WO2019001124A1 - 冷凝板、真空干燥设备以及真空干燥方法 - Google Patents

冷凝板、真空干燥设备以及真空干燥方法 Download PDF

Info

Publication number
WO2019001124A1
WO2019001124A1 PCT/CN2018/084715 CN2018084715W WO2019001124A1 WO 2019001124 A1 WO2019001124 A1 WO 2019001124A1 CN 2018084715 W CN2018084715 W CN 2018084715W WO 2019001124 A1 WO2019001124 A1 WO 2019001124A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
dried
vacuum drying
storage structure
substrate
Prior art date
Application number
PCT/CN2018/084715
Other languages
English (en)
French (fr)
Inventor
王辉锋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/309,738 priority Critical patent/US11239451B2/en
Publication of WO2019001124A1 publication Critical patent/WO2019001124A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0003Condensation of vapours; Recovering volatile solvents by condensation by using heat-exchange surfaces for indirect contact between gases or vapours and the cooling medium
    • B01D5/0015Plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B25/00Details of general application not covered by group F26B21/00 or F26B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/20Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • F26B5/04Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum
    • F26B5/06Drying solid materials or objects by processes not involving the application of heat by evaporation or sublimation of moisture under reduced pressure, e.g. in a vacuum the process involving freezing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/009After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using thermal means, e.g. infrared radiation, heat
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour

Definitions

  • the present disclosure relates to the field of fabrication of display devices, and more particularly to a condensing plate, a vacuum drying device, and a vacuum drying method.
  • the organic electroluminescent device such as an organic light emitting diode OLED is mainly formed by an evaporation process and a solution process.
  • the inkjet printing technology in the solution process is considered to be an important way to realize mass production of large-sized organic electroluminescent devices due to its high material utilization rate and large size.
  • IJP inkjet printing
  • vacuum drying process the drying speed of the ink droplets on the substrate to be dried has an important influence on the final morphology of the film, and the uniformity of the film morphology has an important influence on the life and efficiency of the organic electroluminescent device. Therefore, how to control the drying speed of the ink droplets to improve the uniformity of the morphology of the formed film is critical.
  • the present disclosure provides a condensing plate.
  • the condensation plate includes a body including a first face and a second face opposite the first face, the first face being provided with a condensation portion and a solvent storage structure, the solvent storage structure configured to store the solvent, and away from the second face The direction of the release of the gas formed after evaporation of the solvent.
  • the first side includes an intermediate zone and an edge zone surrounding the intermediate zone, and the solvent storage structure is disposed in the edge zone.
  • the orthographic projection of the solvent storage structure on the plane of the first side or the second side is an annular projection.
  • the outer and inner rings of the annular projection are rectangular.
  • the annular projection has a loop width between 1 mm and 100 mm.
  • the solvent storage structure is a film layer comprising a plurality of adsorption holes.
  • the material of the film layer comprises any one of silicone, polypropylene, and fluorine-containing materials.
  • the body includes a cooling passage configured to receive a coolant.
  • a vacuum drying apparatus comprising a chamber for providing a vacuum environment, a base, and the above-described condensing plate provided by an embodiment of the present disclosure.
  • the condensing plate and the base are disposed opposite each other in the chamber, and the base is configured to carry the substrate to be dried.
  • the abutment is further configured to heat the substrate to be dried.
  • the first side faces the substrate to be dried.
  • the orthographic projection of the solvent storage structure on the plane of the substrate to be dried is a circular projection.
  • the outer ring of the annular projection is rectangular, the length of the outer ring is greater than the length of the area to be dried of the substrate to be dried, and the width of the outer ring is greater than the width of the area to be dried.
  • the inner ring of the annular projection is rectangular, the length of the inner ring is not greater than the length of the area to be dried of the substrate to be dried, and the width of the inner ring is not greater than the width of the area to be dried.
  • the vacuum drying apparatus further includes a solvent supply device.
  • the solution supply device is configured to supply a solvent to the solvent storage structure.
  • the vacuum drying apparatus further comprises:
  • a detecting device configured to detect an amount of solvent per unit area in the condensing portion
  • the control device is configured to adjust the solvent supply amount of the solvent supply device in accordance with the detection result.
  • the solvent supply device comprises:
  • a storage container configured to store a solvent
  • a supply line in communication with the storage container and configured to supply solvent in the storage container to the solvent storage structure
  • a regulating valve is disposed on the supply line and configured to regulate a supply flow rate of the supply line under control of the control device.
  • a vacuum drying method comprising:
  • the abutment is heated to evaporate the solvent on the substrate to be dried to condense on the condensing plate.
  • the vacuum drying method further comprises:
  • Figure 1 is a schematic view of a known vacuum drying apparatus for vacuum drying
  • FIG. 2 is a schematic view of a vacuum drying apparatus including a condensing plate when vacuum drying is performed according to an embodiment of the present disclosure.
  • a current vacuum drying process is shown in Figure 1.
  • a base is provided in the chamber 11 for providing a vacuum environment.
  • the abutment can be a heating plate 12.
  • the substrate 13 to be dried after printing the ink is placed above the heating plate 12.
  • a lower temperature condensing plate 14 is placed at a suitable height above the substrate 13 to be dried.
  • the heating plate 12 starts heating. Therefore, the solvent in the ink 16 on the substrate 13 to be dried starts to evaporate and is gradually captured by the condensation plate 14, thereby forming the condensation layer 15.
  • the central portion of the substrate 13 to be dried is in the saturated vapor zone 18 of the solvent where the drying speed and the drying direction tend to coincide, and the morphology of the film is uniform.
  • the edge region of the substrate 13 to be dried is in the gas pressure transition zone 24 between the saturated vapor zone 18 and the high vacuum zone 26 of the chamber 11. Due to the difference in the dry vacuum of the gas pressure transition zone 24 and the saturated vapor zone 18, the uniformity of the morphology at different locations on the substrate to be dried cannot be ensured.
  • the display area for forming pixels In order to ensure the topography uniformity of the area to be dried AA (i.e., the display area for forming pixels), it is known to provide redundant pixel areas 28 at the edges of the area AA to be dried. This causes the redundant pixel region 28 to be located in the gas pressure transition region 24, while the region to be dried AA is located in the saturated vapor region 18, thereby ensuring the uniformity of the morphology of the film layer. The redundant pixel area 28 is not illuminated and displayed. This approach is not conducive to the implementation of a narrow bezel.
  • the present disclosure proposes a condensing plate, a vacuum drying device, and a vacuum drying method to improve the uniformity of the morphology of the film layer formed in the vacuum drying process and to reduce the influence on the width of the bezel.
  • a condensing plate 20 is provided. As shown in FIG. 2, the condensing plate 20 is disposed opposite to the substrate 13 to be dried in a film drying process (for example, a vacuum drying process), so that the solvent on the substrate 13 to be dried is evaporated and condensed on the condensing plate 20 (specifically, the condensing plate 20). On the condensation portion 17), a condensation layer 15 is formed.
  • the condensing plate 20 includes a body 21.
  • the body 21 includes a first side and a second side that are oppositely disposed.
  • a condensation portion 17 and a solvent storage structure 22 are provided on the first surface of the body 21.
  • the solvent storage structure 22 is used to store the solvent. The solvent forms a gas after evaporation and is released toward the substrate 13 to be dried.
  • the position of the solvent storage structure 22 on the body 21 can be set according to the position of the substrate 13 to be dried in the chamber 11 in the film drying process, so that the solvent storage structure 22 is opposite to the portion of the substrate 13 to be dried which is close to the high vacuum region 26. .
  • the body 21 and the substrate 13 to be dried are located in the middle of the chamber 11, and the substrate 13 to be dried is surrounded by a high vacuum region 26.
  • the solvent storage structure 22 can be disposed in a region close to the four sides of the bottom surface of the body 21.
  • the solvent storage structure 22 is located on the side of the body 21 facing the substrate to be dried and adjacent to the four sides of the face, or around the four sides of the body 21.
  • the body 21 and the substrate 13 to be dried are disposed adjacent to an inner wall of the chamber 11, and the solvent storage structure 22 can be disposed at a position near the bottom of the body 21 away from the three sides of the inner wall of the chamber 11.
  • the solvent storage structure 22 is located on three sides of the body 21 facing the substrate to be dried and close to the inner wall of the chamber 11 or disposed on three sides of the inner wall 21 away from the inner wall of the chamber 11.
  • the middle portion of the substrate 13 to be dried is kept away from the high vacuum region 26 so that the solvent is in the higher or even saturated vapor region 18, the evaporation speed tends to be uniform, and the evaporation direction is the same.
  • the edge of the substrate 13 to be dried is at a lower vapor pressure gas pressure transition zone 24.
  • the body 21 is provided with a solvent storage structure 22 which is opposite to the portion of the substrate 13 to be dried which is adjacent to the high vacuum region 26 and which stores a certain solvent.
  • the solution in the solvent storage structure 22 is evaporated under vacuum conditions away from the second face, thereby forming a gaseous environment under the solvent storage structure 22.
  • the gaseous environment formed by the solvent storage structure 22 surrounds the area to be dried AA on the substrate 13 to be dried as the gas pressure transition region 24.
  • the gas pressure transition zone 24 separates the area to be dried AA from the vacuum atmosphere such that the solvent of the area to be dried AA of the substrate 13 to be dried is all in the higher or even saturated vapor zone 18. This makes the environment of the ink droplets drying in the area to be dried AA uniform, so that the uniformity of the film layer in the area to be dried AA is better, and the redundant pixel area is reduced or even eliminated, thereby improving the uniformity of the film morphology. At the same time reduce the impact on the narrow border.
  • the solvent storage structure 22 may be disposed on the side of the body 21 facing the substrate 13 to be dried.
  • the solvent storage structure 22 can be a film layer having a plurality of adsorption holes, and the solvent is Adsorbed in the adsorption hole.
  • the film layer is made of an organic solvent-resistant material, including any one of silicone resin, polypropylene, and fluorine-containing material.
  • the substrate 13 to be dried is positioned in the middle portion of the chamber, that is, the periphery of the substrate 13 to be dried is surrounded by the high vacuum region 26.
  • the body 21 includes an intermediate portion and an edge region surrounding the intermediate portion.
  • the condensation portion 17 is disposed in the intermediate portion, and the solvent storage structure 22 is disposed in the edge region.
  • the solvent storage structure 22 may also cover the entire surface of the body 21 toward the substrate 13 to be dried, as long as the solvent condensed in the corresponding body 21 above the area to be dried AA of the substrate 13 to be dried is uniformly distributed.
  • the orthographic projection of the solvent storage structure 22 on the plane of the bottom surface of the body 21 is a circular projection. Since the plane of the bottom surface of the body 21 is substantially parallel to the plane of the substrate to be dried, further, the orthographic projection of the solvent storage structure 22 on the plane of the substrate 13 to be dried is a circular projection, especially surrounding the area to be dried AA. Circular projection. When the solvent in the solvent storage structure 22 evaporates, the periphery of the area AA to be dried is surrounded by the gaseous environment and is isolated from the high vacuum zone 26. This further improves the uniformity of the film layer.
  • the plane of the body 21 may be a plane in which the body 21 faces the surface of the substrate 13 to be dried, or may be a plane in which the body 21 faces away from the surface of the substrate 13 to be dried.
  • the area to be dried AA of the substrate 13 to be dried is rectangular, and correspondingly, the outer ring and the inner ring of the annular projection are both rectangular, the length of the rectangular outer ring is larger than the length of the area to be dried AA, and the width of the outer ring of the rectangle is larger than
  • the width of the drying zone AA is such that when the solvent of the area to be dried AA evaporates, the surrounding area can be surrounded by the solvent evaporated by the solvent in the upper solvent storage structure 22, thereby maintaining the evaporation direction of the solvent throughout the drying zone AA, The evaporation rates are all consistent.
  • the length of the rectangular inner ring is not greater than the length of the area to be dried AA
  • the width of the inner ring of the rectangle is not greater than the width of the area to be dried AA, so that the gas environment formed by evaporation of the solvent of the area to be dried AA and the upper solvent storage structure 22 are The solvent is evaporated to form a gas atmosphere without gaps.
  • the difference between the length of the inner ring of the rectangle and the length of the area to be dried AA is between 0 and 600 ⁇ m; the difference between the width of the inner ring of the rectangle and the width of the area to be dried AA is between 0 and 600 ⁇ m.
  • the loop width of the annular projection (ie, the width between the inner ring and the outer ring) is between 1 mm and 100 mm, so that when the solvent in the solvent storage structure 22 evaporates, the substrate 13 to be dried can be dried.
  • a sufficiently wide gas area is created around the area AA to better surround the gas formed by evaporation of the solvent of the area to be dried AA, preventing the solvent of the area to be dried AA from evaporating to the high vacuum area 26.
  • a cooling passage may be provided in the body 21 for accommodating the coolant.
  • a vacuum drying apparatus including a chamber 11 for providing a vacuum environment, a base, and a condensing plate 20 according to an embodiment of the present disclosure.
  • the base is used to carry the substrate 13 to be dried.
  • the abutment can be a heating plate 12. Both the condensing plate 20 and the heating plate 12 are disposed in the chamber 11 for providing a vacuum environment, and the heating plate 12 is disposed opposite to the condensing plate 20 for carrying and heating the substrate 13 to be dried.
  • the heating plate 12 can include a carrier plate and a heating member disposed within the carrier plate.
  • the condensing plate 20 includes a first face and a second face disposed opposite the first face. Since the first side of the condensing plate 20 includes the solvent storage structure 22, a certain amount of solvent can be stored in the solvent storage structure 22 during the vacuum drying process. The gas evaporated by the solvent can be released toward the substrate 13 to be dried in a direction away from the second surface. Therefore, during the vacuum drying process, a certain gas atmosphere is generated under the solvent storage structure 22, so that the solvent of the area to be dried AA of the substrate 13 to be dried is all in the higher or even saturated steam zone 18, thereby making the area to be dried AA.
  • the drying environment of the ink droplets is consistent, and the uniformity of the film layer in the drying zone AA is better, and the redundant pixel area is reduced or even eliminated, thereby reducing the uniformity of the film layer and reducing the influence on the narrow frame. .
  • the heating plate 12 and the condensing plate 20 may be disposed in the middle of the chamber 11 in an embodiment such that the heating plate 12 and the condensing plate 20 are surrounded by a high vacuum region 26. Accordingly, as described above, the solvent storage structure 22 is disposed in an area close to the four sides of the bottom surface of the body 21.
  • the vacuum drying apparatus further includes a solvent supply device, a detection device, and a control device (none of which are shown).
  • the solution supply device is for supplying a solvent to the solvent storage structure 22.
  • the detecting means is for detecting the amount of solvent per unit area in the region of the body 21 where the solvent is condensed. As described above, the solvent storage structure 22 is disposed in an area close to the four sides of the bottom surface of the body 21. At this time, the detecting means is for detecting the amount of solvent per unit area on the solvent storage structure 22 and the amount of solvent in the unit area of the intermediate portion (such as the amount of solvent per unit area of the condensed layer 15 in Fig. 2).
  • the control device is configured to adjust the solvent supply amount of the solvent supply device based on the detection result of the detecting device.
  • the amount of solvent in the unit area of the N+1th supply to the solvent storage structure 22 can be controlled according to the amount of solvent per unit area in the solvent storage structure 22 after the end of the Nth vacuum drying process, thereby making the N+th
  • the amount of solvent in the unit area of the intermediate portion on the body 21 is substantially the same as the amount of solvent in the unit area on the solvent storage structure 22, and the solvent at both places is uniformly distributed, so that the substrate 13 to be dried is to be dried.
  • the edge of the drying zone AA is consistent with the atmosphere in the middle, further ensuring the consistency of evaporation speed and direction.
  • the N+1th vacuum can be reduced.
  • the solvent supply amount of the solvent supply device in the drying process is less than the amount of solvent per unit area of the solvent storage structure 22.
  • the solvent supply amount of the solvent supply device at the time of the N+1th vacuum drying process can be increased, so that After the vacuum drying process is completed, the amount of solvent per unit area in the solvent storage structure 22 is substantially the same as the amount of solvent in the unit area of the intermediate portion on the body 21 (it can also be regarded as the thickness of the condensation layer 15 in the intermediate portion and the solvent storage structure).
  • the depth of the solvent in 22 is the same) so that the solvent is uniformly distributed over the entire area of the body 21.
  • the solvent storage structure 22 can cover the entire surface of the body 21 toward the substrate 13 to be dried.
  • the solvent on the body 21 is uniformly distributed due to the fluidity of the solvent. Therefore, it is only necessary to provide a sufficient amount of solvent to the solvent storage structure 22 prior to each vacuum drying process.
  • the amount of solvent provided should ensure that solvent remains in the solvent storage structure 22 throughout the drying process.
  • the solution supply device may specifically include a storage container, a supply line 30, and a regulating valve.
  • a storage container is used to store the solvent.
  • the supply line 30 is in communication with the storage container for supplying solvent from the storage container to the solvent storage structure 22. As shown in Fig. 2, a groove may be provided in the body 21 to place a portion of the supply line 30 in the groove.
  • the supply line 30 supplies solvent from the upper side of the solvent storage structure 22 to the solvent storage structure 22.
  • a regulating valve is provided on the supply line 30 for regulating the supply flow of the supply line 30 under the control of the control unit.
  • the vacuum drying process includes the following steps performed each time vacuum drying is performed:
  • the solvent storage structure 22 Providing a solvent to the solvent storage structure 22 disposed in the body 21 of the condensing plate 20, wherein the condensing plate 20 is disposed opposite to the substrate 13 to be dried, and the solvent storage 22 is configured to store the solvent;
  • Heating the abutment to evaporate the solvent in the ink on the substrate 13 to be dried to condense on the condensing plate 20.
  • the abutment can be a heating plate 12. Since the heating plate 12 is heated, the solvent in the ink on the substrate 13 to be dried is rapidly evaporated, so that the ink on the substrate 13 to be dried is dried to form a film layer.
  • the area to be dried AA is separated from the high vacuum area 26, and when the substrate is placed, the solvent storage structure 22 can be made.
  • the outer edge extends beyond the outer edge of the area to be dried AA of the substrate 13 to be dried.
  • the solution in the solvent storage structure 22 evaporates to produce a certain gas atmosphere.
  • the above method may further include injecting a coolant into the cooling line in the body 21 of the condensing plate 20 before heating the abutment.
  • the vacuum drying method may further include:
  • the preset value can be set to a value slightly larger than zero. That is, in the region of the body 21 corresponding to the area to be dried AA of the substrate 13 to be dried, the solvent is uniformly distributed.
  • the present disclosure provides a condensing plate.
  • the condensing plate includes a body.
  • the body includes a first face and a second face opposite the first face.
  • a condensation portion and a solvent storage structure are provided on the first surface.
  • the solvent storage structure is configured to store the solvent and to release a gas formed by evaporation of the solvent in a direction away from the second surface.
  • the present disclosure also provides a vacuum drying apparatus and a vacuum drying method.
  • the condensing plate includes a solvent storage structure in which a certain solvent can be stored.
  • a certain gas atmosphere is generated under the solvent storage structure, so that the solvent of the area to be dried of the substrate to be dried is all in a higher or even saturated steam zone. This makes the environment in which the ink droplets to be dried are dry in a uniform environment, so that the uniformity of the film layer in the drying zone is better.
  • the redundant pixel area is reduced or even eliminated, thereby reducing the influence on the narrow bezel while improving the uniformity of the film layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

一种冷凝板(20)、包括冷凝板(20)的真空干燥装置及真空干燥方法。冷凝板(20)的本体(21)包括第一面和与第一面相对的第二面。第一面上布置冷凝部(17)和溶剂存放结构(22),溶剂存放结构(22)配置为存放溶剂,以及沿远离第二面的方向释放溶剂蒸发后形成的气体。

Description

冷凝板、真空干燥设备以及真空干燥方法
相关专利申请
本申请主张于2017年6月30日提交的中国专利申请No.201710526220.1的优先权,其全部内容通过引用结合于此。
技术领域
本公开涉及显示装置的制作的领域,具体涉及一种冷凝板、真空干燥设备以及真空干燥方法。
背景技术
诸如有机发光二极管OLED的有机电致发光器件的成膜方式主要有蒸镀工艺和溶液工艺。溶液工艺中的喷墨打印技术由于其材料利用率较高并且可以实现大尺寸化,而被认为是实现大尺寸有机电致发光器件的量产的重要方式。
目前喷墨打印工艺的过程包括喷墨印刷(IJP)工艺、真空干燥工艺、烘干(Bake)工艺。在真空干燥工艺中,待干燥基板上墨滴干燥速度对薄膜最后形貌有重要影响,而薄膜形貌均匀性对有机电致发光器件的寿命和效率有重要影响。因此,如何控制墨滴干燥速度以改善所形成薄膜的形貌均匀性很关键。
发明内容
本公开提供一种冷凝板。冷凝板包括本体,本体包括第一面和与第一面相对的第二面,第一面上布置有冷凝部和溶剂存放结构,溶剂存放结构配置成存放溶剂,以及沿远离所述第二面的方向释放溶剂蒸发后形成的气体。
在一实施例中,第一面包括中间区和环绕中间区的边缘区,并且溶剂存放结构设置在边缘区。
在一实施例中,溶剂存放结构在第一面或第二面所在平面上的正投影为环状投影。
在一实施例中,环状投影的外环和内环为矩形。
在一实施例中,环状投影的环宽在1mm~100mm之间。
在一实施例中,溶剂存放结构为包括多个吸附孔的膜层。
在一实施例中,膜层的材料包括硅树脂、聚丙烯、含氟材料中的任意一种。
在一实施例中,本体包括配置成容纳冷却剂的冷却通道。
根据本公开的另一方面,还提供了一种真空干燥设备,包括用于提供真空环境的腔室、基台以及本公开实施例提供的上述冷凝板。冷凝板和基台相对地设置在腔室内,并且基台配置成承载待干燥基板。
在一实施例中,基台还配置成加热待干燥基板。
在一实施例中,第一面朝向待干燥基板。
在一实施例中,溶剂存放结构在待干燥基板所在平面上的正投影为环状投影。
在一实施例中,环状投影的外环为矩形,外环的长度大于待干燥基板的待干燥区的长度,并且外环的宽度大于待干燥区的宽度。
在一实施例中,环状投影的内环为矩形,内环的长度不大于待干燥基板的待干燥区的长度,并且内环的宽度不大于待干燥区的宽度。
在一实施例中,真空干燥设备还包括溶剂供给装置。溶液供给装置配置成向溶剂存放结构供给溶剂。
在一实施例中,真空干燥设备还包括:
检测装置,其配置成检测凝结部中单位面积内的溶剂量;和
控制装置,其配置成根据检测结果调节溶剂供给装置的溶剂供给量。
在一实施例中,溶剂供给装置包括:
存储容器,其配置成存储溶剂;
供给管路,其与存储容器连通,并且配置成将存储容器中的溶剂供给至溶剂存放结构;和
调节阀,设置在所述供给管路上,并且配置成在控制装置的控制下调节供给管路的供给流量。
根据本公开的又一方面,还提供了一种真空干燥方法,包括:
将待干燥基板放置在基台上;
向设置于冷凝板的本体中的溶剂存放结构供给溶剂,其中冷凝板与待干燥基板相对设置,并且溶剂存放结构配置成存放溶剂;以及
加热基台,使待干燥基板上的溶剂蒸发以凝结在冷凝板上。
在一实施例中,真空干燥方法还包括:
检测本体上凝结有溶剂的区域中单位面积内的溶剂量;以及
根据检测结果调节随后的真空干燥过程中供给到溶剂存放结构的溶剂供给量,以使得在该下一次真空干燥过程后,在本体上凝结有溶剂的区域中和溶剂存放结构中,不同位置处的单位面积内溶剂量之差不超过预设值。
附图说明
附图用来提供对本公开的进一步理解,构成说明书的一部分,与下面的具体实施方式一起解释本公开,但并不构成对本公开的限制。在附图中:
图1是已知的真空干燥设备进行真空干燥时的示意图;以及
图2为根据本公开实施例的、包括冷凝板的真空干燥设备进行真空干燥时的示意图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
一种目前的真空干燥工艺过程如图1所示。用于提供真空环境的腔室11中设置有基台。在一些实施例中,基台可以是加热板12。打印墨水后的待干燥基板13放在加热板12上方。在待干燥基板13上方的合适高度处放置一温度较低的冷凝板14。当腔室11抽真空到特定压力后,加热板12开始加热。因此,待干燥基板13上的墨水16中的溶剂开始蒸发并逐渐被冷凝板14捕获,从而形成冷凝层15。在蒸发过程中,待干燥基板13的中部区域处于溶剂的饱和蒸汽区18,在该处干燥速度和干燥方向趋于一致,薄膜的形貌均匀性较好。待干燥基板13的边缘区域处于饱和蒸汽区18和腔室11的高真空区26之间的气压过渡区24。由于气压过渡区24的干燥真空度和饱和蒸汽区18的不同,无法保证待干燥基板上不同位置的形貌均匀性。
为了确保待干燥区AA(即,用于形成像素的显示区)的形貌均匀性,已知的是,在待干燥区AA边缘设置冗余像素区28。这使得冗余 像素区28位于气压过渡区24,而待干燥区AA位于饱和蒸汽区18,从而保证膜层的形貌均匀性。冗余像素区28不进行发光和显示。这种方式不利于窄边框的实现。
为了至少解决上述技术问题之一,本公开提出了一种冷凝板、真空干燥设备以及真空干燥方法,以提高真空干燥工艺中形成的膜层的形貌均匀性,并减少对边框宽度的影响。
根据本公开的一方面,提供一种冷凝板20。如图2所示,冷凝板20在膜层干燥工艺(例如真空干燥工艺)中与待干燥基板13相对设置,使得待干燥基板13上的溶剂蒸发后凝结在冷凝板20(具体是冷凝板20的冷凝部17)上,形成冷凝层15。冷凝板20包括本体21。本体21包括相对布置的第一面和第二面。本体21的第一面上设置有冷凝部17和溶剂存放结构22。溶剂存放结构22用于存放溶剂。溶剂在蒸发后形成气体,并朝向待干燥基板13释放。
溶剂存放结构22在本体21上的位置可以根据膜层干燥工艺中待干燥基板13在腔室11中的位置进行设置,使得溶剂存放结构22与待干燥基板13的靠近高真空区26的部分相对。在一示例中,本体21和待干燥基板13位于腔室11中部,待干燥基板13四周均为高真空区26,这时可以将溶剂存放结构22设置在靠近本体21底面四条边的区域。例如,溶剂存放结构22位于本体21朝向待干燥基板的一面且靠近该面的四条边,或者环绕本体21的四个侧面设置。在另一示例中,本体21和待干燥基板13紧邻腔室11的一个内壁设置,这时可以将溶剂存放结构22设置在靠近本体21底面远离该腔室11内壁的三条边的位置。例如,溶剂存放结构22位于本体21朝向待干燥基板的一面且靠近该面远离该腔室11内壁的三条边,或者,环绕本体21远离该腔室11内壁的三个侧面设置。
已知的冷凝板14在应用于真空干燥工艺中时,待干燥基板13的中部远离高真空区26,以使溶剂处于较高甚至饱和的蒸汽区18,蒸发速度趋于一致,蒸发方向相同。待干燥基板13的边缘处于较低蒸汽气压的气压过渡区24。这部分的溶剂在向上蒸发时,朝向高真空区26的一侧没有气体环境的保护,使得蒸发的气体在上升的同时还会趋向于周围的高真空区26移动,从而使得待干燥基板13中部和边缘的溶剂的蒸发速度与蒸发方向均不同。
在本公开实施例中,由于本体21上设置有与待干燥基板13靠近高真空区26的部分相对、并存放有一定溶剂的溶剂存放结构22。在对待干燥基板13进行真空干燥工艺时,溶剂存放结构22中的溶液会在真空条件下以远离第二面的方向蒸发,从而在溶剂存放结构22下方形成气体环境。当溶剂存放结构22的外边缘超出待干燥基板13的外边缘时,溶剂存放结构22形成的气体环境会作为气压过渡区24环绕待干燥基板13上待干燥区AA。该气压过渡区24将待干燥区AA与真空氛围隔开,从而使得待干燥基板13的待干燥区AA的溶剂全部处在较高甚至饱和的蒸汽区18中。这使得待干燥区AA各处的墨滴干燥的环境一致,以致待干燥区AA中的膜层形貌均匀性更好,并且减少甚至消除冗余像素区,从而在提高膜层形貌均匀性的同时降低对窄边框的影响。
为了便于溶剂存放结构22稳定设置在本体21上,在一实施例中,如图2所示,可以将溶剂存放结构22设置在本体21朝向待干燥基板13的一侧。
为了使溶剂存放结构22能够存放一定的溶剂,且使溶剂蒸发后的气体能够朝向待干燥基板13释放,在一实施例中,溶剂存放结构22可以为具有多个吸附孔的膜层,溶剂被吸附在吸附孔中。
为了防止溶剂存放结构22长时间使用后被有机溶剂腐蚀,在一实施例中,该膜层采用耐有机溶剂腐蚀的材料,包括硅树脂、聚丙烯、含氟材料中的任意一种。
通常在进行真空干燥工艺时,待干燥基板13定位于腔室的中间部分,即待干燥基板13四周被高真空区26包围。这种情况下,本体21包括中间区和环绕中间区的边缘区冷凝部17设置在中间区,溶剂存放结构22设置在边缘区。在一实施例中,溶剂存放结构22也可以覆盖本体21朝向待干燥基板13的整个表面,只要保证待干燥基板13的待干燥区AA上方对应的主体21中凝结的溶剂均匀分布即可。
溶剂存放结构22在本体21的底面所在平面上的正投影为环状投影。由于本体21的底面所在的平面与待干燥基板所在的平面基本平行,因此,进一步地,溶剂存放结构22在待干燥基板13所在平面上的正投影为环状投影,尤其是包围待干燥区AA的环状投影。当溶剂存放结构22中的溶剂蒸发时,待干燥区AA边缘周围被气体环境包围,与 高真空区26隔离开。这进一步提高膜层均匀性。本体21所在平面可以为本体21朝向待干燥基板13的表面所在的平面,也可以为本体21背离待干燥基板13的表面所在的平面。
通常,待干燥基板13的待干燥区AA为矩形,相应地,环状投影的外环和内环均为矩形,矩形外环的长度大于待干燥区AA的长度,矩形外环的宽度大于待干燥区AA的宽度,以保证待干燥区AA的溶剂蒸发时,其周围可以被由上方的溶剂存放结构22中的溶剂蒸发的气体所包围,从而保待干燥区AA各处的溶剂蒸发方向、蒸发速率均较为一致。
另外,矩形内环的长度不大于待干燥区AA的长度,矩形内环的宽度不大于待干燥区AA的宽度,以使得待干燥区AA的溶剂蒸发形成的气体环境与上方溶剂存放结构22中的溶剂蒸发形成的气体环境无间隔。矩形内环长度与待干燥区AA的长度差在0~600μm之间;矩形内环宽度与待干燥区AA的宽度差在0~600μm之间。
进一步地,环状投影的环宽(即,内环与外环之间的宽度)在1mm~100mm之间,从而使得溶剂存放结构22中的溶剂蒸发时,能够在待干燥基板13的待干燥区AA周围产生足够宽的气体区域,将待干燥区AA的溶剂蒸发形成的气体更好地包围起来,防止待干燥区AA的溶剂向高真空区26蒸发。
为了使得待干燥基板13上的溶剂蒸发后能够在冷凝板上快速凝结,以使得待干燥基板13上的气压保持稳定,本体21内可以设置有冷却通道,用于容纳冷却剂。
作为本公开的另一方面,提供一种真空干燥设备,如图2所示,包括用于提供真空环境的腔室11、基台以及根据本公开实施例的冷凝板20。基台用于承载待干燥基板13。在一些实施例中,基台可以是加热板12。冷凝板20和加热板12均设置在该用于提供真空环境的腔室11内,加热板12与冷凝板20相对设置,用于承载并加热待干燥基板13。在一实施例中,加热板12可以包括承载板和设置在承载板内的加热件。
冷凝板20包括第一面和与第一面相对布置的第二面。由于冷凝板20的第一面包括溶剂存放结构22,在进行真空干燥工艺时,可以在溶剂存放结构22中存放一定的溶剂。溶剂蒸发后的气体能够以远离第二 面的方向向待干燥基板13释放。因此,在真空干燥过程中,溶剂存放结构22下方产生一定的气体氛围,使得待干燥基板13的待干燥区AA的溶剂全部处在较高甚至饱和的蒸汽区18中,进而使得待干燥区AA的墨滴干燥的环境一致,并且待干燥区AA中的膜层形貌均匀性更好,而且减少甚至消除冗余像素区,从而在提高膜层形貌均匀性的同时降低对窄边框的影响。
加热板12和冷凝板20在一实施例中可以设置在腔室11的中部,使得加热板12和冷凝板20四周均为高真空区26。相应地,如上文所述,溶剂存放结构22设置在靠近本体21底面四条边的区域。
进一步地,该真空干燥设备还包括溶剂供给装置、检测装置和控制装置(均未示出)。溶液供给装置用于向溶剂存放结构22供给溶剂。检测装置用于检测本体21上凝结溶剂的区域中单位面积内的溶剂量。如上文所述,溶剂存放结构22设置在靠近本体21底面四条边的区域。这时,检测装置用于检测溶剂存放结构22上单位面积内的溶剂量以及中间区单位面积内的溶剂量(如图2中冷凝层15的单位面积的溶剂量)。该控制装置用于根据检测装置的检测结果调节该溶剂供给装置的溶剂供给量。具体地,可以根据第N次真空干燥工艺结束后溶剂存放结构22中单位面积内的溶剂量,控制第N+1次供给到溶剂存放结构22中单位面积内的溶剂量,从而使得第N+1次干燥时,本体21上中间区单位面积内的溶剂量与溶剂存放结构22上单位面积内的溶剂量基本相同,且这两处的溶剂是均匀分布的,从而使得待干燥基板13的待干燥区AA的边缘与中部所处的氛围一致,进一步保证蒸发速度和方向的一致性。在另外一实施例中,第N次真空干燥工艺结束后,当本体21的中间区单位面积内溶剂量少于溶剂存放结构22中单位面积内的溶剂量时,可以减少第N+1次真空干燥工艺时溶剂供给装置的溶剂供给量。反之,当本体21中间区的单位面积内的溶剂量多于溶剂存放结构22中单位面积内的溶剂量时,可以增加第N+1次真空干燥工艺时溶剂供给装置的溶剂供给量,以使得每次真空干燥工艺结束后,溶剂存放结构22中单位面积内的溶剂量与本体21上中间区单位面积内的溶剂量基本相同(也可以看作中间区的冷凝层15的厚度与溶剂存放结构22中溶剂的深度相同),从而使得本体21上整个区域内溶剂均匀分布。
如上文所述,溶剂存放结构22可以覆盖本体21朝向待干燥基板13的整个表面。这种情况下,由于溶剂的流动性,本体21上的溶剂是均匀分布的。因此,只需要在每次真空干燥工艺之前向溶剂存放结构22提供足够量的溶剂即可。提供的溶剂量应保证在干燥工艺过程中,溶剂存放结构22始终有溶剂剩余。
该溶液供给装置具体可以包括存储容器、供给管路30和调节阀。存储容器用于存储溶剂。供给管路30与存储容器连通,用于将存储容器中的溶剂供给至溶剂存放结构22。如图2所示,可以在本体21上设置凹槽,将供给管路30的一部分设置在凹槽中。供给管路30从溶剂存放结构22的上方向溶剂存放结构22供给溶剂。调节阀设置在供给管路30上,用于在该控制装置的控制下调节供给管路30的供给流量。
作为本公开的再一方面,提供一种利用上述真空干燥设备进行的真空干燥方法。结合图2,该真空干燥方法包括在进行每次真空干燥时进行以下步骤:
-将待干燥基板13放置在基台上;
-向设置于冷凝板20的本体21中的溶剂存放结构22供给溶剂,其中冷凝板20与待干燥基板13相对设置,并且溶剂存放22结构配置成存放溶剂;以及
-加热基台,使待干燥基板13上的墨水中的溶剂蒸发以凝结在冷凝板20上。
在一些实施例中,基台可以是加热板12。由于加热板12被加热,待干燥基板13上的墨水中的溶剂快速蒸发,使得待干燥基板13上的墨水被干燥而形成膜层。
本领域技术人员应当理解,本公开所提供方法的步骤执行顺序并不限于所描述的顺序。
为了在真空干燥的过程中,在待干燥基板13上的待干燥区AA周围形成一个保护环境,将待干燥区AA与高真空区26隔开,在放置基板时,可以使得溶剂存放结构22的外边缘超出待干燥基板13的待干燥区AA的外边缘。溶剂存放结构22中的溶液蒸发而产生一定的气体氛围。通过上述布置,待干燥基板的13待干燥区AA的溶剂全部处在饱和蒸汽区18中,进而使得待干燥区AA的墨滴干燥的环境一致。结果是,待干燥区AA中的膜层形貌均匀性较好,并且减少甚至消除冗 余像素区,从而在提高膜层均匀性的同时降低对窄边框的影响。
另外,上述方法还可以包括,在加热基台之前,向冷凝板20的本体21内的冷却管路中注入冷却剂。
另外,为了进一步保证待干燥基板13上溶剂蒸发速度、蒸发方向的一致性,该真空干燥方法还可以包括:
-在一次真空干燥过程结束后,检测本体21上凝结有溶剂的区域中单位面积内的溶剂量;以及
-由该控制装置根据该检测装置的检测结果,调节下一次真空干燥过程中溶剂供给装置供给到溶剂存放结构的溶剂供给量,以使得在该下一次真空干燥过程后,在本体上凝结有溶剂的区域中和溶剂存放结构中,不同位置处的单位面积内溶剂量之差不超过预设值。该预设值可以设置为一个略大于零的值。即,待干燥基板13的待干燥区AA上方对应的本体21的区域中,溶剂均匀分布。
综上,本公开提供一种冷凝板。冷凝板包括本体。本体包括第一面和与第一面相对的第二面。第一面上设置有冷凝部和溶剂存放结构。溶剂存放结构配置为存放溶剂,以及沿远离第二面的方向释放溶剂蒸发后形成的气体。相应地,本公开还提供一种真空干燥设备及真空干燥方法。
在本公开中,冷凝板包括溶剂存放结构,可以在溶剂存放结构中存放一定的溶剂。在进行真空干燥工艺时,溶剂在真空环境下蒸发后,所得到的气体能够向待干燥基板释放。因此,在真空干燥过程中,在溶剂存放结构下方产生一定的气体氛围,使得待干燥基板的待干燥区的溶剂全部处在较高甚至饱和的蒸汽区中。这使得待干燥区的墨滴干燥的环境一致,以致待干燥区中的膜层形貌均匀性更好。同时减少甚至消除冗余像素区,从而在提高膜层均匀性的同时降低对窄边框的影响。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。
附图标记列表:
11:腔室
12:加热板
13:待干燥基板
14:已知的冷凝板
15:冷凝层
16:墨水
17:冷凝部
18:饱和蒸汽区
24:气压过渡区
26:高真空区
AA:待干燥区
28:冗余像素区
20:根据本公开实施例的冷凝板
21:本体
22:溶剂存放结构
30:供给管路。

Claims (19)

  1. 一种冷凝板,包括本体,所述本体包括第一面和与所述第一面相对的第二面,其中所述第一面上布置有冷凝部和溶剂存放结构,所述溶剂存放结构配置为存放溶剂,以及沿远离所述第二面的方向释放所述溶剂蒸发后形成的气体。
  2. 根据权利要求1所述的冷凝板,其中所述第一面包括中间区和环绕所述中间区的边缘区,并且所述溶剂存放结构设置在所述边缘区。
  3. 根据权利要求2所述的冷凝板,其中所述溶剂存放结构在所述第一面或所述第二面所在平面上的正投影为环状投影。
  4. 根据权利要求3所述的冷凝板,其中所述环状投影的外环和内环为矩形。
  5. 根据权利要求3所述的冷凝板,其中所述环状投影的环宽在1mm~100mm之间。
  6. 根据权利要求1所述的冷凝板,其中所述溶剂存放结构为包括多个吸附孔的膜层。
  7. 根据权利要求6所述的冷凝板,其中所述膜层的材料包括硅树脂、聚丙烯、含氟材料中的任意一种。
  8. 根据权利要求1所述的冷凝板,其中所述本体包括配置成容纳冷却剂的冷却通道。
  9. 一种真空干燥设备,包括用于提供真空环境的腔室、基台以及根据权利要求1所述的冷凝板,所述冷凝板和所述基台相对地设置在所述腔室内,并且所述基台配置成承载待干燥基板。
  10. 根据权利要求9所述的真空干燥设备,其中所述基台还配置成加热所述待干燥基板。
  11. 根据权利要求9所述的真空干燥设备,其中所述第一面朝向所述待干燥基板。
  12. 根据权利要求9所述的真空干燥设备,其中所述溶剂存放结构在所述待干燥基板所在平面上的正投影为环状投影。
  13. 根据权利要求12所述的真空干燥设备,其中所述环状投影的外环为矩形,所述外环的长度大于所述待干燥基板的待干燥区的长度,并且所述外环的宽度大于所述待干燥区的宽度。
  14. 根据权利要求12所述的真空干燥设备,其中所述环状投影的内环为矩形,所述内环的长度不大于所述待干燥基板的待干燥区的长度,并且所述内环的宽度不大于所述待干燥区的宽度。
  15. 根据权利要求9所述的真空干燥设备,还包括溶剂供给装置,其中所述溶剂供给装置配置成向所述溶剂存放结构供给溶剂。
  16. 根据权利要求15所述的真空干燥设备,还包括:
    检测装置,其配置成检测所述凝结部中单位面积内的溶剂量;和
    控制装置,其配置成根据检测结果调节所述溶剂供给装置的溶剂供给量。
  17. 根据权利要求16所述的真空干燥装置,其中所述溶剂供给装置包括:
    存储容器,其配置成存储溶剂;
    供给管路,其与所述存储容器连通,并且配置成将所述存储容器中的溶剂供给至所述溶剂存放结构;和
    调节阀,其设置在所述供给管路上,并且配置成在所述控制装置的控制下调节所述供给管路的供给流量。
  18. 一种真空干燥方法,包括:
    将待干燥基板放置在基台上;
    向设置于冷凝板的本体中的溶剂存放结构供给溶剂,其中所述冷凝板与所述待干燥基板相对设置,并且所述溶剂存放结构配置成存放所述溶剂;以及
    加热所述基台,使所述待干燥基板上的溶剂蒸发以凝结在所述冷凝板上。
  19. 根据权利要求18所述的真空干燥方法,还包括:
    检测所述本体上凝结有溶剂的区域中单位面积内的溶剂量;以及
    根据检测结果调节随后的真空干燥过程中供给到所述溶剂存放结构的溶剂供给量,以使得在所述随后的真空干燥过程后,在所述本体上凝结有溶剂的区域中和所述溶剂存放结构中,不同位置处的单位面积内溶剂量之差不超过预设值。
PCT/CN2018/084715 2017-06-30 2018-04-27 冷凝板、真空干燥设备以及真空干燥方法 WO2019001124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/309,738 US11239451B2 (en) 2017-06-30 2018-04-27 Condensing plate, vacuum drying device and vacuum drying method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710526220.1 2017-06-30
CN201710526220.1A CN109200736B (zh) 2017-06-30 2017-06-30 冷凝板、真空干燥设备以及真空干燥方法

Publications (1)

Publication Number Publication Date
WO2019001124A1 true WO2019001124A1 (zh) 2019-01-03

Family

ID=64741025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/084715 WO2019001124A1 (zh) 2017-06-30 2018-04-27 冷凝板、真空干燥设备以及真空干燥方法

Country Status (3)

Country Link
US (1) US11239451B2 (zh)
CN (1) CN109200736B (zh)
WO (1) WO2019001124A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109817842B (zh) 2019-01-16 2021-10-01 京东方科技集团股份有限公司 一种真空干燥装置、显示用基板的制备方法
CN110332765B (zh) * 2019-06-29 2021-06-18 汕尾市索思电子封装材料有限公司 一种电镀产品的干燥方法及干燥装置
CN111873648B (zh) * 2019-08-16 2022-03-29 广东聚华印刷显示技术有限公司 喷墨打印真空干燥装置及喷墨打印方法
CN111516399B (zh) * 2020-04-29 2022-05-31 Tcl华星光电技术有限公司 掩膜版及其制造方法、复合型掩膜版、真空干燥装置
CN113091413B (zh) * 2021-04-30 2022-06-10 Tcl华星光电技术有限公司 真空干燥装置
WO2022234716A1 (ja) * 2021-05-06 2022-11-10 東京エレクトロン株式会社 減圧乾燥装置、減圧乾燥処理方法、減圧乾燥処理の所要時間の短縮方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011328A1 (en) * 1995-09-18 1997-03-27 Minnesota Mining And Manufacturing Company Coated substrate drying system
CN1725422A (zh) * 2004-06-30 2006-01-25 佳能株式会社 具有功能薄膜的电子器件的制造方法
CN101754859A (zh) * 2007-06-14 2010-06-23 麻省理工学院 用于控制膜沉积的方法和设备
CN104051674A (zh) * 2013-03-14 2014-09-17 东京毅力科创株式会社 干燥装置及干燥处理方法
CN104908423A (zh) * 2015-06-26 2015-09-16 京东方科技集团股份有限公司 一种薄膜制作方法及系统
CN107201504A (zh) * 2017-05-19 2017-09-26 京东方科技集团股份有限公司 真空干燥膜层的方法和显示器件
CN107940904A (zh) * 2017-11-14 2018-04-20 合肥鑫晟光电科技有限公司 一种真空干燥腔室及真空干燥装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004268392A (ja) * 2003-03-07 2004-09-30 Fuji Photo Film Co Ltd インクジェット記録用シートの製造方法及び塗布膜の乾燥装置
KR101754260B1 (ko) * 2013-03-14 2017-07-06 도쿄엘렉트론가부시키가이샤 건조 장치 및 건조 처리 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011328A1 (en) * 1995-09-18 1997-03-27 Minnesota Mining And Manufacturing Company Coated substrate drying system
CN1725422A (zh) * 2004-06-30 2006-01-25 佳能株式会社 具有功能薄膜的电子器件的制造方法
CN101754859A (zh) * 2007-06-14 2010-06-23 麻省理工学院 用于控制膜沉积的方法和设备
CN104051674A (zh) * 2013-03-14 2014-09-17 东京毅力科创株式会社 干燥装置及干燥处理方法
CN104908423A (zh) * 2015-06-26 2015-09-16 京东方科技集团股份有限公司 一种薄膜制作方法及系统
CN107201504A (zh) * 2017-05-19 2017-09-26 京东方科技集团股份有限公司 真空干燥膜层的方法和显示器件
CN107940904A (zh) * 2017-11-14 2018-04-20 合肥鑫晟光电科技有限公司 一种真空干燥腔室及真空干燥装置

Also Published As

Publication number Publication date
US20200358037A1 (en) 2020-11-12
CN109200736B (zh) 2021-01-08
CN109200736A (zh) 2019-01-15
US11239451B2 (en) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2019001124A1 (zh) 冷凝板、真空干燥设备以及真空干燥方法
KR20160112293A (ko) 증발원 및 이를 포함하는 증착장치
JP5324010B2 (ja) 蒸着粒子射出装置および蒸着装置並びに蒸着方法
JP2007227086A (ja) 成膜装置および発光素子の製造方法
KR20070056190A (ko) 금속판 벨트 증발원을 이용한 선형 유기소자 양산장비
KR20060098755A (ko) 유기 발광 다이오드의 진공 증착 장치 및 방법
US20170213966A1 (en) Method and system for forming film
US11094919B2 (en) Method of vacuum drying film layer and display device
WO2016101397A1 (zh) 防止蒸镀材料喷溅及塞孔的坩埚
WO2014198112A1 (zh) 有机镀膜装置及镀膜方法
US9557638B2 (en) Method for manufacturing photo mask and photo mask manufactured with same
WO2019000971A1 (zh) 冷凝板及其制备方法、干燥设备、oled面板的制备方法
TWI576456B (zh) 沉積裝置與使用其製造有機發光二極體顯示器之方法
KR101206162B1 (ko) 하향식 열적 유도 증착에 의한 선형의 대면적 유기소자양산장비
US20200080193A1 (en) Carrier plate for evaporating device and evaporating device thereof
US20170067144A1 (en) Vacuum evaporation source apparatus and vacuum evaporation equipment
KR20150113742A (ko) 증발원 및 이를 포함하는 증착장치
KR20140061808A (ko) 유기물 증착 장치
US20180148827A1 (en) Thermal conduction device and vapor deposition crucible
KR101449601B1 (ko) 증착 장치
KR102307431B1 (ko) 복수의 모듈을 갖는 증착원
US20200220114A1 (en) Film formation device, vapor-deposited film formation method, and organic el display device production method
KR20160090985A (ko) 볼륨 가변형 도가니를 구비한 증착원
KR102641720B1 (ko) 증착용 각도제한판 및 이를 포함하는 증착장치
KR101599505B1 (ko) 증착장치용 증발원

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03/06/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18823936

Country of ref document: EP

Kind code of ref document: A1