WO2019003574A1 - 車両、車両制御方法、車両遠隔操作装置および車両遠隔操作方法 - Google Patents

車両、車両制御方法、車両遠隔操作装置および車両遠隔操作方法 Download PDF

Info

Publication number
WO2019003574A1
WO2019003574A1 PCT/JP2018/015326 JP2018015326W WO2019003574A1 WO 2019003574 A1 WO2019003574 A1 WO 2019003574A1 JP 2018015326 W JP2018015326 W JP 2018015326W WO 2019003574 A1 WO2019003574 A1 WO 2019003574A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
speed
remote control
operator
steering angle
Prior art date
Application number
PCT/JP2018/015326
Other languages
English (en)
French (fr)
Inventor
孝弘 米田
修平 松井
雄太 下間
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018053107A external-priority patent/JP7219544B2/ja
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority to CN201880001726.3A priority Critical patent/CN109429503B/zh
Priority to EP18823101.3A priority patent/EP3647569B1/en
Publication of WO2019003574A1 publication Critical patent/WO2019003574A1/ja
Priority to US16/247,689 priority patent/US10962970B2/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/038Limiting the input power, torque or speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/143Speed control
    • B60W30/146Speed limiting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0038Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement by providing the operator with simple or augmented images from one or more cameras located onboard the vehicle, e.g. tele-operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0223Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving speed control of the vehicle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle

Definitions

  • the present disclosure relates to a vehicle remotely controlled by an operator, a vehicle control method of controlling the vehicle, a vehicle remote control device remotely controlling the vehicle, and a vehicle remote control method of the vehicle remote control device.
  • a remote control system in which an operator at a remote place indirectly operates and steers a vehicle on which a driver does not get in or a driver does not operate using wireless communication such as a wireless LAN or a cellular phone line.
  • the sensing results obtained by observing the periphery of the vehicle from various sensors such as a millimeter wave radar, a laser radar, a camera and the like mounted on the vehicle The operator steers the controlled vehicle remotely by transmitting from the operator to the controlled vehicle the control signal regarding the traveling of the vehicle from the operating vehicle).
  • the unmanned vehicle starts steering after decreasing the vehicle speed to the set vehicle speed by the pilot instructing the vehicle speed and steering direction of the unmanned vehicle from the transmitter, and after steering ends
  • a configuration is disclosed that performs control to restore the lowered vehicle speed to the original vehicle speed.
  • a vehicle is a vehicle remotely operated by an operator, and a communication unit that receives a vehicle operation signal including an accelerator input value by an operation of the operator, and a steering that measures a steering angle of the vehicle An angle sensor, a speed sensor for measuring the speed of the vehicle, and an absolute value of the steering angle smaller than the predetermined angle when the absolute value of the steering angle is a predetermined angle or more and the speed is greater than 0; And a control unit that corrects the accelerator input value so as to reduce the speed as compared to when the speed is greater than zero.
  • a vehicle control method for controlling a vehicle remotely operated by an operator, comprising a step of receiving a vehicle operation signal including an accelerator input value by an operation of the operator; When the absolute value of the steering angle of the vehicle is equal to or greater than a predetermined angle and the speed of the vehicle is greater than zero, the absolute value of the steering angle is smaller than the predetermined angle and compared to when the speed is greater than zero. Correcting the accelerator input value to reduce the speed.
  • a vehicle remote control device is a vehicle remote control device for remotely controlling a vehicle by an operator, and an accelerator for outputting an accelerator input value for controlling a speed of the vehicle by an operation of the operator.
  • the absolute value of the steering angle of the vehicle is greater than or equal to a predetermined angle and the velocity is greater than 0, the absolute value of the steering angle is greater than the predetermined angle
  • a control unit that corrects the accelerator input value so as to reduce the speed compared to when the speed is smaller than 0.
  • a vehicle remote control method for remotely controlling a vehicle by an operator, wherein an accelerator input value for controlling a speed of the vehicle is acquired by an operation of the operator.
  • a vehicle and a vehicle control method for controlling the vehicle with improved operability, a vehicle remote control device for remotely steering the vehicle, and a vehicle remote control method for the vehicle remote control device are provided. Can be provided.
  • FIG. 1 is a diagram showing an example of the remote control system according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of the configuration of the operated vehicle in the remote control system according to the first embodiment.
  • FIG. 3 is a block diagram showing an example of the configuration of the remote control device in the remote control system according to the first embodiment.
  • FIG. 4 is a flowchart showing an example of processing of a vehicle operation signal received from the remote control device in the remote control unit according to the first embodiment.
  • FIG. 5 is a flowchart showing an example of correction processing of an accelerator input value included in a vehicle operation signal.
  • FIG. 6 is a flowchart showing an example of the correction coefficient calculation process 1.
  • FIG. 7 is a flowchart showing an example of the correction coefficient calculation process 2.
  • FIG. 1 is a diagram showing an example of the remote control system according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of the configuration of the operated vehicle in the remote control system according to the first embodiment.
  • FIG. 3
  • FIG. 8 is a flowchart showing an example of correction coefficient calculation processing 3.
  • FIG. 9 is a flowchart showing an example of changing the steering angle threshold.
  • FIG. 10 is a block diagram showing an example of the configuration of the remote control unit in the remote control system according to the second embodiment.
  • FIG. 11 is a flowchart showing an example of processing of generating an accelerator input value included in a vehicle operation signal transmitted to the operated vehicle in the vehicle operation signal generation unit according to the second embodiment.
  • FIG. 12 is a flowchart showing an example of a process of correcting an accelerator input value included in a vehicle operation signal.
  • FIG. 13 is a diagram showing a conventional remote control device.
  • FIG. 14 is a graph for explaining the problem of the conventional remote control device.
  • FIG. 15 is another graph illustrating the problem of the conventional remote control device.
  • FIG. 13 is a diagram showing a conventional remote control device.
  • a vehicle remote control device 100 (hereinafter referred to as a remote control device 100) is configured of a remote control unit 113, an information display unit 112, and an operation input unit 111.
  • the remote control unit 113 is connected to the operated vehicle via a communication network.
  • the remote control unit 113 receives the video information around the operated vehicle transmitted by the operated vehicle, information indicating the speed of the operated vehicle, and the like, and outputs the received information to the information display unit 112.
  • the operation input unit 111 includes a steering input unit 111a for steering the operated vehicle, an accelerator input unit 111b for changing the number of revolutions of the engine of the operated vehicle, and a brake input unit 111c for controlling the brakes of the operated vehicle. It consists of
  • the operator 10 who steers the operated vehicle remotely operates the operation input unit 111 based on the information obtained from the information display unit 112.
  • a signal generated when the operator 10 operates the operation input unit 111 (hereinafter referred to as a vehicle operation signal) is sent from the remote control unit 113 to the operated vehicle via the communication network.
  • the operated vehicle is steered based on the received vehicle operation signal.
  • the controlled vehicle can not experience the acceleration by the operation of the accelerator input unit 111b of the operator 10, the increase in the number of revolutions of the engine, and the like. That is, the operator 10 can not experience a change in the operated vehicle as if the driver is on the vehicle by operating the operation input unit 111. Therefore, the operator 10 can not adjust the steering and the speed with respect to the operation input unit 111 based on the danger and the rule of thumb that can be noticed from the physical sensation.
  • the operator 10 has to steer the operated vehicle using only the visual information on the periphery of the operated vehicle displayed on the information display unit 112 and the visual information on the speed of the operated vehicle. Careful operation is required for the steering input unit 111a, the accelerator input unit 111b or the brake input unit 111c of the operation input unit 111.
  • the operator 10 when the change of the video information around the operated vehicle displayed on the information display unit 112 is intense, the operator 10 concentrates too much on the information display unit 112, and the operation input unit 111 concentrates on the operation of the operated vehicle. The power may be reduced. Therefore, the operator 10 operates the operation input unit 111 excessively, which causes rapid acceleration and deceleration of the operated vehicle, causing a problem in steering the operated vehicle.
  • FIG. 14 and FIG. 15 are graphs explaining the problem of the conventional remote control device.
  • FIG. 14 is a graph plotting the time change of the steering input value and the accelerator input value in the maneuvering of the controlled vehicle
  • FIG. 15 plots the time variation of the steering input value and the speed in the maneuvering of the controlled vehicle It is a graph.
  • the horizontal axis is time (seconds), the vertical axis on the left is steering input value (angle (degree)), and the vertical axis on the right is accelerator input value.
  • an input value 30 (solid line shown in the figure) for the steering input unit 111a and an input value 31 (dashed line shown in the figure) for the accelerator input unit 111b are plotted.
  • the horizontal axis is time (seconds), the vertical axis on the left is steering input value, and the vertical axis on the right is speed (km / h).
  • an input value 30 (solid line shown in the figure) to the steering input unit 111a and a speed 33 of the operated vehicle are plotted.
  • the controlled vehicle goes straight on at the time of 110 seconds to 250 seconds on the horizontal axis and after 410 seconds, and the controlled vehicle turns right on the time of 250 seconds to 410 seconds on the horizontal axis.
  • the operator 10 performs the straight operation on the steering input unit 111a, and then performs the temporary stop operation on the accelerator input unit 111b and the brake input unit 111c, and then turns right on the steering input unit 111a.
  • the operation of has been started.
  • the accelerator input value changes rapidly in the operation on the accelerator input unit 111b, and sudden acceleration or deceleration of the operated vehicle occurs as compared with that when going straight.
  • acceleration or rotation of the vehicle is confirmed while confirming visual information around the vehicle, rather than checking the vehicle speed displayed on the speedometer. Obtained by bodily sensation and adjust the speed of the vehicle.
  • the operator 10 performs the turn operation of the operated vehicle using the remote control device 100, not only the video information around the operated vehicle displayed on the information display unit 112 but also the vehicle speed of the operated vehicle is visual
  • the steering input unit 111a and the accelerator input unit 111b of the operation input unit 111 have to be operated at the same time while making sure that the operation is difficult.
  • the video information around the operated vehicle displayed on the information display unit 112 changes in the lateral direction. For this reason, the operator 10 is less likely to recognize the speed, the acceleration, and the rotational speed (for example, the angular velocity of the operated vehicle) of the operated vehicle than when the operated vehicle goes straight.
  • the delay for encoding the signal input from the camera mounted on the controlled vehicle the delay until the encoded video information is transmitted to the remote control unit 113 through the communication network, the remote control unit 113 receives the video information , And the delay until output to the information display unit 112, the delay until the remote control unit 113 generates a vehicle operation signal based on the result of the operator 10 operating the operation input unit 111, and There is a delay until the operation signal is transmitted to the operated vehicle via the communication network. That is, the delay changes dynamically, including a delay due to communication depending on the degree of congestion of the network and a delay due to processing of an apparatus or the like. Since the time from the change of the situation around the operated vehicle to the operation of the operated vehicle is increased by the above-mentioned delay, the operation of the operated vehicle is delayed.
  • a vehicle is a vehicle remotely controlled by an operator, the communication unit receiving a vehicle operation signal including an accelerator input value by the operation of the operator, and steering of the vehicle
  • a steering angle sensor that measures an angle
  • a speed sensor that measures the speed of the vehicle, and an absolute value of the steering angle when the absolute value of the steering angle is a predetermined angle or more and the speed is greater than 0
  • a control unit that corrects the accelerator input value so as to reduce the speed compared to when the speed is smaller than a predetermined angle and larger than zero.
  • the speed of the vehicle is reduced even when the user can not feel a sensation such as acceleration or rotation of the vehicle, so the load on the accelerator and brake operations by the operator can be reduced. it can.
  • the operator remotely operates the vehicle it is possible to concentrate on the operation of the steering according to the image or the like of the vehicle periphery transmitted from the vehicle. That is, a vehicle with improved operability can be provided.
  • control unit may further correct the accelerator input value based on a delay time from the operation of the operator to the reception of the vehicle operation signal at the communication unit.
  • the speed of the vehicle can be adjusted to the speed range according to the increase and decrease of the delay time.
  • control unit may sharply reduce the speed as the delay time increases when the absolute value of the steering angle is equal to or greater than a predetermined angle and the speed is greater than 0.
  • the accelerator input value may be corrected.
  • the predetermined angle may be further changed based on a change in the delay time.
  • control unit may reduce the predetermined angle as the delay time increases.
  • a vehicle control method for controlling a vehicle remotely operated by an operator, comprising a step of receiving a vehicle operation signal including an accelerator input value by an operation of the operator; When the absolute value of the steering angle of the vehicle is equal to or greater than a predetermined angle and the speed of the vehicle is greater than zero, the absolute value of the steering angle is smaller than the predetermined angle and compared to when the speed is greater than zero. Correcting the accelerator input value to reduce the speed.
  • a vehicle remote control device is a vehicle remote control device for remotely controlling a vehicle by an operator, and an accelerator for outputting an accelerator input value for controlling a speed of the vehicle by an operation of the operator.
  • the absolute value of the steering angle of the vehicle is greater than or equal to a predetermined angle and the velocity is greater than 0, the absolute value of the steering angle is greater than the predetermined angle
  • a control unit that corrects the accelerator input value so as to reduce the speed compared to when the speed is smaller than 0.
  • a vehicle remote control method for remotely controlling a vehicle by an operator, wherein an accelerator input value for controlling a speed of the vehicle is acquired by an operation of the operator.
  • these general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a non-transitory recording medium such as a CD-ROM readable by a computer, the system, the method, the integration It may be realized by any combination of circuits, computer programs or recording media.
  • the program may be stored in advance in a recording medium, or may be supplied to the recording medium via a wide area communication network including the Internet and the like.
  • FIG. 1 is a diagram showing an example of a remote control system according to the present embodiment.
  • the operator 10 steers the controlled vehicle 16 from a remote location.
  • the operated vehicle 16 is connected to a vehicle remote control device 200 (hereinafter referred to as the remote control device 200) via a wireless base station 15 such as a wireless LAN or a mobile phone and the network 14.
  • the remote control device 200 includes a remote control unit 13, an information display unit 12, and an operation input unit 11 for operating the operated vehicle 16.
  • the remote control device 200 may include not only one information display unit 12 but a plurality of information display units 12.
  • the operated vehicle 16 is an example of a vehicle that the operator 10 remotely controls.
  • the remote control unit 13 outputs, to the information display unit 12, the video information around the operated vehicle 16 transmitted by the operated vehicle 16, the speed of the operated vehicle 16, and the like.
  • the operation input unit 11 includes at least a steering input unit 11 a for controlling the steering of the operated vehicle 16, an accelerator input unit 11 b for controlling the number of rotations of an engine or motor of the operated vehicle 16, and the operated vehicle 16. And a brake input unit 11c that controls the brakes of the vehicle.
  • the speed of the operated vehicle 16 is controlled by the accelerator input unit 11 b and the brake input unit 11 c.
  • the steering input unit 11a is a steering wheel
  • the accelerator input unit 11b is an accelerator pedal
  • the brake input unit 11c is a brake pedal.
  • the steering input unit 11 a outputs a steering input value for controlling the steering of the operated vehicle 16 to the vehicle operation signal generation unit 1303 by the operation of the operator 10.
  • the accelerator input unit 11 b outputs an accelerator input value for controlling the speed of the operated vehicle 16 to the vehicle operation signal generation unit 1303 by the operation of the operator 10.
  • the accelerator input part 11b or the brake input part 11c is a pedal type operated with the foot
  • the accelerator input unit 11 b or the brake input unit 11 c may be a lever type operated by the hand of the operator 10.
  • the accelerator input unit 11 b or the brake input unit 11 c may be one for inputting a target speed.
  • the steering input part 11a is a steering wheel operated with the hand of the operator 10, it is not restricted to this.
  • the steering input unit 11a may input a target steering angle.
  • the operator 10 who steers the operated vehicle 16 remotely operates the operation input unit 11 based on the information obtained from the information display unit 12.
  • a signal generated when the operator 10 operates the operation input unit 11, that is, a vehicle operation signal is sent from the remote control unit 13 to the operated vehicle 16 via the network 14 and the radio base station 15.
  • the operated vehicle 16 is steered based on the received vehicle operation signal.
  • the vehicle operation signal includes at least an accelerator input value that is a signal that the operator 10 operates the accelerator input unit 11 b or the brake input unit 11 c, and a steering input value that is a signal that the operator 10 operates the steering input unit 11 a. May be included. Further, the vehicle operation signal may include information indicating the time when the operator 10 operates the operation input unit 11.
  • FIG. 2 is a block diagram showing an example of the configuration of the operated vehicle 16 in the remote control system 1000 according to the present embodiment.
  • the operated vehicle 16 includes at least a wireless communication unit 1601, a steering angle sensor 1602, a speed sensor 1603, a speed control unit 1604, a steering control unit 1605, in-vehicle networks 1606 and 1607, and a remote control unit 1608. And one or more cameras 1609.
  • a wireless communication unit 1601 for a vehicle
  • a steering angle sensor 1602 a speed sensor 1603, a speed control unit 1604, a steering control unit 1605, in-vehicle networks 1606 and 1607, and a remote control unit 1608.
  • a steering control unit 1605 for controlling the vehicle 1605
  • in-vehicle networks 1606 and 1607 includes a vehicle network 1607
  • a remote control unit 1608 includes at least a wireless communication unit 1601, a steering angle sensor 1602, a speed sensor 1603, a speed control unit 1604, a steering control unit 1605, in-veh
  • the wireless communication unit 1601 performs wireless communication with the wireless base station 15.
  • the wireless communication unit 1601 is a wireless communication module that receives a vehicle operation signal including at least an accelerator input value, and is an example of a communication unit.
  • the steering angle sensor 1602 measures the steering angle of the operated vehicle 16 and outputs information on the steering angle on the in-vehicle network 1607.
  • the speed sensor 1603 measures the speed of the operated vehicle 16 and outputs information on the speed on the in-vehicle network 1607.
  • the speed control unit 1604 controls the speed by operating the accelerator, brake and drive shift of the operated vehicle 16.
  • the steering control unit 1605 controls the traveling direction of the vehicle by an operation related to the steering of the operated vehicle 16.
  • the in-vehicle networks 1606 and 1607 are in-vehicle networks such as CAN (Control Area Network), and transmit information transmitted / received between each sensor and each unit mounted on the operated vehicle 16. That is, the sensors and units mounted on the operated vehicle 16 are communicably connected to each other via the in-vehicle networks 1606 and 1607.
  • the in-vehicle networks 1606 and 1607 may be integrated into one or may be further divided.
  • Each of the one or more cameras 1609 is disposed at a position capable of capturing at least one of the forward direction (for example, the traveling direction), the backward direction, the left direction, and the right direction of the controlled vehicle 16. Capture the surrounding image.
  • the remote control unit 1608 acquires information output from the steering angle sensor 1602 and the speed sensor 1603 via the in-vehicle network 1607.
  • the remote control unit 1608 generates image information in the front, rear, left, and right directions of the operated vehicle 16 obtained from one or more cameras 1609. Then, the remote control unit 1608 transmits the generated video information to the remote control device 200 via the wireless communication unit 1601.
  • the remote control unit 1608 receives the vehicle operation signal transmitted by the remote control device 200 via the wireless communication unit 1601.
  • remote control unit 1608 controls the traveling of controlled vehicle 16 via speed control unit 1604 and steering control unit 1605 based on the received vehicle operation signal. At this time, remote control unit 1608 corrects the accelerator input value included in the vehicle operation signal received from remote control device 200 based on at least the vehicle information of operated vehicle 16 acquired from steering angle sensor 1602 and speed sensor 1603. Output to the speed control unit 1604.
  • the remote control unit 1608 is a control device mounted on the operated vehicle 16 and is an example of a control unit that corrects an accelerator input value.
  • FIG. 3 is a diagram showing an example of the configuration of the remote control unit 13 of the remote control device 200 in the remote control system 1000 according to the present embodiment.
  • the remote control unit 13 includes at least a communication interface 1301, a vehicle operation signal transmission unit 1302, a vehicle operation signal generation unit 1303, a vehicle information reception unit 1304, an HMI (Human Machine Interface) generation unit 1305, and an image. And an information receiving unit 1306.
  • the communication interface 1301 is connected to the network 14 and communicates with the operated vehicle 16.
  • the wireless communication unit 1601 is a wireless communication module for communicating with the operated vehicle 16, and is an example of a communication unit of the remote control device 200.
  • the vehicle operation signal generation unit 1303 generates a vehicle operation signal based on the operation of the operation input unit 11 by the operator 10.
  • the vehicle operation signal transmission unit 1302 transmits a vehicle operation signal generated by the vehicle operation signal generation unit 1303 to the operated vehicle 16 via the communication interface 1301.
  • the vehicle information receiving unit 1304 receives at least vehicle information transmitted by the operated vehicle 16 via the communication interface 1301.
  • the video information receiving unit 1306 receives the video information transmitted by the operated vehicle 16 via the communication interface 1301.
  • the HMI generation unit 1305 generates information necessary for the operation of the operated vehicle 16 by the operator 10 based on the received vehicle information and video information, and outputs the information to the information display unit 12.
  • FIG. 4 is a flowchart showing an example of processing of a vehicle operation signal received from remote control device 200 in remote control unit 1608 according to the present embodiment.
  • the remote control unit 1608 repeatedly performs the processing of the flowchart of FIG. 4 while the operation of the remote control device 200 by the operator 10 is continued.
  • the remote control unit 1608 receives a vehicle operation signal from the remote control unit 13 of the remote control device 200, or a predetermined time has elapsed from the time of receiving the previous vehicle operation signal (in the case of YES in S10).
  • the steering angle of the operated vehicle 16 is acquired from the steering angle sensor 1602, and the speed of the operated vehicle 16 is acquired from the speed sensor 1603 (S11).
  • fixed time is not specifically limited, For example, it is 500 ms or 1 s.
  • remote control unit 1608 executes the following processing using the previously received vehicle operation signal when a predetermined time has elapsed from the time when the previous vehicle operation signal was received. This case is also included in the reception of the vehicle operation signal.
  • Step S10 is an example of the step of receiving a vehicle operation signal.
  • remote control unit 1608 does not receive a vehicle operation signal from remote control unit 13 of remote control device 200, or does not receive a predetermined time from the time when the previous vehicle operation signal was received (NO in S10). (In the case of), returns to step S10.
  • Step S12 is an example of the step of correcting the accelerator input value.
  • Remote control unit 1608 inputs the corrected accelerator input value to speed control unit 1604 (step S13).
  • the present embodiment is characterized in that different corrections are performed on an accelerator input value or the like included in the vehicle operation signal received in step S10 according to the steering angle and the speed acquired in step S11.
  • the remote control unit 1608 can travel more safely, for example, when the operator 10 who is not on the controlled vehicle 16 and can not obtain the sensation information remotely operates the controlled vehicle 16. Make corrections.
  • FIG. 5 is a flowchart showing an example of correction processing of an accelerator input value included in a vehicle operation signal. Specifically, it is a flowchart showing an example of correction processing of an accelerator input value included in the vehicle operation signal in step S12 of FIG.
  • step S11 when the absolute value of the steering angle acquired in step S11 is equal to or greater than the steering angle threshold ⁇ (in the case of YES in S20), the remote control unit 1608 proceeds to step S21.
  • remote control unit 1608 executes correction coefficient calculation processing 3 (S24) when the absolute value of the steering angle acquired in step S11 is less than steering angle threshold value ⁇ (in the case of NO in S20).
  • the remote control unit 1608 executes, for example, correction coefficient calculation processing 3 when the operated vehicle 16 is traveling straight.
  • the remote control unit 1608 executes correction coefficient calculation processing 1 (S22).
  • the remote control unit 1608 executes, for example, the correction coefficient calculation process 1 when the operated vehicle 16 is turning right and left.
  • the remote control unit 1608 executes correction coefficient calculation processing 2 (S23).
  • the remote control unit 1608 executes, for example, the correction coefficient calculation process 2 when starting the vehicle after turning the steering wheel from the state where the operated vehicle 16 is stopped.
  • the remote control unit 1608 corrects the accelerator input value included in the vehicle operation signal based on the processing result of any of steps S22 to S24 (S25).
  • Formula 1 is an example of a formula for correcting the accelerator input value included in the vehicle operation signal in step S25.
  • AC_IN is an accelerator input value included in the vehicle operation signal
  • AC_OUT is a corrected accelerator input value.
  • C is a correction coefficient
  • C_MAX is a maximum value of the correction coefficient C.
  • the correction coefficient C is, for example, a coefficient used to convert the received accelerator input value into the speed of the operated vehicle 16.
  • the correction coefficient C is a variable that is changed by the processing shown in FIGS. 6 to 8 described later.
  • the maximum value C_MAX is a preset value.
  • the maximum value C_MAX is, for example, a fixed value such as “10” or “100”.
  • the correction coefficient C when the correction coefficient C is the maximum value C_MAX, the accelerator input value AC_IN and the corrected accelerator input value AC_OUT become equal values.
  • the correction coefficient C is smaller than the maximum value C_MAX, the corrected accelerator input value AC_OUT is smaller than the accelerator input value AC_IN. In this case, the speed of the operated vehicle 16 is slower than the speed controlled by the accelerator input value AC_IN.
  • the correction coefficient C will be described with reference to FIGS. 6 to 8.
  • FIG. 6 is a flowchart showing an example of the correction coefficient calculation process 1.
  • the operator 10 sees an image in which the landscape changes in the lateral direction on the information display unit 12 when the operated vehicle 16 is turning right and left, but it is difficult to feel a sense of perspective in the image. Further, as described above, since the operator 10 is not on the operated vehicle 16, no sensation information can be obtained. Therefore, it is difficult for the operator 10 to delicately perform the accelerator work when the operated vehicle 16 is performing a turn or the like. For example, the operator 10 may step on the accelerator input part 11b too much, and the operated vehicle 16 may accelerate rapidly during turning to the left or right (see FIGS. 14 and 15).
  • the limit coefficient K is a coefficient that changes in accordance with the above-described delay time.
  • the limiting coefficient K is set to “1”, for example, when the delay time is equal to or less than the minimum value or a predetermined value, and the numerical value becomes larger as the delay time becomes longer.
  • the remote control unit 1608 stores, for example, a table in which the delay time and the limit coefficient K are associated, and the limit coefficient K may be set from the delay time and the table. In the description of step S22, the case where the limiting coefficient K is constant (that is, the delay time is constant) will be described.
  • the remote control unit 1608 sets a value obtained by subtracting 1 from the correction factor C as the correction factor C (S31). ).
  • the correction coefficient C is updated to a smaller value than that before correction by performing the correction coefficient calculation process 1.
  • the correction coefficient C is subtracted until it matches (C_MAX ⁇ K), for example, by repeatedly executing the correction coefficient calculation processing 1.
  • numerical values used in the correction coefficient calculation processes 1 to 3 will also be described as reference values.
  • the value calculated by (C_MAX ⁇ K) is the reference value. The same applies to the description of FIG. 7 and the subsequent figures.
  • step S31 the correction coefficient C after the correction coefficient calculation processing 1 is performed may be smaller than the correction coefficient C before the correction coefficient calculation processing 1 is performed.
  • the correction coefficient C may be corrected by multiplying the correction coefficient C before the correction coefficient calculation processing 1 by a numerical value smaller than "1".
  • the remote control unit 1608 does nothing and ends the process. That is, the value of the correction coefficient C before execution of the correction coefficient calculation processing 1 is maintained.
  • the correction coefficient C after the correction coefficient calculation process 1 is performed becomes a value equal to or less than the reference value.
  • the corrected accelerator input value AC_OUT calculated by the equation 1 becomes a smaller value than the accelerator input value AC_IN. Therefore, even when the operator 10 has stepped on the accelerator input unit 11 b too much, the operated vehicle 16 can It is possible to suppress rapid acceleration. That is, when the speed of the operated vehicle 16 changes sharply, the change can be made gentle.
  • Step S22 is processing to limit the change in speed of the operated vehicle 16 in a situation where it is difficult for the operator 10 to delicately perform the accelerator work. As a result, in the case where the operated vehicle 16 turns to the left or right, even when the operator 10 has stepped on the accelerator input portion 11 b excessively, it can turn to the right gently.
  • FIG. 7 is a flowchart showing correction coefficient calculation processing 2.
  • the operator 10 operates the operation input unit 11 by looking at the image displayed on the information display unit 12 when starting to turn from the state in which the operated vehicle 16 is stopped and turning left or right. If the delay time is long, the image displayed on the information display unit 12 may be different from the situation around the controlled vehicle 16. When the delay time is large, the operator 10 looks at the video displayed on the information display unit 12 (for example, the video around the operated vehicle 16 slightly before), and operates the operation input unit 11, so the delay time is It is difficult to operate in consideration. Therefore, when the delay time is large, it may be difficult for the operator 10 to properly start the controlled vehicle 16. Therefore, in correction coefficient calculation processing 2, processing for correcting the accelerator input value according to the delay time is executed in order to start the operated vehicle 16 appropriately even if the delay time is large.
  • the remote control unit 1608 sets the correction coefficient C as a reference value (C_MAX ⁇ K) (S40).
  • the reference value is a small value because the limit coefficient K also increases as the delay time increases.
  • the correction coefficient C is set to a smaller value, for example, when the delay time is large than when the delay time is small.
  • the reference value is a small value because the limiting coefficient also decreases as the delay time decreases.
  • the correction coefficient C is set to, for example, a large value when the delay time is large compared to when the delay time is small. That is, the correction coefficient calculation process 2 is a process of setting the initial value of the correction coefficient C according to the delay time when starting from the time when the operated vehicle 16 is stopped. For example, when the limiting coefficient K is 2, the correction coefficient C is set to half the maximum value C_MAX.
  • FIG. 8 is a flowchart showing correction coefficient calculation processing 3.
  • the operator 10 can perform the acceleration work more delicately when the operated vehicle 16 is traveling straight than when the operated vehicle 16 is turning to the left or right. Therefore, in the correction coefficient calculation process 3, a process of correcting the corrected accelerator input value AC_OUT to a value close to the accelerator input value AC_IN is executed. That is, processing for reflecting the accelerator input value AC_IN more directly on the speed of the operated vehicle 16 is performed. Specifically, in correction coefficient calculation processing 3, processing is performed to increase the correction coefficient C.
  • the remote control unit 1608 sets a value obtained by adding 1 to the correction coefficient C as the correction coefficient C. (S51).
  • the correction coefficient C is updated to a larger value than that before correction by performing the correction coefficient calculation processing 3. For example, as the correction coefficient calculation process 3 is repeatedly executed, the correction coefficient C increases until it matches the reference value. That is, the correction coefficient C increases so that the corrected accelerator input value AC_OUT and the accelerator input value AC_IN become close values.
  • the correction coefficient C after the correction coefficient calculation processing 3 is performed may be a value larger than the correction coefficient C before the correction coefficient calculation processing 3 is performed.
  • the correction coefficient C may be corrected by multiplying the correction coefficient C before the correction coefficient calculation processing 3 by a numerical value larger than "1".
  • the remote control unit 1608 sets the correction coefficient C as the reference value (S52).
  • processing may be performed to reduce the value of the correction coefficient C which is equal to or greater than the reference value.
  • a process of subtracting 1 from the correction coefficient C may be performed.
  • the reason why the determination in step S50 is NO is, for example, the case where the delay time is increased while the vehicle is going straight, and the restriction coefficient K is increased.
  • Step S24 is processing to ease the restriction of the speed change of the operated vehicle 16 in a situation where the operator 10 is likely to delicately perform the accelerator work. Thereby, the controlled vehicle 16 can travel at a speed close to the speed intended by the operator 10.
  • the absolute value of the steering angle measured by the steering angle sensor 1602 is the steering angle threshold ⁇ or more and the speed measured by the speed sensor 1603. If the absolute value of the steering angle is smaller than the steering angle threshold ⁇ and the measured speed is greater than 0 (NO at S20) if the speed is greater than 0 (YES at S20 and S21), the accelerator input value
  • the remote control unit 1608 corrects the accelerator input value to reduce the speed of the controlled vehicle 16 to be controlled.
  • the remote control unit 1608 of the operated vehicle 16 performs the remote operation when the operator 10 operates the steering input unit 11 a and operates the accelerator input unit 11 b with respect to traveling of the operated vehicle 16.
  • the accelerator input value included in the vehicle operation signal received from operation device 200 is corrected and input (outputted) to speed control unit 1604.
  • the remote control unit 1608 In the process of correcting the accelerator input value contained in the vehicle operation signal in step S12 of FIG. 4, the remote control unit 1608 relates to a network including the wireless base station 15 between the remote control device 200 and the operated vehicle 16.
  • the delay time may be measured, and the accelerator input value included in the vehicle operation signal may be corrected in consideration of the delay time. That is, remote control unit 1608 may further correct the accelerator input value based on the delay time from the operation of operator 10 to the reception of the vehicle operation signal by wireless communication unit 1601.
  • the remote control unit 1608 increases the limit coefficient K to C_MAX according to the increase of the delay time, while making the limit coefficient K a variable not less than 1 and not more than the maximum value C_MAX.
  • the correction coefficient calculation process 1 (S22) is performed, a value smaller than that before the delay time increases is substituted for the correction coefficient C.
  • the accelerator input value AC_OUT decreases.
  • the remote control unit 1608 may correct the accelerator input value so as to sharply reduce the speed of the operated vehicle 16 as the delay time increases.
  • the correction coefficient calculation processing 2 (S23) or the correction coefficient calculation processing 3 (S24) is executed in a state where the restriction coefficient K is large, the correction coefficient C has a smaller value than when the restriction coefficient is small. As a result, the corrected accelerator input value AC_OUT calculated according to the equation 1 becomes smaller. As a result, the operated vehicle 16 can increase its speed more gradually.
  • the remote control unit 1608 reduces the limiting coefficient K to 1 according to the reduction of the delay time.
  • the correction coefficient calculation process 1 (S22) a larger value is substituted for the correction coefficient C compared to when the delay time is long, and the corrected value calculated according to the equation 1
  • the accelerator input value AC_OUT increases.
  • the speed of the controlled vehicle 16 can be reduced more slowly than when the delay time is large.
  • the correction coefficient calculation processing 2 (S23) or the correction coefficient calculation processing 3 (S24) is executed in a state where the restriction coefficient K is small, the correction coefficient C has a large value compared to when the delay time is large.
  • the corrected accelerator input value AC_OUT calculated according to the equation 1 becomes large. As a result, the operated vehicle 16 can speed up more quickly.
  • the accelerator input value AC_IN can be appropriately corrected according to the delay time, so that the vehicle and the vehicle control whose operability is further improved The method is realized.
  • the remote control unit 1608 may change the steering angle threshold ⁇ (an example of the predetermined angle) based on the delay time. Specifically, the remote control unit 1608 may change the steering angle threshold ⁇ based on the change of the delay time. The process of changing the steering angle threshold ⁇ performed by the remote control unit 1608 will be described with reference to FIG.
  • FIG. 9 is a flowchart showing an example of changing the steering angle threshold value ⁇ .
  • the remote control unit 1608 determines whether the delay time has increased (S60).
  • Remote control unit 1608 is, for example, information indicating the time when operator 10 operates operation input unit 11 included in the received vehicle operation signal, and the delay time calculated from the current time, the vehicle operation signal acquired last time It is determined whether or not the delay time has increased as compared with the delay time calculated from. If remote control unit 1608 determines that the delay time has increased (YES in S60), it decreases steering angle threshold value ⁇ (S61). That is, the remote control unit 1608 reduces the steering angle threshold ⁇ as the delay time increases.
  • step S22 the process proceeds to step S22, and the process of limiting the change in the speed of the operated vehicle 16 can be performed. That is, when the delay time increases, it is possible to correct the accelerator input value from a small steering angle.
  • the remote control unit 1608 determines whether the delay time has decreased (S62). If the remote control unit 1608 determines that the delay time has decreased (YES in S62), it increases the steering angle threshold ⁇ (S63). If remote control unit 1608 determines that the delay time has not decreased (NO in S62), that is, if the delay time has not changed, processing ends without changing steering angle threshold value ⁇ . If remote control unit 1608 determines that the difference between the delay time calculated from the previously acquired vehicle operation signal and the delay time calculated from the latest vehicle control signal is equal to or greater than a predetermined value, step S60 or S62. And may be determined as YES.
  • the change of the steering angle threshold ⁇ is not limited to the above method.
  • the remote control unit 1608 may change the steering angle threshold ⁇ to a smaller value, for example, when the delay time becomes larger than a predetermined threshold.
  • step S21 of FIG. 5 “acceleration” may be used instead of “speed”.
  • the delay for encoding the signal input from the camera 1609 mounted on the operated vehicle 16 or the remote control device 200 after receiving the video information during the above delay time decodes the information display unit 12.
  • one or more of the delay until the remote control unit 13 generates a vehicle operation signal based on the result of the operation of the operation input unit 11 by the operator 10 may be added.
  • the present invention is not limited thereto.
  • the reference value may be calculated without using the limiting coefficient K.
  • the reference value may be a different value in each of steps S22 to S24.
  • the reference value used in step S22 may be set to a value smaller than the reference value used in step S24.
  • the operated vehicle 16 is the operated vehicle 16 that is remotely operated by the operator 10, and wireless communication that receives a vehicle operation signal including an accelerator input value by the operation of the operator 10
  • a unit 1601 an example of a communication unit
  • a steering angle sensor 1602 that measures the steering angle of the operated vehicle 16
  • a speed sensor 1603 that measures the speed of the operated vehicle 16
  • an absolute value of the steering angle is a predetermined angle or more
  • the remote control unit 1608 corrects the accelerator input value so as to reduce the speed compared to when the absolute value of the steering angle is smaller than the predetermined angle and the speed is greater than 0.
  • An example of a control part An example of a control part).
  • the speed of the operated vehicle 16 is controlled by the accelerator input value.
  • the speed of the operated vehicle 16 can be suppressed from being rapidly accelerated.
  • the load regarding operation of the accelerator input part 11b and the brake input part 11c by the operator 10 can be reduced. That is, when the operator 10 remotely operates the operated vehicle 16, it is possible to concentrate on the operation of the steering input unit 11a according to the image or the like of the vehicle periphery transmitted from the operated vehicle 16. Therefore, the to-be-operated vehicle 16 by which operativity was improved can be provided.
  • the remote control unit 1608 further corrects the accelerator input value based on the delay time from the operation of the operator 10 to the reception of the vehicle operation signal by the wireless communication unit 1601.
  • the remote control unit 1608 can adjust the speed of the controlled vehicle 16 to a speed according to the increase or decrease of the delay time. Therefore, even when the delay time temporarily increases, the operator 10 can operate the operated vehicle 16 without being aware of the change in the delay time. Therefore, the to-be-operated vehicle 16 by which operativity was improved can be provided further.
  • the remote control unit 1608 accelerates the accelerator 16 so as to sharply reduce the speed of the controlled vehicle 16 Correct the input value.
  • the remote control unit 1608 makes the speed of the operated vehicle 16 slower as the delay time increases. Can be adjusted. Therefore, the to-be-operated vehicle 16 by which operativity was improved can be provided further.
  • the remote control unit 1608 further changes the steering angle threshold ⁇ based on the change of the delay time.
  • the remote control unit 1608 can control the speed of the operated vehicle 16 based on the steering angle threshold ⁇ according to the increase or decrease of the delay time. Therefore, even when the delay time temporarily increases, the operator 10 can operate the operated vehicle 16 without being aware of the change in the delay time. Therefore, the to-be-operated vehicle 16 by which operativity was improved can be provided further.
  • the remote control unit 1608 reduces the steering angle threshold ⁇ as the delay time increases.
  • the remote control unit 1608 can limit the speed of the controlled vehicle 16 from the stage where the steering angle is smaller as the delay time is larger. Therefore, the to-be-operated vehicle 16 by which operativity was improved can be provided further.
  • the vehicle control method is a vehicle control method for controlling the operated vehicle 16 that the operator 10 remotely operates, and the vehicle operation signal including the accelerator input value by the operation of the operator 10
  • the absolute value of the steering angle of the operated vehicle 16 is greater than or equal to a predetermined angle and the speed of the operated vehicle 16 is greater than 0
  • the absolute value of the steering angle is smaller than the predetermined angle
  • correcting the accelerator input value so as to reduce the speed as compared to when the speed is greater than 0 (S12).
  • the accelerator input value generated by the remote control device 200 and included in the vehicle operation signal received by the operated vehicle 16 is corrected by the operated vehicle 16, but in the second embodiment, the remote operation is performed
  • the device 200 differs in that the accelerator operation value is corrected based on the vehicle information of the operated vehicle 16 and then the vehicle operation signal is generated.
  • the remote control system in the second embodiment is the same as the remote control system 1000 in the first embodiment, the description will be omitted.
  • the remote control unit 1608 acquires the steering angle output by the steering angle sensor 1602 and the speed output by the speed sensor 1603, and transmits it to the remote control device 200 via the wireless communication unit 1601 as vehicle information.
  • remote control unit 1608 in the first embodiment corrects the accelerator input value included in the vehicle operation signal received from remote control device 200
  • remote control unit 1608 in the second embodiment is configured from remote control device 200. The accelerator input value included in the received vehicle operation signal is not corrected.
  • FIG. 10 is a diagram showing an example of the configuration of the remote control unit 13a in the remote control system according to the present embodiment. A description will be made focusing on parts different from the first embodiment. 10, in addition to the configuration of the remote control unit 13 of the first embodiment, the remote control unit 13a includes a vehicle information storage unit 1307.
  • the vehicle information receiving unit 1304 receives at least vehicle information transmitted by the operated vehicle 16 via the communication interface 1301.
  • the vehicle information receiving unit 1304 is an example of a communication unit that receives vehicle information including information indicating the speed of the operated vehicle 16.
  • the vehicle information reception unit 1304 outputs the received vehicle information to the HMI generation unit 1305 and stores the received vehicle information in the vehicle information storage unit 1307.
  • the vehicle information storage unit 1307 holds the vehicle information received by the vehicle information reception unit 1304.
  • the vehicle information storage unit 1307 is, for example, a storage device such as a semiconductor memory.
  • the vehicle operation signal generation unit 1303 generates a vehicle operation signal based on the operation of the operation input unit 11 by the operator 10.
  • the vehicle operation signal generation unit 1303 is an accelerator of the operation input unit 11 by the operator 10 included in the vehicle operation signal transmitted to the operated vehicle 16 based on the vehicle information of the operated vehicle 16 held in the vehicle information storage unit 1307.
  • the vehicle operation signal is generated by correcting based on.
  • the vehicle information of the operated vehicle 16 is information including the steering angle of the operated vehicle 16 acquired from the steering angle sensor 1602 and the speed of the operated vehicle 16 acquired from the speed sensor 1603.
  • the vehicle operation signal generation unit 1303 is a control device included in the remote control device 200, and is an example of a control unit that corrects an accelerator input value.
  • the operator 10 operates the vehicle 10 based on the vehicle information of the operated vehicle 16 even when the operated vehicle 16 remotely operated by the operator 10 can not obtain a sensation such as acceleration and rotation of the operated vehicle 16. Since the accelerator input value which is a signal for operating the accelerator input unit 11b is corrected, the remote control device 200 with improved operability can be realized.
  • FIG. 11 is a flowchart showing an example of processing of generating an accelerator input value included in a vehicle operation signal transmitted to the operated vehicle 16 in the vehicle operation signal generation unit 1303 according to the present embodiment.
  • the vehicle operation signal generation unit 1303 repeatedly performs the processing of the flowchart of FIG. 11.
  • the vehicle operation signal generation unit 1303 acquires vehicle operation information from the operation input unit 11 (S71) when the transmission time of the vehicle operation signal has passed (YES in S70). Specifically, the vehicle operation signal generation unit 1303 controls the steering input unit 11 a for controlling the steering of the operated vehicle 16 of the operation input unit 11 and an accelerator for controlling the number of rotations of the engine or motor of the operated vehicle 16.
  • the steering input value, the accelerator input value, and the brake input value are acquired from the input unit 11 b and the brake input unit 11 c that controls the brake of the operated vehicle 16, respectively.
  • the steering input value, the accelerator input value, and the brake input value are examples of vehicle operation information.
  • Step S71 is an example of a step of acquiring a steering input value and a step of acquiring an accelerator input value.
  • vehicle operation signal generation unit 1303 returns to step S70.
  • the transmission time may be a predetermined time or may be an elapsed time since the vehicle operation signal was transmitted last time.
  • the vehicle operation signal generation unit 1303 acquires the steering angle and the speed of the operated vehicle 16 from the received vehicle information (S72). Specifically, the vehicle operation signal generation unit 1303 obtains the latest steering angle and speed of the operated vehicle 16 from the vehicle information storage unit 1307.
  • Step S72 is an example of the step of receiving the speed of the operated vehicle 16.
  • the steering input value acquired in step S71 may be used as the steering angle of the operated vehicle 16.
  • the vehicle operation signal generation unit 1303 corrects the accelerator input value acquired in step S71 based on the steering angle and the speed acquired in step S72 (S73). Then, a vehicle operation signal including the corrected accelerator input value is transmitted to the operated vehicle 16 via the communication interface 1301. Step S73 is an example of the step of correcting the accelerator input value.
  • FIG. 12 is a flowchart showing an example of a process of correcting an accelerator input value included in a vehicle operation signal. Specifically, FIG. 12 is a flowchart showing an example of the process of correcting the accelerator input value acquired in step S71 in step S73 of FIG.
  • step S72 when the absolute value of the steering angle acquired in step S72 is equal to or greater than the steering angle threshold ⁇ (in the case of YES in S80), the vehicle operation signal generation unit 1303 proceeds to step S81.
  • step S84 when the absolute value of the steering angle obtained in step S72 is less than the steering angle threshold value ⁇ (in the case of NO in S80), the vehicle operation signal generation unit 1303 executes correction coefficient calculation processing 3 (S84).
  • vehicle operation signal generation unit 1303 executes correction coefficient calculation processing 1 (S82).
  • vehicle operation signal generation unit 1303 executes correction coefficient calculation process 2 (S83).
  • the vehicle operation signal generation unit 1303 corrects the accelerator input value acquired from the operation input unit 11 based on the processing result of one of steps S82 to S84 (S85).
  • correction coefficient calculation process 1 in step S82, the correction coefficient calculation process 2 in step S83, the correction coefficient calculation process 3 in step S84, and the correction of the accelerator input value in step S85 are respectively performed in step S22 of the first embodiment. , S23, S24 and S25.
  • the absolute value of the steering angle of the operated vehicle 16 is equal to or greater than the steering angle threshold ⁇ , and the speed of the operated vehicle 16 is zero.
  • the accelerator input value is larger than the case (YES in S80 and S81).
  • the vehicle operation signal generation unit 1303 corrects the accelerator input value so as to reduce the speed of the controlled vehicle 16 controlled by the above.
  • the steering angle of the operated vehicle 16 may be the steering angle included in the vehicle information received from the operated vehicle 16, or the steering controlled by the steering input value acquired from the operation input unit 11. It may be a horn.
  • an accelerator which is a signal generated by the operator 10 operating the accelerator input unit 11b based on the vehicle information of the operated vehicle 16.
  • the input value is corrected. That is, the remote control device 200 and the vehicle remote control method with improved operability are realized.
  • Vehicle operation signal generation unit 1303 takes into consideration the delay time between remote control device 200 and controlled vehicle 16 in the process of correcting the accelerator input value acquired in step S71 in step S73 of FIG.
  • the accelerator input value acquired in step S71 may be corrected.
  • the vehicle operation signal generation unit 1303 may increase or decrease the limiting coefficient K in FIGS. 6 and 7 according to increase or decrease of the delay time. Thereby, when the delay time increases, the restriction coefficient K increases, so the correction coefficient C becomes smaller, and the accelerator input value acquired in step S71 is corrected to a smaller value. Therefore, the operated vehicle 16 can more slowly increase its speed.
  • the vehicle operation signal generation unit 1303 may increase or decrease the steering angle threshold ⁇ in step S80 of FIG. 12 according to the increase or decrease of the delay time.
  • the vehicle operation signal generation unit 1303 may perform the process shown in FIG. Thereby, when the delay time increases, correction of the accelerator input value can be performed from a small steering angle.
  • the delay for encoding the signal input from the camera 1609 mounted on the operated vehicle 16 or the encoded video information is transmitted to the remote control device 200 via the wireless base station 15 and the network 14 during the above delay time.
  • the remote control unit 13 receives the video information and then decodes it and outputs it to the information display unit 12 or the result of the operator 10 operating the operation input unit 11
  • One or more of the delay until the remote control unit 13 generates a vehicle operation signal or the delay until the vehicle operation signal is transmitted to the operated vehicle 16 via the network 14 and the wireless base station 15 It is also good.
  • the remote control device 200 is the vehicle remote control device 200 for remotely operating the operated vehicle 16 by the operator 10, and the speed of the operated vehicle 16 is controlled by the operation of the operator 10.
  • An accelerator input unit 11b that outputs an accelerator input value to be controlled
  • a communication unit that receives the speed of the operated vehicle 16, and an absolute value of a steering angle of the operated vehicle 16 is equal to or greater than a steering angle threshold ⁇ (an example of a predetermined angle)
  • a vehicle operation signal that corrects the accelerator input value so as to reduce the speed compared to when the absolute value of the steering angle is smaller than the steering angle threshold ⁇ and the speed is greater than 0.
  • a generation unit 1303 an example of a control unit).
  • the operator 10 operates the accelerator input unit on the basis of the vehicle information of the operated vehicle 16 even when the operated vehicle 16 remotely operated by the operator 10 can not obtain a sensation such as acceleration and rotation of the operated vehicle 16. Since the accelerator input value, which is a signal obtained by operating 11b, is corrected, the remote control device 200 with improved operability can be realized.
  • the vehicle remote control method is a vehicle remote control method for remotely operating the operated vehicle 16 by the operator 10, and the speed of the operated vehicle 16 by the operation of the operator 10.
  • the step of outputting an accelerator input value for controlling the step the step of receiving the speed of the operated vehicle 16 Correcting the accelerator input value so as to reduce the speed as compared to when the absolute value of the steering angle is smaller than the steering angle threshold ⁇ and the speed is larger than zero.
  • embodiments can be realized by various combinations of the embodiments that can be conceived by those skilled in the art, or by combining components and functions of the embodiments within the scope of the present disclosure. Forms are also included in the present disclosure.
  • the said embodiment demonstrated the example which determines whether the correction coefficient calculation process 1 is performed by whether the speed of a to-be-operated vehicle is larger than 0, it is not limited to this.
  • the correction factor calculation process 1 may be performed when the speed of the operated vehicle is higher than a predetermined speed.
  • the correction coefficient calculation process 1 may be executed when the speed of the operated vehicle is greater than 5 Km / h.
  • each component may be configured by dedicated hardware or implemented by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the processor is configured of one or more electronic circuits including a semiconductor integrated circuit (IC) or a large scale integration (LSI).
  • IC semiconductor integrated circuit
  • LSI large scale integration
  • the plurality of electronic circuits may be integrated on one chip or may be provided on a plurality of chips.
  • the plurality of chips may be integrated into one device or may be provided to a plurality of devices.
  • the order of the plurality of processes described in the above embodiment is an example.
  • the order of the plurality of processes may be changed, or the plurality of processes may be performed in parallel.
  • the remote control system according to the present disclosure is effective for a system in which an operator at a remote location steers a vehicle traveling on a roadway using a communication line or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Selective Calling Equipment (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

オペレータが遠隔操作する車両であって、オペレータの操作により、アクセル入力値を含む車両操作信号を受信する通信部と、車両の操舵角を計測する操舵角センサと、車両の速度を計測する速度センサと、操舵角の絶対値が所定角度以上、かつ、速度が0より大きい場合に、操舵角の絶対値が所定角度より小さく、かつ、速度が0より大きいときに比べて、速度を低下させるようにアクセル入力値を補正する制御部と、を備える。

Description

車両、車両制御方法、車両遠隔操作装置および車両遠隔操作方法
 本開示は、オペレータが遠隔操作する車両、当該車両を制御する車両制御方法、車両を遠隔操作する車両遠隔操作装置および当該車両遠隔操作装置の車両遠隔操作方法に関する。
 無線LANや携帯電話回線等の無線通信を利用して、ドライバーが搭乗しない車両もしくはドライバーが操作しない車両を、遠隔地にいるオペレータが間接的に運転、操縦する遠隔操作システムがある。
 このような遠隔操作システムの場合、通信手段を介して、車両に搭載されたミリ波レーダ、レーザーレーダ、カメラなど様々なセンサから車両周辺を観測して得られるセンシング結果を、車両(以降、被操作車両と記載)からオペレータに伝え、車両の走行に関する制御信号を、オペレータから被操作車両に伝えることで、オペレータは遠隔から被操作車両を操縦する。
 例えば、特許文献1には、操縦者が送信機から無人車両の車速や操舵方向を指示することで、無人車両は、車速を設定車速まで低下させた後で操舵を開始し、操舵終了後は低下させた車速を元の車速まで復帰させる制御を行う構成が開示されている。
特開平7-009969号公報
 しかしながら、無線LANや携帯電話回線等の無線通信を利用して、遠隔地にいるオペレータが被操作車両を操縦する遠隔操作システムの場合、さらなる改善が必要とされていた。
 本開示の一態様に係る車両は、オペレータが遠隔操作する車両であって、前記オペレータの操作により、アクセル入力値を含む車両操作信号を受信する通信部と、前記車両の操舵角を計測する操舵角センサと、前記車両の速度を計測する速度センサと、前記操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正する制御部と、を備える。
 また、本開示の一態様に係る車両制御方法は、オペレータが遠隔操作する車両を制御する車両制御方法であって、前記オペレータの操作により、アクセル入力値を含む車両操作信号を受信するステップと、前記車両の操舵角の絶対値が所定角度以上、かつ、前記車両の速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正するステップと、を含む。
 また、本開示の一態様に係る車両遠隔操作装置は、オペレータにより車両を遠隔操作する車両遠隔操作装置であって、前記オペレータの操作により、前記車両の速度を制御するアクセル入力値を出力するアクセル入力部と、前記車両の速度を受信する通信部と、前記車両の操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正する制御部と、を備える。
 また、本開示の一態様に係る車両遠隔操作方法は、オペレータにより車両を遠隔操作する車両遠隔操作方法であって、前記オペレータの操作により、前記車両の速度を制御するアクセル入力値を取得するステップと、前記車両の速度を受信するステップと、前記車両の操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正するステップと、を含む。
 本開示によれば、操作性が向上された、車両および当該車両を制御する車両制御方法、並びに、遠隔から車両を操縦するための車両遠隔操作装置および当該車両遠隔操作装置の車両遠隔操作方法を提供することができる。
 なお、本開示の更なる効果及び利点は、本明細書及び図面の開示内容から明らかとなるであろう。上記更なる効果及び利点は、本明細書及び図面に開示されている様々な実施の形態及び特徴によって個別に提供されてもよく、必ずしもすべての効果及び利点が提供される必要はない。
図1は、実施の形態1に係る遠隔操作システムの一例を示す図である。 図2は、実施の形態1に係る遠隔操作システムにおける被操作車両の構成の一例を示すブロック図である。 図3は、実施の形態1に係る遠隔操作システムにおける遠隔操作装置の構成の一例を示すブロック図である。 図4は、実施の形態1に係る遠隔制御ユニットにおける、遠隔操作装置から受信した車両操作信号の処理の一例を示すフローチャートである。 図5は、車両操作信号に含まれるアクセル入力値の補正処理の一例を示すフローチャートである。 図6は、補正係数計算処理1の一例を示すフローチャートである。 図7は、補正係数計算処理2の一例を示すフローチャートである。 図8は、補正係数計算処理3の一例を示すフローチャートである。 図9は、操舵角閾値を変更する一例を示すフローチャートである。 図10は、実施の形態2に係る遠隔操作システムにおける遠隔操作部の構成の一例を示すブロック図である。 図11は、実施の形態2に係る車両操作信号生成部における、被操作車両に送信する車両操作信号に含まれるアクセル入力値の生成の処理の一例を示すフローチャートである。 図12は、車両操作信号に含まれるアクセル入力値を補正する処理の一例を示すフローチャートである。 図13は、従来の遠隔操作装置を示す図である。 図14は、従来の遠隔操作装置の課題を説明するグラフである。 図15は、従来の遠隔操作装置の課題を説明する別のグラフである。
 まず、本開示の基礎となった知見について説明する。
 図13は、従来の遠隔操作装置を示す図である。図13において、車両遠隔操作装置100(以降、遠隔操作装置100と記載する。)は、遠隔操作部113と、情報表示部112と、操作入力部111とで構成されている。
 遠隔操作部113は、通信網を介して被操作車両と接続されている。遠隔操作部113は、被操作車両が送信した被操作車両周辺の映像情報や被操作車両の速度を示す情報等を受信し、受信した情報を情報表示部112に出力する。
 操作入力部111は、被操作車両を操舵するためのステアリング入力部111aと、被操作車両のエンジンの回転数を変更するアクセル入力部111bと、被操作車両のブレーキを制御するブレーキ入力部111cとから構成される。
 遠隔から被操作車両を操縦するオペレータ10は、情報表示部112から得られる情報をもとに、操作入力部111を操作する。オペレータ10が操作入力部111を操作することで生成された信号(以降、車両操作信号と記載)は、遠隔操作部113から通信網を介して、被操作車両に送られる。
 被操作車両は、受信した車両操作信号をもとに操縦される。
 遠隔にいるオペレータ10が遠隔操作装置100を用いて被操作車両を操縦する場合の課題は2つある。
 1つ目の課題を以下に述べる。
 オペレータ10は、被操作車両に搭乗していないため、被操作車両に対し、オペレータ10のアクセル入力部111bの操作による加速やエンジンの回転数の上昇などを体感で得ることができない。つまり、オペレータ10は、操作入力部111を操作することによる、ドライバーが車両に搭乗しているような被操作車両の変化を体感できない。従って、オペレータ10は、体感から気づくことができる危険や経験則に基づいて、操作入力部111に対して操舵や速度の調整ができない。
 オペレータ10は、情報表示部112に表示される被操作車両周辺の映像情報、および、被操作車両の速度に関する視覚的な情報のみを使って被操作車両を操縦しなければならないにもかかわらず、操作入力部111のステアリング入力部111a、アクセル入力部111bもしくはブレーキ入力部111cに対して慎重な操作が求められる。
 しかし、情報表示部112に表示される被操作車両周辺の映像情報の変化が激しい場合は、オペレータ10は情報表示部112に集中し過ぎてしまい、操作入力部111による被操作車両の操縦に対する集中力が低下してしまうことがある。そのため、オペレータ10が操作入力部111を過剰に操作してしまい、被操作車両の急な加速や減速が生じてしまい、被操作車両の操縦に支障が出てしまうという課題があった。
 ここで、遠隔操作装置100を用いて被操作車両を操縦する実験を行った結果について、図14及び図15を参照しながら説明する。具体的には、オペレータ10が遠隔操作装置100を用いて、被操作車両を直進させ、一旦停止後に右折させた結果について、説明する。なお、以下では右折の場合について説明するが、左折の場合についても同様のことが言える。
 図14および図15は、従来の遠隔操作装置の課題を説明するグラフである。図14は、被操作車両の操縦におけるステアリング入力値とアクセル入力値との時間変化をプロットしたグラフであり、図15は、被操作車両の操縦におけるステアリング入力値と速度との時間変化をプロットしたグラフである。
 図14において、横軸は時間(秒)であり、左側の縦軸はステアリング入力値(角度(度))であり、右側の縦軸はアクセル入力値である。図14において、ステアリング入力部111aに対する入力値30(同図中に示す実線)と、アクセル入力部111bに対する入力値31(同図中に示す破線)とがプロットされている。また、図15において、横軸は時間(秒)であり、左側の縦軸はステアリング入力値であり、右側の縦軸は速度(km/h)である。図15において、ステアリング入力部111aに対する入力値30(同図中に示す実線)と、被操作車両の速度33(同図中に示す破線)とがプロットされている。
 図14および図15において、横軸の時間110秒から250秒まで、および時間410秒以降では、被操作車両が直進し、横軸の時間250秒から410秒までは、被操作車両が右折している場合を示している。すなわち、ステアリング入力部111aに対して、オペレータ10は直進の操作を行い、その後、アクセル入力部111bおよびブレーキ入力部111cに対して一旦停止の操作を行い、その後、ステアリング入力部111aに対して右折の操作を開始している。オペレータ10は、右折の際に、アクセル入力部111bに対する操作においてアクセル入力値が急激に変化しており、直進時と比べて、被操作車両の急な加速や減速が生じている。
 一般的にドライバーが車両に搭乗して右折の操縦を行う場合、スピードメータに表示される車両速度を確認することよりも、車両周辺の視覚的な情報を確認しながら、車両の加速や回転を体感で得て車両の速度を調整する。
 しかし、遠隔操作装置100を用いて被操作車両の右左折操作をオペレータ10が行う場合、情報表示部112に表示される被操作車両周辺の映像情報だけでなく、被操作車両の車速も視覚的に確認しつつ、操作入力部111のステアリング入力部111aおよびアクセル入力部111bを同時に操作しなければならず、操作は困難である。
 また、被操作車両が右左折している間、情報表示部112に表示される被操作車両周辺の映像情報が横方向に変化する。このため、オペレータ10は、被操作車両が直進している場合に比べて、被操作車両の速度、加速度、および、回転速度(例えば、被操作車両の角速度)を認識しにくい。
 以上の結果、オペレータ10によるアクセル入力部111bに対する操作が疎かになり、被操作車両は、右折の際に急な加速や減速が生じてしまう。
 次に、2つ目の課題を以下に述べる。
 オペレータ10は、被操作車両周辺の状況変化が発生した場合、被操作車両に搭乗していないため、車両に搭乗して運転を行うドライバーに比べて、被操作車両周辺の状況変化の認識が遅れることがある。そのため、被操作車両の操縦にも遅れが生じるという課題である。
 被操作車両に搭載されたカメラからの信号入力をエンコードするための遅延や、エンコードされた映像情報が通信網を介して遠隔操作部113に伝わるまでの遅延、遠隔操作部113が映像情報を受信してからデコードして、情報表示部112に出力するまでの遅延、オペレータ10が操作入力部111を操作した結果に基づいて遠隔操作部113が車両操作信号を生成するまでの遅延、および、車両操作信号が通信網を介して被操作車両に伝わるまでの遅延が存在する。すなわち、遅延は、ネットワークの混み具合などに依存する通信による遅延、および、機器などの処理による遅延などを含み、動的に変化する。被操作車両周辺の状況変化から被操作車両の操縦が行われるまでの時間が上記した遅延の分だけ長くなるため、被操作車両の操縦に遅れが生じる。
 このため、被操作車両周辺の状況変化から、被操作車両の操縦が行われるまでの遅延時間が大きくなると、例えば見通しの悪いカーブや交差点付近で被操作車両の前方に自転車が飛び出してきた場合、遠隔にいるオペレータ10の反応と、被操作車両の回避操作とが遅れてしまう。
 そこで、本願発明者らは、右左折などのときに急な加速が生じることを抑制することについて、鋭意検討を行った。そして、本願発明者らは、右左折しているときに取得したアクセル入力値を補正することで、上記の1つめの課題を解決できることを見出した。
 具体的には、本開示の一態様に係る車両は、オペレータが遠隔操作する車両であって、前記オペレータの操作により、アクセル入力値を含む車両操作信号を受信する通信部と、前記車両の操舵角を計測する操舵角センサと、前記車両の速度を計測する速度センサと、前記操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正する制御部と、を備える。
 この構成によれば、オペレータが遠隔操作する車両において、車両の加速や回転など体感を得られない場合においても、車両の速度が低下するため、オペレータによるアクセルやブレーキの操作に関する負荷を減らすことができる。これにより、オペレータが被車両を遠隔操作する際、車両から伝送される車両周辺の映像等に応じて、ステアリングの操作に集中することができる。つまり、操作性が向上された車両を提供することができる。
 また、本願発明者らは、さらに、アクセル入力値の補正を遅延時間に応じて変更することで、上記の2つめの課題を解決できることを見出した。具体的には、前記制御部は、さらに、前記オペレータの操作から前記通信部で前記車両操作信号を受信するまでの遅延時間に基づいて、前記アクセル入力値を補正してもよい。
 この構成によれば、車両の速度を遅延時間の増減に応じた速度領域に調整することができる。
 したがって、遅延時間が一時的に増加した場合でも、オペレータは意識することなく、車両を操縦できる。つまり、さらに操作性が向上された車両を提供することができる。
 また、上記の車両において、前記制御部は、前記操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記遅延時間の増加に従って、前記速度を急峻に低下させるように前記アクセル入力値を補正してもよい。
 また、上記の車両において、さらに、前記遅延時間の変化に基づいて、前記所定角度を変更してもよい。
 また、上記の車両において、前記制御部は、前記遅延時間の増加に従って、前記所定角度を小さくしてもよい。
 また、本開示の一態様に係る車両制御方法は、オペレータが遠隔操作する車両を制御する車両制御方法であって、前記オペレータの操作により、アクセル入力値を含む車両操作信号を受信するステップと、前記車両の操舵角の絶対値が所定角度以上、かつ、前記車両の速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正するステップと、を含む。
 また、本開示の一態様に係る車両遠隔操作装置は、オペレータにより車両を遠隔操作する車両遠隔操作装置であって、前記オペレータの操作により、前記車両の速度を制御するアクセル入力値を出力するアクセル入力部と、前記車両の速度を受信する通信部と、前記車両の操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正する制御部と、を備える。
 また、本開示の一態様に係る車両遠隔操作方法は、オペレータにより車両を遠隔操作する車両遠隔操作方法であって、前記オペレータの操作により、前記車両の速度を制御するアクセル入力値を取得するステップと、前記車両の速度を受信するステップと、前記車両の操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正するステップと、を含む。
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータで読み取り可能なCD-ROM等の非一時的記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。プログラムは、記録媒体に予め記憶されていてもよいし、インターネット等を含む広域通信網を介して記録媒体に供給されてもよい。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、各図は、模式図であり、必ずしも厳密に図示されたものではない。
 (実施の形態1)
 [1-1.遠隔操作システムの構成]
 図1は、本実施の形態に係る遠隔操作システムの一例を示す図である。遠隔操作システム1000において、遠隔地からオペレータ10が被操作車両16を操縦する。被操作車両16は、無線LANや携帯電話等の無線基地局15とネットワーク14とを介して、車両遠隔操作装置200(以降、遠隔操作装置200と記載する。)と接続している。遠隔操作装置200は、遠隔操作部13と、情報表示部12と、被操作車両16を操縦するための操作入力部11とを備える。なお、遠隔操作装置200は、情報表示部12を1つだけでなく、複数備えていてもよい。また、被操作車両16は、オペレータ10が遠隔操作する車両の一例である。
 また、遠隔操作部13は、被操作車両16が送信した被操作車両16周辺の映像情報および被操作車両16の速度等を情報表示部12に出力する。また、操作入力部11は、少なくとも被操作車両16の操舵を制御するためのステアリング入力部11aと、被操作車両16のエンジンやモーターの回転数を制御するアクセル入力部11bと、被操作車両16のブレーキを制御するブレーキ入力部11cとを有する。アクセル入力部11bとブレーキ入力部11cとにより、被操作車両16の速度が制御される。例えば、ステアリング入力部11aは、ハンドルであり、アクセル入力部11bは、アクセルペダルであり、ブレーキ入力部11cは、ブレーキペダルである。
 ステアリング入力部11aは、オペレータ10の操作により、被操作車両16の操舵を制御するステアリング入力値を車両操作信号生成部1303に出力する。アクセル入力部11bは、オペレータ10の操作により、被操作車両16の速度を制御するアクセル入力値を車両操作信号生成部1303に出力する。
 なお、図1において、アクセル入力部11bまたはブレーキ入力部11cは、オペレータ10の足で操作するペダル式であるが、これに限られない。例えば、アクセル入力部11bまたはブレーキ入力部11cは、オペレータ10の手で操作するレバー式であってもよい。さらに、アクセル入力部11bまたはブレーキ入力部11cは、目標の速度を入力するものであってもよい。また、ステアリング入力部11aは、オペレータ10の手で操作するハンドルであるが、これに限られない。例えば、ステアリング入力部11aは、目標の操舵角を入力するものであってもよい。
 遠隔から被操作車両16を操縦するオペレータ10は、情報表示部12から得られる情報をもとに、操作入力部11を操作する。オペレータ10が操作入力部11を操作することで生成された信号、すなわち、車両操作信号は、遠隔操作部13からネットワーク14および無線基地局15を介して、被操作車両16に送られる。被操作車両16は、受信した車両操作信号をもとに操縦される。
 ここで、車両操作信号は、オペレータ10がアクセル入力部11bまたはブレーキ入力部11cを操作した信号であるアクセル入力値を少なくとも含み、さらにオペレータ10がステアリング入力部11aを操作した信号であるステアリング入力値を含んでいてもよい。また、車両操作信号は、オペレータ10が操作入力部11を操作した時刻を示す情報を含んでいてもよい。
 [1-1-1.被操作車両の構成]
 ここで、被操作車両16の構成について、図2を参照しながら説明する。
 図2は、本実施の形態に係る遠隔操作システム1000における被操作車両16の構成の一例を示すブロック図である。図2において被操作車両16は、少なくとも無線通信ユニット1601と、操舵角センサ1602と、速度センサ1603と、速度制御ユニット1604と、操舵制御ユニット1605と、車載ネットワーク1606および1607と、遠隔制御ユニット1608と、1つ以上のカメラ1609とを備える。なお、図2では、被操作車両16において、遠隔操作に関係する構成の一例を示している。
 無線通信ユニット1601は、無線基地局15と無線通信を行う。なお、無線通信ユニット1601は、アクセル入力値を少なくとも含む車両操作信号を受信する無線通信モジュールであって、通信部の一例である。
 操舵角センサ1602は、被操作車両16の操舵角を測定し、車載ネットワーク1607上に操舵角に関する情報を出力する。
 速度センサ1603は、被操作車両16の速度を測定し、車載ネットワーク1607上に速度に関する情報を出力する。
 速度制御ユニット1604は、被操作車両16のアクセル、ブレーキ、および、ドライブシフトの操作により速度を制御する。
 操舵制御ユニット1605は、被操作車両16の操舵に関する操作により車両の進行方向を制御する。
 車載ネットワーク1606および1607は、CAN(Control Area Network)等の車載ネットワークであり、被操作車両16に搭載された各センサおよび各ユニット間で送受信される情報を伝送する。つまり、被操作車両16に搭載された各センサ及び各ユニットは、車載ネットワーク1606および1607を介して互いに通信可能に接続されている。なお、車載ネットワーク1606および1607は、1つに統合されていてもよいし、さらに分割されてもよい。
 1つ以上のカメラ1609はそれぞれ、被操作車両16の前方向(例えば、進行方向)、後方向、左方向、右方向の少なくとも1つの方向を撮影可能な位置に配置され、被操作車両16の周辺の映像を取得する。
 遠隔制御ユニット1608は、操舵角センサ1602および速度センサ1603が出力する情報を、車載ネットワーク1607を介して取得する。
 また、遠隔制御ユニット1608は、1つ以上のカメラ1609から得られる被操作車両16の前後左右方向の映像情報を生成する。そして、遠隔制御ユニット1608は、無線通信ユニット1601を介して、生成した映像情報を遠隔操作装置200に送信する。
 また、遠隔制御ユニット1608は、遠隔操作装置200が送信した車両操作信号を、無線通信ユニット1601を介して受信する。
 また、遠隔制御ユニット1608は、受信した車両操作信号に基づき、速度制御ユニット1604、および操舵制御ユニット1605を介して、被操作車両16の走行を制御する。このとき、遠隔制御ユニット1608は、操舵角センサ1602および速度センサ1603から取得した、少なくとも被操作車両16の車両情報に基づき、遠隔操作装置200から受信した車両操作信号に含まれるアクセル入力値を補正し、速度制御ユニット1604に出力する。なお、遠隔制御ユニット1608は、被操作車両16に搭載される制御装置であって、アクセル入力値を補正する制御部の一例である。
 [1-1-2.遠隔操作装置の遠隔操作部の構成]
 次に、遠隔操作装置200の遠隔操作部13の構成について、図3を参照しながら説明する。
 図3は、本実施の形態に係る遠隔操作システム1000における遠隔操作装置200の遠隔操作部13の構成の一例を示す図である。図3において遠隔操作部13は、少なくとも通信インタフェース1301と、車両操作信号送信部1302と、車両操作信号生成部1303と、車両情報受信部1304と、HMI(Human Machine Interface)生成部1305と、映像情報受信部1306とを備える。
 通信インタフェース1301は、ネットワーク14と接続し、被操作車両16と通信を行う。なお、無線通信ユニット1601は、被操作車両16と通信するための無線通信モジュールであって、遠隔操作装置200が有する通信部の一例である。
 車両操作信号生成部1303は、オペレータ10による操作入力部11の操作に基づき、車両操作信号を生成する。
 車両操作信号送信部1302は、車両操作信号生成部1303が生成する車両操作信号を、通信インタフェース1301を介して被操作車両16に送信する。
 車両情報受信部1304は、少なくとも被操作車両16が送信する車両情報を、通信インタフェース1301を介して受信する。
 映像情報受信部1306は、被操作車両16が送信する映像情報を、通信インタフェース1301を介して受信する。
 HMI生成部1305は、受信した車両情報と映像情報とに基づき、オペレータ10による被操作車両16の操作に必要となる情報を生成し、情報表示部12に出力する。
 [1-2.被操作車両における動作]
 続いて、被操作車両に16における動作(処理)について、図4を参照しながら説明する。
 図4は、本実施の形態に係る遠隔制御ユニット1608における、遠隔操作装置200から受信した車両操作信号の処理の一例を示すフローチャートである。
 遠隔制御ユニット1608は、オペレータ10による遠隔操作装置200の操作が継続している間、図4のフローチャートの処理を繰り返し行う。
 図4において、遠隔制御ユニット1608は、遠隔操作装置200の遠隔操作部13から車両操作信号を受信する、もしくは前回の車両操作信号を受信した時刻から一定時間経過した場合(S10でYESの場合)、操舵角センサ1602から被操作車両16の操舵角を取得し、かつ速度センサ1603から被操作車両16の速度を取得する(S11)。なお、一定時間は特に限定されないが、例えば、500msまたは1sなどである。また、遠隔制御ユニット1608は、ステップS10において、前回の車両操作信号を受信した時刻から一定時間が経過した場合は、前回受信した車両操作信号を用いて以下の処理を実行する。この場合も、車両操作信号を受信したことに含まれる。また、ステップS10は、車両操作信号を受信するステップの一例である。
 一方、遠隔制御ユニット1608は、遠隔操作装置200の遠隔操作部13から車両操作信号を受信していない、もしくは前回の車両操作信号を受信した時刻から一定時間経過していない場合(S10でNOの場合)、ステップS10に戻る。
 次に、遠隔制御ユニット1608は、ステップS11で取得した操舵角と速度とに基づき、ステップS10で受信した車両操作信号に含まれるアクセル入力値または前回受信した車両操作信号に含まれるアクセル入力値を補正する(ステップS12)。なお、ステップS12は、アクセル入力値を補正するステップの一例である。
 遠隔制御ユニット1608は、補正後のアクセル入力値を速度制御ユニット1604へ入力する(ステップS13)。
 次に、ステップS12におけるアクセル入力値の補正処理について、図5~図8を参照しながら説明する。本実施の形態では、ステップS11で取得した操舵角と速度とに応じて、ステップS10で受信した車両操作信号に含まれるアクセル入力値などに対して異なる補正を行う点に特徴を有する。遠隔制御ユニット1608は、例えば、被操作車両16に搭乗しておらず体感情報を得ることができないオペレータ10が当該被操作車両16を遠隔操作するときに、より安全に走行することができるように補正を行う。
 図5は、車両操作信号に含まれるアクセル入力値の補正処理の一例を示すフローチャートである。具体的には、図4のステップS12における車両操作信号に含まれるアクセル入力値の補正処理の一例を示すフローチャートである。
 図5において、遠隔制御ユニット1608は、ステップS11で取得した操舵角の絶対値が操舵角閾値θ以上である場合(S20でYESの場合)、ステップS21に移る。
 一方、遠隔制御ユニット1608は、ステップS11で取得した操舵角の絶対値が操舵角閾値θ未満である場合(S20でNOの場合)、補正係数計算処理3(S24)を実行する。遠隔制御ユニット1608は、例えば、被操作車両16が直進しているときに、補正係数計算処理3を実行する。
 次に、遠隔制御ユニット1608は、速度が0より大きい場合(S21でYESの場合)、補正係数計算処理1(S22)を実行する。遠隔制御ユニット1608は、例えば、被操作車両16が右左折などを行っているときに、補正係数計算処理1を実行する。一方、遠隔制御ユニット1608は、速度が0の場合(S21でNOの場合)、補正係数計算処理2(S23)を実行する。遠隔制御ユニット1608は、例えば、被操作車両16が停止している状態から、ハンドルをきったのち発進するときに、補正係数計算処理2を実行する。
 次に、遠隔制御ユニット1608は、ステップS22~S24のいずれかの処理結果に基づいて、車両操作信号に含まれるアクセル入力値を補正する(S25)。
 次に、ステップS22~S24における、補正係数計算処理について、説明する。まず、受信した車両操作信号に含まれるアクセル入力値から、補正値のアクセル入力値を算出する処理について、説明する。式1は、ステップS25において車両操作信号に含まれるアクセル入力値を補正するための式の一例である。ここで、AC_INは車両操作信号に含まれるアクセル入力値であり、AC_OUTは補正後のアクセル入力値である。また、Cは、補正係数であり、C_MAXは、補正係数Cの最大値である。補正係数Cは、例えば、受信したアクセル入力値を被操作車両16の速度に変換するために用いられる係数である。補正係数Cは、後述する図6~図8に示す処理により変化する変数である。最大値C_MAXは、予め設定された値である。最大値C_MAXは、例えば、「10」または「100」などの固定値である。
Figure JPOXMLDOC01-appb-M000001
 式1に示すように、例えば、補正係数Cが最大値C_MAXである場合、アクセル入力値AC_INと補正後のアクセル入力値AC_OUTとは、等しい値となる。また、補正係数Cが最大値C_MAXより小さい場合、補正後のアクセル入力値AC_OUTは、アクセル入力値AC_INより小さな値となる。この場合、被操作車両16の速度は、アクセル入力値AC_INによって制御される速度より遅くなる。以下、補正係数Cについて、図6~図8を参照しながら説明する。
 図6は、補正係数計算処理1の一例を示すフローチャートである。オペレータ10は、被操作車両16が右左折などを行っているとき、情報表示部12に景色が横方向に変化する映像を見ることになるが、当該映像では遠近感を感じにくい。また、上述したように、オペレータ10は、被操作車両16に搭乗していないので、体感情報も得られない。そのため、オペレータ10は、被操作車両16が右左折などを行っているとき、アクセルワークを繊細に行うことが難しくなる。例えば、オペレータ10がアクセル入力部11bを踏み過ぎてしまい、被操作車両16が右左折中に急加速することが起こりうる(図14および図15参照)。そこで、ステップS22における補正係数計算処理1では、被操作車両16が急加速することを抑制するために、アクセル入力値を補正する処理が実行される。具体的には、補正係数計算処理1では、補正係数Cを小さくする処理が行われる。なお、制限係数Kは、上述した遅延時間に応じて変化する係数である。制限係数Kは、例えば、遅延時間が最小値または所定値以下のときを「1」とし、遅延時間が長くなるにつれ、数値が大きくなるように設定される。遠隔制御ユニット1608は、例えば、遅延時間と制限係数Kとが対応付けられたテーブルを格納しており、遅延時間と当該テーブルとから、制限係数Kを設定してもよい。なお、ステップS22の説明において、制限係数Kが一定(つまり、遅延時間が一定)である場合について説明する。
 図6に示すように、遠隔制御ユニット1608は、補正係数Cが(C_MAX÷K)より大きい場合(S30でYESの場合)、補正係数Cから1を減算した値を補正係数Cとする(S31)。補正係数Cは、補正係数計算処理1が実施されることで補正前に比べ小さな値に更新される。補正係数Cは、例えば、補正係数計算処理1が繰り返し実行されることで、(C_MAX÷K)と一致するまで減算される。なお、以降において、補正係数計算処理1~3の処理に用いられる数値を基準値とも記載する。本実施の形態では、(C_MAX÷K)で算出される値が基準値となる。また、図7以降の説明においても、同様である。
 なお、ステップS31において補正係数Cから「1」を減算しているが、減算する値は「1」に限定されない。ステップS31においては、補正係数計算処理1を実行した後の補正係数Cが、補正係数計算処理1を実行する前の補正係数Cより小さな値となればよい。例えば、ステップS31において、補正係数計算処理1を実行する前の補正係数Cに「1」より小さな数値をかけることで、補正係数Cを補正してもよい。
 一方、遠隔制御ユニット1608は、補正係数Cが基準値以下の場合(S30でNOの場合)、何もせず処理を終了する。つまり、補正係数計算処理1を実行する前の補正係数Cの値が維持される。
 このように、補正係数計算処理1を実行した後の補正係数Cは、基準値以下の値となる。これにより、式1で算出される補正後のアクセル入力値AC_OUTは、アクセル入力値AC_INより小さな値となるので、オペレータ10がアクセル入力部11bを踏み過ぎてしまった場合でも、被操作車両16が急加速することを抑制することができる。つまり、被操作車両16の速度が急峻に変化するときに、当該変化を緩やかにすることができる。ステップS22は、オペレータ10がアクセルワークを繊細に行うことが難しい状況において、被操作車両16の速度の変化を制限する処理である。これにより、被操作車両16は、右左折を行う場合において、オペレータ10がアクセル入力部11bを踏み過ぎてしまったときでも、緩やかに右左折を行うことができる。
 図7は、補正係数計算処理2を示すフローチャートである。オペレータ10は、被操作車両16が停止している状態から発進して右左折をする場合、情報表示部12に表示される映像を見て操作入力部11を操作する。遅延時間が長いと、情報表示部12に表示されている映像と、被操作車両16の周辺の状況とが異なることが起こりうる。オペレータ10は、遅延時間が大きい場合、情報表示部12に表示されている映像(例えば、少し前の被操作車両16の周辺の映像)を見て操作入力部11を操作するので、遅延時間を考慮して操作することが困難である。そのため、オペレータ10は、遅延時間が大きいと、被操作車両16を適切に発進させることが困難な場合がある。そこで、補正係数計算処理2では、遅延時間が大きい場合であっても被操作車両16を適切に発進させるために、遅延時間に応じてアクセル入力値を補正する処理が実行される。
 図7に示すように、遠隔制御ユニット1608は、補正係数Cを基準値(C_MAX÷K)とする(S40)。基準値は、遅延時間が大きくなると制限係数Kも大きくなるので、小さな値となる。補正係数Cは、例えば、遅延時間が大きい場合は遅延時間が小さいときに比べ、小さな値に設定される。また、基準値は、遅延時間が小さくなると制限係数も小さくなるので、小さな値となる。補正係数Cは、例えば、遅延時間が大きい場合は遅延時間が小さいときに比べ、大きな値に設定される。つまり、補正係数計算処理2は、被操作車両16が停止しているときから発進したときに、補正係数Cの初期値を遅延時間に応じて設定する処理である。例えば、制限係数Kが2である場合、補正係数Cは最大値C_MAXの半分の値に設定される。
 そして、被操作車両16が発進した後は、ステップS23で設定された補正係数Cにおいて、ステップS22およびS24の処理が実行される。
 図8は、補正係数計算処理3を示すフローチャートである。オペレータ10は、被操作車両16が直進しているときは、被操作車両16が右左折しているときに比べアクセルワークを繊細に行うことができる。そこで、補正係数計算処理3では、補正後のアクセル入力値AC_OUTがアクセル入力値AC_INと近い値となるように補正する処理が実行される。つまり、アクセル入力値AC_INをよりダイレクトに被操作車両16の速度に反映する処理が行われる。具体的には、補正係数計算処理3では、補正係数Cを大きくする処理が行われる。
 図8に示すように、遠隔制御ユニット1608は、補正係数Cが基準値(C_MAX÷K)より小さい場合(S50でYESの場合)、補正係数Cに1を加算した値を補正係数Cとする(S51)。補正係数Cは、補正係数Cが基準値より小さい場合、補正係数計算処理3が実行されることで補正前に比べ大きな値に更新される。例えば、補正係数計算処理3が繰り返し実行されることで、補正係数Cは、基準値と一致するまで増加していく。つまり、補正後のアクセル入力値AC_OUTとアクセル入力値AC_INとが近い値となるように、補正係数Cが増加する。
 なお、ステップS51において補正係数Cに「1」を加算しているが、加算する値は「1」に限定されない。ステップS51では、補正係数計算処理3を実行した後の補正係数Cが、補正係数計算処理3を実行する前の補正係数Cより大きな値となればよい。例えば、ステップS51においては、補正係数計算処理3を実行する前の補正係数Cに「1」より大きな数値をかけることで、補正係数Cを補正してもよい。
 一方、遠隔制御ユニット1608は、補正係数Cが基準値以上の場合(S50でNOの場合)、補正係数Cを基準値とする(S52)。なお、ステップS52では、基準値以上である補正係数Cの値を小さくする処理が行われればよい。ステップS52では、補正係数Cから1を減算する処理が行われてもよい。また、ステップS50でNOとなるのは、例えば、直進しているときに遅延時間が大きくなることで制限係数Kが大きくなった場合などが想定される。
 このように、補正係数計算処理3を実行した後の補正係数Cは、基準値以上の値となる。これにより、式1で算出される補正後のアクセル入力値AC_OUTは、補正係数計算処理1に比べアクセル入力値AC_INに近い値となるので、オペレータ10がアクセル入力部11bを操作した結果を、よりダイレクトに被操作車両16の速度に反映することができる。ステップS24は、オペレータ10がアクセルワークを繊細に行いやすい状況において、被操作車両16の速度変化の制限を緩和する処理である。これにより、被操作車両16は、オペレータ10が意図した速度に近い速度で走行することができる。
 上記のように、本実施の形態に係る被操作車両16は、操舵角センサ1602で計測された操舵角の絶対値が操舵角閾値θ以上、かつ、速度センサ1603で計測された速度である計測速度が0より大きい場合(S20およびS21でYES)に、操舵角の絶対値が操舵角閾値θより小さく、かつ、計測速度が0より大きいとき(S20でNO)に比べて、アクセル入力値によって制御される被操作車両16の速度を低下させるようにアクセル入力値を補正する遠隔制御ユニット1608を備える。
 以上の手順により、被操作車両16の遠隔制御ユニット1608は、当該被操作車両16の走行に関し、オペレータ10がステアリング入力部11aの操作を行いながら、アクセル入力部11bの操作を行う場合に、遠隔操作装置200から受信した車両操作信号に含まれるアクセル入力値を補正して速度制御ユニット1604へ入力する(出力する)。これにより、オペレータ10がステアリング入力部11aの操作とアクセル入力部11bの操作とを同時に行う際に、過剰にアクセル入力部11bの操作を行った場合でも、被操作車両16は急加速することなく徐々に速度を上げながら曲がることができる。つまり、操作性が向上された車両および車両制御方法が実現される。
 なお、図4のステップS12の車両操作信号に含まれるアクセル入力値を補正する処理において、遠隔制御ユニット1608は、遠隔操作装置200と被操作車両16との間の無線基地局15を含むネットワークに関する遅延時間を計測し、この遅延時間を考慮して、車両操作信号に含まれるアクセル入力値の補正を行ってもよい。すなわち、遠隔制御ユニット1608は、さらに、オペレータ10の操作から無線通信ユニット1601で車両操作信号を受信するまでの遅延時間に基づいて、アクセル入力値を補正してもよい。
 具体的には、遠隔制御ユニット1608は、制限係数Kを1以上最大値C_MAX以下の変数としたうえで、遅延時間の増加に応じて制限係数KをC_MAXまで増加させる。このとき、補正係数計算処理1(S22)が実行される条件の場合、補正係数Cは、遅延時間が増加する前より小さい値が代入されることになり、式1に従って算出される補正後のアクセル入力値AC_OUTは減少する。その結果、被操作車両16は、より素早く速度を下げることができる。すなわち、遠隔制御ユニット1608は、遅延時間の増加に従って、被操作車両16の速度を急峻に低下させるようにアクセル入力値を補正してもよい。
 また、制限係数Kが大きい状態で、補正係数計算処理2(S23)もしくは補正係数計算処理3(S24)が実行される条件下の場合、補正係数Cは制限係数が小さいときに比べ小さい値に制限されることになり、式1に従って算出される補正後のアクセル入力値AC_OUTは小さくなる。その結果、被操作車両16はより緩やかに速度をあげることができる。
 一方、遠隔制御ユニット1608は、遅延時間の減少に応じて制限係数Kを1まで減少させる。このとき、補正係数計算処理1(S22)が実行される条件の場合、遅延時間が大きいときに比べて補正係数Cは大きい値が代入されることになり、式1に従って算出される補正後のアクセル入力値AC_OUTは増加する。その結果、被操作車両16は遅延時間が大きいときに比べ緩やかに速度を下げることができる。
 また、制限係数Kが小さい状態で、補正係数計算処理2(S23)もしくは補正係数計算処理3(S24)が実行される条件下の場合、遅延時間が大きいときに比べて補正係数Cは大きい値で制限されることになり、式1に従って算出される補正後のアクセル入力値AC_OUTは大きくなる。その結果、被操作車両16はより素早く速度をあげることができる。
 オペレータ10が、遅延時間に応じて操作入力部11を操作することは困難である。上記のように、基準値が制限係数Kを含み動的に変化する場合、アクセル入力値AC_INを遅延時間に応じて適切に補正することができるので、さらに操作性が向上された車両および車両制御方法が実現される。
 また、別の例として、遠隔制御ユニット1608は、遅延時間の増減に応じて、図5のステップS20において操舵角が所定値以上であるか否かを判定する操舵角閾値θを減増してもよい。つまり、遠隔制御ユニット1608は、遅延時間に基づいて操舵角閾値θ(所定角度の一例)を変更してもよい。具体的には、遠隔制御ユニット1608は、遅延時間の変化に基づいて操舵角閾値θを変更してもよい。遠隔制御ユニット1608が実行する、操舵角閾値θを変更する処理について、図9を参照しながら説明する。
 図9は、操舵角閾値θを変更する一例を示すフローチャートである。
 図9に示すように、遠隔制御ユニット1608は、遅延時間が増加したか否かを判定する(S60)。遠隔制御ユニット1608は、例えば、受信した車両操作信号に含まれる、オペレータ10が操作入力部11を操作した時刻を示す情報と、現在の時刻とから算出した遅延時間が、前回取得した車両操作信号から算出された遅延時間に比べて増加したか否かを判定する。遠隔制御ユニット1608は、遅延時間が増加したと判定した場合(S60でYES)、操舵角閾値θを減少させる(S61)。すなわち、遠隔制御ユニット1608は、遅延時間の増加に従って、操舵角閾値θを小さくする。これにより、例えば、遅延時間が増加した場合に、操舵角がより小さいときでもステップS22に進み、被操作車両16の速度の変化を制限する処理を行うことができる。つまり、遅延時間が増加した場合は、小さな操舵角からアクセル入力値の補正を行うことができる。
 また、遠隔制御ユニット1608は、遅延時間が増加していないと判定した場合(S60でNO)、遅延時間が減少したか否かを判定する(S62)。遠隔制御ユニット1608は、遅延時間が減少したと判定した場合(S62でYES)、操舵角閾値θを増加させる(S63)。また、遠隔制御ユニット1608は、遅延時間が減少していないと判定した場合(S62でNO)、つまり遅延時間が変化していない場合、操舵角閾値θを変更せずに処理を終了する。なお、遠隔制御ユニット1608は、前回取得した車両操作信号から算出された遅延時間と、最新の車両制御信号から算出された遅延時間との差分が所定値以上であった場合に、ステップS60またはS62でYESと判定してもよい。
 なお、操舵角閾値θの変更は、上記の方法に限定されない。遠隔制御ユニット1608は、例えば、遅延時間が所定の閾値より大きくなったときに、操舵角閾値θをより小さい値に変更してもよい。
 なお、図5のステップS21における判定では、「速度」の替わりに、「加速度」を用いてもよい。
 なお、上記の遅延時間に、被操作車両16に搭載されたカメラ1609からの信号入力をエンコードするための遅延、または遠隔操作装置200が映像情報を受信してからデコードして、情報表示部12に出力するまでの遅延、またはオペレータ10が操作入力部11を操作した結果にもとづいて遠隔操作部13が車両操作信号を生成するまでの遅延のうち、いずれか1つ以上を加えてもよい。
 なお、上記では、ステップS22~S24(補正係数計算処理1~補正係数計算処理3)において、基準値の算出に制限係数Kを用いる例について説明したが、これに限定されない。ステップS22~S24の少なくとも1つは、制限係数Kを用いずに基準値が算出されてもよい。また、ステップS22~S24において、基準値が等しい値である例について説明したが、これに限定されない。ステップS22~S24のそれぞれにおいて、基準値は異なる値であってもよい。例えば、ステップS22に用いる基準値を、ステップS24に用いる基準値より小さな値に設定してもよい。
 [1-3.効果など]
 以上のように、本実施の形態に係る被操作車両16は、オペレータ10が遠隔操作する被操作車両16であって、オペレータ10の操作により、アクセル入力値を含む車両操作信号を受信する無線通信ユニット1601(通信部の一例)と、被操作車両16の操舵角を計測する操舵角センサ1602と、被操作車両16の速度を計測する速度センサ1603と、操舵角の絶対値が所定角度以上、かつ、速度が0より大きい場合に、操舵角の絶対値が所定角度より小さく、かつ、速度が0より大きいときに比べて、速度を低下させるようにアクセル入力値を補正する遠隔制御ユニット1608(制御部の一例)と、を備える。
 これにより、オペレータ10が遠隔操作する被操作車両16において、当該被操作車両16の加速および回転など体感をオペレータ10が得られない場合においても、被操作車両16の速度がアクセル入力値によって制御される速度より低くなるため、被操作車両16が急加速することを抑制することができる。また、オペレータ10によるアクセル入力部11bおよびブレーキ入力部11cの操作に関する負荷を減らすことができる。つまり、オペレータ10が被操作車両16を遠隔操作する際、当該被操作車両16から伝送される車両周辺の映像等に応じて、ステアリング入力部11aの操作に集中することができる。よって、操作性が向上された被操作車両16を提供することができる。
 また、遠隔制御ユニット1608は、さらに、オペレータ10の操作から無線通信ユニット1601で車両操作信号を受信するまでの遅延時間に基づいて、アクセル入力値を補正する。
 これにより、遠隔制御ユニット1608は、被操作車両16の速度を、遅延時間の増減に応じた速度に調整することができる。したがって、遅延時間が一時的に増加した場合でも、オペレータ10は当該遅延時間の変化を意識することなく、被操作車両16を操作することができる。よって、さらに、操作性が向上された被操作車両16を提供することができる。
 また、遠隔制御ユニット1608は、操舵角の絶対値が操舵角閾値θ以上、かつ、速度が0より大きい場合に、遅延時間の増加に従って、被操作車両16の速度を急峻に低下させるようにアクセル入力値を補正する。
 これにより、遠隔制御ユニット1608は、オペレータ10が遅延時間を考慮して被操作車両16を操作することが困難な場合であっても、被操作車両16の速度を、遅延時間が大きいほど遅い速度に調整することができる。よって、さらに、操作性が向上された被操作車両16を提供することができる。
 また、遠隔制御ユニット1608は、さらに、遅延時間の変化に基づいて、操舵角閾値θを変更する。
 これにより、遠隔制御ユニット1608は、被操作車両16の速度を、遅延時間の増減に応じた操舵角閾値θに基づいて制御することができる。したがって、遅延時間が一時的に増加した場合でも、オペレータ10は当該遅延時間の変化を意識することなく、被操作車両16を操作することができる。よって、さらに、操作性が向上された被操作車両16を提供することができる。
 また、遠隔制御ユニット1608は、遅延時間の増加に従って、操舵角閾値θを小さくする。
 これにより、遠隔制御ユニット1608は、被操作車両16の速度を、遅延時間が大きいほど操舵角が小さい段階から制限することができる。よって、さらに、操作性が向上された被操作車両16を提供することができる。
 以上のように、本実施の形態に係る車両制御方法は、オペレータ10が遠隔操作する被操作車両16を制御する車両制御方法であって、オペレータ10の操作により、アクセル入力値を含む車両操作信号を受信するステップ(S10)と、被操作車両16の操舵角の絶対値が所定角度以上、かつ、被操作車両16の速度が0より大きい場合に、操舵角の絶対値が所定角度より小さく、かつ、速度が0より大きいときに比べて、速度を低下させるようにアクセル入力値を補正するステップ(S12)と、を含む。
 これにより、被操作車両16と同様の効果を奏する。
 (実施の形態2)
 次に、実施の形態2について説明する。実施の形態1では、遠隔操作装置200で生成され、被操作車両16で受信した車両操作信号に含まれるアクセル入力値を被操作車両16で補正していたが、実施の形態2では、遠隔操作装置200において被操作車両16の車両情報に基づいてアクセル入力値を補正した上で車両操作信号を生成する点が異なる。
 実施の形態2では、実施の形態1と異なる箇所について主に説明する。
 なお、実施の形態2における遠隔操作システムは、実施の形態1における遠隔操作システム1000と同じであるので、説明を割愛する。
 [2-1-1.被操作車両の構成]
 実施の形態2における被操作車両16の遠隔操作に係る詳細構成は、実施の形態1における被操作車両16と基本的には同じ構成である。以下に実施の形態1と異なる箇所について説明する。
 遠隔制御ユニット1608は、操舵角センサ1602が出力する操舵角と速度センサ1603が出力する速度とを取得し、車両情報として無線通信ユニット1601を介して遠隔操作装置200へ送信する。
 また、実施の形態1における遠隔制御ユニット1608は、遠隔操作装置200から受信した車両操作信号に含まれるアクセル入力値を補正したが、実施の形態2における遠隔制御ユニット1608は、遠隔操作装置200から受信した車両操作信号に含まれるアクセル入力値の補正をしない。
 [2-1-2.遠隔操作装置の遠隔操作部の構成]
 図10は、本実施の形態に係る遠隔操作システムにおける遠隔操作部13aの構成の一例を示す図である。実施の形態1と異なる箇所を中心に説明する。図10において遠隔操作部13aは、実施の形態1の遠隔操作部13の構成に加えて車両情報蓄積部1307を備える。
 車両情報受信部1304は、少なくとも被操作車両16が送信する車両情報を、通信インタフェース1301を介して受信する。なお、車両情報受信部1304は、被操作車両16の速度を示す情報を含む車両情報を受信する通信部の一例である。
 車両情報受信部1304は、受信した車両情報をHMI生成部1305に出力するとともに、車両情報蓄積部1307に保存する。
 車両情報蓄積部1307は、車両情報受信部1304が受信した車両情報を保持する。車両情報蓄積部1307は、例えば、半導体メモリなどの記憶装置である。
 車両操作信号生成部1303は、オペレータ10による操作入力部11の操作に基づき、車両操作信号を生成する。
 車両操作信号生成部1303は、車両情報蓄積部1307に保持される被操作車両16の車両情報に基づき、被操作車両16に送信する車両操作信号に含まれる、オペレータ10による操作入力部11のアクセル入力部11bを操作した信号であるアクセル入力値を補正する。つまり、車両操作信号生成部1303は、オペレータ10による操作入力部11のアクセル入力部11bを操作した信号であるアクセル入力値を、車両情報蓄積部1307に保持されている被操作車両16の車両情報に基づき補正することで、車両操作信号を生成する。なお、被操作車両16の車両情報とは、操舵角センサ1602から取得した被操作車両16の操舵角および速度センサ1603から取得した被操作車両16の速度を含む情報である。なお、車両操作信号生成部1303は、遠隔操作装置200が有する制御装置であって、アクセル入力値を補正する制御部の一例である。
 この構成によれば、オペレータ10が遠隔操作する被操作車両16において、当該被操作車両16の加速および回転など体感を得られない場合においても、被操作車両16の車両情報に基づき、オペレータ10がアクセル入力部11bを操作した信号であるアクセル入力値が補正されるので、操作性が向上された遠隔操作装置200を実現することができる。
 [2-2.遠隔操作部における動作]
 図11は、本実施の形態に係る車両操作信号生成部1303における、被操作車両16に送信する車両操作信号に含まれるアクセル入力値の生成の処理の一例を示すフローチャートである。
 車両操作信号生成部1303は、オペレータ10による遠隔操作が継続している間、図11のフローチャートの処理を繰り返し行う。
 車両操作信号生成部1303は、車両操作信号の送信時刻を経過した場合(S70でYESの場合)、操作入力部11から車両操作情報を取得する(S71)。具体的には、車両操作信号生成部1303は、操作入力部11の被操作車両16の操舵を制御するためのステアリング入力部11aと、被操作車両16のエンジンやモーターの回転数を制御するアクセル入力部11bと、被操作車両16のブレーキを制御するブレーキ入力部11cとからそれぞれ、ステアリング入力値と、アクセル入力値と、ブレーキ入力値とを取得する。ステアリング入力値、アクセル入力値、および、ブレーキ入力値は、車両操作情報の一例である。なお、ステップS71は、ステアリング入力値を取得するステップおよびアクセル入力値を取得するステップの一例である。
 一方、車両操作信号生成部1303は、車両操作信号の送信時刻を経過していない場合(S70でNOの場合)、ステップS70に戻る。なお、送信時刻とは、所定の時刻であってもよいし、前回車両操作信号を送信してからの経過時間であってもよい。
 次に、車両操作信号生成部1303は、受信した車両情報から被操作車両16の操舵角と速度とを取得する(S72)。具体的には、車両操作信号生成部1303は、車両情報蓄積部1307から最新の被操作車両16の操舵角と速度とを取得する。なお、ステップS72は、被操作車両16の速度を受信するステップの一例である。
 なお、被操作車両16の操舵角については、ステップS71で取得するステアリング入力値を用いてもよい。
 次に、車両操作信号生成部1303は、ステップS72で取得した操舵角と速度とに基づき、ステップS71で取得したアクセル入力値を補正する処理を行う(S73)。そして、補正されたアクセル入力値を含む車両操作信号が、通信インタフェース1301を介して被操作車両16に送信される。なお、ステップS73は、アクセル入力値を補正するステップの一例である。
 図12は、車両操作信号に含まれるアクセル入力値を補正する処理の一例を示すフローチャートである。具体的には、図12は、図11のステップS73における、ステップS71で取得したアクセル入力値を補正する処理の一例を示すフローチャートである。
 図12において、車両操作信号生成部1303は、ステップS72で取得した操舵角の絶対値が操舵角閾値θ以上である場合(S80でYESの場合)、ステップS81に移る。
 一方、車両操作信号生成部1303は、ステップS72で取得した操舵角の絶対値が操舵角閾値θ未満である場合(S80でNOの場合)、補正係数計算処理3(S84)を実行する。
 次に、車両操作信号生成部1303は、速度が0より大きい場合(S81でYESの場合)、補正係数計算処理1(S82)を実行する。一方、車両操作信号生成部1303は、速度が0の場合(S81でNOの場合)、補正係数計算処理2(S83)を実行する。
 次に、車両操作信号生成部1303は、ステップS82~S84のいずれかの処理結果に基づいて、操作入力部11から取得したアクセル入力値を補正する(S85)。
 なお、ステップS82の補正係数計算処理1、ステップS83の補正係数計算処理2、ステップS84の補正係数計算処理3、および、ステップS85のアクセル入力値の補正についてはそれぞれ、実施の形態1のステップS22、S23、S24およびS25と同様の処理である。
 上記のように、本実施の形態に係る遠隔操作装置200が備える遠隔操作部13aは、被操作車両16の操舵角の絶対値が操舵角閾値θ以上、かつ、被操作車両16の速度が0より大きい場合(S80およびS81でYES)に、操舵角の絶対値が操舵角閾値θより小さく、かつ、被操作車両16の速度が0より大きいとき(S80でNO)に比べて、アクセル入力値によって制御される被操作車両16の速度を低下させるように当該アクセル入力値を補正する車両操作信号生成部1303を有する。なお、ここでの被操作車両16の操舵角は、被操作車両16から受信した車両情報に含まれる操舵角であってもよいし、操作入力部11から取得したステアリング入力値によって制御される操舵角であってもよい。
 上記の遠隔操作装置200および当該遠隔操作装置200の車両遠隔操作方法によれば、被操作車両16の車両情報に基づき、オペレータ10がアクセル入力部11bを操作することで生成された信号であるアクセル入力値が補正される。つまり、操作性が向上された遠隔操作装置200および車両遠隔操作方法が実現される。
 なお、車両操作信号生成部1303は、図11のステップS73における、ステップS71で取得したアクセル入力値を補正する処理において、遠隔操作装置200と被操作車両16との間の遅延時間を考慮して、ステップS71で取得したアクセル入力値の補正を行ってもよい。車両操作信号生成部1303は、例えば、遅延時間の増減に応じて、図6および図7における制限係数Kを増減してもよい。これにより、遅延時間が増加した場合は、制限係数Kが増加するので、補正係数Cが小さくなり、ステップS71で取得したアクセル入力値がより小さな値に補正される。そのため、被操作車両16はより緩やかに速度を上げることができる。
 また、別の例として、車両操作信号生成部1303は、遅延時間の増減に応じて、図12のステップS80における操舵角閾値θを増減してもよい。車両操作信号生成部1303は、例えば、図9に示す処理を行ってもよい。これにより、遅延時間が増加した場合は、小さな操舵角からアクセル入力値の補正が行われることができる。
 なお、上記の遅延時間に、被操作車両16に搭載されたカメラ1609からの信号入力をエンコードするための遅延、またはエンコードされた映像情報が無線基地局15とネットワーク14を介して遠隔操作装置200が受信するまでの遅延、または遠隔操作部13が映像情報を受信してからデコードして、情報表示部12に出力するまでの遅延、またはオペレータ10が操作入力部11を操作した結果にもとづいて遠隔操作部13が車両操作信号を生成するまでの遅延、または車両操作信号がネットワーク14および無線基地局15を介して被操作車両16に伝わるまでの遅延のうち、いずれか1つ以上を加えてもよい。
 [2-3.効果など]
 以上のように、本実施の形態に係る遠隔操作装置200は、オペレータ10により被操作車両16を遠隔操作する車両遠隔操作装置200であって、オペレータ10の操作により、被操作車両16の速度を制御するアクセル入力値を出力するアクセル入力部11bと、被操作車両16の速度を受信する通信部と、被操作車両16の操舵角の絶対値が操舵角閾値θ(所定角度の一例)以上、かつ、速度が0より大きい場合に、操舵角の絶対値が操舵角閾値θより小さく、かつ、速度が0より大きいときに比べて、速度を低下させるようにアクセル入力値を補正する車両操作信号生成部1303(制御部の一例)と、を備える。
 これにより、オペレータ10が遠隔操作する被操作車両16において、当該被操作車両16の加速および回転など体感を得られない場合においても、被操作車両16の車両情報に基づき、オペレータ10がアクセル入力部11bを操作した信号であるアクセル入力値が補正されるので、操作性が向上された遠隔操作装置200を実現することができる。
 また、以上のように、本実施の形態に係る車両遠隔操作方法は、オペレータ10により被操作車両16を遠隔操作する車両遠隔操作方法であって、オペレータ10の操作により、被操作車両16の速度を制御するアクセル入力値を出力するステップと、被操作車両16の速度を受信するステップと、被操作車両16の操舵角の絶対値が操舵角閾値θ以上、かつ、速度が0より大きい場合に、操舵角の絶対値が操舵角閾値θより小さく、かつ、速度が0より大きいときに比べて、速度を低下させるようにアクセル入力値を補正するステップと、を含む。
 これにより、遠隔操作装置200と同様の効果を奏する。
 (その他の実施の形態)
 以上、実施の態様に係る被操作車両などについて、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 その他、実施の形態に対して当業者が思いつく各種変形を施して得られる形態、または、本開示の主旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本開示に含まれる。
 また、上記実施の形態では、被操作車両の速度が0より大きいか否かで補正係数計算処理1を実行するか否かを判定する例について説明したが、これに限定されない。例えば、被操作車両の速度が所定の速度より大きい場合に、補正係数計算処理1が実行されてもよい。例えば、被操作車両の速度が、5Km/hより大きい場合に、補正係数計算処理1が実行されてもよい。
 また、上記実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、プロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。プロセッサは、半導体集積回路(IC)、又はLSI(Large scale integration)を含む一つ又は複数の電子回路で構成される。複数の電子回路は、一つのチップに集積されていてもよいし、複数のチップに設けられてもよい。複数のチップは一つの装置に集約されていてもよし、複数の装置に備えられていてもよい。
 また、上記実施の形態において説明された複数の処理の順序は一例である。複数の処理の順序は、変更されてもよいし、複数の処理は、並行して実行されてもよい。
 本開示に係る遠隔操作システムは、車道を走行する車両に対して、遠隔地にいるオペレータが通信回線等を利用して、車両を操縦するシステムに有効である。
 10 オペレータ
 11,111 操作入力部
 11a,111a ステアリング入力部
 11b,111b アクセル入力部
 11c,111c ブレーキ入力部
 12,112 情報表示部
 13,13a,113 遠隔操作部
 100,200 遠隔操作装置(車両遠隔操作装置)
 1000 遠隔操作システム
 1301 通信インタフェース
 1302 車両操作信号送信部
 1303 車両操作信号生成部(制御部)
 1304 車両情報受信部(通信部)
 1305 HMI生成部
 1306 映像情報受信部
 1307 車両情報蓄積部
 14 ネットワーク
 15 無線基地局
 16 被操作車両(車両)
 1601 無線通信ユニット(通信部)
 1602 操舵角センサ
 1603 速度センサ
 1604 速度制御ユニット
 1605 操舵制御ユニット
 1606,1607 車載ネットワーク
 1608 遠隔制御ユニット(制御部)
 1609 カメラ

Claims (8)

  1.  オペレータが遠隔操作する車両であって、
     前記オペレータの操作により、アクセル入力値を含む車両操作信号を受信する通信部と、
     前記車両の操舵角を計測する操舵角センサと、
     前記車両の速度を計測する速度センサと、
     前記操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正する制御部と、を備える
     車両。
  2.  前記制御部は、さらに、前記オペレータの操作から前記通信部で前記車両操作信号を受信するまでの遅延時間に基づいて、前記アクセル入力値を補正する、
     請求項1に記載の車両。
  3.  前記制御部は、前記操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記遅延時間の増加に従って、前記速度を急峻に低下させるように前記アクセル入力値を補正する、
     請求項2に記載の車両。
  4.  前記制御部は、さらに、前記遅延時間の変化に基づいて、前記所定角度を変更する、
     請求項2又は3に記載の車両。
  5.  前記制御部は、前記遅延時間の増加に従って、前記所定角度を小さくする、
     請求項4に記載の車両。
  6.  オペレータが遠隔操作する車両を制御する車両制御方法であって、
     前記オペレータの操作により、アクセル入力値を含む車両操作信号を受信するステップと、
     前記車両の操舵角の絶対値が所定角度以上、かつ、前記車両の速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正するステップと、を含む
     車両制御方法。
  7.  オペレータにより車両を遠隔操作する車両遠隔操作装置であって、
     前記オペレータの操作により、前記車両の速度を制御するアクセル入力値を出力するアクセル入力部と、
     前記車両の速度を受信する通信部と、
     前記車両の操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正する制御部と、を備える
     車両遠隔操作装置。
  8.  オペレータにより車両を遠隔操作する車両遠隔操作方法であって、
     前記オペレータの操作により、前記車両の速度を制御するアクセル入力値を取得するステップと、
     前記車両の速度を受信するステップと、
     前記車両の操舵角の絶対値が所定角度以上、かつ、前記速度が0より大きい場合に、前記操舵角の絶対値が前記所定角度より小さく、かつ、前記速度が0より大きいときに比べて、前記速度を低下させるように前記アクセル入力値を補正するステップと、を含む
     車両遠隔操作方法。
PCT/JP2018/015326 2017-06-30 2018-04-12 車両、車両制御方法、車両遠隔操作装置および車両遠隔操作方法 WO2019003574A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880001726.3A CN109429503B (zh) 2017-06-30 2018-04-12 车辆、车辆控制方法、车辆远程操作装置及车辆远程操作方法
EP18823101.3A EP3647569B1 (en) 2017-06-30 2018-04-12 Vehicle, vehicle control method, vehicle remote operation device, and vehicle remote operation method
US16/247,689 US10962970B2 (en) 2017-06-30 2019-01-15 Vehicle, vehicle control method, vehicle remote operation apparatus, and vehicle remote operation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017-128291 2017-06-30
JP2017128291 2017-06-30
JP2018053107A JP7219544B2 (ja) 2017-06-30 2018-03-20 車両、車両制御方法、車両遠隔操作装置および車両遠隔操作方法
JP2018-053107 2018-03-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/247,689 Continuation US10962970B2 (en) 2017-06-30 2019-01-15 Vehicle, vehicle control method, vehicle remote operation apparatus, and vehicle remote operation method

Publications (1)

Publication Number Publication Date
WO2019003574A1 true WO2019003574A1 (ja) 2019-01-03

Family

ID=64743003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/015326 WO2019003574A1 (ja) 2017-06-30 2018-04-12 車両、車両制御方法、車両遠隔操作装置および車両遠隔操作方法

Country Status (3)

Country Link
EP (1) EP3647569B1 (ja)
CN (1) CN109429503B (ja)
WO (1) WO2019003574A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112000106A (zh) * 2020-09-07 2020-11-27 新石器慧义知行智驰(北京)科技有限公司 一种无人车远程驾驶处理系统和方法
US12096301B2 (en) 2019-03-29 2024-09-17 Honda Motor Co., Ltd. Terminal apparatus, communication system, communication method, and computer-readable storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7222332B2 (ja) * 2019-08-23 2023-02-15 トヨタ自動車株式会社 車両遠隔指示システム
CN114137989A (zh) * 2021-12-01 2022-03-04 东风汽车有限公司东风日产乘用车公司 车辆遥控方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104580A (ja) * 1998-09-30 2000-04-11 Hitachi Ltd 車両駆動力制御装置
JP2006285548A (ja) * 2005-03-31 2006-10-19 Secom Co Ltd 移動ロボット及び遠隔操作システム
JP2006299856A (ja) * 2005-04-18 2006-11-02 Mitsubishi Electric Corp 内燃機関の電子スロットル制御装置
JP2011043884A (ja) * 2009-08-19 2011-03-03 Ihi Aerospace Co Ltd 半自律型無人車両の遠隔操縦システム
JP2011085999A (ja) * 2009-10-13 2011-04-28 Ihi Aerospace Co Ltd 遠隔操縦システム
JP2016018238A (ja) * 2014-07-04 2016-02-01 株式会社デンソー 車両の運転モード制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205596B1 (ko) * 2008-07-02 2012-11-27 주식회사 만도 차량의 쏠림을 보상하기 위한 방법 및 장치
JP5366702B2 (ja) * 2009-08-19 2013-12-11 株式会社Ihiエアロスペース 無人車両遠隔操作システム
US9656667B2 (en) * 2014-01-29 2017-05-23 Continental Automotive Systems, Inc. Method for minimizing automatic braking intrusion based on collision confidence
US9720410B2 (en) * 2014-03-03 2017-08-01 Waymo Llc Remote assistance for autonomous vehicles in predetermined situations
JP2016071585A (ja) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 運転制御システム、運転制御装置、および、遠隔操作装置
US9358975B1 (en) * 2015-04-10 2016-06-07 Google Inc. Virtual moving safety limits for vehicles transporting objects
US9910441B2 (en) * 2015-11-04 2018-03-06 Zoox, Inc. Adaptive autonomous vehicle planner logic
EP3644295B1 (en) * 2017-06-23 2021-08-04 Nissan Motor Co., Ltd. Parking control methods and parking control devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000104580A (ja) * 1998-09-30 2000-04-11 Hitachi Ltd 車両駆動力制御装置
JP2006285548A (ja) * 2005-03-31 2006-10-19 Secom Co Ltd 移動ロボット及び遠隔操作システム
JP2006299856A (ja) * 2005-04-18 2006-11-02 Mitsubishi Electric Corp 内燃機関の電子スロットル制御装置
JP2011043884A (ja) * 2009-08-19 2011-03-03 Ihi Aerospace Co Ltd 半自律型無人車両の遠隔操縦システム
JP2011085999A (ja) * 2009-10-13 2011-04-28 Ihi Aerospace Co Ltd 遠隔操縦システム
JP2016018238A (ja) * 2014-07-04 2016-02-01 株式会社デンソー 車両の運転モード制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647569A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12096301B2 (en) 2019-03-29 2024-09-17 Honda Motor Co., Ltd. Terminal apparatus, communication system, communication method, and computer-readable storage medium
CN112000106A (zh) * 2020-09-07 2020-11-27 新石器慧义知行智驰(北京)科技有限公司 一种无人车远程驾驶处理系统和方法

Also Published As

Publication number Publication date
CN109429503B (zh) 2022-04-29
EP3647569A4 (en) 2020-05-13
EP3647569A1 (en) 2020-05-06
CN109429503A (zh) 2019-03-05
EP3647569B1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
JP7219544B2 (ja) 車両、車両制御方法、車両遠隔操作装置および車両遠隔操作方法
WO2019003574A1 (ja) 車両、車両制御方法、車両遠隔操作装置および車両遠隔操作方法
WO2018116654A1 (ja) 運転交代制御装置、及び運転交代制御方法
US10671170B2 (en) Haptic driving guidance system
JP6406141B2 (ja) 車両走行制御装置
WO2016199379A1 (ja) 車両制御装置、車両制御方法および車両制御プログラム
EP3446948B1 (en) Parking assistance device and program
EP3124361B1 (en) Parking assistance device, parking assistance method, and non-transitory computer readable medium storing program
JP6443403B2 (ja) 車両制御装置
WO2017168602A1 (ja) 報知制御装置および報知制御方法
US20170083777A1 (en) Determination apparatus, determination method, and non-transitory recording medium
JP2019025994A (ja) 自動駐車制御装置及び自動駐車システム
JP2017027180A (ja) 車両制御装置及び車両制御方法
JP6016996B1 (ja) 車両の操舵制御装置および操舵制御方法
JP2018060368A (ja) 車線逸脱警報システム
WO2019058781A1 (ja) 駐車支援装置
JP2010262477A (ja) 遠隔操縦システム
US9321484B2 (en) Collision avoidance assistance device and collision avoidance assistance method
JP2018008550A (ja) 操舵制御装置
JP6705413B2 (ja) 自動運転システム
CN111391847A (zh) 车辆控制装置和车辆控制方法
JP2016002792A (ja) 車両の挙動制御装置及び車両の挙動制御方法
CN111332291B (zh) 车辆控制装置和车辆控制方法
US20220073137A1 (en) Drive mode setting device and drive mode setting method
JP5299704B2 (ja) 運転操作補助装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018823101

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018823101

Country of ref document: EP

Effective date: 20200130