CN110799660A - 热压构件及其制造方法以及热压用冷轧钢板及其制造方法 - Google Patents

热压构件及其制造方法以及热压用冷轧钢板及其制造方法 Download PDF

Info

Publication number
CN110799660A
CN110799660A CN201880042554.4A CN201880042554A CN110799660A CN 110799660 A CN110799660 A CN 110799660A CN 201880042554 A CN201880042554 A CN 201880042554A CN 110799660 A CN110799660 A CN 110799660A
Authority
CN
China
Prior art keywords
less
hot
steel sheet
rolled steel
hot pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880042554.4A
Other languages
English (en)
Other versions
CN110799660B (zh
Inventor
高岛克利
小林崇
船川义正
中岛清次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of CN110799660A publication Critical patent/CN110799660A/zh
Application granted granted Critical
Publication of CN110799660B publication Critical patent/CN110799660B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/013Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/02Hardening by precipitation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0463Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

对于热压构件,在对其成分组成适当地进行调整的基础上,使其显微组织为:在沿板厚方向从构件表面到100μm的范围内,使粒径为0.10μm以下的Ti系析出物在构件的与厚度方向平行的截面每100μm2中平均存在5个以上,并且在板厚方向距构件表面20~100μm的深度范围内,具有以体积率计为95~100%的马氏体,而且在原奥氏体晶粒中粒径小于0.20μm的渗碳体平均存在10个以上,由此,不仅在热压后具有TS为1780MPa以上的高拉伸强度,而且还能够得到优良的凸焊后的耐延迟断裂特性。

Description

热压构件及其制造方法以及热压用冷轧钢板及其制造方法
技术领域
本发明涉及热压构件及其制造方法以及热压用冷轧钢板及其制造方法,特别是针对热压构件想要实现凸焊后的耐延迟断裂特性的提高的热压构件。
本发明中,热压构件是指对具有淬透性的冷轧钢板进行热压成形而高强度化的构件。
另外,本发明的冷轧钢板不仅包括一般的冷轧钢板,还包括热镀锌冷轧钢板(包括合金化热镀锌冷轧钢板)、电镀锌冷轧钢板(包括电镀锌镍合金冷轧钢板)、镀铝冷轧钢板等。
背景技术
近年来,由于环境问题的增多,CO2排放限制变得严格,在汽车领域中面向燃料效率提高的车身的轻量化成为课题。为此,正在推进通过在汽车部件中应用高强度钢板而实现薄壁化,并且正在研究拉伸强度(TS)为1780MPa以上的钢板的应用。
汽车的结构用构件、增强用构件中使用的高强度钢板要求成形性优良。但是,TS为1780MPa以上的钢板的延展性低,因此在冷压成形时产生裂纹、或者由于屈服强度高而产生大的回弹,因此在冷压成形后无法得到高尺寸精度。另外,冷压成形后在钢板内残留有残余应力,因此,有可能由于从使用环境侵入的氢而导致延迟断裂(氢脆)。
在这样的状况下,作为获得高强度的方法,最近正在着眼于通过热压(也称为热冲压、模压淬火、压力淬火等)进行的冲压成形。热压是指下述成形方法:将钢板加热至奥氏体单相的温度范围后,在高温的状态下进行成形(加工),由此能够以高尺寸精度进行成形,通过成形后的冷却进行淬火,由此能够实现高强度化。另外,该热压中,与冷压相比,冲压成形后的残余应力降低,因此耐延迟断裂特性也得到改善。
但是,汽车组装工序大多通过电阻点焊进行组装,但在一部分电阻点焊机的焊枪无法进入的部位,通过螺栓固定进行组装。另外,与不同种类的材料(铝、树脂等)接合的情况也多为螺栓固定。这种情况下,在钢板上电阻焊接具有突出部的螺母,然后利用螺栓与其他板进行组装。
如上所述,热压构件虽然残余应力降低,但为了确保汽车车身整体的刚性,在热压后也施加应力,因此担心在螺母与钢板的焊接部发生延迟断裂。
现有技术文献
专利文献
专利文献1:日本特开2012-157900号公报
发明内容
发明所要解决的问题
以往,作为提高螺母的凸焊后的剥离强度的手段,例如,如专利文献1所记载的那样,公开了通过控制焊接条件来改善剥离强度的技术。但是,尚未开发出提高热压后的螺母的凸焊部的延迟断裂的技术。
这样,实际情况是,无论焊接条件如何,都难以改善TS为1780MPa以上的热压构件与螺母的凸焊部的耐延迟断裂特性,尚未开发出兼具这些特性的热压构件。
用于解决问题的方法
因此,本发明人鉴于上述实际情况反复进行了深入研究,结果得到下述见解:为了提高热压构件的螺母的凸焊后的耐延迟断裂特性,有效的是:使微细的Ti系析出物存在于构件的表层部而作为氢的捕获位点的同时也提高凸焊后的韧性,并且使微细的渗碳体作为氢捕获位点存在于构件表层部的原奥氏体晶粒中。
发现设定为这种构成时,即使氢伴随着腐蚀而侵入,也可有效地捕获氢,在螺母与钢板的界面处的裂纹的生成得到抑制,结果,耐延迟断裂特性提高。
加工为汽车车身后,在实际反复行驶的过程中,由于雨等,在构件钢板上电化学地产生氢,一部分氢侵入到构件钢板中。只要构件钢板中未产生应力,则不会发生以该氢为主要原因的延迟断裂,但有时螺母的焊接部在螺栓固定后施加应力。由此,从螺母与构件钢板的界面和界面附近开始龟裂,产生裂纹。
关于这一点,如果使氢的捕获位点在可能产生龟裂的构件钢板表面附近生成,则氢在捕获位点被稳定地捕获,龟裂的生成得到抑制,因此耐延迟断裂特性提高。
为此,关键的是,在热压前的冷钢板的时刻预先使某种程度微细的Ti系析出物析出于钢板的表层部。
此外,渗碳体也作为捕获位点发挥功能,因此在热压后使渗碳体微细地分散是有效的,为此,作为冷轧钢板,重要的是抑制C和Mn的偏析。
本发明立足于上述见解。
即,本发明的主旨构成如下所述。
1.一种热压构件,其中,
构件的钢成分组成为:以质量%计含有C:0.28%以上且小于0.42%、Si:1.5%以下、Mn:1.0%以上且2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上且0.50%以下、N:0.005%以下和Ti:0.005%以上且0.15%以下,余量由Fe和不可避免的杂质构成,
构件的显微组织为:在沿板厚方向从构件表面到100μm的范围内,粒径为0.10μm以下的Ti系析出物在构件的与厚度方向平行的截面每100μm2中平均存在5个以上,并且在板厚方向距构件表面20~100μm的深度范围内,具有以体积率计为95~100%的马氏体,而且在原奥氏体晶粒中粒径小于0.20μm的渗碳体平均存在10个以上,
所述热压构件的拉伸强度为1780MPa以上。
2.如上述1所述的热压构件,其中,上述构件以质量%计还含有选自Nb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上且0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下和W:0.10%以下中的一种或两种以上。
3.如上述1或2所述的热压构件,其中,在上述构件的表层具有Al系镀层或Zn系镀层。
4.一种热压用冷轧钢板,其中,
钢板的成分组成为:以质量%计含有C:0.28%以上且小于0.42%、Si:1.5%以下、Mn:1.0%以上且2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上且0.50%以下、N:0.005%以下和Ti:0.005%以上且0.15%以下,余量由Fe和不可避免的杂质构成,
钢板的显微组织为:在沿板厚方向从钢板表面到100μm的范围内,粒径为0.10μm以下的Ti系析出物在钢板的与板厚方向平行的截面每100μm2中平均存在10个以上,
而且沿板厚方向从距钢板表面100μm的深度位置到板厚中央部为止每200μm测定的维氏硬度的标准偏差为40以下。
5.如上述4所述的热压用冷轧钢板,其中,上述钢板以质量%计还含有选自Nb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上且0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下和W:0.10%以下中的一种或两种以上。
6.如上述4或5所述的热压用冷轧钢板,其中,上述钢板在表面具有Al系镀层或Zn系镀层。
7.一种热压用冷轧钢板的制造方法,其为制造上述4所述的热压用冷轧钢板的方法,其中,
将钢原材在将精轧的最终道次的压下率设定为12%以上、将紧邻该最终道次的前一道次的压下率设定为15%以上、精轧结束温度为860~950℃的条件下进行热轧,
上述热轧后,实施将到冷却停止温度为止的第一平均冷却速度设定为70℃/秒以上、冷却至700℃以下的冷却停止温度的一次冷却,
上述一次冷却后,实施将到卷取温度为止的第二平均冷却速度设定为5~50℃/秒、在520℃以下的卷取温度下进行卷取的二次冷却,
接着,对卷取后的热轧钢板进行酸洗后,实施在830~930℃的温度范围内加热600秒以下的第一热处理,
然后,进行冷轧后,实施以5~20℃/秒的平均升温速度加热至720~850℃的温度范围、在该温度范围内进行15~600秒均热的第二热处理,
上述第二热处理后,实施将第三平均冷却速度设定为5℃/秒以上、冷却至600℃以下的冷却停止温度的三次冷却,
上述钢原材以质量%计含有C:0.28%以上且小于0.42%、Si:1.5%以下、Mn:1.0%以上且2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上且0.50%以下、N:0.005%以下和Ti:0.005%以上且0.15%以下,余量由Fe和不可避免的杂质构成。
8.如上述7所述的热压用冷轧钢板的制造方法,其中,上述钢原材以质量%计还含有选自Nb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上且0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下和W:0.10%以下中的一种或两种以上。
9.如上述7或8所述的热压用冷轧钢板的制造方法,其中,在上述三次冷却后,对钢板表面实施Al系镀覆处理或Zn系镀覆处理。
10.一种热压构件的制造方法,其中,将上述4至6中任一项所述的热压用冷轧钢板在Ac3相变点~1000℃的温度范围内加热后,进行热压。
发明效果
根据本发明,能够得到在热压后具有极高的拉伸强度、同时兼具优良的凸焊后的耐延迟断裂特性的热压构件。例如,能够稳定地得到拉伸强度为1780MPa以上、即使在焊接M6螺母后利用螺栓施加0.6×PS(PS:压入剥离强度)的负荷的状态下进行盐酸浸渍也没有裂纹的、螺母的凸焊后的耐延迟断裂特性优良的热压构件。
另外,根据本发明,即使在加热时波动大的热压条件下,也能够得到特性稳定的热压构件。
具体实施方式
以下,具体地对本发明进行说明。
首先,对本发明的热压构件和热压用冷轧钢板的显微组织进行详细说明。
[热压构件的显微组织]
热压构件的显微组织设定为如下的显微组织:在沿板厚方向从构件表面到100μm的范围内,粒径为0.10μm以下的Ti系析出物在构件的与厚度方向平行的截面每100μm2中平均存在5个以上,并且在板厚方向距构件表面20~100μm的深度范围内,具有以体积率计为95~100%的马氏体,而且在原奥氏体晶粒中粒径小于0.20μm的渗碳体平均存在10个以上。
在沿板厚方向从构件表面到100μm的范围内的粒径为0.10μm以下的Ti系析出物在构件的与厚度方向平行的截面每100μm2中平均少于5个时,不仅作为氢捕获位点不充分,而且韧性也变差,因此凸焊后的耐延迟断裂特性变差。优选为平均10个以上。需要说明的是,对于进行测定的构件的与厚度方向平行的截面没有特别限制,任一截面均可。
需要说明的是,本发明中所述的Ti系析出物是指例如TiC、TiN、Ti(C,N)等。
另外,在板厚方向距构件表面20~100μm的深度范围内的马氏体的体积率小于95%时,难以实现1780MPa以上的拉伸强度。因此,马氏体的体积率设定为95%以上。优选为97%以上。也可以为100%。
此外,在板厚方向距构件表面20~100μm的深度范围内,原奥氏体晶粒中(一个原奥氏体晶粒中)粒径小于0.20μm的渗碳体平均少于10个时,作为氢捕获位点也不充分,凸焊后的耐延迟断裂特性变差。优选为平均15个以上。
[热压用冷轧钢板的显微组织]
为了获得作为热压构件所期望的特性,重要的是对热压用冷轧钢板的显微组织进行控制。即,作为热压用冷轧钢板的显微组织,在沿板厚方向从钢板表面100μm以内的范围内,粒径为0.10μm以下的Ti系析出物在钢板的与板厚方向平行的截面每100μm2中平均含有10个以上,而且沿板厚方向从距钢板表面100μm的深度位置到板厚中央部为止每200μm测定的维氏硬度的标准偏差设定为40以下。
在沿板厚方向从钢板表面到100μm的范围内的粒径为0.10μm以下的Ti系析出物在钢板的与板厚方向平行的截面每100μm2中平均少于10个时,热压后难以在沿板厚方向从构件表面到100μm的范围内确保粒径为0.10μm以下的Ti系析出物在构件的与厚度方向平行的截面每100μm2中平均为5个以上,因此凸焊后的耐延迟断裂特性变差。优选为平均15个以上。
另外,沿板厚方向从距钢板表面100μm的深度位置到板厚中央部为止每200μm测定的维氏硬度的标准偏差超过40时,C和Mn的浓度分布变得显著(不均匀)。因此,在热压中的逆相变时C和Mn的分配变得不均匀,渗碳体难以微细地分散,因此凸焊后的耐延迟断裂特性变差。因此,沿板厚方向从距钢板表面100μm的深度位置到板厚中央部为止每200μm测定的维氏硬度的标准偏差设定为40以下。优选为35以下。需要说明的是,对于进行测定的钢板的与板厚方向平行的截面没有特别限制,可以为所谓的C截面也可以为L截面。
热压用冷轧钢板中,在沿板厚方向从钢板表面到100μm的范围内使结晶粒径为0.10μm以下的Ti系析出物在钢板的与板厚方向平行的截面每100μm2中平均含有10个以上这一必要条件在后述的冷轧钢板的制造工序中主要通过第一热处理和第二热处理来实现,另外,沿板厚方向从距钢板表面100μm的深度位置每200μm测定的维氏硬度的标准偏差为40以下这一必要条件主要通过热轧和第一热处理来实现。
接着,对本发明的热压构件和热压用冷轧钢板的适当成分组成范围进行说明。需要说明的是,关于成分的“%”表述是指“质量%”。
C:0.28%以上且小于0.42%
C是对钢的高强度化有效的元素,是对于在热压后使马氏体强化、提高钢的强度而言重要的元素。但是,C的含量小于0.28%时,热压后的马氏体的硬度不充分,因此无法得到1780MPa以上的拉伸强度。优选的C量为0.30%以上。另一方面,添加0.42%以上的C时,电阻点焊后的硬度变硬,韧性降低,凸焊后的耐延迟断裂特性降低。因此,C量设定为小于0.40%。优选小于0.39%。
Si:1.5%以下
Si是使铁素体固溶强化、对高强度化有效的元素。但是,Si的过量添加会导致电阻点焊时的韧性降低,凸焊后的耐延迟断裂特性变差,因此,其含量设定为1.5%以下。优选为1.2%以下、更优选为0.8%以下。需要说明的是,Si的下限没有特别规定,但极低Si化会导致成本的增加,因此优选设定为0.005%。
Mn:1.0%以上且2.2%以下
Mn是提高热压时的淬透性、因此有助于热压后的马氏体形成、即有助于高强度化的元素。为了获得该效果,需要将Mn量设定为1.0%以上。优选为1.2%以上。另一方面,在过量含有Mn的情况下,Mn带过量生成,因此,热压后的渗碳体无法微细地分散,凸焊后的耐延迟断裂特性变差。因此,Mn量设定为2.2%以下。优选为2.1%以下。
P:0.05%以下
P通过固溶强化而有助于高强度化,但在过量添加的情况下,向晶界的偏析变得显著,使晶界脆化,因而凸焊后的耐延迟断裂特性降低,因此P含量设定为0.05%以下。优选为0.04%以下。需要说明的是,P的下限没有特别规定,但极低P化会导致炼钢成本的上升,因此优选设定为0.0005%。
S:0.005%以下
S的含量多的情况下,大量生成MnS等硫化物,在氢侵入时该夹杂物成为起点而导致裂纹的产生,因此凸焊后的耐延迟断裂特性降低。因此,将S含量的上限设定为0.005%。优选为0.0045%以下。需要说明的是,S的下限没有特别规定,但与P同样,极低S化导致炼钢成本的上升,因此优选设定为0.0002%。
Al:0.01%以上且0.50%以下
Al是脱氧所需要的元素,为了获得该效果,需要含有0.01%以上。另一方面,即使含有超过0.50%的Al,效果也饱和,因此将Al量设定为0.50%以下。优选为0.40%以下。
N:0.005%以下
N与Ti形成粗大的氮化物,使凸焊后的耐延迟断裂特性变差,因此需要抑制含量。特别是N量超过0.005%时,该倾向变得显著,因此N含量设定为0.005%以下。优选为0.004%以下,进一步优选为0.0035%以下。
Ti:0.005%以上且0.15%以下
Ti是通过形成微细的碳氮化物而有助于强度提高的元素。此外,Ti在使微细的Ti系析出物作为氢的捕获位点析出于构件的表层部、提高凸焊后的耐延迟断裂特性方面极为有效,是本发明中的重要元素。为了发挥出这样的效果,需要含有0.005%以上的Ti。另一方面,大量添加Ti时,热压后的伸长率显著降低,因此Ti含量设定为0.15%以下。优选为0.12%以下。
另外,本发明中,也可以适当含有以下的成分。
Nb:0.15%以下
Nb是通过形成微细的碳氮化物而有助于强度提高的元素。此外,本发明中,微细的Nb系析出物成为氢的捕获位点,并且使热压时的奥氏体粒径微细化,因此是有助于提高耐延迟断裂特性的元素。为了发挥出这样的效果,优选含有0.005%以上的Nb。进一步优选为0.010%以上。另一方面,即使大量添加Nb,上述效果也饱和,反而导致成本增加,因此Nb含量优选设定为0.15%以下。更优选为0.12%以下,进一步优选为0.10%以下。
B:0.0050%以下
B是提高热压时的淬透性、因此有助于热压后的马氏体形成、即有助于高强度化的元素。另外,通过偏析于晶界而使晶界强度提高,因此对耐延迟断裂特性有效。为了表现出这样的效果,优选含有0.0002%以上的B。但是,过量的B添加使韧性变差,降低凸焊后的耐延迟断裂特性,因此优选将B含量设定为0.0050%以下。更优选为0.0040%以下,进一步优选为0.0035%以下。
Mo:0.50%以下
Mo是提高热压时的淬透性、因此有助于热压后的马氏体形成、即有助于高强度化的元素。为了获得该效果,优选含有0.005%以上的Mo。进一步优选为0.01%以上。另一方面,即使大量添加Mo,上述效果也饱和,反而导致成本增加,而且化学转化处理性变差,因此该Mo含量优选设定为0.50%以下。
Cr:0.50%以下
Cr也与Mo同样地是提高热压时的淬透性、因此有助于热压后的马氏体形成、即有助于高强度化的元素。为了获得该效果,优选含有0.005%以上。更优选为0.01%以上。另一方面,即使大量添加Cr,上述效果也饱和,而且由于形成表面氧化物而使镀覆性变差,因此Cr含量优选设定为0.50%以下。
Sb:0.001%以上且0.020%以下
Sb具有在热压前对钢板进行加热后通过热压的一系列处理将钢板冷却之前抑制在钢板表层部生成的脱碳层的效果。因此,板面的硬度分布变得均匀,凸焊后的耐延迟断裂特性提高。为了表现出这样的效果,Sb的添加量优选设定为0.001%以上。另一方面,添加超过0.020%的Sb时,轧制负荷载荷增大,使生产率降低,因此Sb量优选设定为0.020%以下。
Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下
Ca、Mg、REM控制硫化物和氧化物的形状、抑制粗大夹杂物的生成,因此凸焊后的耐延迟断裂特性提高。为了表现出这样的效果,优选各自添加0.0005%以上。另一方面,过度的添加会引起夹杂物的增加,仍然使凸焊后的耐延迟断裂特性变差,因此各自的添加量优选设定为0.005%以下。在此,REM为包含Sc、Y和镧系元素的元素。
V:0.15%以下
V是通过形成微细的碳氮化物而有助于强度提高的元素。为了获得这样的效果,优选含有0.01%以上的V。另一方面,大量的V添加使电阻点焊时的韧性降低,凸焊部的耐延迟断裂特性变差,因此V添加量优选设定为0.15%以下。进一步优选为0.10%以下。
Cu:0.50%以下
Cu不仅通过固溶强化而有助于高强度化,而且由于使耐腐蚀性提高而能够改善凸焊后的耐延迟断裂特性,因此可以根据需要进行添加。为了发挥出这些效果,优选含有0.05%以上的Cu。另一方面,即使含有超过0.50%的Cu,效果也饱和,并且容易产生由Cu引起的表面缺陷,因此Cu含量优选设定为0.50%以下。
Ni:0.50%以下
Ni也与Cu同样地使耐腐蚀性提高,因而能够改善凸焊后的耐延迟断裂特性,因此可以根据需要进行添加。另外,与Cu同时添加时,具有抑制Cu所引起的表面缺陷的效果,因此在Cu添加时是有效的。为了发挥出这些效果,优选含有0.05%以上的Ni。但是,大量的Ni添加会降低电阻焊接时的韧性,凸焊后的耐延迟断裂特性变差,因此Ni含量优选设定为0.50%以下。
Sn:0.50%以下
Sn也与Cu、Ni同样地使耐腐蚀性提高,因而能够改善凸焊后的耐延迟断裂特性,因此可以根据需要进行添加。为了发挥出这些效果,优选含有0.05%以上的Sn。但是,大量的Sn添加会降低电阻焊接时的韧性,凸焊后的耐延迟断裂特性变差,因此Sn含量优选设定为0.50%以下。
Zn:0.10%以下
Zn是提高热压时的淬透性、因此有助于热压后的马氏体形成、即有助于高强度化的元素。为了发挥出这些效果,优选含有0.005%以上的Zn。但是,大量的Zn添加会降低电阻焊接时的韧性,凸焊后的耐延迟断裂特性变差,因此Zn含量优选设定为0.10%以下。
Co:0.10%以下
Co也与Cu、Ni同样地使氢超电压提高、使耐腐蚀性提高,因而能够改善凸焊后的耐延迟断裂特性,因此可以根据需要进行添加。为了发挥出这些效果,优选含有0.005%以上的Co。但是,大量的Co添加会降低电阻焊接时的韧性,凸焊后的耐延迟断裂特性变差,因此Co含量优选设定为0.10%以下。
Zr:0.10%以下
Zr也与Cu、Ni同样地使耐腐蚀性提高,因而能够改善凸焊后的耐延迟断裂特性,因此可以根据需要进行添加。为了发挥出这些效果,优选含有0.005%以上的Zr。但是,大量的Zr添加会降低电阻焊接时的韧性,凸焊后的耐延迟断裂特性变差,因此Zr含量优选设定为0.10%以下。
Ta:0.10%以下
Ta与Ti同样地生成合金碳化物、合金氮化物而有助于高强度化。为了获得该效果,优选添加0.005%以上。另一方面,即使过量添加Ta,其添加效果也饱和,并且还增加合金成本。因此,其添加量优选设定为0.10%以下。
W:0.10%以下
W也与Cu、Ni同样地使耐腐蚀性提高,因而能够改善凸焊后的耐延迟断裂特性,因此可以根据需要进行添加。为了发挥出这些效果,优选含有0.005%以上的W。但是,大量的W添加会降低电阻焊接时的韧性,凸焊后的耐延迟断裂特性降低,因此W含量优选设定为0.10%以下。
以上所述以外的余量为Fe和不可避免的杂质。
接着,对本发明的热压用冷轧钢板和热压构件的镀层进行详细说明。
[热压用冷轧钢板的镀层]
本发明的热压用冷轧钢板可以是未被赋予镀层的原样的冷轧钢板,但为了防止热压所引起的氧化、或者为了提高耐腐蚀性,可以对热压前的冷轧钢板的表面赋予镀层。
作为本发明中赋予在热压用冷轧钢板的表面的镀层,优选为Al系镀层或Zn系镀层。通过对热压用冷轧钢板的表面赋予这些镀层,可防止热压所引起的钢板表面的氧化,进而提高热压构件的耐腐蚀性。
作为Al系镀层,可以例示例如通过热镀法形成的Al-Si镀层。另外,作为Zn系镀层,可以例示例如通过热镀法形成的热镀Zn层、将其合金化而成的合金化热镀Zn层、通过电镀法形成的电镀Zn层、电镀Zn-Ni合金层等。
但是,Al系镀层或Zn系镀层并不限定于上述镀层,也可以是除了作为主要成分的Al或Zn以外还含有Si、Mg、Ni、Fe、Co、Mn、Sn、Pb、Be、B、P、S、Ti、V、W、Mo、Sb、Cd、Nb、Cr、Sr等中的一种或两种以上的镀层。关于Al系镀层或Zn系镀层的形成方法,也没有任何限定,公知的热镀法、电镀法、蒸镀法等均可以使用。另外,Al系镀层或Zn系镀层也可以为在镀覆工序后实施了合金化处理的镀层。
本发明中,特别是从进一步提高热压构件的耐腐蚀性、或防止热压成形时的熔融Zn所引起的液体金属脆性裂纹的方面出发,Zn系镀层更优选为Zn-Ni合金镀层。
镀层的附着量没有特别限定,为通常的附着量即可。例如,优选具有每单面的镀层附着量为5~150g/m2的镀层。镀层附着量小于5g/m2时,有时难以确保耐腐蚀性,另一方面超过150g/m2时,有时耐镀层剥离性变差。
[热压构件的镀层]
对赋予有Al系镀层或Zn系镀层的热压用冷轧钢板进行加热后进行热压时,Al系镀层或Zn系镀层中含有的镀层成分的一部分或全部扩散到基底钢板中而生成固溶相、金属间化合物;与此同时,相反地,作为基底钢板成分的Fe扩散到Al系镀层中或Zn系镀层中而生成固溶相、金属间化合物。另外,在Al系镀层的表面生成含有Al的氧化物覆膜,在Zn系镀层的表面生成含有Zn的氧化物覆膜。
列举一例来说,对Al-Si镀层进行加热时,镀层变为以含有Si的Fe-Al金属间化合物为主体的镀层。另外,对热镀Zn层、合金化热镀Zn层、电镀Zn层等进行加热时,形成在Fe中固溶有Zn的FeZn固溶相、ZnFe金属间化合物、表层的ZnO层等。此外,在对电镀Zn-Ni合金层进行加热的情况下,形成在Fe中固溶有镀层成分的含有Ni的固溶层、以ZnNi为主体的金属间化合物、表层的ZnO层等。
需要说明的是,本发明中,如上所述,将通过对赋予有Al系镀层的热压用冷轧钢板进行加热而形成的含有Al的镀层称为Al系镀层,将通过对赋予有Zn系镀层的热压用冷轧钢板进行加热而形成的含有Zn的镀层称为Zn系镀层。
接着,对本发明的热压用冷轧钢板的优选的制造方法进行说明。
本发明中,在制造上述冷轧钢板时,首先将具有上述规定的成分组成的钢原材(钢坯)在将精轧的最终道次的压下率设定为12%以上、将紧邻该最终道次的前一道次的压下率设定为15%以上、精轧结束温度为860~950℃的条件下进行热轧。
上述热轧后,实施将到冷却停止温度为止的第一平均冷却速度设定为70℃/秒以上、冷却至700℃以下的冷却停止温度的一次冷却。
上述一次冷却后,实施将到卷取温度为止的第二平均冷却速度设定为5~50℃/秒、在520℃以下的卷取温度下进行卷取的二次冷却。
接着,对卷取后的热轧钢板进行酸洗后,实施在830~930℃的温度范围内加热600秒以下的第一热处理。
然后,进行冷轧后,实施以5~20℃/秒的平均升温速度加热至720~850℃的温度范围、在该温度范围内进行15~600秒均热的第二热处理。
上述第二热处理后,实施将第三平均冷却速度设定为5℃/秒以上、冷却至600℃以下的冷却停止温度的三次冷却。
以下,按各工序对上述制造工序进行详细说明。
[加热工序]
作为原材的钢坯优选在铸造后在不进行再加热的情况下在1150~1270℃下开始热轧、或者再加热至1150~1270℃后开始热轧。热轧的优选条件是首先在1150~1270℃的热轧开始温度下对钢坯进行热轧。
本发明中,在制造钢坯后,除了暂时冷却至室温、然后进行再加热的现有方法以外,不进行冷却而以温片的状态装入加热炉中、或者在进行保温后立即进行轧制、或者在铸造后直接进行轧制的直送轧制/直接轧制等节能工艺也可以没有问题地应用。
[热轧工序]
·精轧的最终道次的压下率:12%以上
从向奥氏体晶粒内导入大量剪切带、增加热轧后的铁素体相变时的成核位点从而实现热轧板的显微组织晶粒的微细化、进而消除Mn带的观点出发,需要将精轧的最终道次的压下率设定为12%以上。精轧的最终道次的优选压下率为13%以上。另外,该压下率的上限没有特别限定,但热轧负荷载荷增大时,板的宽度方向上的板厚变动增大,耐延迟断裂特性有可能变差,因此优选为30%以下。
·精轧的紧邻最终道次的前一道次的压下率:15%以上
从进一步提高应变蓄积效果而向奥氏体晶粒内导入大量剪切带、进一步增大铁素体相变的成核位点从而热轧板的显微组织晶粒进一步微细化、进而消除Mn带的观点出发,需要将紧邻最终道次的前一道次的压下率设定为15%以上。精轧的紧邻最终道次的前一道次的优选压下率为18%以上。另外,该压下率的上限没有特别限定,但热轧负荷载荷增大时,钢板的宽度方向上的板厚变动增大,耐延迟断裂特性有可能变差,因此优选为30%以下。
·精轧结束温度:860~950℃
为了通过钢板的显微组织的均匀化、材质的各向异性减小而提高退火后的耐电阻焊接裂纹特性,需要在奥氏体单相区结束热轧,因此精轧结束温度设定为860℃以上。另一方面,精轧结束温度超过950℃时,热轧组织变得粗大,退火后的晶粒也粗大化,因此精轧结束温度的上限设定为950℃。
[热轧后的冷却工序]
·一次冷却工序:以70℃/秒以上的第一平均冷却速度冷却至700℃以下
在热轧结束后的冷却过程中,奥氏体发生铁素体相变,但在高温下铁素体粗大化,因此,通过热轧结束后进行骤冷,使显微组织尽可能地均质化,同时抑制Ti系析出物的生成。因此,首先,作为一次冷却,以70℃/秒以上的第一平均冷却速度冷却至700℃以下。该第一平均冷却速度小于70℃/秒时,铁素体粗大化,因此,热轧钢板的显微组织变得不均质,导致凸焊后的耐延迟断裂特性降低。另一方面,一次冷却中的冷却停止温度超过700℃时,在热轧钢板的显微组织中过量生成珠光体,最终的钢板的显微组织变得不均质,凸焊后的耐延迟断裂特性仍然降低。
·二次冷却工序:以5~50℃/秒的第二平均冷却速度冷却至520℃以下
该二次冷却中的平均冷却速度小于5℃/秒时,在热轧钢板的显微组织中过量生成铁素体或珠光体,最终的钢板的显微组织变得不均质,并且Ti系析出物也粗大化,因此凸焊后的耐延迟断裂特性降低。另一方面,二次冷却中的平均冷却速度超过50℃/秒时,在热轧钢板的显微组织中过量生成珠光体,因此,C的元素分布变得不均匀,凸焊后的耐延迟断裂特性降低。此外,冷却止于超过520℃的温度时,在热轧钢板的显微组织中过量生成铁素体或珠光体,Ti系析出物也粗大化,因此凸焊后的耐延迟断裂特性仍然降低。
·卷取温度:520℃以下
卷取温度超过520℃时,在热轧钢板的显微组织中过量生成铁素体和珠光体,最终的钢板的显微组织变得不均质,凸焊后的耐延迟断裂特性降低。为了避免这种情况,在贝氏体单相时进行卷取是很重要的。另外,在高温下卷取时,Ti系析出物粗大化,凸焊后的耐延迟断裂特性降低。因此,本发明中,卷取温度的上限设定为520℃。优选为500℃以下。需要说明的是,对于卷取温度的下限,没有特别规定,但卷取温度过低时,过量生成硬质的马氏体,冷轧负荷增大,因此优选为300℃以上。
[酸洗工序]
热轧工序后,实施酸洗,除去热轧板表层的氧化皮。该酸洗处理没有特别限定,按照常规方法实施即可。
[热处理工序]
·第一热处理工序:在830~930℃的温度范围内加热600秒以下
本发明中,在热轧后实施两次热处理。由此,消除Mn偏析,并且控制Ti系析出物的分布状态,提高凸焊后的耐延迟断裂特性。
在第一热处理的热处理温度低于830℃的情况下,元素分配变得不充分,无法除去热轧后的元素分布状态的影响,因此,由于Mn的分布不均,在之后的第二热处理和热压后也无法消除Mn偏析,其结果是,凸焊后的耐延迟断裂特性变差。另一方面,超过930℃而进行第一热处理时,粗大且硬质的马氏体过量存在,第二热处理后的显微组织变得不均匀,并且Ti系析出物粗大化,因此,热压后无法得到所期望的显微组织和Ti系析出物的分布状态。因此,第一热处理的热处理温度设定为830~930℃的范围。需要说明的是,关于保持时间,从抑制Ti系析出物的粗大化的观点出发,优选设定为600秒以下。
·冷轧工序
进行轧制成规定板厚的冷轧板的冷轧工序。该冷轧工序没有特别限定,按照常规方法实施即可。
·第二热处理工序:以5~20℃/秒的平均升温速度加热至720~850℃的温度范围,在该温度范围内进行15秒以上且600秒均热
该第二热处理是为了使冷轧后的再结晶进行、并且对热压后的构件的显微组织、Ti系析出物的分布状态和表面的Mn偏析进行控制而实施的。
该第二热处理工序中,过于快速地进行加热时,再结晶变得难以进行,因此平均升温速度的上限设定为20℃/秒。另一方面,升温速度过小时,铁素体、马氏体晶粒粗大化,热压后无法得到所期望的显微组织,因此需要5℃/秒以上的平均升温速度。优选为8℃/秒以上。通过控制该平均升温速度,能够使晶粒微细化。
然后,加热至后述的720~850℃的均热温度范围。
·均热温度:720~850℃
均热温度设定为铁素体和奥氏体的双相区的温度范围。低于720℃时,马氏体百分率减少,表面的Mn偏析增大,因此均热温度的下限设定为720℃。另一方面,均热温度过高时,奥氏体的晶粒生长变得显著,晶粒和Ti系析出物粗大化,凸焊后的耐延迟断裂特性降低,因此均热温度设定为850℃以下。优选为830℃以下。
·均热保持时间:15~600秒
在上述均热温度下,为了再结晶的进行和部分或全部组织的奥氏体相变,需要保持至少15秒。另一方面,保持时间过长时,会促进Mn的微观偏析,弯曲加工性变差,因此保持时间优选为600秒以内。
[冷却工序]
·均热后的冷却条件:以5℃/秒以上的第三平均冷却速度冷却至600℃以下的温度范围
上述均热处理(退火处理)后,需要以5℃/秒以上的平均冷却速度从均热温度冷却至600℃以下的温度范围(冷却停止温度)。平均冷却速度小于5℃/秒时,在冷却中铁素体相变进行,冷轧钢板的马氏体的体积率减少,Ti系析出物粗大化,因此难以确保凸焊后的耐延迟断裂特性。对于该平均冷却速度的上限没有特别规定,但从设备上的观点和成本的方面考虑,优选为30℃/秒以下。另外,在冷却停止温度超过600℃的情况下,过量生成珠光体,无法得到钢板的显微组织中的规定的体积率,因此凸焊后的耐延迟断裂特性仍然降低。
上述一系列制造工序中,在本发明中特别重要的是热轧和热轧后的两次热处理(第一热处理以及第二热处理及之后的冷却处理)。
即,通过适当地控制上述的热轧和热轧后的两次热处理,Mn偏析被消除,并且Ti系析出物的分布状态得到改善,结果,能够在沿板厚方向从钢板表面到100μm的范围内使粒径为0.10μm以下的Ti系析出物在钢板的与板厚方向平行的截面每100μm2中平均析出10个以上。另外,通过适当地控制热轧及之后的第一热处理,能够使沿板厚方向从距钢板表面100μm的深度位置到板厚中央部为止每200μm测定的维氏硬度的标准偏差为40以下。
然后,可以实施热镀锌等镀覆处理,也可以不实施该镀覆处理而直接使用冷轧钢板。
[镀覆工序]
本发明的热压用冷轧钢板可以直接使用通过上述制造工序制造的冷轧钢板,也可以根据目的进行用于形成Al系镀层或Zn系镀层的Al系镀覆处理或Zn系镀覆处理。
该镀覆处理没有任何限定,公知的热镀法、电镀法、蒸镀法等均可以应用。另外,在镀覆工序后可以实施合金化处理。关于代表性的镀覆处理,作为Al系镀覆处理,可以列举实施热镀铝(Al)、热镀Al-Si的处理,另外,作为Zn系镀覆处理,可以列举实施热镀锌或电镀锌镍的处理、或者在热镀锌后进一步实施合金化处理的处理。
需要说明的是,也可以对冷轧钢板实施平整轧制。此时优选的伸长率为0.05~2.0%。
接着,对于对所得到的冷轧钢板进行的热压进行说明。
热压的方法和条件没有任何限定,公知的热压方法均可以应用。以下示出一例,但并不限定于此。
例如,使用电炉、燃气炉、通电加热炉、远红外线加热炉等,将作为原材的热压用冷轧钢板加热至Ac3相变点~1000℃的温度范围,在该温度范围内保持0~600秒后,将钢板输送至压机,在550~800℃的范围内进行热压即可。对热压用冷轧钢板进行加热时的升温速度设定为3~200℃/秒即可。
在此,Ac3相变点可以通过下式求出。
Ac3相变点(℃)=881-206C+53Si-15Mn-20Ni-1Cr-27Cu+41Mo
其中,式中的元素符号表示各元素的含量(质量%)。对于含有的元素,作为0来进行计算。
实施例
以下,对本发明的实施例进行说明。
需要说明的是,本发明当然不受以下记述的实施例的限制,也可以在符合本发明的主旨的范围内适当加以变更来实施,这些内容均包含在本发明的技术范围内。
对表1所示的成分组成的钢进行熔炼、铸造而制成钢坯后,加热至1250℃,然后在表2所示的精轧结束温度(FDT)条件下进行热轧。接着,将热轧钢板以表2所示的第一平均冷却速度(冷却速度1)冷却至冷却停止温度(第一冷却温度)后,以第二平均冷却温度(冷却速度2)冷却至卷取温度(CT),卷取成卷材。需要说明的是,对于一部分试样,在热轧后不进行两阶段的冷却处理,而是以一定速度进行冷却并卷取成卷材。
接着,对所得到的热轧板进行酸洗后,实施表2所示的第一热处理,然后以表2所示的压下率实施冷轧,制成冷轧板(板厚:1.4mm)。
接着,将这样得到的冷轧钢板在连续退火生产线(CAL)或连续热镀生产线(CGL)中在表2所示的条件下进行第二热处理(也称为退火处理),关于通过CAL后的钢板,得到冷轧钢板(CR),关于通过CGL后的钢板,得到热镀锌钢板(GI)。需要说明的是,关于通过CGL后的钢板的一部分,实施热镀锌处理后进一步在550℃下进行合金化处理,得到合金化热镀锌钢板(GA)。另外,实施热镀铝处理,得到热镀铝钢板(AS)。此外,一部分在CAL中退火后在电镀锌生产线(EGL)中得到电镀锌镍钢板(EZN)。
接着,在表3所示的条件下对所得到的冷轧钢板(包括镀覆钢板)实施热压。
热压中使用的模具的冲头宽度为70mm、冲头肩R为4mm、冲模肩R为4mm,成形深度为30mm。对冷轧钢板的加热根据加热速度而使用红外线加热炉或气氛加热炉中的任意一种,在大气中进行。另外,冲压后的冷却通过将钢板在冲头-冲模间的夹入与在解除夹入后的冲模上的空冷组合来进行,从冲压(开始)温度冷却至150℃。此时,通过使将冲头保持在下止点的时间在1~60秒的范围内变化来调整冷却速度。
从这样得到的热压构件的帽形底部的位置裁取JIS 5号拉伸试验片,依据JIS Z2241进行拉伸试验,测定拉伸强度(TS)。
另外,关于凸焊后的耐延迟断裂特性的试验,首先从各种热压构件中裁取50mm×150mm的试验片,在中央开出直径10mm的孔,将具有四个突出部的M6焊接用螺母按照上述试验片的孔的中心与上述螺母的孔的中心一致的方式设置于交流焊接机中而进行焊接。关于电阻焊接的条件,使用安装在焊枪上的伺服电机加压式且单相交流(50Hz)的电阻焊机进行焊接,制作具有凸焊部的试验片。需要说明的是,所使用的一对电极芯片设定为平型30mmφ的电极。焊接条件设定为:加压力3000N、通电时间7个循环(50Hz)、焊接电流12kA、保持时间10个循环(50Hz)。
在这样得到的焊接体的螺母孔中固定螺栓后,通过依据JIS B 1196:2001的压入剥离试验将螺母从钢板剥离,测定此时的载荷。将此时的剥离强度设为PS,利用与上述同样的方法制作螺栓固定的试验片,使其负荷0.6×PS和0.8×PS的载荷。然后在室温下浸渍于盐酸(pH=2.5)的溶液中,对螺母与钢板有无剥离进行评价。
在两种载荷下100小时以上无剥离的情况下,将耐延迟断裂特性设为良好(○);在仅0.8×PS的载荷下小于100小时时发生剥离的情况下,将耐延迟断裂特性设为中等(△);在两种载荷下均在小于100小时时发生剥离的情况下,将耐延迟断裂特性设为差(×)。
关于热压后的构件的马氏体的体积率,对钢板的与轧制方向平行且与厚度方向平行的截面进行研磨后,利用3体积%硝酸乙醇溶液进行腐蚀,使用SEM(扫描电子显微镜)以5000倍的倍率进行观察,通过点计数法(依据ASTM E562-83(1988))测定面积率,将该面积率作为体积率。
另外,关于Ti系析出物的粒径,冷轧钢板和冲压构件均是针对与厚度方向平行的截面,使用TEM(透射电子显微镜)以10000倍的倍率对10处0.5μm×0.5μm的视野范围进行观察,使用Media Cybernetics公司的Image-Pro,将下限设定为0.005μm,算出其等效圆直径,由此求出粒径。关于粒径为0.10μm以下的Ti系析出物的个数,使用TEM(透射电子显微镜)以10000倍的倍率对10处0.5μm×0.5μm的视野范围进行观察,求出10处的平均个数密度。在该方法中,如果是粒径为0.005μm以上的Ti系析出物就可以计数。
关于冷轧钢板的维氏硬度的标准偏差,沿板厚方向从距钢板表面100μm到距钢板表面900μm为止每200μm测定维氏硬度,测定5列,求出平均标准偏差。维氏硬度的测定条件的试验力设定为300g(2.942N)、保持时间设定为15秒。
关于原奥氏体晶粒中的渗碳体的粒径和个数,如下求出。即,关于粒径小于0.20μm的渗碳体的个数,针对热压后的构件的与厚度方向平行的截面,使用TEM(透射电子显微镜)以10000倍和30000倍的倍率对10处0.5μm×0.5μm的视野范围进行观察,求出10处的平均个数密度。在该方法中,如果是粒径为0.050μm以上的渗碳体就可以计数。关于粒径,算出上述利用TEM观察到的渗碳体的等效圆直径,将这些值平均而求出粒径。
将这样得到的冷轧钢板和热压构件的显微组织、以及热压构件的拉伸特性和凸焊后的耐延迟断裂特性的测定结果示于表4。
Figure BDA0002335302920000271
Figure BDA0002335302920000281
Figure BDA0002335302920000291
[表3-1]
Figure BDA0002335302920000301
[表3-2]
Figure BDA0002335302920000311
[表4-1]
Figure BDA0002335302920000321
[表4-2]
下划线部:本发明范围外
如表4所示,成分组成和热压后的构件的显微组织满足本发明的适当范围的发明例均能够得到高的拉伸强度是不用说的,还均能够一并得到优良的凸焊后的耐延迟断裂特性。

Claims (10)

1.一种热压构件,其中,
构件的钢成分组成为:以质量%计含有C:0.28%以上且小于0.42%、Si:1.5%以下、Mn:1.0%以上且2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上且0.50%以下、N:0.005%以下和Ti:0.005%以上且0.15%以下,余量由Fe和不可避免的杂质构成,
构件的显微组织为:在沿板厚方向从构件表面到100μm的范围内,粒径为0.10μm以下的Ti系析出物在构件的与厚度方向平行的截面每100μm2中平均存在5个以上,并且在板厚方向距构件表面20~100μm的深度范围内,具有以体积率计为95~100%的马氏体,而且在原奥氏体晶粒中粒径小于0.20μm的渗碳体平均存在10个以上,
所述热压构件的拉伸强度为1780MPa以上。
2.如权利要求1所述的热压构件,其中,所述构件以质量%计还含有选自Nb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上且0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下和W:0.10%以下中的一种或两种以上。
3.如权利要求1或2所述的热压构件,其中,在所述构件的表层具有Al系镀层或Zn系镀层。
4.一种热压用冷轧钢板,其中,
钢板的成分组成为:以质量%计含有C:0.28%以上且小于0.42%、Si:1.5%以下、Mn:1.0%以上且2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上且0.50%以下、N:0.005%以下和Ti:0.005%以上且0.15%以下,余量由Fe和不可避免的杂质构成,
钢板的显微组织为:在沿板厚方向从钢板表面到100μm的范围内,粒径为0.10μm以下的Ti系析出物在钢板的与板厚方向平行的截面每100μm2中平均存在10个以上,
而且沿板厚方向从距钢板表面100μm的深度位置到板厚中央部为止每200μm测定的维氏硬度的标准偏差为40以下。
5.如权利要求4所述的热压用冷轧钢板,其中,所述钢板以质量%计还含有选自Nb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上且0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下和W:0.10%以下中的一种或两种以上。
6.如权利要求4或5所述的热压用冷轧钢板,其中,所述钢板在表面具有Al系镀层或Zn系镀层。
7.一种热压用冷轧钢板的制造方法,其为制造权利要求4所述的热压用冷轧钢板的方法,其中,
将钢原材在将精轧的最终道次的压下率设定为12%以上、将紧邻该最终道次的前一道次的压下率设定为15%以上、精轧结束温度为860~950℃的条件下进行热轧,
所述热轧后,实施将到冷却停止温度为止的第一平均冷却速度设定为70℃/秒以上、冷却至700℃以下的冷却停止温度的一次冷却,
所述一次冷却后,实施将到卷取温度为止的第二平均冷却速度设定为5~50℃/秒、在520℃以下的卷取温度下进行卷取的二次冷却,
接着,对卷取后的热轧钢板进行酸洗后,实施在830~930℃的温度范围内加热600秒以下的第一热处理,
然后,进行冷轧后,实施以5~20℃/秒的平均升温速度加热至720~850℃的温度范围、在该温度范围内进行15~600秒均热的第二热处理,
所述第二热处理后,实施将第三平均冷却速度设定为5℃/秒以上、冷却至600℃以下的冷却停止温度的三次冷却,
所述钢原材以质量%计含有C:0.28%以上且小于0.42%、Si:1.5%以下、Mn:1.0%以上且2.2%以下、P:0.05%以下、S:0.005%以下、Al:0.01%以上且0.50%以下、N:0.005%以下和Ti:0.005%以上且0.15%以下,余量由Fe和不可避免的杂质构成。
8.如权利要求7所述的热压用冷轧钢板的制造方法,其中,所述钢原材以质量%计还含有选自Nb:0.15%以下、B:0.0050%以下、Mo:0.50%以下、Cr:0.50%以下、Sb:0.001%以上且0.020%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.005%以下、V:0.15%以下、Cu:0.50%以下、Ni:0.50%以下、Sn:0.50%以下、Zn:0.10%以下、Co:0.10%以下、Zr:0.10%以下、Ta:0.10%以下和W:0.10%以下中的一种或两种以上。
9.如权利要求7或8所述的热压用冷轧钢板的制造方法,其中,在所述三次冷却后,对钢板表面实施Al系镀覆处理或Zn系镀覆处理。
10.一种热压构件的制造方法,其中,将权利要求4至6中任一项所述的热压用冷轧钢板在Ac3相变点~1000℃的温度范围内加热后,进行热压。
CN201880042554.4A 2017-06-30 2018-03-30 热压构件及其制造方法以及热压用冷轧钢板及其制造方法 Active CN110799660B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/024261 WO2019003451A1 (ja) 2017-06-30 2017-06-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
JPPCT/JP2017/024261 2017-06-30
PCT/JP2018/013728 WO2019003543A1 (ja) 2017-06-30 2018-03-30 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
CN110799660A true CN110799660A (zh) 2020-02-14
CN110799660B CN110799660B (zh) 2021-05-14

Family

ID=64741293

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880042554.4A Active CN110799660B (zh) 2017-06-30 2018-03-30 热压构件及其制造方法以及热压用冷轧钢板及其制造方法

Country Status (7)

Country Link
US (1) US11085101B2 (zh)
EP (1) EP3647445B1 (zh)
JP (1) JP6540909B2 (zh)
KR (1) KR102296362B1 (zh)
CN (1) CN110799660B (zh)
MX (1) MX2019015392A (zh)
WO (2) WO2019003451A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111673253A (zh) * 2020-06-12 2020-09-18 昆山荣仕杰智能装备科技有限公司 一种适用于高屈服强度板材的螺母凸焊焊接工艺
CN115735015A (zh) * 2020-06-25 2023-03-03 杰富意钢铁株式会社 凸焊接头和凸焊方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019003447A1 (ja) * 2017-06-30 2019-01-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
WO2019003445A1 (ja) 2017-06-30 2019-01-03 Jfeスチール株式会社 熱間プレス部材およびその製造方法ならびに熱間プレス用冷延鋼板
KR102607975B1 (ko) * 2019-01-31 2023-11-29 제이에프이 스틸 가부시키가이샤 열간 프레스 부재, 열간 프레스 부재용 냉연 강판, 및 그것들의 제조 방법
MX2021010128A (es) * 2019-02-21 2021-09-23 Jfe Steel Corp Miembro prensado en caliente, chapa de acero laminada en frio para prensado en caliente y metodo de fabricacion de los mismos.
WO2020189761A1 (ja) * 2019-03-20 2020-09-24 日本製鉄株式会社 ホットスタンプ成形体
KR102603495B1 (ko) * 2019-05-31 2023-11-20 닛폰세이테츠 가부시키가이샤 핫 스탬프 성형체
KR102606157B1 (ko) * 2019-05-31 2023-11-29 닛폰세이테츠 가부시키가이샤 핫 스탬프용 강판
KR20220124789A (ko) * 2020-02-13 2022-09-14 닛폰세이테츠 가부시키가이샤 핫 스탬프 성형품
CN116234933A (zh) * 2020-08-28 2023-06-06 杰富意钢铁株式会社 热压构件及其制造方法
WO2022124798A1 (ko) * 2020-12-09 2022-06-16 현대제철 주식회사 핫 스탬핑 부품
KR102416968B1 (ko) * 2020-12-23 2022-07-07 현대제철 주식회사 자동차 구조체용 부재

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310118A (ja) * 1994-05-16 1995-11-28 Daido Steel Co Ltd 冷間加工に適した肌焼鋼の製造方法
CN101545071A (zh) * 2008-03-24 2009-09-30 Posco公司 钢板、其制造方法,部件以及制造所述部件的方法
CN104204251A (zh) * 2012-03-15 2014-12-10 株式会社神户制钢所 热压成形品及其制造方法
JP2015160985A (ja) * 2014-02-27 2015-09-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3582504B2 (ja) * 2001-08-31 2004-10-27 住友金属工業株式会社 熱間プレス用めっき鋼板
JP5369714B2 (ja) * 2009-01-28 2013-12-18 Jfeスチール株式会社 延性に優れたホットプレス部材、そのホットプレス部材用鋼板、およびそのホットプレス部材の製造方法
JP5708350B2 (ja) 2011-01-13 2015-04-30 新日鐵住金株式会社 プロジェクション溶接継手およびその製造方法
JP5626025B2 (ja) * 2011-03-02 2014-11-19 新日鐵住金株式会社 溶接部の遅れ破壊特性並びに静的強度特性に優れた自動車用構造部材、および、その製造方法
JP5742697B2 (ja) * 2011-12-12 2015-07-01 新日鐵住金株式会社 強度と靭性のバランスに優れたホットスタンプ成形体及びその製造方法並びにホットスタンプ成形体用鋼板の製造方法
JP5835622B2 (ja) * 2012-07-06 2015-12-24 新日鐵住金株式会社 熱間プレス鋼板部材およびその製造方法ならびに熱間プレス用鋼板
JP5835624B2 (ja) * 2012-08-21 2015-12-24 新日鐵住金株式会社 熱間プレス用鋼板および表面処理鋼板とそれらの製造方法
JP5626388B2 (ja) * 2013-03-07 2014-11-19 新日鐵住金株式会社 靭性及び耐水素脆化特性に優れた高強度ホットスタンピング成形品及びその製造方法
CN105189798B (zh) * 2013-03-14 2017-03-15 新日铁住金株式会社 耐延迟断裂特性和低温韧性优异的高强度钢板、和使用其制造的高强度构件
PL3124637T3 (pl) 2014-03-26 2020-03-31 Nippon Steel Corporation Element z blachy stalowej cienkiej formowanej na gorąco o dużej wytrzymałości
US10308996B2 (en) 2015-07-30 2019-06-04 Hyundai Motor Company Hot stamping steel and producing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310118A (ja) * 1994-05-16 1995-11-28 Daido Steel Co Ltd 冷間加工に適した肌焼鋼の製造方法
CN101545071A (zh) * 2008-03-24 2009-09-30 Posco公司 钢板、其制造方法,部件以及制造所述部件的方法
CN104204251A (zh) * 2012-03-15 2014-12-10 株式会社神户制钢所 热压成形品及其制造方法
JP2015160985A (ja) * 2014-02-27 2015-09-07 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111673253A (zh) * 2020-06-12 2020-09-18 昆山荣仕杰智能装备科技有限公司 一种适用于高屈服强度板材的螺母凸焊焊接工艺
CN115735015A (zh) * 2020-06-25 2023-03-03 杰富意钢铁株式会社 凸焊接头和凸焊方法
CN115735015B (zh) * 2020-06-25 2024-01-26 杰富意钢铁株式会社 凸焊接头和凸焊方法

Also Published As

Publication number Publication date
EP3647445A1 (en) 2020-05-06
WO2019003451A1 (ja) 2019-01-03
US11085101B2 (en) 2021-08-10
KR20200004364A (ko) 2020-01-13
EP3647445A4 (en) 2020-05-06
JPWO2019003543A1 (ja) 2019-06-27
WO2019003543A1 (ja) 2019-01-03
CN110799660B (zh) 2021-05-14
JP6540909B2 (ja) 2019-07-10
EP3647445B1 (en) 2021-04-28
US20200131596A1 (en) 2020-04-30
KR102296362B1 (ko) 2021-08-31
MX2019015392A (es) 2020-02-20

Similar Documents

Publication Publication Date Title
CN110799660B (zh) 热压构件及其制造方法以及热压用冷轧钢板及其制造方法
CN110809631B (zh) 热压构件及其制造方法以及热压用冷轧钢板及其制造方法
CN110832097B (zh) 热压构件及其制造方法以及热压用冷轧钢板及其制造方法
CN110799662A (zh) 热压构件及其制造方法以及热压用冷轧钢板及其制造方法
CN110799661B (zh) 热压构件及其制造方法以及热压用冷轧钢板及其制造方法
CN110809630B (zh) 热压构件及其制造方法以及热压用冷轧钢板及其制造方法
CN111344424A (zh) 热压钢板构件及其制造方法
CN116234933A (zh) 热压构件及其制造方法
CN113166837A (zh) 高强度钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant