WO2019003543A1 - 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 - Google Patents

熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 Download PDF

Info

Publication number
WO2019003543A1
WO2019003543A1 PCT/JP2018/013728 JP2018013728W WO2019003543A1 WO 2019003543 A1 WO2019003543 A1 WO 2019003543A1 JP 2018013728 W JP2018013728 W JP 2018013728W WO 2019003543 A1 WO2019003543 A1 WO 2019003543A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
steel sheet
rolled steel
hot pressing
Prior art date
Application number
PCT/JP2018/013728
Other languages
English (en)
French (fr)
Inventor
克利 ▲高▼島
崇 小林
船川 義正
中島 清次
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020197035930A priority Critical patent/KR102296362B1/ko
Priority to EP18824186.3A priority patent/EP3647445B1/en
Priority to US16/618,887 priority patent/US11085101B2/en
Priority to CN201880042554.4A priority patent/CN110799660B/zh
Priority to MX2019015392A priority patent/MX2019015392A/es
Priority to JP2018550487A priority patent/JP6540909B2/ja
Publication of WO2019003543A1 publication Critical patent/WO2019003543A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component

Definitions

  • the present invention relates to a hot pressed member, a method of manufacturing the same, a cold rolled steel sheet for hot pressing, and a method of manufacturing the same, and particularly to improve delayed fracture resistance after projection welding of a hot pressed member.
  • a hot pressed member means a member obtained by hot press forming a cold rolled steel plate having hardenability to increase strength.
  • the cold rolled steel sheet of the present invention is not only a general cold rolled steel sheet, but also a hot-dip galvanized cold rolled steel sheet (including an alloyed hot-dip galvanized cold rolled steel sheet) and an electrogalvanized cold rolled steel sheet (electric zinc nickel alloy Includes plated cold rolled steel sheets), aluminum plated cold rolled steel sheets, etc.
  • High strength steel plates used for structural members and reinforcing members of automobiles are required to be excellent in formability.
  • steel plates of TS: 1780 MPa or more have low ductility, so cracking occurs during cold press forming and large spring back occurs due to high yield strength, so high dimensions after cold press forming Accuracy can not be obtained.
  • delayed fracture hydrogen embrittlement
  • hot press also referred to as hot stamp, die quench, press quench, etc.
  • hot pressing after heating a steel plate to the temperature range of austenite single phase, forming (processing) with high temperature enables forming with high dimensional accuracy, and quenching by cooling after forming This is a molding method that enables high strength.
  • this hot press since the residual stress after press forming is reduced as compared with the cold press, the delayed fracture resistance is also improved.
  • Patent Document 1 As a means for improving the peel strength after projection welding of a nut, for example, as described in Patent Document 1, a technique for improving the peel strength by controlling welding conditions is disclosed. However, no technology has been developed to improve delayed fracture in projection welds of nuts after hot pressing. As described above, it is considered difficult to improve the delayed fracture resistance of a projection welded portion of a hot pressed member having a TS of 1780 MPa or more with a nut regardless of welding conditions, and a hot press combining these characteristics The fact is that members have not been developed.
  • the inventors of the present invention have found that in order to improve the delayed fracture resistance after projection welding of the nut of the hot press member, the surface layer portion of the member is fine. It is effective to make Ti-based precipitates to serve as trap sites for hydrogen and at the same time to improve toughness after projection welding, and further to allow fine cementite to be present as hydrogen trap sites in prior austenite grains in the surface layer of members.
  • the findings of the With such a configuration hydrogen is effectively trapped even if hydrogen penetrates with corrosion, and as a result, the formation of cracks at the interface between the nut and the steel plate is suppressed, whereby the delayed fracture resistance is improved. Found out.
  • the gist configuration of the present invention is as follows.
  • the steel composition of the member is, in mass%, C: 0.28% or more and less than 0.42%, Si: 1.5% or less, Mn: 1.0% or more and 2.2% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.01 % And 0.50% or less, N: 0.005% or less and Ti: 0.005% or more and 0.15% or less, the balance being composed of Fe and unavoidable impurities,
  • Ti-based precipitates having a particle diameter of 0.10 ⁇ m or less are present in an average of 5 or more per 100 ⁇ m 2 of the cross section parallel to the thickness direction of the member And in a depth range of 20 to 100 ⁇ m in the thickness direction from the surface of the member, it has 95 to 100% of martensite by volume ratio, and furthermore, cementite having a grain size of less than 0.20 ⁇ m in the prior au
  • the above-mentioned members are, in mass%, Nb: 0.15% or less, B: 0.0050% or less, Mo: 0.50% or less, Cr: 0.50% or less, Sb: 0.001% or more and 0.020% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Sn: 0.50% or less, Zn: 0.10% or less, Co: 0.10% or less, Zr: 0.10%
  • Component composition of the steel plate is, in mass%, C: 0.28% or more and less than 0.42%, Si: 1.5% or less, Mn: 1.0% or more and 2.2% or less, P: 0.05% or less, S: 0.005% or less, Al: 0.01% More than 0.50% or less, N: 0.005% or less, Ti: 0.005% or more and 0.15% or less, the balance being composed of Fe and unavoidable impurities,
  • the microstructure of the steel plate has 10 or more Ti-based precipitates having a particle diameter of 0.10 ⁇ m or less on average per 100 ⁇ m 2 of the cross section parallel to the thickness of the steel plate ,
  • the cold rolled steel sheet for hot pressing wherein the standard deviation of Vickers hardness measured at every 200 ⁇ m in the thickness direction from the depth position of 100 ⁇ m from the steel sheet surface to the thickness central part is 40 or less.
  • the steel sheet is, in mass%, further Nb: 0.15% or less, B: 0.0050% or less, Mo: 0.50% or less, Cr: 0.50% or less, Sb: 0.001% or more and 0.020% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.005% or less, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Sn: 0.50% or less, Zn: 0.10% or less, Co: 0.10% or less, Zr: 0.10%
  • Hot rolling is performed at a finish rolling finish temperature of 860 to 950 ° C., with a rolling reduction of a final pass of finish rolling being 12% or more, a draft of a pass immediately before the final pass being 15% or more, After the above hot rolling, the first average cooling rate to the cooling stop temperature is set to 70 ° C./s or more, and primary cooling is performed to cool the cooling stop temperature to 700 ° C.
  • the second average cooling rate to the winding temperature is 5 to 50 ° C./s, and secondary cooling is performed at a winding temperature of 520 ° C. or less.
  • a first heat treatment which is heated in a temperature range of 830 to 930 ° C. for 600 seconds or less
  • a second heat treatment of soaking for 15 to 600 seconds in the temperature range After the above primary cooling, the second average cooling rate to the winding temperature is 5 to 50 ° C./s, and secondary cooling is performed at a winding temperature of 520 ° C. or less
  • a first heat treatment which is heated in a temperature range of 830 to 930 ° C. for 600 seconds or less
  • a second heat treatment of soaking for 15 to 600 seconds in the temperature range After the above primary cooling, the second average cooling rate to the winding temperature is 5 to 50 ° C./s, and secondary cooling is performed at a winding temperature of 520 ° C. or less.
  • the steel material is, by mass%, further Nb: 0.15% or less, B: 0.0050% or less, Mo: 0.50% or less, Cr: 0.50% or less, Sb: 0.001% or more and 0.020% or less, Ca: 0.005% or less, Mg RE: 0.005% or less, V: 0.15% or less, Cu: 0.50% or less, Ni: 0.50% or less, Sn: 0.50% or less, Zn: 0.10% or less, Co: 0.10% or less, Zr: 0.10
  • a hot pressed member which has extremely high tensile strength after hot pressing and at the same time has excellent delayed fracture resistance after projection welding.
  • the tensile strength is 1780 MPa or more
  • PS indentation peel strength
  • a hot pressed member having excellent delayed fracture characteristics can be stably obtained.
  • microstructures of the hot pressed member and the cold rolled steel sheet for hot pressing according to the present invention will be described in detail.
  • Ti-based precipitates having a particle diameter of 0.10 ⁇ m or less average 5 per 100 ⁇ m 2 cross section parallel to the member thickness direction in the range from the member surface to 100 ⁇ m in the plate thickness direction
  • the cementite having a volume fraction of 95 to 100% martensite in a depth range of 20 to 100 ⁇ m in the thickness direction from the surface of the member, and cementite having a grain size of less than 0.20 ⁇ m in the former austenite grains is averaged. It is a microstructure with 10 or more.
  • Ti-based precipitates having a particle diameter of 0.10 ⁇ m or less in the range from the surface of the member to 100 ⁇ m in the plate thickness direction are not suitable as hydrogen trap sites if the average is less than 5 per 100 ⁇ m 2 of the cross section parallel to the thickness direction of the member. Not only sufficient, but also the toughness is degraded, and the delayed fracture resistance after projection welding is degraded. Preferably, it is 10 or more on average.
  • the cross section parallel to the thickness direction of the member to be measured is not particularly limited, and any cross section may be used.
  • the Ti-based precipitates referred to in the present invention are, for example, TiC, TiN, Ti (C, N) and the like.
  • the volume fraction of martensite is 95% or more. Preferably it is 97% or more. It may be 100%.
  • the average of cementite having a particle size of less than 0.20 ⁇ m is less than 10 in the former austenite grains It is also insufficient as a site, and the delayed fracture resistance after projection welding is degraded. Preferably, it is 15 or more on average.
  • a Ti-based precipitate having a particle diameter of 0.10 ⁇ m or less has a cross section of 100 ⁇ m parallel to the thickness direction of the steel sheet.
  • the average deviation is 10 or more per 2 and the standard deviation in Vickers hardness measured every 200 ⁇ m in the thickness direction from the depth position of 100 ⁇ m from the surface of the steel sheet to the central portion of the thickness is 40 or less.
  • Ti-based precipitates having a particle diameter of 0.10 ⁇ m or less in the range from the surface of the steel sheet to 100 ⁇ m in the thickness direction are less than 10 pieces in average per 100 ⁇ m 2 of the cross section parallel to the thickness direction of the steel sheet after hot pressing It is difficult to secure at least 5 Ti precipitates with a particle diameter of 0.10 ⁇ m or less in average per 100 ⁇ m 2 of the cross section parallel to the thickness direction of the member in the range from 100 ⁇ m to 100 ⁇ m from the surface of the member. And the delayed fracture resistance after projection welding is degraded. Preferably, it is 15 or more on average.
  • the standard deviation in Vickers hardness measured at every 200 ⁇ m in the thickness direction from the depth position of 100 ⁇ m from the steel sheet surface to the central part of the thickness exceeds 40, the concentration distribution of C and Mn becomes remarkable (nonuniform) . For this reason, distribution of C and Mn becomes uneven at the time of reverse transformation in a hot press, and it becomes difficult to disperse cementite finely, so that delayed fracture resistance after projection welding is deteriorated. Therefore, the standard deviation in Vickers hardness measured every 200 ⁇ m in the thickness direction from the depth position of 100 ⁇ m from the steel sheet surface to the central portion of the thickness is 40 or less. Preferably it is 35 or less.
  • Ti-based precipitates with a grain size of 0.10 ⁇ m or less in a range from 100 ⁇ m to 100 ⁇ m in the thickness direction from the steel sheet surface are 10 on average per 100 ⁇ m 2 cross section parallel to the thickness direction of the steel sheet.
  • the requirement for containing more than two Vickers was measured mainly by the first and second heat treatments during the process of manufacturing cold rolled steel sheets described later, and at every 200 ⁇ m in the thickness direction from the depth position of 100 ⁇ m from the steel sheet surface.
  • the requirement that the standard deviation in hardness be 40 or less is mainly achieved by hot rolling and the first heat treatment.
  • C 0.28% or more and less than 0.42% C is an element effective for strengthening the steel and is an important element for strengthening martensite after hot pressing to increase the strength of the steel. However, if the content of C is less than 0.28%, the hardness of martensite after hot pressing is insufficient, so that tensile strength of 1780 MPa or more can not be obtained.
  • the preferred C content is 0.30% or more.
  • the amount of C is less than 0.40%. Preferably it is less than 0.39%.
  • Si 1.5% or less Si solid-solution strengthens ferrite and is an element effective for strengthening.
  • the excessive addition of Si lowers the toughness at the time of resistance spot welding and deteriorates the delayed fracture resistance after projection welding, so the content thereof is made 1.5% or less.
  • Preferably it is 1.2% or less, More preferably, it is 0.8% or less.
  • the lower limit of Si is not particularly defined, it is preferable to set it as 0.005% because extremely low Si formation causes an increase in cost.
  • Mn 1.0% or more and 2.2% or less Mn is an element that contributes to the formation of martensite after hot pressing, that is, high strength, in order to enhance the hardenability during hot pressing.
  • the amount of Mn needs to be 1.0% or more. Preferably it is 1.2% or more.
  • the Mn content is excessive, the Mn band is excessively formed, so that cementite after hot pressing can not be finely dispersed, and the delayed fracture resistance after projection welding is degraded. Therefore, the amount of Mn is set to 2.2% or less. Preferably it is 2.1% or less.
  • P 0.05% or less P contributes to high strength by solid solution strengthening, but when it is added excessively, segregation to the grain boundary becomes remarkable to embrittle the grain boundary, so after projection welding Since the delayed fracture resistance decreases, the P content is made 0.05% or less. Preferably it is 0.04% or less. Although the lower limit of P is not particularly defined, it is preferable to set it to 0.0005% because extremely low P results in an increase in steelmaking cost.
  • the upper limit of the S content is made 0.005%. Preferably it is 0.0045% or less.
  • the lower limit of S is not particularly defined, it is preferable to set it as 0.0002% because the extremely low S, like P, causes an increase in steelmaking cost.
  • Al 0.01% or more and 0.50% or less Al is an element necessary for deoxidation, and in order to obtain this effect, it is necessary to contain 0.01% or more. On the other hand, since the effect is saturated even if it contains Al exceeding 0.50%, the amount of Al is made 0.50% or less. Preferably it is 0.40% or less.
  • N 0.005% or less Since N forms coarse nitrides with Ti to deteriorate the delayed fracture resistance after projection welding, it is necessary to suppress the content. In particular, when the amount of N exceeds 0.005%, this tendency becomes remarkable, so the N content is made 0.005% or less. Preferably it is 0.004% or less, More preferably, it is 0.0035% or less.
  • Ti 0.005% or more and 0.15% or less
  • Ti is an element that contributes to the increase in strength by forming a fine carbonitride. Furthermore, Ti is very effective in precipitating fine Ti-based precipitates as trap sites of hydrogen on the surface layer of a member and improving delayed fracture resistance after projection welding, and is an important element in the present invention. is there. In order to exhibit such an effect, it is necessary to contain Ti 0.005% or more. On the other hand, when a large amount of Ti is added, the elongation after hot pressing is significantly reduced, so the Ti content is made 0.15% or less. Preferably it is 0.12% or less.
  • Nb 0.15% or less
  • Nb is an element that contributes to an increase in strength by forming a fine carbonitride.
  • the austenite grain size at the time of hot pressing is refined, thus contributing to the improvement of delayed fracture resistance. It is.
  • Nb 0.005% or more More preferably, it is 0.010% or more.
  • the Nb content is preferably made 0.15% or less. More preferably, it is 0.12% or less, still more preferably 0.10% or less.
  • B 0.0050% or less
  • B is an element that contributes to the formation of martensite after hot pressing, that is, to high strength, in order to enhance the hardenability during hot pressing.
  • B since segregation at grain boundaries improves grain boundary strength, it is effective for delayed fracture resistance.
  • it is preferable to contain B 0.0002% or more.
  • it is preferable to set the B content to 0.0050% or less, because excessive B addition deteriorates the toughness and reduces the delayed fracture resistance after projection welding. More preferably, it is 0.0040% or less, still more preferably 0.0035% or less.
  • Mo 0.50% or less
  • Mo is an element that contributes to the formation of martensite after hot pressing, that is, high strengthening, in order to enhance the hardenability during hot pressing.
  • it is preferable to contain Mo 0.005% or more. More preferably, it is 0.01% or more.
  • the Mo content is preferably 0.50% or less.
  • Cr 0.50% or less Cr, like Mo, is also an element that contributes to the formation of martensite after hot pressing, that is, high strength, in order to enhance the hardenability during hot pressing. In order to acquire the effect, it is preferable to contain 0.005% or more. More preferably, it is 0.01% or more. On the other hand, even if a large amount of Cr is added, the above effect is saturated and the surface oxide is formed to further deteriorate the plating property. Therefore, the Cr content is preferably 0.50% or less.
  • Sb 0.001% or more and 0.020% or less
  • Sb has the effect of suppressing the decarburized layer formed in the surface layer portion of the steel plate before heating the steel plate before hot pressing and then cooling the steel plate by a series of treatments of hot pressing . Therefore, the hardness distribution of the plate surface becomes uniform, and the delayed fracture resistance after projection welding is improved.
  • the addition amount of Sb is preferably 0.001% or more.
  • the Sb amount is preferably made 0.020% or less.
  • REM 0.005% or less
  • Ca 0.005% or less
  • Mg 0.005% or less
  • REM controls the shapes of sulfides and oxides and suppresses the formation of coarse inclusions, so after projection welding
  • the delayed fracture resistance of the In order to express such an effect, it is preferable to add 0.0005% or more of each.
  • each addition amount is preferably made 0.005% or less.
  • REM is an element containing Sc, Y and a lanthanoid.
  • V 0.15% or less
  • V is an element that contributes to the increase in strength by forming fine carbonitrides. In order to acquire such an effect, it is preferable to contain V 0.01% or more.
  • the V addition amount is preferably made 0.15% or less. More preferably, it is 0.10% or less.
  • Cu 0.50% or less Cu not only contributes to high strength by solid solution strengthening, but also improves the corrosion resistance and improves delayed fracture resistance after projection welding, and therefore can be added as necessary. . In order to exhibit these effects, it is preferable to contain Cu 0.05% or more. On the other hand, even if Cu is contained in excess of 0.50%, the effect is saturated, and surface defects resulting from Cu are easily generated. Therefore, the Cu content is preferably 0.50% or less.
  • Ni 0.50% or less
  • Ni can improve corrosion resistance and improve delayed fracture resistance after projection welding, and therefore can be added as necessary.
  • Ni since it has the effect of suppressing the surface defect caused by Cu when it is added simultaneously with Cu, it is effective at the time of Cu addition.
  • it is preferable to contain Ni 0.05% or more.
  • the addition of a large amount of Ni lowers the toughness at the time of resistance welding and degrades the delayed fracture resistance after projection welding, so the Ni content is preferably made 0.50% or less.
  • Sn 0.50% or less Sn, like Cu and Ni, can improve corrosion resistance and improve delayed fracture resistance after projection welding, and therefore can be added as necessary. In order to exhibit these effects, it is preferable to contain Sn 0.05% or more. However, the addition of a large amount of Sn lowers the toughness at the time of resistance welding and degrades the delayed fracture resistance after projection welding. Therefore, the Sn content is preferably made 0.50% or less.
  • Zn 0.10% or less
  • Zn is an element that contributes to the formation of martensite after hot pressing, that is, high strength, in order to enhance the hardenability during hot pressing. In order to exhibit these effects, it is preferable to contain Zn 0.005% or more. However, the addition of a large amount of Zn lowers the toughness at the time of resistance welding and degrades the delayed fracture resistance after projection welding. Therefore, the Zn content is preferably 0.10% or less.
  • Co 0.10% or less
  • Co can improve the corrosion resistance by improving the hydrogen overvoltage and improve the delayed fracture resistance after projection welding, and therefore can be added as needed.
  • the addition of a large amount of Co lowers the toughness at the time of resistance welding and degrades the delayed fracture resistance after projection welding, so the Co content is preferably made 0.10% or less.
  • Zr 0.10% or less Zr, like Cu and Ni, can improve corrosion resistance and improve delayed fracture resistance after projection welding, and therefore can be added as necessary. In order to exhibit these effects, it is preferable to contain Zr 0.005% or more. However, since the addition of a large amount of Zr lowers the toughness at the time of resistance welding and deteriorates the delayed fracture resistance after projection welding, the Zr content is preferably made 0.10% or less.
  • Ta 0.10% or less Ta, like Ti, forms alloy carbides and alloy nitrides and contributes to high strength. In order to acquire the effect, it is preferable to add 0.005% or more. On the other hand, even if Ta is added excessively, the addition effect is saturated and the alloy cost also increases. Therefore, the addition amount thereof is preferably 0.10% or less.
  • W 0.10% or less W, like Cu and Ni, can improve corrosion resistance and improve delayed fracture resistance after projection welding, and therefore can be added as necessary. In order to exhibit these effects, it is preferable to contain W 0.005% or more. However, since a large amount of W addition lowers the toughness at the time of resistance welding and the delayed fracture resistance after projection welding decreases, the W content is preferably made 0.10% or less.
  • the balance other than the above is Fe and unavoidable impurities.
  • the cold rolled steel sheet for hot pressing according to the present invention may be a cold rolled steel sheet to which a plating layer is not applied, but in order to prevent oxidation by hot pressing or to improve corrosion resistance, A plated layer may be provided on the surface of the cold rolled steel sheet.
  • an Al-based plating layer or a Zn-based plating layer is suitable.
  • an Al-based plating layer for example, an Al-Si plating layer formed by hot-dip plating is exemplified.
  • the Zn-based plating layer for example, a hot-dip Zn plating layer formed by hot-dip plating, an alloyed hot-dip Zn plating layer formed by alloying this, an electric Zn plating layer formed by electroplating, A Ni alloy plating layer etc. are illustrated.
  • the Al-based plating layer or the Zn-based plating layer is not limited to the above-mentioned plating layer, and in addition to Al or Zn which is the main component, Si, Mg, Ni, Fe, Co, Mn, Sn, Pb,
  • the plating layer may contain one or more of Be, B, P, S, Ti, V, W, Mo, Sb, Cd, Nb, Cr, Sr, and the like.
  • the method for forming the Al-based plating layer or the Zn-based plating layer is not limited at all, and any known hot-dip plating method, electroplating method, vapor deposition plating method, etc. can be applied.
  • the Al-based plating layer or the Zn-based plating layer may be a plating layer subjected to an alloying treatment after the plating step.
  • the Zn-based plating layer is a Zn-Ni alloy plating layer in order to further improve the corrosion resistance of the hot pressed member or to prevent liquid metal embrittlement cracking caused by molten Zn during hot press forming. Is more preferable.
  • the adhesion amount of the plating layer is not particularly limited, and may be a general one. For example, it is preferable to have a plating layer with a plating adhesion amount of 5 to 150 g / m 2 per one side. If the amount of plating adhesion is less than 5 g / m 2 , it may be difficult to ensure corrosion resistance, while if it exceeds 150 g / m 2 , the peel resistance to plating may deteriorate.
  • the plating layer is changed to a plating layer mainly composed of an Fe—Al intermetallic compound containing Si.
  • a plating layer mainly composed of an Fe—Al intermetallic compound containing Si when the hot-dip Zn plating layer, the alloyed hot-dip Zn plating layer, the electric Zn plating layer and the like are heated, an FeZn solid solution phase in which Zn is dissolved in Fe, a ZnFe intermetallic compound, a surface ZnO layer etc. are formed.
  • the electric Zn-Ni alloy plating layer is heated, a solid solution layer containing Ni in which a plating layer component is dissolved in Fe, an intermetallic compound mainly composed of ZnNi, a surface ZnO layer, etc. are formed. Ru.
  • a plating layer containing Al formed by heating a cold rolled steel sheet for hot press to which an Al-based plating layer is applied is referred to as an Al-based plating layer, and a Zn-based
  • the plated layer containing Zn formed by heating the cold rolled steel sheet for hot press to which the plated layer is applied is referred to as a Zn-based plated layer.
  • the preferable manufacturing method of the cold rolled steel sheet for hot presses of this invention is demonstrated.
  • a steel material (slab) having the above-described predetermined composition is subjected to a rolling reduction of 12% or more of the final pass of finish rolling, and reduction of the pass immediately before the final pass.
  • the hot rolling is carried out under the conditions of a finish rolling finish temperature of 860 to 950 ° C. with a percentage of 15% or more.
  • the first average cooling rate to the cooling stop temperature is set to 70 ° C./s or more, and primary cooling is performed to cool the cooling stop temperature to 700 ° C. or less.
  • the second average cooling rate to the winding temperature is set to 5 to 50 ° C./s, and secondary cooling is performed at a winding temperature of 520 ° C. or less.
  • a first heat treatment which is heated in a temperature range of 830 to 930 ° C. for 600 seconds or less.
  • a second heat treatment is performed by heating to a temperature range of 720 to 850 ° C. at an average temperature rising rate of 5 to 20 ° C./s, and soaking for 15 to 600 seconds in the temperature range.
  • the third average cooling rate is set to 5 ° C./s or more, and tertiary cooling is performed to cool to a cooling stop temperature of 600 ° C. or less.
  • Hot rolling process After casting, it is preferable to start hot rolling at 1150-1270 ° C. without reheating after casting, or to start hot rolling after reheating to 1150-1270 ° C.
  • the preferred conditions for hot rolling are first hot rolling a steel slab at a hot rolling start temperature of 1150-1270.degree.
  • the steel slab After the steel slab is manufactured, it is cooled to room temperature and then added to the conventional method of reheating, and then charged into the heating furnace as it is without cooling, or immediately after heat retention. It is also possible to apply an energy saving process such as direct feed rolling or direct rolling in which rolling or direct rolling after casting can be applied without any problem.
  • the rolling reduction of the final pass of finish rolling 12% or more Setting the rolling reduction of the final pass of finish rolling to 12% or more introduces a large number of shear bands into austenite grains and makes it possible to change ferrite after hot rolling. It is necessary from the viewpoint of increasing the nucleation site to refine the microstructure grain of the hot-rolled sheet and eliminating the Mn band.
  • the preferred rolling reduction in the final pass of finish rolling is 13% or more.
  • the upper limit of the rolling reduction is not particularly limited, but when the hot rolling load is increased, the thickness variation in the width direction of the plate increases, and the delayed fracture resistance may be degraded. preferable.
  • the rolling reduction before the final pass of finish rolling 15% or more If the rolling reduction before the final pass is 15% or more, the strain accumulation effect is further enhanced and a large number of shear bands occur in the austenite grains. It is necessary from the viewpoint of being introduced to further increase the nucleation site of the ferrite transformation to make the microstructure grain of the hot-rolled sheet finer, and further to eliminate the Mn band.
  • the preferred rolling reduction immediately before the final pass of finish rolling is 18% or more. Further, the upper limit of this rolling reduction is not particularly limited, but when the hot rolling load load increases, the thickness variation in the width direction of the steel plate becomes large, and the deterioration of delayed fracture resistance is concerned, so 30% or less Is preferred.
  • Finishing temperature 860 to 950 ° C Since hot rolling needs to be finished in the austenite single phase region in order to improve resistance weld cracking characteristics after annealing by uniformizing the microstructure of the steel sheet and reducing the anisotropy of the material, finish rolling is finished.
  • the temperature is 860 ° C. or higher.
  • finish rolling finish temperature exceeds 950 ° C., the hot-rolled structure becomes coarse, and the crystal grains after annealing are also coarsened, so the upper limit of the finish rolling finish temperature is set to 950 ° C.
  • Primary cooling step cooling to 700 ° C. or less at a first average cooling rate of 70 ° C./s or more During the cooling process after the end of hot rolling, austenite transforms into ferrite, but at high temperatures, ferrite coarsens, so hot After the end of rolling, quenching is performed to homogenize the microstructure as much as possible and at the same time suppress the formation of Ti-based precipitates. Therefore, first, as primary cooling, cooling is performed to 700 ° C. or less at a first average cooling rate of 70 ° C./s or more.
  • the ferrite is coarsened, so that the microstructure of the heat-rolled steel plate becomes inhomogeneous, resulting in a reduction in delayed fracture resistance after projection welding.
  • the cooling stop temperature in primary cooling exceeds 700 ° C., pearlite is excessively formed in the microstructure of the hot-rolled steel plate, and the microstructure of the final steel plate becomes inhomogeneous, and also the delayed fracture resistance after projection welding Decreases.
  • Secondary cooling step cooling to 520 ° C. or less at a second average cooling rate of 5 to 50 ° C./s If the average cooling rate in this secondary cooling is less than 5 ° C./s, the microstructure of the hot-rolled steel sheet is ferrite or pearlite In addition, the microstructure of the final steel sheet becomes inhomogeneous, and the Ti-based precipitates also coarsen, so that the delayed fracture resistance after projection welding decreases. On the other hand, if the average cooling rate in secondary cooling exceeds 50 ° C./s, pearlite is excessively generated in the microstructure of the hot-rolled steel sheet, so the element distribution of C becomes uneven, and delayed fracture resistance after projection welding Decreases.
  • Winding temperature 520 ° C. or less
  • the winding temperature exceeds 520 ° C.
  • ferrite and pearlite are excessively formed in the microstructure of the hot-rolled steel plate, and the microstructure of the final steel plate becomes inhomogeneous, which makes it resistant to projection welding. Delayed fracture characteristics decrease. To avoid this, it is important to wind with bainite single phase.
  • the upper limit of the winding temperature is 520 ° C.
  • the lower limit of the coiling temperature is not particularly specified, but if the coiling temperature is too low, hard martensite is excessively formed to increase the cold rolling load, so 300 ° C. or more is preferable. .
  • pickling is performed to remove the scale of the surface of the hot-rolled sheet.
  • the pickling treatment is not particularly limited, and may be carried out according to a conventional method.
  • Heat treatment process Heating in a temperature range of 830 to 930 ° C. for 600 seconds or less
  • two heat treatments are applied after hot rolling.
  • the Mn segregation is eliminated, and the distribution of Ti-based precipitates is controlled to improve the delayed fracture resistance after projection welding. If the heat treatment temperature of the first heat treatment is less than 830 ° C., the element distribution is insufficient, and the influence of the element distribution state after hot rolling can not be removed.
  • the Mn segregation is not resolved even after the heat treatment and hot pressing of No. 2, and as a result, the delayed fracture resistance after projection welding is degraded.
  • the heat treatment temperature of the first heat treatment is in the range of 830 to 930 ° C.
  • the holding time is preferably 600 seconds or less from the viewpoint of suppressing the coarsening of the Ti-based precipitates.
  • the cold rolling process of rolling on the cold rolled sheet of predetermined plate thickness is performed.
  • the cold rolling process is not particularly limited and may be performed according to a conventional method.
  • Second heat treatment step heating to a temperature range of 720 to 850 ° C. at an average temperature rising rate of 5 to 20 ° C./s and soaking for 15 seconds or more for 600 seconds in the temperature range While promoting recrystallization after rolling, it is carried out to control the microstructure of the member after hot pressing, the distribution of Ti-based precipitates, and Mn segregation on the surface.
  • reheating does not easily proceed if the heating is performed too rapidly, so the upper limit of the average temperature rising rate is set to 20 ° C./s.
  • the temperature rise rate is too small, ferrite and martensite grains become coarsened, and a desired microstructure can not be obtained after hot pressing, so an average temperature rise rate of 5 ° C./s or more is required. Preferably it is 8 degrees C / s or more. By controlling this average temperature rising rate, it is possible to make the crystal grains finer. Then, it is heated to a soaking temperature range of 720 to 850 ° C. described later.
  • the soaking temperature is a temperature range of two phases of ferrite and austenite.
  • the temperature is less than 720 ° C.
  • the martensite fraction decreases and the Mn segregation on the surface increases, so the lower limit of the soaking temperature is set to 720 ° C.
  • the soaking temperature is too high, crystal grain growth of austenite becomes remarkable, the grains and Ti-based precipitates become coarse, and the delayed fracture resistance after projection welding decreases, so the soaking temperature is 850 ° C. or less I assume.
  • it is 830 degrees C or less.
  • Soaking holding time 15 to 600 seconds
  • the holding time is preferably within 600 seconds.
  • Cooling conditions after soaking cooling to a temperature range of 600 ° C. or less at a third average cooling rate of 5 ° C./s or more After the above soaking treatment (annealing treatment), a temperature range of 600 ° C. or less It is necessary to cool at an average cooling rate of 5 ° C./s or more to the cooling stop temperature). If the average cooling rate is less than 5 ° C./s, ferrite transformation proceeds during cooling, the volume fraction of martensite in the cold rolled steel sheet decreases, and the Ti-based precipitates become coarse, so delay resistance after projection welding It becomes difficult to secure the destruction characteristics.
  • the upper limit of the average cooling rate is not particularly defined, but is preferably 30 ° C./s or less from the viewpoint of equipment and cost.
  • the cooling stop temperature exceeds 600 ° C., pearlite is excessively generated, and a predetermined volume ratio in the microstructure of the steel sheet can not be obtained, so that the delayed fracture resistance after projection welding also decreases.
  • the standard deviation of Vickers hardness measured every 200 ⁇ m in the thickness direction from the depth position of 100 ⁇ m from the surface of the steel sheet to the central portion of the thickness is 40 The following can be made.
  • plating treatment such as hot-dip galvanization may be performed, or the cold-rolled steel plate may be used as it is without performing such plating treatment.
  • the cold rolled steel sheet for hot pressing of the present invention may be used as the cold rolled steel sheet manufactured by the above-described manufacturing process, but depending on the purpose, to form an Al-based plating layer or a Zn-based plating layer. Al-based plating treatment or Zn-based plating treatment may be performed. Such plating treatment is not limited at all, and any known hot-dip plating method, electroplating method, vapor deposition plating method and the like can be applied.
  • an alloying treatment may be performed after the plating step.
  • the preferred elongation at this time is 0.05 to 2.0%.
  • a hot press performed on the obtained cold rolled steel sheet will be described.
  • the method and conditions of the hot pressing are not limited in any way, and all known hot pressing methods can be applied. Although an example is shown below, it is not limited to this.
  • a cold-rolled steel plate for hot press which is a material, is heated to a temperature range of Ac 3 transformation point to 1000 ° C. using an electric furnace, a gas furnace, an electric heating furnace, a far infrared heating furnace, etc. After holding in the range for 0 to 600 seconds, the steel sheet may be transported to a press and hot pressed at a temperature of 550 to 800 ° C.
  • the heating rate at the time of heating the cold rolled steel sheet for hot pressing may be 3 to 200 ° C./s.
  • the Ac 3 transformation point can be determined by the following equation.
  • Ac 3 transformation point (° C.) 881-206 C + 53 Si-15 Mn-20 Ni-1 Cr-27 Cu + 41 Mo
  • the symbol of the element in a formula represents content (mass%) of each element. For elements not contained, it is calculated as zero.
  • the steels having the component compositions shown in Table 1 were melted and cast into slabs, and after heating to 1250 ° C., hot rolling was performed under the conditions shown in Table 2 for the finish rolling finish temperature (FDT).
  • FDT finish rolling finish temperature
  • the hot rolled steel sheet is cooled to the cooling stop temperature (first cooling temperature) at a first average cooling rate (cold rate 1) shown in Table 2, the winding temperature is obtained at a second average cooling temperature (cold rate 2) It cooled to (CT) and wound up to the coil.
  • CT second average cooling temperature
  • the obtained hot-rolled sheet is pickled, subjected to the first heat treatment shown in Table 2, and then cold-rolled at a rolling reduction shown in Table 2 to obtain a cold-rolled sheet (sheet thickness: 1.4 mm ).
  • the cold-rolled steel sheet thus obtained was subjected to a second heat treatment (also referred to as annealing treatment) under the conditions shown in Table 2 in a continuous annealing line (CAL) or a continuous hot-dip plating line (CGL), and passed through CAL Cold-rolled steel plates (CR) were obtained for steel plates, and hot-dip galvanized steel plates (GI) were obtained for steel plates that passed through CGL.
  • CAL continuous annealing line
  • CGL continuous hot-dip plating line
  • GI hot-dip galvanized steel plates
  • the mold used in the hot press has a punch width of 70 mm, a punch shoulder R4 mm, and a die shoulder R4 mm, and a forming depth is 30 mm.
  • Heating of the cold-rolled steel sheet was performed in the atmosphere using either an infrared heating furnace or an atmosphere heating furnace depending on the heating rate.
  • cooling after pressing was performed by combining the sandwiching of the steel plate between the punch and the die and air cooling on the die opened from the sandwiching, and cooling was performed from the press (start) temperature to 150 ° C. At this time, the cooling rate was adjusted by changing the holding time of the punch at the bottom dead center in the range of 1 to 60 seconds.
  • a JIS No. 5 tensile test specimen was collected from the position of the hat bottom portion of the hot pressed member thus obtained, and a tensile test was performed according to JIS Z 2241 to measure the tensile strength (TS).
  • test specimens of 50 mm ⁇ 150 mm are first taken from various hot pressed members, a hole of 10 mm in diameter is made at the center, and M6 having four projection parts
  • a welding nut was set in an AC welding machine and welded so that the center of the hole of the test piece and the center of the hole of the nut coincided.
  • the conditions of resistance welding were welding using a servomotor pressurization type single phase alternating current (50 Hz) resistance welding machine attached to a welding gun, and a test piece having a projection welding portion was produced.
  • the pair of electrode tips used were flat 30 mm ⁇ electrodes.
  • the welding conditions were a pressing force of 3000 N, an energization time of 7 cycles (50 Hz), a welding current of 12 kA, and a hold time of 10 cycles (50 Hz).
  • the load when the nut was peeled from the steel plate was measured by the indentation peel test according to JIS B 1196: 2001.
  • the delayed fracture resistance is good ( ⁇ ). If the peeling is performed for only 0.8 ⁇ PS load in less than 100 hours, the delayed fracture resistance is suitable ( ⁇ ). When it peeled in less than time, the delayed fracture resistance was inferior (x).
  • the volume fraction of martensite of the member after hot pressing is corroded with 3 vol% nital after polishing a cross section parallel to the rolling direction of the steel plate and parallel to the thickness direction, and 5000 using an SEM (scanning electron microscope)
  • the area ratio was measured by a point count method (based on ASTM E562-83 (1988)), and the area ratio was defined as a volume ratio.
  • the grain size of the Ti-based precipitates is 0.5 ⁇ m ⁇ 0.5 ⁇ m at a magnification of 10000 using a TEM (transmission electron microscope) in a cross section parallel to the thickness direction for both the cold-rolled steel plate and the press member
  • the range was observed at 10 locations, and the particle diameter was determined by calculating the equivalent circle diameter with a lower limit of 0.005 ⁇ m using Image-Pro of Media Cybernetics.
  • the number of Ti-based precipitates having a particle size of 0.10 ⁇ m or less was observed at a magnification of 10,000 times with a TEM (transmission electron microscope) at 10 locations in a 0.5 ⁇ m ⁇ 0.5 ⁇ m field range, and the average number density of 10 locations was obtained. I asked. In this method, Ti-based precipitates having a particle size of 0.005 ⁇ m or more could be counted.
  • the standard deviation of the Vickers hardness of the cold rolled steel sheet was measured in five rows from the surface of the steel sheet from 100 ⁇ m to 900 ⁇ m from the surface of the steel sheet every 200 ⁇ m in the thickness direction, and the standard deviation of the average was determined.
  • the test force of the measurement conditions of Vickers hardness was 300 g (2.942 N), and the holding time was 15 seconds.
  • the grain size and the number of cementite in the prior austenite grains were determined as follows. That is, the number of cementite particles having a particle size of less than 0.20 ⁇ m is 0.5 ⁇ m at a magnification of 10,000 and 30,000 using a TEM (transmission electron microscope) for a cross section parallel to the thickness direction of the member after hot pressing. The visual field range of x 0.5 micrometer was observed ten places, and the average number density of ten places was calculated
  • the microstructures of the cold rolled steel sheet and the hot pressed member thus obtained, and the measurement results of the tensile properties of the hot pressed member and the delayed fracture resistance after projection welding are shown in Table 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

熱間プレス部材について、その成分組成を適正に調整した上で、そのミクロ組織について、部材表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物を部材の厚さ方向に平行な断面100μm2当たり平均で5個以上存在させ、かつ部材表面から板厚方向20~100μmの深さ範囲において、マルテンサイトを体積率で95~100%有し、さらに旧オーステナイト粒中に粒径が0.20μm未満のセメンタイトを平均で10個以上存在させることにより、熱間プレス後にTS:1780MPa以上という高い引張強度を有するだけでなく、優れたプロジェクション溶接後の耐遅れ破壊特性を得ることができる。

Description

熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
 本発明は、熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法に関し、特に熱間プレス部材について、プロジェクション溶接後の耐遅れ破壊特性の向上を図ろうとするものである。
 本発明において熱間プレス部材とは、焼き入れ性を有する冷延鋼板を熱間プレス成形して高強度化した部材のことを意味する。
 また、本発明の冷延鋼板は、一般的な冷延鋼板だけでなく、溶融亜鉛めっき冷延鋼板(合金化溶融亜鉛めっき冷延鋼板を含む)や電気亜鉛めっき冷延鋼板(電気亜鉛ニッケル合金めっき冷延鋼板を含む)、アルミめっき冷延鋼板等を含む。
 近年、環境問題の高まりからCO2排出規制が厳格化しており、自動車分野においては燃費向上に向けた車体の軽量化が課題となっている。そのために自動車部品への高強度鋼板の適用による薄肉化が進められており、引張強さ(TS)が1780MPa以上の鋼板の適用が検討されている。
 自動車の構造用部材や補強用部材に使用される高強度鋼板は、成形性に優れることが要求される。しかしながら、TS:1780MPa以上の鋼板は延性が低いため、冷間プレス成形時に割れが発生したり、降伏強度が高いことに起因して大きなスプリング・バックが発生するため、冷間プレス成形後に高い寸法精度が得られない。また、冷間プレス成形後は残留応力が鋼板内に残存するため、使用環境から侵入する水素によって遅れ破壊(水素脆化)が懸念される。
 このような状況で、高強度を得る手法として、最近は、熱間プレス(ホットスタンプ、ダイクエンチ、プレスクエンチ等とも呼称される)でのプレス成形が着目されている。熱間プレスとは、鋼板をオーステナイト単相の温度域まで加熱した後に、高温のままで成形(加工)することにより、高い寸法精度での成形を可能とし、成形後の冷却により焼き入れを行うことで高強度化を可能とした成形方法である。また、この熱間プレスでは、冷間プレスと比べてプレス成形後の残留応力が低下するため、耐遅れ破壊特性も改善される。
 しかしながら、自動車組立工程の多くは抵抗スポット溶接により組立てられるが、一部、抵抗スポット溶接機のガンが入り込めない場所ではボルト締結によって組立てられる。また、異種材(アルミや樹脂など)との接合の場合もボルト締結の場合が多い。このような場合は、鋼板にプロジェクション部を有するナットを抵抗溶接し、その後に他の板とボルトで組み立てられる。
 前述したとおり、熱間プレス部材では残留応力は低下するものの、自動車車体全体の剛性を保つために熱間プレス後にも応力がかかることから、ナットと鋼板の溶接部では遅れ破壊が懸念される。
特開2012-157900号公報
 従来、ナットのプロジェクション溶接後の剥離強度を向上させる手段としては、例えば特許文献1に記載のように、溶接条件を制御することで剥離強度を改善する技術が開示されている。しかしながら、熱間プレス後のナットのプロジェクション溶接部における遅れ破壊を向上させる技術は開発されてない。
 このように、溶接条件に関係なく、TS:1780MPa以上の熱間プレス部材のナットとのプロジェクション溶接部については耐遅れ破壊特性を改善することは困難とされ、これらの特性を兼備する熱間プレス部材は開発されていないのが実情である。
 そこで、本発明者らは、上記の実情に鑑み鋭意検討を重ねた結果、熱間プレス部材のナットのプロジェクション溶接後の耐遅れ破壊特性を向上させるためには、部材の表層部に、微細なTi系析出物を存在させて水素のトラップサイトとすると同時にプロジェクション溶接後の靭性も向上させ、さらに部材表層部の旧オーステナイト粒中に、水素トラップサイトとして微細なセメンタイトを存在させることが有効であるとの知見を得た。
 このような構成にすると、腐食に伴い水素が侵入しても水素が効果的にトラップされ、ナットと鋼板との界面でのき裂の生成が抑制される結果、耐遅れ破壊特性が向上することを見出した。
 自動車車体として仕上げた後、実際に走行を繰り返している内に雨等により電気化学的に水素が部材鋼板上に発生し、一部は部材鋼板に侵入する。部材鋼板に応力が発生していなければ、この水素を要因として遅れ破壊は生じないが、ナットの溶接部はボルト締結後に応力がかかる場合がある。これにより、ナットと部材鋼板の界面および界面近傍からき裂が生じ、割れが発生する。
 この点、き裂の発生が懸念される部材鋼板表面近傍に水素のトラップサイトを生成させておけば、水素がトラップサイトで安定してトラップされ、き裂の生成が抑制されるため、耐遅れ破壊特性が向上する。
 そのためには、熱間プレス前の冷間鋼板の時点で、鋼板の表層部にある程度微細なTi系析出物を析出させておくことが肝要である。
 さらに、セメンタイトもトラップサイトして機能するので、熱間プレス後にセメンタイトを微細に分散させることが有効であり、このためには冷延鋼板としてCおよびMnの偏析を抑制することが重要である。
 本発明は、上記の知見に立脚するものである。
 すなわち、本発明の要旨構成は次のとおりである。
1.部材の鋼成分組成が、質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.0%以上2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.005%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなり、
 部材のミクロ組織が、部材表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物が部材の厚さ方向に平行な断面100μm2当たり平均で5個以上存在し、かつ部材表面から板厚方向20~100μmの深さ範囲において、マルテンサイトを体積率で95~100%有し、さらに旧オーステナイト粒中に粒径が0.20μm未満のセメンタイトが平均で10個以上存在し、引張強さが1780MPa以上である、熱間プレス部材。
2.前記部材が、質量%で、さらにNb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する前記1に記載の熱間プレス部材。
3.前記部材の表層に、Al系めっき層またはZn系めっき層を有する前記1または2に記載の熱間プレス部材。
4.鋼板の成分組成が、質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.0%以上2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.005%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなり、
 鋼板のミクロ組織が、鋼板表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物が鋼板の板厚方向に平行な断面100μm2当たり平均で10個以上存在し、
 さらに鋼板表面から100μmの深さ位置から板厚中央部まで板厚方向に200μm毎に測定したビッカース硬度の標準偏差が40以下である、熱間プレス用冷延鋼板。
5.前記鋼板が、質量%で、さらにNb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する前記4に記載の熱間プレス用冷延鋼板。
6.前記鋼板が、表面にAl系めっき層またはZn系めっき層を有する前記4または5に記載の熱間プレス用冷延鋼板。
7.前記4に記載の熱間プレス用冷延鋼板を製造する方法であって、
 質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.0%以上2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.005%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなる鋼素材を、
 仕上げ圧延の最終パスの圧下率を12%以上、該最終パスの直前のパスの圧下率を15%以上とし、仕上げ圧延終了温度が860~950℃の条件で熱間圧延し、
 上記の熱間圧延後、冷却停止温度までの第1平均冷却速度を70℃/s以上とし、700℃以下の冷却停止温度まで冷却する1次冷却を施し、
 上記の1次冷却後、巻取温度までの第2平均冷却速度を5~50℃/sとし、520℃以下の巻取温度で巻取る2次冷却を施し,
 ついで、巻き取った熱延鋼板を酸洗後、830~930℃の温度域で600秒以下に加熱する第1の熱処理を施し、
 その後、冷間圧延を行ったのち、5~20℃/sの平均昇温速度で720~850℃の温度域まで加熱し、該温度域で15~600秒間均熱する第2の熱処理を施し、
 上記の第2の熱処理後、第3平均冷却速度を5℃/s以上とし、600℃以下の冷却停止温度まで冷却する3次冷却を施す、熱間プレス用冷延鋼板の製造方法。
8.前記鋼素材が、質量%で、さらにNb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する前記7に記載の熱間プレス用冷延鋼板の製造方法。
9.前記3次冷却後、鋼板表面に、Al系めっき処理またはZn系めっき処理を施す前記7または8に記載の熱間プレス用冷延鋼板の製造方法。
10.前記4乃至6のいずれかに記載の熱間プレス用冷延鋼板を、Ac3変態点~1000℃の温度域で加熱後、熱間プレスを行う熱間プレス部材の製造方法。 
 本発明によれば、熱間プレス後に極めて高い引張強さを有すると同時に、優れたプロジェクション溶接後の耐遅れ破壊特性を兼ね備えた熱間プレス部材を得ることができる。例えば、引張強さが1780MPa以上で、M6ナットを溶接した後にボルトにより0.6×PS(PS:押込剥離強度)を負荷させた状態で塩酸浸漬しても割れのない、ナットのプロジェクション溶接後の耐遅れ破壊特性が優れた熱間プレス部材を安定して得ることができる。
 また、本発明によれば、加熱時にバラツキの大きい熱間プレス条件であっても、特性の安定した熱間プレス部材を得ることができる。
 以下、本発明を具体的に説明する。
 まず、本発明の熱間プレス部材および熱間プレス用冷延鋼板のミクロ組織について詳細に説明する。
〔熱間プレス部材のミクロ組織〕
 熱間プレス部材のミクロ組織は、部材表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物が部材の厚さ方向に平行な断面100μm2当たり平均で5個以上存在し、また部材表面から板厚方向20~100μmの深さ範囲において、マルテンサイトを体積率で95~100%有し、さらに旧オーステナイト粒中に粒径が0.20μm未満のセメンタイトが平均で10個以上存在するミクロ組織とする。
 部材表面から板厚方向に100μmまでの範囲における、粒径が0.10μm以下のTi系析出物が、部材の厚さ方向に平行な断面100μm2当たり平均で5個未満では、水素トラップサイトとして不十分なだけでなく、靭性も劣化することから、プロジェクション溶接後の耐遅れ破壊特性が劣化する。好ましくは平均で10個以上である。なお、測定する部材の厚さ方向に平行な断面については特に制限はなく、いずこであっても良い。
 なお、本発明でいうTi系析出物とは、例えばTiC、TiN、Ti(C,N)などのことである。
 また、部材表面から板厚方向20~100μmの深さ範囲における、マルテンサイトの体積率が95%未満では、引張強度:1780MPa以上を達成することが困難になる。従って、マルテンサイトの体積率は95%以上とする。好ましくは97%以上である。100%であっても良い。
 さらに、部材表面から板厚方向20~100μmの深さ範囲において、旧オーステナイト粒中に(旧オーステナイト粒1個の中に)粒径が0.20μm未満のセメンタイトが平均で10個未満では、水素トラップサイトとして不十分でもあり、プロジェクション溶接後の耐遅れ破壊特性が劣化する。好ましくは平均で15個以上である。
〔熱間プレス用冷延鋼板のミクロ組織〕
 熱間プレス部材として所望の特性を得るためには、熱間プレス用冷延鋼板のミクロ組織を制御することが重要である。すなわち、熱間プレス用冷延鋼板のミクロ組織としては、鋼板表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物が鋼板の板厚方向に平行な断面100μm2当たり平均で10個以上を含有し、さらに鋼板表面から100μmの深さ位置から板厚中央部まで板厚方向に200μm毎に測定したビッカース硬度における標準偏差が40以下とする。
 鋼板表面から板厚方向に100μmまでの範囲における、粒径が0.10μm以下のTi系析出物が鋼板の板厚方向に平行な断面100μm2当たり平均で10個未満では、熱間プレス後において、部材表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物を部材の厚さ方向に平行な断面100μm2当たり平均で5個以上確保することが困難となるため、プロジェクション溶接後の耐遅れ破壊特性が劣化する。好ましくは平均で15個以上である。
 また、鋼板表面から100μmの深さ位置から板厚中央部まで板厚方向に200μm毎に測定したビッカース硬度における標準偏差が40を超えると、CおよびMnの濃度分布が顕著(不均一)となる。このため、熱間プレス中の逆変態時にCおよびMnの分配が不均一となり、微細にセメンタイトが分散することが困難となるため、プロジェクション溶接後の耐遅れ破壊特性が劣化する。それ故、鋼板表面から100μmの深さ位置から板厚中央部まで板厚方向に200μm毎に測定したビッカース硬度における標準偏差は40以下とする。好ましくは35以下である。なお、測定する鋼板の板厚方向に平行な断面については特に制限はなく、いわゆるC断面でもL断面いずれでも良い。
 熱間プレス用冷延鋼板において、鋼板表面から板厚方向に100μmまでの範囲において、結晶粒径が0.10μm以下のTi系析出物を鋼板の板厚方向に平行な断面100μm2当たり平均で10個以上を含有させるという要件は、後述する冷延鋼板の製造工程中、主に第1および第2の熱処理によって、また鋼板表面から100μmの深さ位置から板厚方向に200μm毎に測定したビッカース硬度における標準偏差が40以下という要件は、主に熱間圧延および第1の熱処理によって達成される。
 次に、本発明の熱間プレス部材および熱間プレス用冷延鋼板の適正成分組成範囲について説明する。なお、成分についての「%」表示は「質量%」を意味する。
C:0.28%以上0.42%未満
 Cは、鋼の高強度化に有効な元素であり、熱間プレス後にマルテンサイトを強化して鋼の強度を高めるのに重要な元素である。しかしながら、Cの含有量が0.28%未満では熱間プレス後のマルテンサイトの硬度が不十分のため、引張強さ:1780MPa以上が得られない。好ましいC量は0.30%以上である。一方、Cを0.42%以上添加すると、抵抗スポット溶接後の硬度が硬くなり、靭性が低下して、プロジェクション溶接後の耐遅れ破壊特性が低下する。そのため、C量は0.40%未満とする。好ましくは0.39%未満である。
Si:1.5%以下
 Siは、フェライトを固溶強化し、高強度化に有効な元素である。しかしながら、Siの過剰な添加は抵抗スポット溶接時における靭性が低下してプロジェクション溶接後の耐遅れ破壊特性が劣化するため、その含有量は1.5%以下とする。好ましくは1.2%以下、より好ましくは0.8%以下である。なお、Siの下限は特に規定されないが、極低Si化はコストの増加を招くため、0.005%とすることが好ましい。
Mn:1.0%以上2.2%以下
 Mnは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。その効果を得るためには、Mn量を1.0%以上とする必要がある。好ましくは1.2%以上である。一方、Mnを過剰に含有した場合、Mnバンドが過剰に生成するため、熱間プレス後のセメンタイトが微細に分散できずにプロジェクション溶接後の耐遅れ破壊特性が劣化する。そのため、Mn量は2.2%以下とする。好ましくは2.1%以下である。
P:0.05%以下
 Pは、固溶強化により高強度化に寄与するが、過剰に添加された場合には、粒界への偏析が著しくなって粒界を脆化させるため、プロジェクション溶接後の耐遅れ破壊特性が低下することから、P含有量は0.05%以下とする。好ましくは0.04%以下である。なお、Pの下限は特に規定されないが、極低P化は製鋼コストの上昇を招くため、0.0005%とすることが好ましい。
S:0.005%以下
 Sの含有量が多い場合には、MnSなどの硫化物が多く生成し、水素侵入時にその介在物が起点となって割れの発生を招くため、プロジェクション溶接後の耐遅れ破壊特性が低下する。そのため、S含有量の上限を0.005%とする。好ましくは0.0045%以下である。なお、Sの下限は特に規定されないが、極低S化はPと同様に、製鋼コストの上昇を招くため、0.0002%とすることが好ましい。
Al:0.01%以上0.50%以下
 Alは、脱酸に必要な元素であり、この効果を得るためには0.01%以上含有することが必要である。一方、0.50%を超えてAlを含有しても効果が飽和するため、Al量は0.50%以下とする。好ましくは0.40%以下である。
N:0.005%以下
 Nは、Tiと粗大な窒化物を形成してプロジェクション溶接後の耐遅れ破壊特性を劣化させることから、含有量を抑える必要がある。特にN量が0.005%超になると、この傾向が顕著となることから、N含有量は0.005%以下とする。好ましくは0.004%以下であり、さらに好ましくは0.0035%以下である。
Ti:0.005%以上0.15%以下
 Tiは、微細な炭窒化物を形成することで、強度上昇に寄与する元素である。さらに、Tiは、部材の表層部に水素のトラップサイトとして微細なTi系析出物を析出させ、プロジェクション溶接後の耐遅れ破壊特性を向上させる上で極めて有効であり、本発明における重要な元素である。このような効果を発揮させるためには、Tiを0.005%以上含有させる必要がある。一方、Tiを多量に添加すると、熱間プレス後の伸びが著しく低下するため、Ti含有量は0.15%以下とする。好ましく0.12%以下である。
 また、本発明では、以下の成分を適宜含有させることもできる。
Nb:0.15%以下
 Nbは、微細な炭窒化物を形成することで、強度上昇に寄与する元素である。さらに、本発明においては、微細なNb系析出物が、水素のトラップサイトとなることに加えて、熱間プレス時のオーステナイト粒径を微細化することから、耐遅れ破壊特性向上に寄与する元素である。このような効果を発揮させるためには、Nbを0.005%以上含有させることが好ましい。さらに好ましくは0.010%以上である。一方、Nbを多量に添加しても上記の効果は飽和し、かえってコスト増を招くため、Nb含有量は0.15%以下とすることが好ましい。より好ましくは0.12%以下であり、さらに好ましくは0.10%以下である。
B:0.0050%以下
 Bは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。また、粒界に偏析することで粒界強度を向上させるため、耐遅れ破壊特性に有効である。このような効果を発現させるためには、Bを0.0002%以上含有させるのが好ましい。しかし、過剰なB添加は靭性を劣化させ、プロジェクション溶接後の耐遅れ破壊特性を低下させるため、B含有量を0.0050%以下とすることが好ましい。より好ましくは0.0040%以下、さらに好ましくは0.0035%以下である。
Mo:0.50%以下
 Moは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。その効果を得るためには、Moを0.005%以上含有するのが好ましい。さらに好ましくは0.01%以上である。一方、多量にMoを添加しても上記効果は飽和し、かえってコスト増を招き、さらに化成処理性が劣化するため、そのMo含有量は0.50%以下とすることが好ましい。
Cr:0.50%以下
 Crも、Moと同様、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。その効果を得るためには0.005%以上含有することが好ましい。より好ましくは0.01%以上である。一方、多量にCrを添加しても上記効果は飽和し、さらに表面酸化物を形成することからめっき性が劣化するため、Cr含有量は0.50%以下とすることが好ましい。
Sb:0.001%以上0.020%以下
 Sbは、熱間プレス前に鋼板を加熱してから熱間プレスの一連の処理によって鋼板を冷却する前に、鋼板表層部に生じる脱炭層を抑制する効果を有する。そのため、板面の硬度分布が均一となりプロジェクション溶接後の耐遅れ破壊特性が向上する。このような効果を発現するためには、Sbの添加量は0.001%以上とすることが好ましい。一方、Sbが0.020%を超えて添加されると、圧延負荷荷重が増大し、生産性を低下させることから、Sb量は0.020%以下とすることが好ましい。
Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下
 Ca、Mg、REMは、硫化物および酸化物の形状を制御し、粗大な介在物の生成を抑制することから、プロジェクション溶接後の耐遅れ破壊特性が向上する。このような効果を発現するためには、それぞれ0.0005%以上添加するのが好ましい。一方、過度の添加は、介在物の増加を引き起こしやはりプロジェクション溶接後の耐遅れ破壊特性を劣化させるため、それぞれの添加量は0.005%以下とすることが好ましい。ここでREMはSc、Yおよびランタノイドを含む元素である。
V:0.15%以下
 Vは、微細な炭窒化物を形成することで、強度上昇に寄与する元素である。このような効果を得るためには、Vを0.01%以上含有させることが好ましい。一方、多量のV添加は、抵抗溶接時における靭性が低下して、プロジェクション溶接部の耐遅れ破壊特性が劣化するため、V添加量は0.15%以下とすることが好ましい。さらに好ましくは0.10%以下である。
Cu:0.50%以下
 Cuは、固溶強化により高強度化に寄与するだけでなく、耐食性を向上させることからプロジェクション溶接後の耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはCuを0.05%以上含有させることが好ましい。一方、Cuを0.50%超含有させても効果が飽和し、またCuに起因する表面欠陥が発生しやすくなるため、Cu含有量は0.50%以下とすることが好ましい。
Ni:0.50%以下
 Niも、Cuと同様、耐食性を向上させることからプロジェクション溶接後の耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。また、Cuと同時に添加すると、Cu起因の表面欠陥を抑制する効果があるので、Cu添加時に有効である。これら効果を発揮するためにはNiを0.05%以上含有させることが好ましい。しかし、多量のNi添加は、抵抗溶接時における靭性が低下してプロジェクション溶接後の耐遅れ破壊特性が劣化するため、Ni含有量は0.50%以下とすることが好ましい。
Sn:0.50%以下
 Snも、CuやNiと同様、耐食性を向上させることからプロジェクション溶接後の耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはSnを0.05%以上含有させることが好ましい。しかし、多量のSn添加は、抵抗溶接時における靭性が低下してプロジェクション溶接後の耐遅れ破壊特性が劣化するため、Sn含有量は0.50%以下とすることが好ましい。
Zn:0.10%以下
 Znは、熱間プレス時の焼入れ性を高めるため、熱間プレス後のマルテンサイトの形成、すなわち高強度化に寄与する元素である。これら効果を発揮するためにはZnを0.005%以上含有させることが好ましい。しかし、多量のZn添加は、抵抗溶接時における靭性が低下してプロジェクション溶接後の耐遅れ破壊特性が劣化するため、Zn含有量は0.10%以下とすることが好ましい。
Co:0.10%以下
 Coも、CuやNiと同様、水素過電圧を向上させて耐食性を向上させることからプロジェクション溶接後の耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはCoを0.005%以上含有させることが好ましい。しかし、多量のCo添加は、抵抗溶接時における靭性が低下してプロジェクション溶接後の耐遅れ破壊特性が劣化するため、Co含有量は0.10%以下とすることが好ましい。
Zr:0.10%以下
 Zrも、CuやNiと同様、耐食性を向上させることからプロジェクション溶接後の耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはZrを0.005%以上含有させることが好ましい。しかし、多量のZr添加は、抵抗溶接時における靭性が低下してプロジェクション溶接後の耐遅れ破壊特性が劣化するため、Zr含有量は0.10%以下とすることが好ましい。
Ta:0.10%以下
 Taは、Tiと同様に、合金炭化物や合金窒化物を生成して高強度化に寄与する。その効果を得るためには0.005%以上添加することが好ましい。一方、Taを過剰に添加してもその添加効果が飽和する上、合金コストも増加する。そのため、その添加量は0.10%以下とすることが好ましい。
W:0.10%以下
 Wも、CuやNiと同様、耐食性を向上させることからプロジェクション溶接後の耐遅れ破壊特性を改善できるため、必要に応じて添加することができる。これら効果を発揮するためにはWを0.005%以上含有させることが好ましい。しかし、多量のW添加は、抵抗溶接時における靭性が低下してプロジェクション溶接後の耐遅れ破壊特性が低下するため、W含有量は0.10%以下とすることが好ましい。
 以上述べた以外の残部はFeおよび不可避不純物とする。
 次に、本発明の熱間プレス用冷延鋼板および熱間プレス部材のめっき層について詳細に説明する。
〔熱間プレス用冷延鋼板のめっき層〕
 本発明の熱間プレス用冷延鋼板は、めっき層が付与されていない冷延鋼板ままでもよいが、熱間プレスによる酸化を防止するため、もしくは耐食性を向上させるために、熱間プレス前の冷延鋼板の表面にめっき層を付与してもよい。
 本発明において熱間プレス用冷延鋼板の表面に付与されるめっき層としては、Al系めっき層またはZn系めっき層が好適である。これらのめっき層を熱間プレス用冷延鋼板の表面に付与することにより、熱間プレスによる鋼板表面の酸化が防止され、さらに、熱間プレス部材の耐食性が向上する。
 Al系めっき層としては、たとえば、溶融めっき法により形成されたAl-Siめっき層が例示される。また、Zn系めっき層としては、たとえば、溶融めっき法により形成された溶融Znめっき層、これを合金化した合金化溶融Znめっき層、電気めっき法により形成された電気Znめっき層、電気Zn-Ni合金めっき層などが例示される。
 ただし、Al系めっき層またはZn系めっき層は上記のめっき層に限定されるものではなく、主成分であるAlまたはZn以外に、Si、Mg、Ni、Fe、Co、Mn、Sn、Pb、Be、B、P、S、Ti、V、W、Mo、Sb、Cd、Nb、Cr、Sr等の1種または2種以上を含有するめっき層であってもよい。Al系めっき層またはZn系めっき層の形成方法についても何ら限定されるものではなく、公知の溶融めっき法、電気めっき法、蒸着めっき法等がいずれも適用可能である。また、Al系めっき層またはZn系めっき層は、めっき工程後に合金化処理を施しためっき層であってもよい。
 本発明では、特に熱間プレス部材の耐食性をより一層向上させたり、熱間プレス成形時の溶融Znに起因する液体金属脆性割れを防止する上で、Zn系めっき層がZn-Ni合金めっき層であるとより好適である。
 めっき層の付着量は特に限定されず、一般的なものであればよい。例えば、片面当たりのめっき付着量が5~150g/mのめっき層を有することが好ましい。めっき付着量が5g/m未満では耐食性の確保が困難になる場合があり、一方150g/mを超えると耐めっき剥離性が劣化する場合がある。
〔熱間プレス部材のめっき層〕
 Al系めっき層またはZn系めっき層が付与された熱間プレス用冷延鋼板を、加熱した後、熱間プレスを行うと、Al系めっき層またはZn系めっき層に含有されるめっき層成分の一部またはすべてが下地鋼板中に拡散して固溶相や金属間化合物を生成すると同時に、逆に、下地鋼板成分であるFeがAl系めっき層中またはZn系めっき層中に拡散して固溶相や金属間化合物を生成する。また、Al系めっき層の表面にはAlを含有する酸化物皮膜が生成し、Zn系めっき層の表面にはZnを含有する酸化物皮膜が生成する。
 一例を挙げると、Al-Siめっき層を加熱すると、めっき層は、Siを含有するFe-Al金属間化合物を主体とするめっき層へと変化する。また、溶融Znめっき層、合金化溶融Znめっき層、電気Znめっき層等を加熱すると、FeにZnが固溶したFeZn固溶相、ZnFe金属間化合物、表層のZnO層等が形成される。さらに、電気Zn-Ni合金めっき層を加熱した場合には、Feにめっき層成分が固溶したNiを含有する固溶層、ZnNiを主体とする金属間化合物、表層のZnO層等が形成される。
 なお、本発明においては、上述のとおり、Al系めっき層が付与された熱間プレス用冷延鋼板を加熱することにより形成されるAlを含有するめっき層をAl系めっき層と呼び、Zn系めっき層が付与された熱間プレス用冷延鋼板を加熱することにより形成されるZnを含有するめっき層をZn系めっき層と呼ぶこととする。
 次に、本発明の熱間プレス用冷延鋼板の好ましい製造方法について説明する。
 本発明では、上記冷延鋼板の製造に際し、まず前記した所定の成分組成を有する鋼素材(スラブ)を、仕上げ圧延の最終パスの圧下率を12%以上、該最終パスの直前のパスの圧下率を15%以上とし、仕上げ圧延終了温度が860~950℃の条件で熱間圧延する。
 上記の熱間圧延後、冷却停止温度までの第1平均冷却速度を70℃/s以上とし、700℃以下の冷却停止温度まで冷却する1次冷却を施す。
 上記の1次冷却後、巻取温度までの第2平均冷却速度を5~50℃/sとし、520℃以下の巻取温度で巻取る2次冷却を施す。
 ついで、巻き取った熱延鋼板を酸洗後、830~930℃の温度域に600秒以下加熱する第1の熱処理を施す。
 その後、冷間圧延を行ったのち、5~20℃/sの平均昇温速度で720~850℃の温度域まで加熱し、該温度域で15~600秒間均熱する第2の熱処理を施す。
 上記の第2の熱処理後、第3平均冷却速度を5℃/s以上とし、600℃以下の冷却停止温度まで冷却する3次冷却を施す。
 以下、上記した製造工程を各工程毎に詳細に説明する。
〔加熱工程〕
 素材である鋼スラブは、鋳造後、再加熱することなく1150~1270℃で熱間圧延を開始するか、もしくは1150~1270℃に再加熱したのち、熱間圧延を開始することが好ましい。熱間圧延の好ましい条件は、まず1150~1270℃の熱間圧延開始温度で鋼スラブを熱間圧延する。
 本発明では、鋼スラブを製造したのち、一旦室温まで冷却し、その後再加熱する従来法に加え、冷却することなく温片のままで加熱炉に装入する、あるいは保熱を行った後に直ちに圧延する、あるいは鋳造後そのまま圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。
〔熱間圧延工程〕
・仕上げ圧延の最終パスの圧下率:12%以上
 仕上げ圧延の最終パスの圧下率を12%以上にすることは、オーステナイト粒内にせん断帯を多数導入し、熱間圧延後のフェライト変態時の核生成サイトを増大して熱延板のミクロ組織結晶粒の微細化を図り、さらにMnバンドを解消するという観点から必要である。仕上げ圧延の最終パスの好適圧下率は13%以上である。また、この圧下率の上限は特に限定されないが、熱延負荷荷重が増大すると、板の幅方向での板厚変動が大きくなり、耐遅れ破壊特性が劣化するおそれがあるので、30%以下が好ましい。
・仕上げ圧延の最終パスの直前のパスの圧下率:15%以上
 最終パスの直前のパスの圧下率を15%以上にすることは、歪蓄積効果がより高まってオーステナイト粒内にせん断帯が多数導入され、フェライト変態の核生成サイトがさらに増大して熱延板のミクロ組織結晶粒がより微細化し、さらにMnバンドを解消するという観点から必要である。仕上げ圧延の最終パスの直前パスの好適圧下率は18%以上である。また、この圧下率の上限は特に限定されないが、熱延負荷荷重が増大すると、鋼板の幅方向での板厚変動が大きくなり、耐遅れ破壊特性性の劣化が懸念されるので、30%以下が好ましい。
・仕上げ圧延終了温度:860~950℃
 熱間圧延は、鋼板のミクロ組織の均一化、材質の異方性低減により、焼鈍後の耐抵抗溶接割れ特性を向上させるため、オーステナイト単相域にて終了する必要があるので、仕上げ圧延終了温度は860℃以上とする。一方、仕上げ圧延終了温度が950℃超えでは、熱延組織が粗大になり、焼鈍後の結晶粒も粗大化するため、仕上げ圧延終了温度の上限は950℃とする。
〔熱間圧延後の冷却工程〕
・1次冷却工程:70℃/s以上の第1平均冷却速度で700℃以下まで冷却
 熱間圧延終了後の冷却過程でオーステナイトがフェライト変態するが、高温ではフェライトが粗大化するため、熱間圧延終了後は急冷することで、ミクロ組織をできるだけ均質化すると同時に、Ti系析出物の生成を抑制する。そのため、まず、1次冷却として、70℃/s以上の第1平均冷却速度で700℃以下まで冷却する。この第1平均冷却速度が70℃/s未満ではフェライトが粗大化されるため、熱延鋼板のミクロ組織が不均質となり、プロジェクション溶接後の耐遅れ破壊特性の低下を招く。一方、1次冷却における冷却停止温度が700℃超えでは、熱延鋼板のミクロ組織にパーライトが過剰に生成し、最終的な鋼板のミクロ組織が不均質となり、やはりプロジェクション溶接後の耐遅れ破壊特性が低下する。
・2次冷却工程:5~50℃/sの第2平均冷却速度で520℃以下まで冷却
 この2次冷却における平均冷却速度が5℃/s未満では、熱延鋼板のミクロ組織にフェライトもしくはパーライトが過剰に生成し、最終的な鋼板のミクロ組織が不均質となり、またTi系析出物も粗大化するため、プロジェクション溶接後の耐遅れ破壊特性が低下する。一方、2次冷却における平均冷却速度が50℃/sを超えると、熱延鋼板のミクロ組織にパーライトを過剰に生成するため、Cの元素分布が不均一となり、プロジェクション溶接後の耐遅れ破壊特性が低下する。さらに、520℃超の温度までの冷却では、熱延鋼板のミクロ組織にフェライトもしくはパーライトが過剰に生成し、Ti系析出物も粗大化するため、やはりプロジェクション溶接後の耐遅れ破壊特性が低下する。
・巻取り温度:520℃以下
 巻取り温度が520℃超では、熱延鋼板のミクロ組織にフェライトおよびパーライトが過剰に生成し、最終的な鋼板のミクロ組織が不均質となり、プロジェクション溶接後の耐遅れ破壊特性が低下する。これを回避するには、ベイナイト単相で巻き取ることが重要である。また、高温で巻き取るとTi系析出物が粗大化し、プロジェクション溶接後の耐遅れ破壊特性が低下する。そのため、本発明では、巻取り温度の上限は520℃とした。好ましくは500℃以下である。なお、巻取り温度の下限については、特に規定はしないが、巻取り温度が低温になりすぎると、硬質なマルテンサイトが過剰に生成し、冷間圧延負荷が増大するため、300℃以上が好ましい。
〔酸洗工程〕
 熱間圧延工程後、酸洗を実施し、熱延板表層のスケールを除去する。この酸洗処理は特に限定されず、常法に従って実施すればよい。
〔熱処理工程〕
・第1の熱処理工程:830~930℃の温度域に600秒以下加熱
 本発明では、熱間圧延後に2回の熱処理を施す。これにより、Mn偏析を解消すると共に、Ti系析出物の分布状態を制御して、プロジェクション溶接後の耐遅れ破壊特性を向上させる。
 第1の熱処理の熱処理温度が830℃に満たない場合、元素分配が不十分となり、熱延後の元素分布状態の影響を除去することができないため、Mnの偏在に起因して、その後の第2の熱処理および熱間プレス後もMn偏析が解消されず、その結果、プロジェクション溶接後の耐遅れ破壊特性が劣化する。一方、930℃を超えて第1の熱処理をすると、粗大かつ硬質なマルテンサイトが過度に存在し、第2の熱処理後のミクロ組織が不均一となり、かつTi系析出物が粗大化するため、熱間プレス後に所望のミクロ組織およびTi系析出物の分布状態が得られない。そのため、第1の熱処理の熱処理温度は830~930℃の範囲とする。なお、保持時間については、Ti系析出物の粗大化を抑制する観点から、600秒以下とすることが好ましい。
・冷間圧延工程
 所定の板厚の冷延板に圧延する冷間圧延工程を行う。この冷間圧延工程は特に限定されず常法に従って実施すればよい。
・第2の熱処理工程:5~20℃/sの平均昇温速度で720~850℃の温度域まで加熱し、該温度域で15秒以上600秒間均熱
 この第2の熱処理は、冷間圧延後の再結晶を進行させると共に、熱間プレス後の部材のミクロ組織やTi系析出物の分布状態および表面におけるMn偏析を制御するために実施する。
 この第2の熱処理工程において、あまりに急速に加熱すると再結晶が進行しにくくなるため、平均昇温速度の上限は20℃/sとする。一方、昇温速度が小さすぎるとフェライトやマルテンサイト粒が粗大化して、熱間プレス後に所望のミクロ組織が得られないため、5℃/s以上の平均昇温速度が必要である。好ましくは8℃/s以上である。この平均昇温速度を制御することによって、結晶粒の微細化が可能となる。
 そして、後述する720~850℃の均熱温度域まで加熱する。
・均熱温度:720~850℃
 均熱温度は、フェライトとオーステナイトの2相域の温度域とする。720℃未満ではマルテンサイト分率が少なくなり、表面のMn偏析が大きくなるため、均熱温度の下限は720℃とする。一方、均熱温度が高すぎると、オーステナイトの結晶粒成長が顕著となり、結晶粒およびTi系析出物が粗大化し、プロジェクション溶接後の耐遅れ破壊特性が低下するため、均熱温度は850℃以下とする。好ましくは830℃以下である。
・均熱保持時間:15~600秒
 上記の均熱温度において、再結晶の進行および一部もしくは全ての組織のオーステナイト変態のためには、少なくとも15s保持する必要がある。一方、保持時間が過剰に長いと、Mnのミクロ偏析が助長され、曲げ加工性が劣化することから、保持時間は600秒以内が好ましい。
〔冷却工程〕
・均熱後の冷却条件:5℃/s以上の第3平均冷却速度で600℃以下の温度域まで冷却
 上記の均熱処理(焼鈍処理)後は、均熱温度から600℃以下の温度域(冷却停止温度)まで、5℃/s以上の平均冷却速度で冷却する必要がある。平均冷却速度が5℃/s未満では、冷却中にフェライト変態が進行して、冷延鋼板のマルテンサイトの体積率が減少し、Ti系析出物が粗大化するため、プロジェクション溶接後の耐遅れ破壊特性の確保が困難となる。この平均冷却速度の上限については特に規定されないが、設備上の観点およびコストの面から、30℃/s以下が好適である。また、冷却停止温度が600℃を超える場合には、パーライトが過剰に生成し、鋼板のミクロ組織における所定の体積率を得られないため、やはりプロジェクション溶接後の耐遅れ破壊特性が低下する。
 上述した一連の製造工程において、本発明でとくに重要なのは、熱間圧延と、熱間圧延後の2回の熱処理(第1の熱処理ならびに第2の熱処理およびその後の冷却処理)である。
 すなわち、上記した熱間圧延および熱間圧延後の2回の熱処理を適正に制御することによって、Mn偏析が解消されると共に、Ti系析出物の分布状態が改善される結果、鋼板表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物を鋼板の板厚方向に平行な断面100μm2当たり平均で10個以上析出させることができる。また、熱間圧延およびその後の第1の熱処理を適正に制御することによって、鋼板表面から100μmの深さ位置から板厚中央部まで板厚方向に200μm毎に測定したビッカース硬度の標準偏差を40以下とすることができる。
 その後、溶融亜鉛めっきなどのめっき処理を施してもよいし、かかるめっき処理を施さずに冷延鋼板のままで使用してもよい。
〔めっき工程〕
 本発明の熱間プレス用冷延鋼板は、上述の製造工程により製造された冷延鋼板ままで使用してもよいが、目的に応じて、Al系めっき層またはZn系めっき層を形成するためのAl系めっき処理またはZn系めっき処理を行ってもよい。
 かかるめっき処理は何ら限定されるものではなく、公知の溶融めっき法、電気めっき法、蒸着めっき法等がいずれも適用可能である。また、めっき工程後に合金化処理を施してもよい。代表的なめっき処理としては、Al系めっき処理としては、溶融アルミ(Al)めっき、溶融Al-Siめっきを施す処理が、またZn系めっき処理としては、溶融亜鉛めっきまたは電気亜鉛ニッケルめっきを施す処理、あるいは溶融亜鉛めっき後さらに合金化処理を施す処理が挙げられる。
 なお、冷延鋼板に対して調質圧延を実施しても良い。この際の好適な伸び率は0.05~2.0%である。
 次に、得られた冷延鋼板に対して行う熱間プレスについて説明する。
 熱間プレスの方法および条件は何ら限定されるものではなく、公知の熱間プレス方法がすべて適用可能である。以下に一例を示すが、これに限定されるものではない。
 例えば、素材である熱間プレス用冷延鋼板を、電気炉、ガス炉、通電加熱炉、遠赤外線加熱炉等を使用して、Ac3変態点~1000℃の温度範囲に加熱し、この温度範囲で0~600秒間保持した後、鋼板をプレス機に搬送して、550~800℃の範囲で熱間プレスを行えばよい。熱間プレス用冷延鋼板を加熱する際の昇温速度は、3~200℃/sとすればよい。
 ここに、Ac3変態点は、次式によって求めることができる。
  Ac3変態点(℃)=881-206C+53Si-15Mn-20Ni-1Cr-27Cu+41Mo
  ただし、式中の元素記号は各元素の含有量(質量%)を表す。含有しない元素については、0として計算する。
 以下、本発明の実施例について説明する。
 なお、本発明は、もとより以下に述べる実施例によって制限を受けるものではなく、本発明の趣旨に適合し得る範囲において適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。
 表1に示す成分組成の鋼を溶製し、鋳造してスラブとした後、1250℃に加熱後、仕上げ圧延終了温度(FDT)を表2に示す条件で熱間圧延を行った。ついで、熱延鋼板を、表2に示す第1平均冷却速度(冷速1)で冷却停止温度(第1冷却温度)まで冷却した後、第2平均冷却温度(冷速2)で巻取り温度(CT)まで冷却し、コイルに巻取った。なお、一部の試料については、熱間圧延後、2段階の冷却処理を行わず、一定速度で冷却し、コイルに巻取った。
 ついで、得られた熱延板を、酸洗後、表2に示す第1の熱処理を施したのち、表2に示す圧下率で冷間圧延を施して、冷延板(板厚:1.4mm)とした。
 ついで、かくして得られた冷延鋼板を、連続焼鈍ライン(CAL)もしくは連続溶融めっきライン(CGL)において、表2に示す条件で第2の熱処理(焼鈍処理ともいう)を行い、CALを通過した鋼板については冷延鋼板(CR)、CGLを通過した鋼板については溶融亜鉛めっき鋼板(GI)を得た。なお、CGLを通過した鋼板の一部については、溶融亜鉛めっき処理を施した後、さらに550℃で合金化処理を行い、合金化溶融亜鉛めっき鋼板(GA)を得た。また、溶融アルミめっき処理を施して、溶融アルミめっき鋼板(AS)を得た。さらに、一部はCALにて焼鈍した後に電気亜鉛めっきライン(EGL)において、電気亜鉛ニッケルめっき鋼板(EZN)を得た。
 ついで、得られた冷延鋼板(めっき鋼板を含む)に対し、表3に示す条件で熱間プレスを実施した。
 熱間プレスで使用した金型は、パンチ幅70mm、パンチ肩R4mm、ダイ肩R4mmで、成形深さは30mmである。冷延鋼板に対する加熱は、加熱速度に応じて赤外線加熱炉または雰囲気加熱炉のいずれかを用い、大気中で行った。また、プレス後の冷却は、鋼板のパンチ・ダイ間での挟み込みと挟み込みから開放したダイ上での空冷とを組み合わせて行い、プレス(開始)温度から150℃まで冷却した。このとき、パンチを下死点にて保持する時間を1~60秒の範囲で変えることで冷却速度を調整した。
 かくして得られた熱間プレス部材のハット底部の位置からJIS 5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行い、引張強さ(TS)を測定した。
 また、プロジェクション溶接後の耐遅れ破壊特性の試験に関しては、はじめに各種熱間プレス部材から、50mm×150mmの試験片を採取し、中央に直径10mmの穴をあけ、4点のプロジェクション部を有するM6溶接用ナットを、前記試験片の穴の中心と前記ナットの穴の中心とが一致するように交流溶接機にセットして溶接した。抵抗溶接の条件は、溶接ガンに取付けられたサーボモータ加圧式で単相交流(50Hz)の抵抗溶接機を用いて溶接を行い、プロジェクション溶接部を保有した試験片を作製した。なお、使用した一対の電極チップは、平型30mmφの電極とした。溶接条件は加圧力を3000N、通電時間は7サイクル(50Hz)、溶接電流は12kA、ホールド時間は10サイクル(50Hz)とした。
 このようにして得られた溶接体のナット穴にボルトを固定した後、JIS B 1196:2001に準拠した押込剥離試験によってナットが鋼板から剥離するときの荷重を測定した。このときの剥離強度をPSとし、上記と同様の方法でボルト締結の試験片を作製し、0.6×PSおよび0.8×PSの荷重を負荷させた。その後に、室温で塩酸(pH=2.5)の溶液に浸漬してナットと鋼板の剥離有無を評価した。
 両方の荷重で100時間以上剥離しない場合は耐遅れ破壊特性を良好(○)、0.8×PSの荷重のみ100時間未満で剥離した場合は耐遅れ破壊特性を適(△)、両方の荷重で100時間未満で剥離した場合は耐遅れ破壊特性を劣(×)とした。
 熱間プレス後の部材のマルテンサイトの体積率は、鋼板の圧延方向に平行かつ厚さ方向に平行な断面を研磨後、3vol%ナイタールで腐食し、SEM(走査型電子顕微鏡)を用いて5000倍の倍率で観察し、ポイントカウント法(ASTM E562-83(1988)に準拠)により、面積率を測定し、その面積率を体積率とした。
 また、Ti系析出物の粒径は、冷延鋼板およびプレス部材とも、厚さ方向に平行な断面について、TEM(透過型電子顕微鏡)を用いて10000倍の倍率で0.5μm×0.5μmの視野範囲を10箇所観察し、Media Cybernetics社のImage-Proを用いて、下限を0.005μmとして、その円相当直径を算出することで粒径を求めた。粒径が0.10μm以下のTi系析出物の個数はTEM(透過型電子顕微鏡)を用いて10000倍の倍率で0.5μm×0.5μmの視野範囲を10箇所観察し、10箇所の平均個数密度を求めた。この方法では粒径が0.005μm 以上のTi系析出物であれば数えることができた。
 冷延鋼板のビッカース硬さの標準偏差は、鋼板表面100μmから板厚方向に200μm毎に鋼板表面から900μmまでビッカース硬度を5列測定し、平均の標準偏差を求めた。ビッカース硬さの測定条件の試験力は300g(2.942N)、保持時間は15秒とした。
 旧オーステナイト粒中におけるセメンタイトの粒径および個数については、次のようにして求めた。すなわち、粒径が0.20μm未満のセメンタイトの個数は、熱間プレス後の部材の厚さ方向に平行な断面について、TEM(透過型電子顕微鏡)を用いて10000倍および30000倍の倍率で0.5μm×0.5μmの視野範囲を10箇所観察し、10箇所の平均個数密度を求めた。この方法では粒径が0.050μm 以上のセメンタイトであれば数えることができた。粒径に関しては、前述のTEMで観察されたセメンタイトの円相当直径を算出し、それらの値を平均して求めた。
 かくして得られた冷延鋼板および熱間プレス部材のミクロ組織、ならびに熱間プレス部材の引張特性およびプロジェクション溶接後の耐遅れ破壊特性の測定結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表4に示したとおり、成分組成および熱間プレス後の部材のミクロ組織が本発明の適正範囲を満足する発明例はいずれも、高い引張強度は言うまでもなく、優れたプロジェクション溶接後の耐遅れ破壊特性を併せて得ることができた。

Claims (10)

  1.  部材の鋼成分組成が、質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.0%以上2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.005%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなり、
     部材のミクロ組織が、部材表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物が部材の厚さ方向に平行な断面100μm2当たり平均で5個以上存在し、かつ部材表面から板厚方向20~100μmの深さ範囲において、マルテンサイトを体積率で95~100%有し、さらに旧オーステナイト粒中に粒径が0.20μm未満のセメンタイトが平均で10個以上存在し、引張強さが1780MPa以上である、熱間プレス部材。
  2.  前記部材が、質量%で、さらにNb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する請求項1に記載の熱間プレス部材。
  3.  前記部材の表層に、Al系めっき層またはZn系めっき層を有する請求項1または2に記載の熱間プレス部材。
  4.  鋼板の成分組成が、質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.0%以上2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.005%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなり、
     鋼板のミクロ組織が、鋼板表面から板厚方向に100μmまでの範囲において、粒径が0.10μm以下のTi系析出物が鋼板の板厚方向に平行な断面100μm2当たり平均で10個以上存在し、
     さらに鋼板表面から100μmの深さ位置から板厚中央部まで板厚方向に200μm毎に測定したビッカース硬度の標準偏差が40以下である、熱間プレス用冷延鋼板。
  5.  前記鋼板が、質量%で、さらにNb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する請求項4に記載の熱間プレス用冷延鋼板。
  6.  前記鋼板が、表面にAl系めっき層またはZn系めっき層を有する請求項4または5に記載の熱間プレス用冷延鋼板。
  7.  請求項4に記載の熱間プレス用冷延鋼板を製造する方法であって、
     質量%で、C:0.28%以上0.42%未満、Si:1.5%以下、Mn:1.0%以上2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上0.50%以下、N:0.005%以下およびTi:0.005%以上0.15%以下を含有し、残部はFeおよび不可避的不純物からなる鋼素材を、
     仕上げ圧延の最終パスの圧下率を12%以上、該最終パスの直前のパスの圧下率を15%以上とし、仕上げ圧延終了温度が860~950℃の条件で熱間圧延し、
     上記の熱間圧延後、冷却停止温度までの第1平均冷却速度を70℃/s以上とし、700℃以下の冷却停止温度まで冷却する1次冷却を施し、
     上記の1次冷却後、巻取温度までの第2平均冷却速度を5~50℃/sとし、520℃以下の巻取温度で巻取る2次冷却を施し,
     ついで、巻き取った熱延鋼板を酸洗後、830~930℃の温度域で600秒以下に加熱する第1の熱処理を施し、
     その後、冷間圧延を行ったのち、5~20℃/sの平均昇温速度で720~850℃の温度域まで加熱し、該温度域で15~600秒間均熱する第2の熱処理を施し、
     上記の第2の熱処理後、第3平均冷却速度を5℃/s以上とし、600℃以下の冷却停止温度まで冷却する3次冷却を施す、熱間プレス用冷延鋼板の製造方法。
  8.  前記鋼素材が、質量%で、さらにNb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下およびW:0.10%以下から選択される一種または二種以上を含有する請求項7に記載の熱間プレス用冷延鋼板の製造方法。
  9.  前記3次冷却後、鋼板表面に、Al系めっき処理またはZn系めっき処理を施す請求項7または8に記載の熱間プレス用冷延鋼板の製造方法。
  10.  請求項4乃至6のいずれかに記載の熱間プレス用冷延鋼板を、Ac3変態点~1000℃の温度域で加熱後、熱間プレスを行う熱間プレス部材の製造方法。
PCT/JP2018/013728 2017-06-30 2018-03-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法 WO2019003543A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197035930A KR102296362B1 (ko) 2017-06-30 2018-03-30 열간 프레스 부재 및 그 제조 방법 그리고 열간 프레스용 냉연 강판 및 그 제조 방법
EP18824186.3A EP3647445B1 (en) 2017-06-30 2018-03-30 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
US16/618,887 US11085101B2 (en) 2017-06-30 2018-03-30 Hot-pressed member and method for manufacturing same, and cold-rolled steel sheet for hot pressing and method for manufacturing same
CN201880042554.4A CN110799660B (zh) 2017-06-30 2018-03-30 热压构件及其制造方法以及热压用冷轧钢板及其制造方法
MX2019015392A MX2019015392A (es) 2017-06-30 2018-03-30 Miembro prensado en caliente y metodo para la fabricacion del mismo, y lamina de acero laminada en frio para prensado en caliente y metodo para la fabricacion de la misma.
JP2018550487A JP6540909B2 (ja) 2017-06-30 2018-03-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/024261 2017-06-30
PCT/JP2017/024261 WO2019003451A1 (ja) 2017-06-30 2017-06-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板

Publications (1)

Publication Number Publication Date
WO2019003543A1 true WO2019003543A1 (ja) 2019-01-03

Family

ID=64741293

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/024261 WO2019003451A1 (ja) 2017-06-30 2017-06-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
PCT/JP2018/013728 WO2019003543A1 (ja) 2017-06-30 2018-03-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/024261 WO2019003451A1 (ja) 2017-06-30 2017-06-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板

Country Status (7)

Country Link
US (1) US11085101B2 (ja)
EP (1) EP3647445B1 (ja)
JP (1) JP6540909B2 (ja)
KR (1) KR102296362B1 (ja)
CN (1) CN110799660B (ja)
MX (1) MX2019015392A (ja)
WO (2) WO2019003451A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170667A1 (ja) * 2019-02-21 2020-08-27 Jfeスチール株式会社 熱間プレス部材、熱間プレス用冷延鋼板およびそれらの製造方法
WO2020189761A1 (ja) * 2019-03-20 2020-09-24 日本製鉄株式会社 ホットスタンプ成形体
CN113366135A (zh) * 2019-01-31 2021-09-07 杰富意钢铁株式会社 热压构件、热压构件用冷轧钢板以及它们的制造方法
JP7028378B1 (ja) * 2020-08-28 2022-03-02 Jfeスチール株式会社 熱間プレス部材およびその製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003445A1 (ja) 2017-06-30 2019-01-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
WO2019003447A1 (ja) * 2017-06-30 2019-01-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
KR102603495B1 (ko) * 2019-05-31 2023-11-20 닛폰세이테츠 가부시키가이샤 핫 스탬프 성형체
KR102606157B1 (ko) * 2019-05-31 2023-11-29 닛폰세이테츠 가부시키가이샤 핫 스탬프용 강판
MX2022009710A (es) * 2020-02-13 2022-09-09 Nippon Steel Corp Producto estampado en caliente.
CN111673253A (zh) * 2020-06-12 2020-09-18 昆山荣仕杰智能装备科技有限公司 一种适用于高屈服强度板材的螺母凸焊焊接工艺
JP7020597B1 (ja) * 2020-06-25 2022-02-16 Jfeスチール株式会社 プロジェクション溶接継手及びプロジェクション溶接方法
EP4261315A1 (en) * 2020-12-09 2023-10-18 Hyundai Steel Company Hot-stamped part
KR102416968B1 (ko) * 2020-12-23 2022-07-07 현대제철 주식회사 자동차 구조체용 부재

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174282A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2012157900A (ja) 2011-01-13 2012-08-23 Nippon Steel Corp プロジェクション溶接継手およびその製造方法
JP2012179646A (ja) * 2011-03-02 2012-09-20 Nippon Steel Corp 溶接部の遅れ破壊特性並びに静的強度特性に優れた自動車用構造部材、および、その製造方法
JP2013122076A (ja) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp 強度と靭性のバランスに優れたホットスタンプ成形体及びその製造方法並びにホットスタンプ成形体用鋼板の製造方法
JP2013147749A (ja) * 2013-03-07 2013-08-01 Nippon Steel & Sumitomo Metal Corp 靭性及び耐水素脆化特性に優れた高強度ホットスタンピング成形品及びその製造方法
JP2014015638A (ja) * 2012-07-06 2014-01-30 Nippon Steel & Sumitomo Metal 熱間プレス鋼板部材およびその製造方法ならびに熱間プレス用鋼板
JP2014040628A (ja) * 2012-08-21 2014-03-06 Nippon Steel & Sumitomo Metal 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法
US20170029913A1 (en) * 2015-07-30 2017-02-02 Hyundai Motor Company Hot stamping steel and producing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310118A (ja) * 1994-05-16 1995-11-28 Daido Steel Co Ltd 冷間加工に適した肌焼鋼の製造方法
JP3582504B2 (ja) * 2001-08-31 2004-10-27 住友金属工業株式会社 熱間プレス用めっき鋼板
KR101010971B1 (ko) * 2008-03-24 2011-01-26 주식회사 포스코 저온 열처리 특성을 가지는 성형용 강판, 그 제조방법,이를 이용한 부품의 제조방법 및 제조된 부품
JP5890711B2 (ja) * 2012-03-15 2016-03-22 株式会社神戸製鋼所 熱間プレス成形品およびその製造方法
WO2014142238A1 (ja) * 2013-03-14 2014-09-18 新日鐵住金株式会社 耐遅れ破壊特性と低温靭性に優れた高強度鋼板、およびそれを用いて製造した高強度部材
JP6320792B2 (ja) * 2014-02-27 2018-05-09 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
MX2016012380A (es) * 2014-03-26 2016-12-02 Nippon Steel & Sumitomo Metal Corp Miembro de lamina de acero formada en caliente de alta resistencia.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010174282A (ja) * 2009-01-28 2010-08-12 Jfe Steel Corp 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP2012157900A (ja) 2011-01-13 2012-08-23 Nippon Steel Corp プロジェクション溶接継手およびその製造方法
JP2012179646A (ja) * 2011-03-02 2012-09-20 Nippon Steel Corp 溶接部の遅れ破壊特性並びに静的強度特性に優れた自動車用構造部材、および、その製造方法
JP2013122076A (ja) * 2011-12-12 2013-06-20 Nippon Steel & Sumitomo Metal Corp 強度と靭性のバランスに優れたホットスタンプ成形体及びその製造方法並びにホットスタンプ成形体用鋼板の製造方法
JP2014015638A (ja) * 2012-07-06 2014-01-30 Nippon Steel & Sumitomo Metal 熱間プレス鋼板部材およびその製造方法ならびに熱間プレス用鋼板
JP2014040628A (ja) * 2012-08-21 2014-03-06 Nippon Steel & Sumitomo Metal 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法
JP2013147749A (ja) * 2013-03-07 2013-08-01 Nippon Steel & Sumitomo Metal Corp 靭性及び耐水素脆化特性に優れた高強度ホットスタンピング成形品及びその製造方法
US20170029913A1 (en) * 2015-07-30 2017-02-02 Hyundai Motor Company Hot stamping steel and producing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113366135A (zh) * 2019-01-31 2021-09-07 杰富意钢铁株式会社 热压构件、热压构件用冷轧钢板以及它们的制造方法
EP3919645A4 (en) * 2019-01-31 2022-03-16 JFE Steel Corporation HOT PRESSED ELEMENT, COLD ROLLED STEEL SHEET FOR HOT PRESSED ELEMENT, AND RESPECTIVE METHODS FOR MAKING THESE PRODUCTS
US11850821B2 (en) 2019-01-31 2023-12-26 Jfe Steel Corporation Hot-pressed member, cold-rolled steel sheet for hot-pressed member, and method for producing the same
WO2020170667A1 (ja) * 2019-02-21 2020-08-27 Jfeスチール株式会社 熱間プレス部材、熱間プレス用冷延鋼板およびそれらの製造方法
JPWO2020170667A1 (ja) * 2019-02-21 2021-03-11 Jfeスチール株式会社 熱間プレス部材、熱間プレス用冷延鋼板およびそれらの製造方法
EP3929321A4 (en) * 2019-02-21 2021-12-29 JFE Steel Corporation Hot-pressed member, cold-rolled steel sheet for hot press use, and methods respectively manufacturing these products
WO2020189761A1 (ja) * 2019-03-20 2020-09-24 日本製鉄株式会社 ホットスタンプ成形体
JPWO2020189761A1 (ja) * 2019-03-20 2021-11-18 日本製鉄株式会社 ホットスタンプ成形体
JP7151871B2 (ja) 2019-03-20 2022-10-12 日本製鉄株式会社 ホットスタンプ成形体
JP7028378B1 (ja) * 2020-08-28 2022-03-02 Jfeスチール株式会社 熱間プレス部材およびその製造方法
WO2022044510A1 (ja) * 2020-08-28 2022-03-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法

Also Published As

Publication number Publication date
US11085101B2 (en) 2021-08-10
CN110799660A (zh) 2020-02-14
EP3647445B1 (en) 2021-04-28
JP6540909B2 (ja) 2019-07-10
MX2019015392A (es) 2020-02-20
KR102296362B1 (ko) 2021-08-31
KR20200004364A (ko) 2020-01-13
CN110799660B (zh) 2021-05-14
WO2019003451A1 (ja) 2019-01-03
US20200131596A1 (en) 2020-04-30
JPWO2019003543A1 (ja) 2019-06-27
EP3647445A1 (en) 2020-05-06
EP3647445A4 (en) 2020-05-06

Similar Documents

Publication Publication Date Title
JP6540909B2 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6501046B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6504323B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6501045B1 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6540910B2 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
JP6540908B2 (ja) 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法
WO2020158285A1 (ja) 熱間プレス部材、熱間プレス部材用冷延鋼板、およびそれらの製造方法
WO2022044510A1 (ja) 熱間プレス部材およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018550487

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824186

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197035930

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018824186

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018824186

Country of ref document: EP

Effective date: 20200130