Anschluss und Verfahren zur Herstellung eines Halbleitermoduls mit steckbarem Anschluss
WO2019007625A1 (de) Leistungsmodul mit einem oberseitig und/oder unterseitig elektrisch zu kontaktierenden halbleiterträgerelement und mindestens einem oberflächenmontierten elektrischen kontaktierungselement
DE4446471C2 (de) Verfahren zur Montage eines Chips auf einem flexiblen Schaltungsträger
DE102005030247A1 (de) Leistungshalbleitermodul mit Verbindungselementen hoher Stromtragfähigkeit
WO2007045112A1 (de) Leistungsgehäuse für halbleiterchips und deren anordnung zur wärmeabfuhr
DE102019210902A1 (de) Verbindungsmethode für leistungsmodule mit einer zwischenkreisverschienung
DE102014104013A1 (de) Leistungshalbleiterbauteil
DE102008026347B4 (de) Leistungselektronische Anordnung mit einem Substrat und einem Grundkörper
DE102012103191A1 (de) Verfahren um Lötbauteile bondbar zu machen
DE102016101757A1 (de) Schaltungsmodul mit oberflächenmontierbaren unterlagsblöcken zum anschliessen einer leiterplatte
DE102008040290A1 (de) Hybridschaltungsstruktur mit keramischen Schaltungsträgern
DE10121969C1 (de) Schaltungsanordnung in Druckkontaktierung und Verfahren zu seiner Herstellung
DE10223360B4 (de) Elektronische Schaltung mit SMD-Bauelementen
DE102007016901B4 (de) Halbleiterbauelement und elektronisches Modul
DE102015210103A1 (de) Verfahren zur Herstellung einer elektronischen Komponente und elektronische Komponente

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18734094

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18734094

Country of ref document: EP

Kind code of ref document: A1