WO2019003326A1 - 内燃機関の制御方法および制御装置 - Google Patents
内燃機関の制御方法および制御装置 Download PDFInfo
- Publication number
- WO2019003326A1 WO2019003326A1 PCT/JP2017/023666 JP2017023666W WO2019003326A1 WO 2019003326 A1 WO2019003326 A1 WO 2019003326A1 JP 2017023666 W JP2017023666 W JP 2017023666W WO 2019003326 A1 WO2019003326 A1 WO 2019003326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compression ratio
- combustion engine
- internal combustion
- intake pressure
- variable
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/045—Detection of accelerating or decelerating state
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B37/00—Engines characterised by provision of pumps driven at least for part of the time by exhaust
- F02B37/12—Control of the pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/04—Engines with variable distances between pistons at top dead-centre positions and cylinder heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0223—Variable control of the intake valves only
- F02D13/0234—Variable control of the intake valves only changing the valve timing only
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D15/00—Varying compression ratio
- F02D15/02—Varying compression ratio by alteration or displacement of piston stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D41/0007—Controlling intake air for control of turbo-charged or super-charged engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/10—Introducing corrections for particular operating conditions for acceleration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1448—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0002—Controlling intake air
- F02D2041/001—Controlling intake air for engines with variable valve actuation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/04—Engine intake system parameters
- F02D2200/0406—Intake manifold pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2700/00—Mechanical control of speed or power of a single cylinder piston engine
- F02D2700/03—Controlling by changing the compression ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D9/00—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
- F02D9/02—Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a control method and control device for controlling an acceleration request in an internal combustion engine provided with a variable compression ratio mechanism that changes the mechanical compression ratio of the internal combustion engine.
- Patent Document 1 in an internal combustion engine provided with a variable compression ratio mechanism using a multiple link type piston crank mechanism, when acceleration of the internal combustion engine is requested, the target compression ratio of the variable compression ratio mechanism is characteristics at steady state It is described to control to the low compression ratio side rather than.
- the target compression ratio of the variable compression ratio mechanism changes stepwise with the acceleration demand, but the actual compression ratio of the variable compression ratio mechanism using the multilink piston crank mechanism is relatively slow. Change. Also, with acceleration, the combustion pressure acting on bistone increases.
- variable compression ratio mechanism in a certain intermediate compression ratio region, when the strength or resistance of the mechanism to the combustion pressure applied to the piston is relatively low compared to other compression ratio regions, the process of compression ratio change
- the maximum combustion pressure may transiently exceed an acceptable level of combustion pressure, which is not preferable.
- the target compression ratio of the variable compression ratio mechanism when acceleration is required, the target compression ratio of the variable compression ratio mechanism is made lower than the reference target compression ratio corresponding to the engine operating condition at steady state, In the process of changing the compression ratio to the target compression ratio of the variable compression ratio mechanism, the maximum combustion pressure is limited in a predetermined intermediate compression ratio region.
- FIG. 1 shows a system configuration of an automotive internal combustion engine 1 to which the present invention is applied.
- the internal combustion engine 1 is a four-stroke cycle spark ignition type internal combustion engine provided with a variable compression ratio mechanism 2 utilizing a multilink piston crank mechanism, and a ceiling wall of each cylinder 3 is provided with a pair of intake valves 4 and A pair of exhaust valves 5 is disposed, and a spark plug 6 is disposed at a central portion surrounded by the intake valves 4 and the exhaust valves 5.
- the internal combustion engine 1 also includes a turbocharger 8 that performs supercharging using exhaust energy.
- the intake valve 4 is provided with an intake-side variable valve timing mechanism 7 capable of variably controlling the open / close timing of the intake valve 4.
- the variable valve timing mechanism 7 in the present embodiment, the opening timing and the closing timing are simultaneously retarded by retarding the phase of the camshaft.
- Various types of such variable valve timing mechanisms are known, and the present invention is not limited to any particular type of variable valve timing mechanism.
- variable valve timing mechanism 7 includes a sprocket concentrically disposed at the front end of the camshaft, and a hydraulic rotary actuator that relatively rotates the sprocket and the camshaft within a predetermined angular range; It is configured with.
- the sprocket is interlocked with the crankshaft via a timing chain or timing belt (not shown). Therefore, the relative rotation between the sprocket and the camshaft changes the phase of the camshaft with respect to the crank angle.
- the rotary actuator has an advancing side hydraulic chamber biased to the advancing side by hydraulic pressure, and a retarded hydraulic chamber urged to the retard side by hydraulic pressure, and the control signal from the engine controller 10
- the phase of the camshaft is advanced or retarded by controlling the supply of hydraulic pressure to these hydraulic chambers via a hydraulic control valve (not shown).
- the actual control position of the camshaft variably controlled by the variable valve timing mechanism 7 (which corresponds to the actual valve timing) is detected by the cam angle sensor 11 responsive to the rotational position of the camshaft.
- the hydraulic pressure supply via the hydraulic pressure control valve is closed loop controlled such that the actual control position detected by the cam angle sensor 11 matches the target control position set according to the operating conditions.
- the engine controller 10 includes a target control position map using the load of the internal combustion engine 1 and the rotational speed as parameters as operating conditions, and sets the target control position based on the map.
- the target control position is basically a valve timing that is relatively retarded on the low rotation speed side, and the valve timing is advanced as the rotation speed is higher.
- the valve operating mechanism of the exhaust valve 5 is configured such that the open / close timing does not change, but in the present invention, in addition to the variable valve timing mechanism 7 on the intake valve 4 side, The variable valve timing mechanism may be provided.
- a port injection fuel injection valve 15 is disposed for each cylinder.
- in-cylinder fuel injection valves 16 are provided so as to directly inject fuel into the cylinders 3. That is, the illustrated example is a so-called dual injection type fuel injection system, and fuel is supplied by appropriately using the port injection fuel injection valve 15 and the in-cylinder injection fuel injection valve 16 according to the load etc. ing.
- An electronically controlled throttle valve 19 whose opening degree is controlled by a control signal from the engine controller 10 is interposed upstream of the intake collector 18 of the intake passage 14, and a turbocharger 8 is further upstream thereof.
- the compressor 8a is located.
- An air flow meter 20 and an air cleaner 21 for detecting the amount of intake air are disposed upstream of the compressor 8 a of the intake passage 14.
- An intercooler 22 is provided between the compressor 8 a and the throttle valve 19.
- a recirculation valve 23 is provided to communicate the discharge side and the suction side of the compressor 8a. The recirculation valve 23 is opened at the time of deceleration when the throttle valve 19 is closed.
- a turbine 8b of a turbocharger 8 is interposed in an exhaust passage 25 connected to the combustion chamber 13 via the exhaust valve 5, and a pre-catalyst device 26 and a main catalyst each consisting of a three-way catalyst are provided downstream thereof.
- a device 27 is provided.
- An air-fuel ratio sensor 28 that detects an air-fuel ratio is disposed upstream of the turbine 8 b of the exhaust passage 25.
- the turbine 8 b includes a waste gate valve 29 that bypasses a portion of the exhaust according to the boost pressure to control the boost pressure.
- the waste gate valve 29 is an electronically controlled waste gate valve whose opening degree is controlled by a control signal from the engine controller 10 via an actuator made of an electric motor.
- An exhaust gas recirculation passage 30 is provided between the position of the exhaust passage 25 downstream of the turbine 8b and the position of the intake passage 14 upstream of the compressor 8a, for recirculating a part of the exhaust gas to the intake system.
- the exhaust gas recirculation passage 30 is provided with an EGR gas cooler 31 and an EGR valve 32.
- the engine controller 10 in addition to the cam angle sensor 11, the air flow meter 20, the air-fuel ratio sensor 28, a crank angle sensor 34 for detecting the engine rotational speed, a water temperature sensor 35 for detecting the cooling water temperature, A sensor such as an accelerator opening sensor 36 that detects the amount of depression of an accelerator pedal operated by the driver as a sensor that detects a torque request, and a supercharging pressure sensor 37 that detects supercharging pressure (intake pressure) in the intake collector 18 A kind of detection signal is input. Based on these detection signals, the engine controller 10 controls the fuel injection amount and injection timing by the fuel injection valves 15 and 16, the ignition timing by the spark plug 6, the mechanical compression ratio by the variable compression ratio mechanism 2, and the variable valve timing mechanism 7. The opening and closing timing of the intake valve 4, the opening degree of the throttle valve 19, the opening degree of the waste gate valve 29, the opening degree of the EGR valve 32, and the like are optimally controlled.
- variable compression ratio mechanism 2 utilizes a known double link type piston crank mechanism described in Patent Document 1, JP-A-2004-116434, etc., and is rotatable about the crank pin 41a of the crankshaft 41.
- a control link 47 connected and a control shaft 48 swingably supporting the other end of the control link 47 are mainly configured.
- the crankshaft 41 and the control shaft 48 are rotatably supported in a crankcase 49a at a lower portion of the cylinder block 49 via a bearing structure (not shown).
- the control shaft 48 has an eccentric shaft portion whose position changes as the control shaft 48 rotates, and the end of the control link 47 is rotatably fitted to the eccentric shaft portion in detail. ing. That is, with the rotation of the control shaft 48, the swing support position of the control link 47 is displaced.
- the top dead center position of the piston 44 is displaced up and down with the rotation of the control shaft 48, so that the mechanical compression ratio changes.
- an electric actuator 51 having a rotation center axis parallel to the crankshaft 41 is disposed on the outer wall surface of the crankcase 49a.
- the electric actuator 51 and the control are controlled via the first arm 52 fixed to the output rotary shaft of the electric actuator 51, the second arm 53 fixed to the control shaft 48, and the intermediate link 54 connecting the two.
- the shaft 48 is interlocked.
- the electric actuator 51 includes an electric motor and a transmission mechanism arranged in series in the axial direction.
- the actual value of the mechanical compression ratio is detected by the actual compression ratio detection sensor 56.
- the actual compression ratio detection sensor 56 is formed of, for example, a rotary potentiometer, a rotary encoder, or the like that detects the rotation angle of the control shaft 48 or the rotation angle of the output rotary shaft of the electric actuator 51.
- the amount of rotation of the electric motor is obtained from the command signal to the electric motor constituting the electric actuator 51, and the rotation angle of the control shaft 48 is obtained from the amount of rotation, so that the actual compression ratio can be obtained without using a separate sensor. May be detected.
- the electric actuator 51 is driven and controlled by the engine controller 10 such that the actual compression ratio obtained as described above becomes the target compression ratio corresponding to the operating condition.
- the engine controller 10 includes a target compression ratio map using the load of the internal combustion engine 1 and the rotational speed as parameters as operating conditions, and sets the target compression ratio based on this map.
- the target compression ratio is basically a high compression ratio on the low load side, and the higher the load, the lower the compression ratio for knocking suppression or the like.
- the strength or resistance of the mechanism to the combustion pressure applied to the piston 44 is the highest compression ratio, in relation to the link geometry.
- the combustion pressure acting on the piston 44 includes the appropriate safety factor and the combustion pressure at which the mechanical mechanism of the variable compression ratio mechanism 2 does not lead to damage is defined as the “permissible combustion pressure”, this permissible combustion pressure is Compared to the allowable combustion pressure near the highest compression ratio and near the lowest compression ratio, it has the characteristic of being lower in the intermediate compression ratio region.
- the maximum combustion pressure exceeds the allowable combustion pressure transiently during operation, it is not preferable in terms of the durability of the variable compression ratio mechanism 2 and the like. In the present invention, therefore, the maximum combustion pressure is prevented from exceeding the allowable combustion pressure in an intermediate compression ratio region where the allowable combustion pressure is low during acceleration.
- step 1 the actual compression ratio rVCR detected by the actual compression ratio detection sensor 56 is read.
- step 2 it is determined whether there is an acceleration request.
- This acceleration request is determined based on, for example, the amount of change and the rate of change of the accelerator pedal opening detected by the accelerator opening sensor 36.
- another routine (not shown) sequentially determines the presence or absence of a sudden acceleration request equal to or higher than a predetermined level.
- the diagnosis result is referred to.
- the magnitude of the acceleration request (the magnitude of the change amount of the accelerator pedal position and the magnitude of the change speed) may be obtained together.
- step 3 If it is determined in step 2 that there is no acceleration request, the process proceeds to step 3, and normal control in steady state is performed. That is, the target control position tVTC of the variable valve timing mechanism 7 is controlled to the reference target control position at steady state according to the operating condition (load and rotational speed) at that time, and the target compression ratio tVCR of the variable compression ratio mechanism 2 is Also, control is made to a steady-state reference target compression ratio according to the operating condition (load and rotational speed) at that time. Then, the process proceeds from step 3 to step 4 and the intake pressure limitation control described later is not performed.
- step 2 the process proceeds from step 2 to step 5, and the target control position tVTC of the variable valve timing mechanism 7 is compared with the reference target control position at steady state according to the operating condition (load and rotational speed) at that time. Also correct the advance side. Further, the target compression ratio tVCR of the variable compression ratio mechanism 2 is corrected to a lower compression ratio side than the reference target compression ratio in steady state according to the operating condition (load and rotational speed) at that time. Such a setting improves the output torque while suppressing the occurrence of knocking.
- the output torque can be improved during this response delay period, and good acceleration performance can be obtained.
- the advance correction amount of the target control position tVTC of the variable valve timing mechanism 7 and the correction amount to the low compression ratio side of the target compression ratio tVCR of the variable compression ratio mechanism 2 at the time of such acceleration request are respectively constant. These may be set according to the size of the acceleration request.
- step 6 whether or not the actual compression ratio rVCR at that time is within a predetermined intermediate compression ratio region (between the first intermediate compression ratio VCR1 and the second intermediate compression ratio VCR2) at which the allowable combustion pressure described above decreases. Determine if If the actual compression ratio rVCR at that time is out of the range of the predetermined intermediate compression ratio region (that is, rVCR ⁇ VCR1 or rVCR ⁇ VCR2), the process proceeds from step 6 to step 4 and the intake pressure restriction control described later is not performed.
- the process proceeds from step 6 to step 7, and the intake pressure limit value Plim is set based on the value of the actual compression ratio rVCR at that time.
- the intake pressure limit value Plim corresponds to the upper limit value of the intake pressure set such that the maximum combustion pressure in the combustion cycle of the internal combustion engine 1 does not exceed the allowable combustion pressure under the actual compression ratio rVCR at that time.
- the engine controller 10 is provided with a table to which the intake pressure limit value Plim is assigned in advance using the mechanical compression ratio as a parameter, and in step 7, this table is referred to and the intake pressure for the actual compression ratio rVCR at that time. Determine the limit value Plim.
- the intake pressure limit value Plim may be the value of intake pressure (supercharge pressure) downstream of the throttle valve 19 itself, or may be an alternative parameter corresponding to the intake pressure.
- step 7 the intake pressure limitation control is executed along the intake pressure limit value Plim set in step 7. That is, at the time of acceleration request, the intake pressure rapidly increases so as to satisfy the torque request, but when this intake pressure exceeds the intake pressure limit value Plim related to the actual compression ratio rVCR, the intake pressure Limit to the limit value Plim.
- the intake pressure downstream of the throttle valve 19 is corrected by increasing the opening degree of the waste gate valve 29 of the turbocharger 8 to increase the charge pressure and decreasing the opening degree of the throttle valve 19.
- the air pressure is limited to the intake pressure limit value Plim. Thereby, the maximum combustion pressure in the combustion cycle does not exceed the allowable combustion pressure under the actual compression ratio rVCR at that time.
- the actual compression ratio rVCR is the first intermediate While passing through the intermediate compression ratio area between the compression ratio VCR1 and the second intermediate compression ratio VCR2, the maximum combustion pressure exceeds the allowable combustion pressure of the variable compression ratio mechanism 2 under the actual compression ratio rVCR at that time In order to prevent this, the intake pressure is limited by increasing the bypass amount of the turbocharger 8 or reducing the opening degree of the throttle valve 19.
- FIG. 3 is a time chart showing the change in the compression ratio (the actual compression ratio rVCR) and the change in the intake pressure at the time of the acceleration request as described above in comparison.
- the variable compression ratio mechanism 2 is driven toward the target compression ratio tVCR via the electric actuator 51.
- the change of the actual compression ratio rVCR of the variable compression ratio mechanism 2 using the double link type piston crank mechanism is relatively slow, and even if the target compression ratio tVCR decreases stepwise, the actual compression ratio rVCR becomes as illustrated Gradually decline. In one embodiment, it takes about 1 to 2 seconds from the acceleration request detection time (t1) until the actual compression ratio rVCR finally converges to the target compression ratio tVCR. Thus, in the process until the actual compression ratio rVCR changes to the final target compression ratio tVCR, the actual compression ratio rVCR passes through a predetermined intermediate compression ratio region (VCR1 to VCR2) in which the allowable combustion pressure decreases. .
- a line PLIM in FIG. 3 indicates the characteristic of the allowable combustion pressure of the variable compression ratio mechanism 2, specifically, the characteristic of the allowable intake pressure in which the allowable combustion pressure is converted to the intake pressure.
- the variable compression ratio mechanism 2 using the multi-link piston crank mechanism has a predetermined intermediate compression ratio region (the upper limit is the first intermediate compression ratio VCR1 and the lower limit is the second intermediate compression ratio) in relation to the link geometry.
- the allowable combustion pressure decreases. Accordingly, the intake pressure that is permitted in terms of the allowable combustion pressure is likewise lowered. That is, the shaded area in FIG. 3 indicates the decrease in allowable combustion pressure.
- the above-described intake pressure limit value Plim is set along the characteristics of the line PLIM which decreases in the predetermined intermediate compression ratio region as described above. In other words, allowable intake pressure PLIM and intake pressure limit value Plim in the intermediate compression ratio region of VCR1 to VCR2 are substantially equivalent.
- the intake pressure rises in response to the acceleration request after time t1, as indicated by the line Pin. That is, the intake pressure rises relatively quickly due to the increase of the opening degree of the throttle valve 19 with respect to the acceleration request, the operation of the turbocharger 8 (rotational speed increase), the advance angle of the opening / closing timing of the intake valve 4 and the like. Therefore, depending on various conditions, the intake pressure may exceed the allowable intake pressure PLIM corresponding to the allowable combustion pressure in the intermediate compression ratio region, as indicated by an imaginary line Pin2.
- the intake pressure limitation control is executed by increasing the opening of the waste gate valve 29 or decreasing the opening of the throttle valve 19 to obtain the intake pressure.
- the pressure is limited along the allowable intake pressure PLIM (in other words, the intake pressure limit value Plim).
- the maximum combustion pressure actually generated does not exceed the allowable combustion pressure of the variable compression ratio mechanism 2, and an adverse effect on the durability and the like of the variable compression ratio mechanism 2 can be suppressed.
- the phenomenon that the maximum combustion pressure transiently exceeds the allowable combustion pressure when acceleration is required can be avoided, so the strength and rigidity of each portion constituting the variable compression ratio mechanism 2 are excessively increased. There is no need to do so, and it is possible to have a configuration that has the necessary minimum strength and rigidity.
- the size and weight of constituent members are increased, and disadvantages such as a decrease in responsiveness when changing the compression ratio and an increase in power consumption of the electric actuator 51 are caused.
- the durability of the variable compression ratio mechanism 2 can be improved without such disadvantages.
- the allowable combustion pressure is high in both the region where the actual compression ratio rVCR is equal to or higher than the first intermediate compression ratio VCR1 and the region where the actual compression ratio rVCR is equal to or lower than the second intermediate compression ratio VCR2. For example, if the actual compression ratio rVCR is less than or equal to the second intermediate compression ratio VCR2 even if the intake pressure increases to the maximum with acceleration, the allowable combustion pressure is high, and the intake pressure limitation control is not necessary. is there.
- the target compression ratio tVCR may have a value within a predetermined intermediate compression ratio range (VCR1 to VCR2) under steady-state operation regardless of the acceleration requirement. Intake pressure limiting control is not necessary because the intake pressure does not reach such a high pressure that the allowable combustion pressure is exceeded.
- FIG. 4 shows a flowchart of the second embodiment. Steps 1 to 5 in this embodiment are the same as the steps in the flowchart of FIG. 2 described above.
- step 1 the actual compression ratio rVCR is read (step 1), and the presence or absence of an acceleration request is determined (step 2). When there is no acceleration request, normal control is performed in steps 3 and 4.
- step 2 If there is a demand for acceleration, the process proceeds from step 2 to step 5 to advance the target control position tVTC of the variable valve timing mechanism 7 to a reference target control position at steady state according to the operating condition (load and rotational speed) at that time. Correction is made to the corner side, and the target compression ratio tVCR of the variable compression ratio mechanism 2 is corrected to a lower compression ratio side than the reference target compression ratio at steady state according to the operating condition (load and rotational speed) at that time.
- the intake pressure limit value Plim is set based on the value of the actual compression ratio rVCR at that time.
- the intake pressure limit value Plim corresponds to the upper limit value of the intake pressure set such that the maximum combustion pressure in the combustion cycle of the internal combustion engine 1 does not exceed the allowable combustion pressure under the actual compression ratio rVCR at that time.
- the engine controller 10 is provided with a table to which the intake pressure limit value Plim is assigned in advance using the mechanical compression ratio as a parameter, and in step 7, this table is referred to and the intake pressure for the actual compression ratio rVCR at that time. Determine the limit value Plim.
- the intake pressure limit value Plim for the value of mechanical compression ratio in the entire control range of the variable compression ratio mechanism 2 as well as the predetermined intermediate compression ratio region (VCR1 to VCR2) is set in advance as a table. ing. And in this table, the intake pressure limit value Plim corresponds to the characteristic of the allowable intake pressure which is shown by converting the allowable combustion pressure of the variable compression ratio mechanism 2 into the intake pressure as shown for example by the line PLIM in FIG. Is set. That is, in the high compression ratio region of the first intermediate compression ratio VCR1 or more and the low compression ratio region of the second intermediate compression ratio VCR2 or less, the intake pressure limit value Plim is set to a value along the highest intake pressure determined by the turbocharger 8 or the like.
- the intake pressure limit value Plim is relatively low so as to be in line with the characteristics of the allowable combustion pressure or the allowable intake pressure PLIM. It is set to a value.
- step 8A following step 7A the intake pressure limit control is executed along the intake pressure limit value Plim set in step 7A. That is, at the time of acceleration request, the intake pressure rapidly increases so as to satisfy the torque request, but when this intake pressure exceeds the intake pressure limit value Plim related to the actual compression ratio rVCR, the intake pressure Limit to the limit value Plim.
- the intake pressure at the downstream side of the throttle valve 19 can be reduced to the intake pressure limit value by increasing the opening degree of the waste gate valve 29 of the turbocharger 8 to increase the charge pressure to lower the boost pressure or decreasing the opening degree of the throttle valve 19 Restrict to Plim.
- the maximum combustion pressure in the combustion cycle does not exceed the allowable combustion pressure under the actual compression ratio rVCR at that time.
- step 8A the processing of step 8A is executed regardless of the value of the actual compression ratio rVCR, but as described above, the high compression ratio of the first intermediate compression ratio VCR1 or more In the region and the low compression ratio region equal to or lower than the second intermediate compression ratio VCR2, since the intake pressure limit value Plim becomes a high value, the restriction of the intake pressure is not substantially performed.
- the intermediate compression ratio region in which the actual compression ratio rVCR is between the first intermediate compression ratio VCR1 and the second intermediate compression ratio VCR2 an intake pressure substantially similar to that of the embodiment described above according to the intake pressure limit value Plim. Limit control is performed. Therefore, in this embodiment, the area determination of the actual compression ratio rVCR in step 6 in the flowchart of the second embodiment described above is unnecessary.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
内燃機関(1)は、機械的圧縮比を変更する可変圧縮比機構(2)と、吸気弁(4)のバルブタイミングを変更する可変バルブタイミング機構(7)と、を有する。加速要求時には、定常時の目標値よりも目標圧縮比を低圧縮比とし、バルブタイミングを進角側とする。可変圧縮比機構(2)は、所定の中間圧縮比領域で許容燃焼圧が低くなるので、加速に伴う圧縮比変化の過程の中で、所定の中間圧縮比領域に実圧縮比(rVCR)があるときに、ウェストゲートバルブ(29)の開度増加やスロットルバルブ(19)の開度減少等により吸気圧を制限する。
Description
この発明は、内燃機関の機械的圧縮比を変更する可変圧縮比機構を備えた内燃機関において、加速要求に対する制御を行う制御方法および制御装置に関する。
特許文献1には、複リンク式ピストンクランク機構を利用した可変圧縮比機構を備えた内燃機関において、内燃機関の加速要求があったときに、可変圧縮比機構の目標圧縮比を定常時の特性よりも低圧縮比側へ制御することが記載されている。
このような制御により、可変圧縮比機構の目標圧縮比は加速要求に伴ってステップ的に変化するが、複リンク式ピストンクランク機構を利用した可変圧縮比機構の実際の圧縮比は比較的緩慢に変化する。また加速に伴って、ビストンに作用する燃焼圧は増大する。
可変圧縮比機構の機械的な機構として、ある中間圧縮比領域において、ピストンに加わる燃焼圧に対する機構の強度ないし耐性が他の圧縮比領域に比較して相対的に低い場合、圧縮比変化の過程で過渡的に最大燃焼圧が許容し得るレベルの燃焼圧を越えてしまうことがあり、好ましくない。
この発明は、加速要求があったときに、可変圧縮比機構の目標圧縮比を定常時の機関運転条件に応じた基準目標圧縮比よりも低くし、
上記可変圧縮比機構の上記目標圧縮比への圧縮比変化の過程の中で、所定の中間圧縮比領域において最大燃焼圧の制限を行う。
上記可変圧縮比機構の上記目標圧縮比への圧縮比変化の過程の中で、所定の中間圧縮比領域において最大燃焼圧の制限を行う。
すなわち、許容燃焼圧が中間圧縮比領域において低い場合に、この中間圧縮比領域において最大燃焼圧の制限を行うことで、可変圧縮比機構の耐久性への悪影響を回避できる。
以下、この発明の一実施例を図面に基づいて詳細に説明する。
図1は、この発明が適用された自動車用内燃機関1のシステム構成を示している。この内燃機関1は、複リンク式ピストンクランク機構を利用した可変圧縮比機構2を備えた4ストロークサイクルの火花点火式内燃機関であって、各シリンダ3の天井壁面に、一対の吸気弁4および一対の排気弁5が配置されているとともに、これらの吸気弁4および排気弁5に囲まれた中央部に点火プラグ6が配置されている。また内燃機関1は、排気エネルギを利用して過給を行うターボチャージャ8を備えている。
上記吸気弁4は、該吸気弁4の開閉時期を可変制御できる吸気側可変バルブタイミング機構7を備えている。可変バルブタイミング機構7としては、本実施例では、カムシャフトの位相を遅進させることで開時期および閉時期が同時に遅進する構成のものとなっている。このような可変バルブタイミング機構は、種々の型式のものが知られており、本発明は特定の形式の可変バルブタイミング機構に限定されるものではない。
例えば、可変バルブタイミング機構7は、カムシャフトの前端部に同心状に配置されるスプロケットと、このスプロケットとカムシャフトとを所定の角度範囲内において相対的に回転させる油圧式の回転型アクチュエータと、を備えて構成されている。上記スプロケットは、図示せぬタイミングチェーンもしくはタイミングベルトを介してクランクシャフトに連動している。従って、スプロケットとカムシャフトとが相対回転することで、カムシャフトのクランク角に対する位相が変化する。上記回転型アクチュエータは、油圧により進角側へ付勢する進角側油圧室と、油圧により遅角側へ付勢する遅角側油圧室と、を有し、エンジンコントローラ10からの制御信号によって図示せぬ油圧制御弁を介してこれらの油圧室への油圧供給を制御することによって、カムシャフトの位相を進角もしくは遅角させる構成となっている。この可変バルブタイミング機構7によって可変制御されるカムシャフトの実際の制御位置(これは実際のバルブタイミングに対応する)は、カムシャフトの回転位置に応答するカム角センサ11によって検出される。油圧制御弁を介した油圧供給は、カム角センサ11によって検出される実際の制御位置が運転条件に応じて設定される目標制御位置に合致するようにクローズドループ制御される。
エンジンコントローラ10は、運転条件として内燃機関1の負荷と回転速度とをパラメータとした目標制御位置マップを備えており、このマップに基づいて目標制御位置を設定する。目標制御位置は、基本的には、低回転速度側では相対的に遅角側のバルブタイミングであり、回転速度が高いほどバルブタイミングが進角する特性となっている。
基本的な吸気弁開時期は上死点前に設定されており、吸気弁閉時期は下死点後に設定されているので、可変バルブタイミング機構7が進角動作すると、吸気弁開時期は上死点から進角側へ離れて排気弁5とのバルブオーバラップが拡大し、吸気弁閉時期は下死点に近付いて体積効率が高くなる。なお、図示例では、排気弁5の動弁機構は開閉時期が変化しない構成となっているが、本発明においては、吸気弁4側の可変バルブタイミング機構7に加えて排気弁5側にも可変バルブタイミング機構を設けた構成であってもよい。
上記吸気弁4を介して燃焼室13に接続される吸気通路14には、各気筒毎にポート噴射用燃料噴射弁15が配置されている。また、各シリンダ3の中へ直接に燃料を噴射するように、筒内噴射用燃料噴射弁16が設けられている。すなわち、図示例は、いわゆるデュアルインジェクション方式の燃料噴射システムとなっており、負荷等に応じてポート噴射用燃料噴射弁15と筒内噴射用燃料噴射弁16とを適宜に用いて燃料供給を行っている。吸気通路14の吸気コレクタ18よりも上流側には、エンジンコントローラ10からの制御信号によって開度が制御される電子制御型スロットルバルブ19が介装されており、さらにその上流側に、ターボチャージャ8のコンプレッサ8aが位置している。吸気通路14のコンプレッサ8aよりも上流には、吸入空気量を検出するエアフロメータ20およびエアクリーナ21が配設されている。コンプレッサ8aとスロットルバルブ19との間には、インタークーラ22が設けられている。また、コンプレッサ8aの吐出側と吸入側とを連通するようにリサーキュレーションバルブ23が設けられている。このリサーキュレーションバルブ23は、スロットルバルブ19が閉じる減速時に開弁される。
上記排気弁5を介して燃焼室13に接続される排気通路25には、ターボチャージャ8のタービン8bが介装されており、その下流側にそれぞれ三元触媒からなるプリ触媒装置26およびメイン触媒装置27が配設されている。排気通路25のタービン8bよりも上流側には、空燃比を検出する空燃比センサ28が配置されている。タービン8bは、過給圧を制御するために過給圧に応じて排気の一部をバイパスするウェストゲートバルブ29を備えている。このウェストゲートバルブ29は、電動モータからなるアクチュエータを介してエンジンコントローラ10からの制御信号によって開度が制御される電子制御型ウェストゲートバルブである。
排気通路25のタービン8b下流側の位置と吸気通路14のコンプレッサ8a上流側の位置との間に、排気の一部を吸気系に還流する排気還流通路30が設けられている。この排気還流通路30は、EGRガスクーラ31およびEGRバルブ32を備えている。
上記エンジンコントローラ10には、上記のカム角センサ11、エアフロメータ20、空燃比センサ28のほか、機関回転速度を検出するためのクランク角センサ34、冷却水温を検出する水温センサ35、運転者によるトルク要求を検出するセンサとして運転者により操作されるアクセルペダルの踏込量を検出するアクセル開度センサ36、吸気コレクタ18における過給圧(吸気圧)を検出する過給圧センサ37、等のセンサ類の検出信号が入力されている。エンジンコントローラ10は、これらの検出信号に基づき、燃料噴射弁15,16による燃料噴射量および噴射時期、点火プラグ6による点火時期、可変圧縮比機構2による機械的圧縮比、可変バルブタイミング機構7による吸気弁4の開閉時期、スロットルバルブ19の開度、ウェストゲートバルブ29の開度、EGRバルブ32の開度、等を最適に制御している。
一方、可変圧縮比機構2は、特許文献1や特開2004-116434号公報等に記載の公知の複リンク式ピストンクランク機構を利用したものであって、クランクシャフト41のクランクピン41aに回転自在に支持されたロアリンク42と、このロアリンク42の一端部のアッパピン43とピストン44のピストンピン44aとを互いに連結するアッパリンク45と、ロアリンク42の他端部のコントロールピン46に一端が連結されたコントロールリンク47と、このコントロールリンク47の他端を揺動可能に支持するコントロールシャフト48と、を主体として構成されている。上記クランクシャフト41および上記コントロールシャフト48は、シリンダブロック49下部のクランクケース49a内で図示せぬ軸受構造を介して回転自在に支持されている。上記コントロールシャフト48は、該コントロールシャフト48の回動に伴って位置が変化する偏心軸部を有し、上記コントロールリンク47の端部は、詳しくは、この偏心軸部に回転可能に嵌合している。つまり、コントロールシャフト48の回動に伴って、コントロールリンク47の揺動支持位置が変位する。このような構成の上記の可変圧縮比機構2においては、コントロールシャフト48の回動に伴ってピストン44の上死点位置が上下に変位し、従って、機械的な圧縮比が変化する。
また、上記可変圧縮比機構2の圧縮比を可変制御する駆動機構として、この実施例では、クランクシャフト41と平行な回転中心軸を有する電動アクチュエータ51がクランクケース49aの外壁面に配置されており、この電動アクチュエータ51の出力回転軸に固定された第1アーム52と、コントロールシャフト48に固定された第2アーム53と、両者を連結した中間リンク54と、を介して、電動アクチュエータ51とコントロールシャフト48とが連動している。電動アクチュエータ51は、軸方向に直列に配置された電動モータおよび変速機構を含んでいる。
上記のようにして可変圧縮比機構2により可変制御される機械的圧縮比の実際の値つまり実圧縮比は、実圧縮比検出センサ56によって検出される。この実圧縮比検出センサ56は、例えば、コントロールシャフト48の回動角あるいは電動アクチュエータ51出力回転軸の回動角を検出するロータリ型ポテンショメータやロータリエンコーダなどから構成される。あるいは、電動アクチュエータ51を構成する電動モータへの指令信号から該電動モータの回転量を求め、この回転量からコントロールシャフト48の回動角を求めることで、別個のセンサを用いることなく実圧縮比を検知するようにしてもよい。
上記電動アクチュエータ51は、上記のようにして求められる実圧縮比が運転条件に対応した目標圧縮比となるように、エンジンコントローラ10によって駆動制御される。例えば、エンジンコントローラ10は、運転条件として内燃機関1の負荷と回転速度とをパラメータとした目標圧縮比マップを備えており、このマップに基づいて目標圧縮比を設定する。目標圧縮比は、基本的には、低負荷側では高圧縮比であり、負荷が高いほどノッキング抑制等のために低圧縮比となる。
ここで、上記のような複リンク式ピストンクランク機構を利用した可変圧縮比機構2にあっては、リンクジオメトリの関係で、ピストン44に加わる燃焼圧に対する機構の強度ないし耐性が、最高圧縮比と最低圧縮比との間の中間の圧縮比領域において相対的に低下する、という特性がある。つまり、ピストン44に作用する燃焼圧として、適宜な安全率を含めて可変圧縮比機構2の機械的な機構が損傷に至らない燃焼圧を「許容燃焼圧」と定義すると、この許容燃焼圧は、最高圧縮比付近および最低圧縮比付近での許容燃焼圧に比較して、中間の圧縮比領域において低くなる特性を有している。
従って、運転中に過渡的にでも最大燃焼圧が許容燃焼圧を越えてしまうと、可変圧縮比機構2の耐久性等の上で好ましくない。本発明においては、このようなことから、加速時に、許容燃焼圧が低くなっている中間の圧縮比領域において最大燃焼圧が許容燃焼圧を越えることがないようにする。
以下、図2のフローチャートに基づいて、加速時にエンジンコントローラ10が実行する制御を具体的に説明する。なお、このフローチャートに示すルーチンは、適宜な間隔(例えば微小時間間隔)で繰り返し実行される。
ステップ1(図中ではS1等と記す)では、実圧縮比検出センサ56によって検出された実圧縮比rVCRを読み込む。ステップ2では、加速要求があるか否かを判定する。この加速要求は、例えば、アクセル開度センサ36が検出するアクセルペダル開度の変化量や変化速度に基づいて判定される。詳しくは、図示しない別のルーチンによって、所定レベル以上の急激な加速要求の有無が逐次判定され、ステップ2では、その診断結果を参照する。なお、加速要求の大きさ(アクセルペダル開度の変化量の大小や変化速度の大小)を併せて求めるようにしてもよい。
ステップ2で加速要求がないと判定した場合には、ステップ3へ進み、定常時の通常の制御を行う。つまり、可変バルブタイミング機構7の目標制御位置tVTCを、そのときの運転条件(負荷および回転速度)に応じた定常時の基準目標制御位置に制御し、可変圧縮比機構2の目標圧縮比tVCRを、同じくそのときの運転条件(負荷および回転速度)に応じた定常時の基準目標圧縮比に制御する。そして、ステップ3からステップ4へ進み、後述する吸気圧制限制御は行わない。
加速要求がある場合には、ステップ2からステップ5へ進み、可変バルブタイミング機構7の目標制御位置tVTCを、そのときの運転条件(負荷および回転速度)に応じた定常時の基準目標制御位置よりも進角側に補正する。また、可変圧縮比機構2の目標圧縮比tVCRを、そのときの運転条件(負荷および回転速度)に応じた定常時の基準目標圧縮比よりも低圧縮比側に補正する。このような設定により、ノッキング発生を抑制しつつ出力トルクが向上する。特に、ターボチャージャ8を備えた実施例では、加速初期にターボチャージャ8の応答遅れが存在するが、上記の設定により、この応答遅れ期間中の出力トルク向上が図れ、良好な加速性能が得られる。なお、このような加速要求時における可変バルブタイミング機構7の目標制御位置tVTCの進角補正量および可変圧縮比機構2の目標圧縮比tVCRの低圧縮比側への補正量は、それぞれ一定量であってもよいが、これらを、加速要求の大きさに応じて設定するようにしてもよい。
上記のように目標圧縮比tVCRが設定されることで、可変圧縮比機構2は電動アクチュエータ51を介してそのときの機械的圧縮比から目標圧縮比tVCRへ向けて変化していくが、次のステップ6では、そのときの実圧縮比rVCRが、上述した許容燃焼圧が低くなる所定の中間圧縮比領域(第1中間圧縮比VCR1と第2中間圧縮比VCR2との間)内にあるか否かを判定する。そのときの実圧縮比rVCRが所定の中間圧縮比領域の範囲外(つまり、rVCR≧VCR1もしくはrVCR≦VCR2)であれば、ステップ6からステップ4へ進み、後述する吸気圧制限制御は行わない。
ステップ6で、VCR1>rVCR>VCR2であった場合には、ステップ6からステップ7へ進み、そのときの実圧縮比rVCRの値に基づいて吸気圧制限値Plimを設定する。この吸気圧制限値Plimは、内燃機関1の燃焼サイクル中の最大燃焼圧がそのときの実圧縮比rVCRの下での許容燃焼圧を越えないように設定される吸気圧の上限値に相当するもので、エンジンコントローラ10は、予め機械的圧縮比をパラメータとして吸気圧制限値Plimを割り付けたテーブルを備えており、ステップ7では、このテーブルを参照してそのときの実圧縮比rVCRに対する吸気圧制限値Plimを求める。この吸気圧制限値Plimは、スロットルバルブ19下流の吸気圧(過給圧)の値そのものであってもよく、あるいは吸気圧に相当する代替のパラメータであってもよい。
次に、ステップ7からステップ8へ進み、ステップ7で設定した吸気圧制限値Plimに沿って、吸気圧制限制御を実行する。すなわち、加速要求時には、トルク要求を満たすように吸気圧が急激に上昇するが、この吸気圧が実圧縮比rVCRに関連した吸気圧制限値Plimを越えるような場合には、吸気圧を吸気圧制限値Plimに制限する。例えば、吸気圧変更デバイスとして、ターボチャージャ8のウェストゲートバルブ29の開度を増加補正して過給圧を下げたり、スロットルバルブ19の開度を減少補正することで、スロットルバルブ19下流における吸気圧を吸気圧制限値Plimに制限する。これにより、燃焼サイクル中の最大燃焼圧がそのときの実圧縮比rVCRの下での許容燃焼圧を越えることがない。
すなわち、加速要求があったときに、加速前の機械的圧縮比から目標圧縮比tVCRへと実圧縮比rVCRが低下していく圧縮比変化の過程の中で、実圧縮比rVCRが第1中間圧縮比VCR1と第2中間圧縮比VCR2との間の中間圧縮比領域を通過する間、最大燃焼圧がそのときの実圧縮比rVCRの下での可変圧縮比機構2の許容燃焼圧を越えることがないように、ターボチャージャ8のバイパス量の増加やスロットルバルブ19の開度低減によって吸気圧を制限するのである。
図3は、上記のような加速要求時における圧縮比(実圧縮比rVCR)の変化と吸気圧の変化とを対比して示したタイムチャートである。この例では、内燃機関1が比較的低い負荷で運転していて目標圧縮比tVCRが高い定常状態の中で、時間t1において加速要求が発生している。この加速要求に伴い、目標圧縮比tVCRがステップ的に低下するため、可変圧縮比機構2は、電動アクチュエータ51を介して目標圧縮比tVCRへ向かって駆動される。複リンク式ピストンクランク機構を利用した可変圧縮比機構2の実圧縮比rVCRの変化は比較的緩慢であり、目標圧縮比tVCRがステップ的に低下しても、実圧縮比rVCRは、図示するように徐々に低下していく。なお、一実施例においては、実圧縮比rVCRが最終的に目標圧縮比tVCRに収束するまでには、加速要求検出時点(t1)から1~2秒程度を要する。このように実圧縮比rVCRが最終の目標圧縮比tVCRに変化するまでの過程の中で、実圧縮比rVCRは、許容燃焼圧が低くなる所定の中間圧縮比領域(VCR1~VCR2)を通過する。
図3の線PLIMは、可変圧縮比機構2の許容燃焼圧の特性、詳しくは、許容燃焼圧を吸気圧に換算して示した許容吸気圧の特性、を示している。前述したように、複リンク式ピストンクランク機構を利用した可変圧縮比機構2は、リンクジオメトリの関係で、所定の中間圧縮比領域(その上限が第1中間圧縮比VCR1、下限が第2中間圧縮比VCR2である)において、許容燃焼圧が低下する。従って、許容燃焼圧の点から許容される吸気圧が同様に低くなる。つまり、図3に斜線を施して示す領域が許容燃焼圧の低下を示す。なお、このように所定の中間圧縮比領域において低くなる線PLIMの特性に沿って、上述した吸気圧制限値Plimが設定されている。換言すれば、VCR1~VCR2の中間圧縮比領域における許容吸気圧PLIMと吸気圧制限値Plimとは実質的に等価である。
吸気圧は、線Pinで示すように、時間t1以降、加速要求に応答して上昇する。つまり、加速要求に対するスロットルバルブ19の開度の増加、ターボチャージャ8の作動(回転速度上昇)、吸気弁4の開閉時期の進角、等によって吸気圧が比較的速やかに上昇する。従って、種々の条件によっては、吸気圧が、仮想線Pin2で示すように、中間圧縮比領域において許容燃焼圧に対応した許容吸気圧PLIMを上回ってしまうことがある。上記実施例では、このように吸気圧が許容吸気圧PLIMを越えるような場合に、ウェストゲートバルブ29の開度増加あるいはスロットルバルブ19の開度減少による吸気圧制限制御を実行し、吸気圧を実線Pinのように許容吸気圧PLIM(換言すれば吸気圧制限値Plim)に沿って制限する。これにより、実際に生じる最大燃焼圧が可変圧縮比機構2の許容燃焼圧を越えることがなく、可変圧縮比機構2の耐久性等に及ぼす悪影響を抑制できる。
このように、上記実施例では、加速要求時において過渡的に最大燃焼圧が許容燃焼圧を越えてしまう現象を回避できることから、可変圧縮比機構2を構成する各部の強度や剛性を過度に高める必要がなくなり、必要最小限の強度・剛性を有する構成とすることが可能となる。例えば、各部の強度・剛性を高めるためには、構成部材の大型化や重量増加を招き、圧縮比変更時の応答性の低下や電動アクチュエータ51の消費電力の増加等の不利益を伴う。上記実施例では、このような不利益を伴わずに、可変圧縮比機構2の耐久性向上が図れる。
なお、実圧縮比rVCRが第1中間圧縮比VCR1以上である領域および実圧縮比rVCRが第2中間圧縮比VCR2以下である領域では、いずれも許容燃焼圧は高い。例えば、加速に伴って吸気圧が最大限に上昇しても、実圧縮比rVCRが第2中間圧縮比VCR2以下となっていれば、許容燃焼圧が高いことから、吸気圧制限制御は不要である。
また、加速要求によらずに定常運転の下で目標圧縮比tVCRが所定の中間圧縮比領域(VCR1~VCR2)の範囲内の値となることもあり得るが、加速時でなければ、最大燃焼圧が許容燃焼圧を越えるような高い吸気圧とならないので、吸気圧制限制御は不要である。
次に、図4は、第2実施例のフローチャートを示している。この実施例のステップ1~5は、前述した図2のフローチャートの各ステップと特に変わりがない。
すなわち、実圧縮比rVCRを読み込み(ステップ1)、加速要求の有無を判定(ステップ2)し、加速要求がない場合には、ステップ3,4で、通常制御を行う。
加速要求があれば、ステップ2からステップ5へ進み、可変バルブタイミング機構7の目標制御位置tVTCを、そのときの運転条件(負荷および回転速度)に応じた定常時の基準目標制御位置よりも進角側に補正し、可変圧縮比機構2の目標圧縮比tVCRを、そのときの運転条件(負荷および回転速度)に応じた定常時の基準目標圧縮比よりも低圧縮比側に補正する。
次に、ステップ7Aに進み、そのときの実圧縮比rVCRの値に基づいて吸気圧制限値Plimを設定する。この吸気圧制限値Plimは、内燃機関1の燃焼サイクル中の最大燃焼圧がそのときの実圧縮比rVCRの下での許容燃焼圧を越えないように設定される吸気圧の上限値に相当するもので、エンジンコントローラ10は、予め機械的圧縮比をパラメータとして吸気圧制限値Plimを割り付けたテーブルを備えており、ステップ7では、このテーブルを参照してそのときの実圧縮比rVCRに対する吸気圧制限値Plimを求める。
ここで、この実施例では、所定の中間圧縮比領域(VCR1~VCR2)のみならず可変圧縮比機構2の全制御範囲の機械的圧縮比の値に対する吸気圧制限値Plimが予めテーブルとして設定されている。そして、このテーブルにおいては、吸気圧制限値Plimは、例えば図3の線PLIMで示したような可変圧縮比機構2の許容燃焼圧を吸気圧に換算して示した許容吸気圧の特性に対応して設定されている。つまり、第1中間圧縮比VCR1以上の高圧縮比領域および第2中間圧縮比VCR2以下の低圧縮比領域では、吸気圧制限値Plimはターボチャージャ8等から定まる最高吸気圧に沿った値に設定され、第1中間圧縮比VCR1と第2中間圧縮比VCR2との間の中間圧縮比領域では、吸気圧制限値Plimは、許容燃焼圧ないし許容吸気圧PLIMの特性に沿うように相対的に低い値に設定されている。
ステップ7Aに続くステップ8Aでは、ステップ7Aで設定した吸気圧制限値Plimに沿って、吸気圧制限制御を実行する。すなわち、加速要求時には、トルク要求を満たすように吸気圧が急激に上昇するが、この吸気圧が実圧縮比rVCRに関連した吸気圧制限値Plimを越えるような場合には、吸気圧を吸気圧制限値Plimに制限する。例えば、ターボチャージャ8のウェストゲートバルブ29の開度を増加補正して過給圧を下げたり、スロットルバルブ19の開度を減少補正することで、スロットルバルブ19下流における吸気圧を吸気圧制限値Plimに制限する。これにより、燃焼サイクル中の最大燃焼圧がそのときの実圧縮比rVCRの下での許容燃焼圧を越えることがない。
ここで、第2実施例のフローチャートでは、実圧縮比rVCRの値によらずにステップ8Aの処理が実行されることとなるが、前述したように、第1中間圧縮比VCR1以上の高圧縮比領域および第2中間圧縮比VCR2以下の低圧縮比領域では、吸気圧制限値Plimが高い値となることから、実質的には吸気圧の制限は行われない。実圧縮比rVCRが第1中間圧縮比VCR1と第2中間圧縮比VCR2との間にある中間圧縮比領域では、吸気圧制限値Plimに応じて、実質的に前述した実施例と同様の吸気圧制限制御がなされる。従って、この実施例では、前述した第2実施例のフローチャートにおけるステップ6の実圧縮比rVCRの領域判定が不要となっている。
Claims (10)
- 内燃機関の機械的圧縮比を変更する可変圧縮比機構を備えた内燃機関の制御方法であって、
加速要求があったときに、上記可変圧縮比機構の目標圧縮比を定常時の機関運転条件に応じた基準目標圧縮比よりも低くし、
上記可変圧縮比機構の上記目標圧縮比への圧縮比変化の過程の中で、所定の中間圧縮比領域において最大燃焼圧の制限を行う、内燃機関の制御方法。 - 内燃機関は、吸気弁のバルブタイミングを変更する可変バルブタイミング機構をさらに備えており、
加速要求があったときに、上記可変バルブタイミング機構の目標制御位置を定常時の機関運転条件に応じた基準目標制御位置よりも進角側とする、請求項1に記載の内燃機関の制御方法。 - 上記内燃機関はターボチャージャを備えており、
上記最大燃焼圧の制限として、上記ターボチャージャによる過給圧の低下補正を行う、請求項1または2に記載の内燃機関の制御方法。 - 上記最大燃焼圧の制限として、スロットル弁開度の減少補正を行う、請求項1~3のいずれかに記載の内燃機関の制御方法。
- 上記可変圧縮比機構の実圧縮比を逐次検出し、この実圧縮比が上記の所定の中間圧縮比領域にあるときに最大燃焼圧の制限を行う、請求項1~4のいずれかに記載の内燃機関の制御方法。
- 上記中間圧縮比領域における機械的圧縮比の値に対して吸気圧制限値を予め設定し、
上記実圧縮比が上記の所定の中間圧縮比領域にあるときに、上記実圧縮比に対応した吸気圧制限値を用いて吸気圧を制限する、請求項5に記載の内燃機関の制御方法。 - 上記可変圧縮比機構の全制御範囲における機械的圧縮比の値に対して吸気圧制限値を予め設定し、上記実圧縮比に対応した吸気圧制限値を用いて吸気圧の制限を行うとともに、
上記中間圧縮比領域における吸気圧制限値の値を、他の領域の吸気圧制限値に比較して小さな値とした、請求項5に記載の内燃機関の制御方法。 - 可変圧縮比機構の機構上の許容燃焼圧の特性に対応して最大燃焼圧の制限を行う、請求項1~7のいずれかに記載の内燃機関の制御方法。
- 上記可変圧縮比機構は、一端がピストンに連結されたアッパリンクと、このアッパリンクの他端が連結されるとともに、クランクシャフトのクランクピンに回転可能に取り付けられたロアリンクと、このロアリンクに一端が連結されるとともに、他端が内燃機関本体に対して揺動可能に支持されたコントロールリンクと、を備えた複リンク式ピストンクランク機構からなり、上記コントロールリンクの内燃機関本体に対する揺動支持位置を変位させることにより機械的圧縮比が変化する構成である、請求項1~8のいずれかに記載の内燃機関の制御方法。
- アクチュエータの動作に応じて内燃機関の機械的圧縮比が変化する可変圧縮比機構と、
運転者によるトルク要求を検出するセンサと、
上記可変圧縮比機構の目標圧縮比として定常時の機関運転条件に応じた基準目標圧縮比を記憶した記憶部と、
内燃機関の吸気圧を変更する吸気圧変更デバイスと、
上記センサにより加速要求を検出したときに、上記可変圧縮比機構の目標圧縮比を上記基準目標圧縮比よりも低く設定するとともに、上記可変圧縮比機構の上記目標圧縮比への圧縮比変化の過程の中で、所定の中間圧縮比領域において上記吸気圧変更デバイスを介して最大燃焼圧の制限を行う制御部と、
を備えてなる内燃機関の制御装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/624,356 US11821374B2 (en) | 2017-06-28 | 2017-06-28 | Internal-combustion engine control method and control device |
PCT/JP2017/023666 WO2019003326A1 (ja) | 2017-06-28 | 2017-06-28 | 内燃機関の制御方法および制御装置 |
CN201780091801.5A CN110730861B (zh) | 2017-06-28 | 2017-06-28 | 内燃机的控制方法及控制装置 |
JP2019526449A JP6753530B2 (ja) | 2017-06-28 | 2017-06-28 | 内燃機関の制御方法および制御装置 |
EP17916398.5A EP3647570B1 (en) | 2017-06-28 | 2017-06-28 | Internal-combustion engine control method and control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/023666 WO2019003326A1 (ja) | 2017-06-28 | 2017-06-28 | 内燃機関の制御方法および制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019003326A1 true WO2019003326A1 (ja) | 2019-01-03 |
Family
ID=64741237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/023666 WO2019003326A1 (ja) | 2017-06-28 | 2017-06-28 | 内燃機関の制御方法および制御装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11821374B2 (ja) |
EP (1) | EP3647570B1 (ja) |
JP (1) | JP6753530B2 (ja) |
CN (1) | CN110730861B (ja) |
WO (1) | WO2019003326A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021055551A (ja) * | 2019-09-27 | 2021-04-08 | 日産自動車株式会社 | ハイブリッド車両の制御方法及びハイブリッド車両の制御装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003314318A (ja) * | 2002-04-19 | 2003-11-06 | Nissan Motor Co Ltd | 内燃機関の制御装置 |
JP2004116434A (ja) | 2002-09-27 | 2004-04-15 | Nissan Motor Co Ltd | レシプロ式可変圧縮比機関 |
JP2005127200A (ja) | 2003-10-23 | 2005-05-19 | Nissan Motor Co Ltd | 内燃機関の制御装置 |
JP2010190193A (ja) * | 2009-02-20 | 2010-09-02 | Nissan Motor Co Ltd | 内燃機関の制御装置 |
JP2011001905A (ja) * | 2009-06-19 | 2011-01-06 | Nissan Motor Co Ltd | 可変圧縮比式内燃機関 |
JP2011021524A (ja) * | 2009-07-15 | 2011-02-03 | Nissan Motor Co Ltd | エンジンの制御装置 |
WO2017002254A1 (ja) * | 2015-07-02 | 2017-01-05 | 日産自動車株式会社 | 内燃機関の制御方法及び制御装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6012289A (en) * | 1997-11-19 | 2000-01-11 | Caterpillar Inc. | Apparatus and method for utilizing a learned wastegate control signal for controlling turbocharger operation |
JP4415464B2 (ja) * | 2000-09-04 | 2010-02-17 | 日産自動車株式会社 | 可変圧縮比装置付ターボ過給内燃機関 |
JP4058927B2 (ja) * | 2001-09-18 | 2008-03-12 | 日産自動車株式会社 | 内燃機関の制御装置 |
JP4416377B2 (ja) * | 2002-05-16 | 2010-02-17 | 日産自動車株式会社 | 内燃機関の制御装置 |
JP4120465B2 (ja) * | 2003-05-14 | 2008-07-16 | トヨタ自動車株式会社 | 圧縮比を変更可能な内燃機関と圧縮比制御方法 |
JP4497018B2 (ja) * | 2005-04-14 | 2010-07-07 | トヨタ自動車株式会社 | 可変圧縮比内燃機関 |
JP2009108708A (ja) * | 2007-10-26 | 2009-05-21 | Nissan Motor Co Ltd | マルチリンクエンジンのリンクジオメトリ |
JP5045850B2 (ja) * | 2009-04-28 | 2012-10-10 | トヨタ自動車株式会社 | 火花点火式内燃機関 |
DE112009001849B8 (de) * | 2009-06-15 | 2013-10-17 | Toyota Jidosha Kabushiki Kaisha | Verbrennungsmotor der Funkenzündungsbauform |
CN103857893B (zh) * | 2011-11-01 | 2016-08-17 | 日产自动车株式会社 | 内燃机的控制装置及控制方法 |
RU2598487C1 (ru) * | 2013-01-17 | 2016-09-27 | Ниссан Мотор Ко., Лтд. | Устройство управления двигателем внутреннего сгорания и способ управления |
JP6027516B2 (ja) * | 2013-10-23 | 2016-11-16 | 日立オートモティブシステムズ株式会社 | 内燃機関の制御装置 |
JP6320882B2 (ja) * | 2014-09-11 | 2018-05-09 | 日立オートモティブシステムズ株式会社 | 内燃機関の可変燃焼システム |
US9856790B2 (en) * | 2015-08-10 | 2018-01-02 | Hyundai Motor Company | Variable compression ratio apparatus |
WO2019043860A1 (ja) * | 2017-08-31 | 2019-03-07 | 日産自動車株式会社 | 内燃機関の制御方法および制御装置 |
-
2017
- 2017-06-28 CN CN201780091801.5A patent/CN110730861B/zh active Active
- 2017-06-28 WO PCT/JP2017/023666 patent/WO2019003326A1/ja unknown
- 2017-06-28 EP EP17916398.5A patent/EP3647570B1/en active Active
- 2017-06-28 US US16/624,356 patent/US11821374B2/en active Active
- 2017-06-28 JP JP2019526449A patent/JP6753530B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003314318A (ja) * | 2002-04-19 | 2003-11-06 | Nissan Motor Co Ltd | 内燃機関の制御装置 |
JP2004116434A (ja) | 2002-09-27 | 2004-04-15 | Nissan Motor Co Ltd | レシプロ式可変圧縮比機関 |
JP2005127200A (ja) | 2003-10-23 | 2005-05-19 | Nissan Motor Co Ltd | 内燃機関の制御装置 |
JP2010190193A (ja) * | 2009-02-20 | 2010-09-02 | Nissan Motor Co Ltd | 内燃機関の制御装置 |
JP2011001905A (ja) * | 2009-06-19 | 2011-01-06 | Nissan Motor Co Ltd | 可変圧縮比式内燃機関 |
JP2011021524A (ja) * | 2009-07-15 | 2011-02-03 | Nissan Motor Co Ltd | エンジンの制御装置 |
WO2017002254A1 (ja) * | 2015-07-02 | 2017-01-05 | 日産自動車株式会社 | 内燃機関の制御方法及び制御装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3647570A4 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021055551A (ja) * | 2019-09-27 | 2021-04-08 | 日産自動車株式会社 | ハイブリッド車両の制御方法及びハイブリッド車両の制御装置 |
JP7299122B2 (ja) | 2019-09-27 | 2023-06-27 | 日産自動車株式会社 | ハイブリッド車両の制御方法及びハイブリッド車両の制御装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110730861B (zh) | 2022-09-23 |
CN110730861A (zh) | 2020-01-24 |
US11821374B2 (en) | 2023-11-21 |
EP3647570A4 (en) | 2020-07-01 |
EP3647570A1 (en) | 2020-05-06 |
EP3647570B1 (en) | 2022-12-14 |
JP6753530B2 (ja) | 2020-09-09 |
JPWO2019003326A1 (ja) | 2020-04-02 |
US20210156320A1 (en) | 2021-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4816785B2 (ja) | ターボ過給機付きエンジンの制御方法および制御装置 | |
EP2907992B1 (en) | Internal combustion engine provided with variable compression ratio mechanism | |
WO2014046059A1 (ja) | 内燃機関の制御装置及び方法 | |
JP6597699B2 (ja) | 内燃機関 | |
JP5472482B2 (ja) | エンジン | |
JP4952732B2 (ja) | 内燃機関の制御方法および内燃機関の制御システム | |
JP6666232B2 (ja) | 内燃機関の可変システム及びその制御方法 | |
US10480434B2 (en) | Control device for internal combustion engine | |
JP6350304B2 (ja) | リーンバーンエンジン | |
US10907552B2 (en) | Control method and control device for internal combustion engine | |
JP4438368B2 (ja) | 可変圧縮比エンジンの制御装置 | |
JP5229143B2 (ja) | エンジンの制御装置 | |
JP4596726B2 (ja) | 内燃機関の制御装置 | |
JP6753530B2 (ja) | 内燃機関の制御方法および制御装置 | |
JP7324657B2 (ja) | 内燃機関制御方法及び内燃機関制御装置 | |
JP4702121B2 (ja) | 内燃機関の制御装置及び制御方法 | |
JP2007182828A (ja) | 内燃機関の制御装置 | |
JP5418031B2 (ja) | 火花点火式エンジンの制御方法および制御装置 | |
JP5338709B2 (ja) | 内燃機関の制御装置 | |
JPH02119641A (ja) | エンジンの動弁装置 | |
JP2003328791A (ja) | 内燃機関の可変動弁装置 | |
JP5041167B2 (ja) | エンジンの制御装置 | |
JP2568250B2 (ja) | エンジンのバルブタイミング制御装置 | |
WO2018211853A1 (ja) | 内燃機関の可変動作システム及びその制御装置 | |
JP5067205B2 (ja) | 内燃機関の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17916398 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019526449 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017916398 Country of ref document: EP Effective date: 20200128 |